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Abstract: We propose a new, infinite class of brackets generalizing the Frölicher–
Nijenhuis bracket. This class can be reduced to a family of generalizedNijenhuis torsions
recently introduced. In particular, the Haantjes bracket, the first example of our construc-
tion, is relevant in the characterization of Haantjes moduli of operators. We also prove
that the vanishing of a higher-level Nijenhuis torsion of an operator field is a sufficient
condition for the integrability of its eigen-distributions. This result (which does not re-
quire any knowledge of the spectral properties of the operator) generalizes the celebrated
Haantjes theorem. The same vanishing condition also guarantees that the operator can
be written, in a local chart, in a block-diagonal form.
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1. Introduction

In the last two decades, the study of the geometry of Nijenhuis and Haantjes tensors has
experienced a resurgence of interest. The notion of Nijenhuis torsion was introduced in
[19,20] byA. Nijenhuis in his study of the integrability of eigen-distributions of operator
fields with pointwise distinct eigenvalues.

In [10], the graded bracket nowadays called the Frölicher–Nijenhuis bracket was
defined. This bracket is relevant in several geometric contexts, in particular the theory of
almost-complex structures, as clarified by the Newlander–Nirenberg theorem [12,18].
Slightly before, in the seminal paper [11], J. Haantjes proposed the fundamental notion
of torsion bearing his name. He proved that the vanishing of the Haantjes torsion of
a (1, 1)-tensor field is a necessary condition for the existence of an integrable frame
of generalized eigenvectors. This condition is also sufficient in the case of pointwise
semisimple operators.

Recently, new and conspicuous applications of Nijenhuis and Haantjes tensors have
been found, for instance, in the characterization of integrable chains of partial differential
equations of hydrodynamic type (see e.g. [4,9]) and in the study of infinite-dimensional
integrable systems, in connection with the celebrated WDVV equations of associativity
and the theory of Dubrovin–Frobenius manifolds [15–17]. In [22–25], the notion of
Haantjes algebras and the related ones of ωH and PH manifolds have been proposed
as a natural setting for the formulation of the theory of finite-dimensional integrable
Hamiltonian systems.

The aim of this work is twofold.
Our first goal is to introduce a new, infinite class of brackets that generalize the

Frölicher–Nijenhuis one. Thefirst representative of our class coincideswith it; the second
one is already a newexample, theHaantjes bracket HA,B(X, Y ). Bymeans of a recursive
procedure, we also define a “tower” of infinitely many novel higher-level brackets. Here,
“bracket” is used to emphasize their dependence on a pair (A, B) of (1,1)-tensor fields.

A simple reduction of this family, obtained when each representative depends on a
pair (A, A) of copies of the same operator field, coincides (up to a constant) with the
family of generalized torsions defined independently (and from a different perspective)
by Kosmann-Schwarzbach in [13] and by ourselves in an early, preprint 2017 version
of [23].

Within this framework, we wish to study the geometry of very general families of
operators, as the triangularizable ones, that (except in very specific cases) have non-
vanishing Haantjes torsion.

We have ascertained the geometric relevance of our higher brackets in several impor-
tant situations. Precisely, as stated in Theorem 23, given two commutative semisimple
operators, they generate a Haantjes module if and only if their Haantjes bracket vanishes.
Also, further algebraic properties of this bracket have been studied.



Higher Haantjes Brackets and Integrability

Our second goal is to clarify the geometric meaning of the “generalized Nijenhuis
torsions” of higher level introduced, with different formulations, in [13,23]. In Sect. 5
(Proposition 26 and Corollary 27) we prove that the vanishing of the generalized Ni-
jenhuis torsion τ

(n−1)
A (X, Y ) = 0 of level (n − 1) of a nilcyclic (i.e. both nilpotent and

cyclic) operator field A on a manifold of dimension n is necessary for the existence of
a local chart where A takes a triangular form (see Eq. (46)).

Themain theoremof the presentwork, Theorem40 of Section 6, concerns the integra-
bility properties of the generalized eigen-distributions (i.e., distributions of generalized
eigenvectors) of an operator field. A seminal result, due to Haantjes [11], states that
in the case of a semisimple operator field, a necessary and sufficient condition for the
Frobenius integrability of its eigen-distributions of constant rank is that its Haantjes
tensor identically vanishes. However, in the general case of a non-semisimple operator,
the previous condition is only sufficient. Thus, for the infinite class of operators whose
Haantjes tensor is not vanishing, no conclusion can be drawn about integrability of their
eigen-distributions.

Our main theorem fills this gap. Indeed, we shall prove that the vanishing of a gen-
eralized Nijenhuis torsion τ

(m)

A (X, Y ) of level m for some integer m ≥ 1 provides us
with a sufficient condition for the integrability of the generalized eigen-distributions of
a given operator field A. In addition, it ensures the integrability of all of their direct
sums. Thus, we are able to construct a tensorial test for the Frobenius integrability of
a very large class of operator fields, which significantly extends the applicability of the
original Haantjes’s torsion criterion.

The interest of our result, in the spirit of the Haantjes theorem, relies crucially on
the fact that, in order to ascertain the integrability properties of a given operator, no
knowledge a priori of the spectrum of this operator nor of its eigen-distributions is
required.

At the same time, for completeness we also provide necessary and sufficient condi-
tions for the Frobenius integrability of the eigen-distributions of an operator field in terms
of generalized tensors of higher level, assuming the knowledge of its eigen-distributions
(see Corollary 34). Under this hypothesis, we show that the Nijenhuis torsion as well
as any of the higher level ones allow us to characterize integrable eigen-distributions of
operator fields.

An important consequence of Theorem 40 (see Proposition 43) is the fact that an
operator with a vanishing generalized Nijenhuis torsion (for some m ≥ 1) admits a local
coordinate chart where it takes a block-diagonal form.

In short, the body of results proposed indicates that all of the infinitely many higher-
level tensors introduced possess a geometric meaning and are relevant in applicative
contexts.

An open problem we propose in Sect. 5 is the decomposition of a generic operator
field as the sum of a diagonal operator and an operator whose generalized Nijenhuis
torsion (of a suitable level) vanishes.

We also believe that the theory of higher brackets defined in this work could play a
significant role, more generally, in the theory of integrable systems, for instance in the
study of generic hydrodynamic-type systems, not possessing Riemann invariants. For
instance, a potentially interesting area is the study of equations of hydrodynamic type
in (2 + 1) dimensions, namely, equations of the form ut = A(u)ux + B(u)uy , where
A(u) and B(u) are operator fields which not necessarily commute [8]. It would be
interesting, for instance, to classify the pairs of operators (A(u), B(u)) appearing in the
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theory of hydrodynamic-type systems by means of suitable tensor conditions ensuring
integrability (some results are presented in Sect. 3.3.1).

2. Preliminaries on the Nijenhuis and Haantjes Geometries

In this section, we shall review some basic notions concerning the geometry of Nijenhuis
andHaantjes torsions, following the original papers [10,11,19]. Herewe shall focus only
on the aspects of the theory which are relevant for the subsequent discussion.

Let M be a differentiable manifold, X(M) the Lie algebra of all smooth vector fields
on M and A : X(M) → X(M) be a smooth (1, 1)-tensor field (namely, an operator field).
For the sake of simplicity, from now on the expressions “tensor fields” and “operator
fields” will be abbreviated to tensors and operators. In the following, all tensors will be
considered to be smooth.

Definition 1. The Nijenhuis torsion of A is the vector-valued 2-form defined by

τA(X, Y ) := A2[X, Y ] + [AX, AY ] − A
(
[X, AY ] + [AX, Y ]

)
, (1)

where X, Y ∈ X(M) and [ , ] denotes the Lie bracket of two vector fields.
Definition 2. The Haantjes torsion of A is the vector-valued 2-form defined by

HA(X, Y ) := A2τA(X, Y ) + τA(AX, AY ) − A
(
τA(X, AY ) + τA(AX, Y )

)
. (2)

Definition 3. A Haantjes (Nijenhuis) operator is a (1,1)-tensor whose Haantjes (Nijen-
huis) torsion identically vanishes.

A simple, relevant case of Haantjes operator is that of a tensor A which takes a
diagonal form in a local chart x = (x1, . . . , xn):

A(x) =
n∑

i=1

λi (x)
∂

∂xi
⊗ dxi , (3)

whereλi (x) := λi
i (x) are the eigenvalues of A and

(
∂

∂x1
, . . . , ∂

∂xn

)
are the fields forming

the so called natural frame associatedwith the local chart (x1, . . . , xn). As iswell known,
the Haantjes torsion of the diagonal operator (3) vanishes.

Wealso recall that two frames {X1, . . . , Xn} and {Y1, . . . , Yn} are said to be equivalent
if n nowhere vanishing smooth functions fi exist, such that

Xi = fi (x)Yi , i = 1, . . . , n.

Definition 4. [1] An integrable frame is a reference frame equivalent to a natural frame.

Remark 5. We wish to point out that the adjectives “diagonalizable” and “semisimple”
are both used in the literature, sometimes interchangeably. From now on, we shall call
diagonalizable an operator which takes a diagonal form in a natural reference frame
(as in formula (3)), whereas we shall say that an operator is pointwise semisimple (or
semisimple tout court) if it admits a local reference frame (not necessarily natural, nor
integrable) in which it takes a diagonal form. Diagonalizable operators are obviously
semisimple; the converse statement is not true in general. Historically, the problem
addressed by Nijenhuis and Haantjes was to ascertain whether a local reference frame
constructed out of the eigenvectors of an operator is integrable or not.
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It is interesting to observe that the algebraic properties of Haantjes operators are
different, and sometimes richer that those of Nijenhuis operators. A useful result is the
following (hereafter, I : X(M) → X(M) will denote the identity operator).

Proposition 6. [2] Let A be a (1,1)-tensor. The following identity holds:

H f I+gA(X, Y ) = g4HA(X, Y ), (4)

where f, g : M → R are C∞(M) functions.

Proof. See Proposition 1, p. 255 of [2]. ��
Interestingly enough, such a simple property does not hold in the case of a Nijenhuis

operator.
Many more examples of Haantjes operators, relevant in classical mechanics and in

Riemannian geometry, can be found for instance in [21–25].

3. Haantjes Brackets

Let M be a differentiable manifold and A, B : X(M) → X(M) be two operators.

3.1. The Frölicher–Nijenhuis bracket.

Definition 7. [10] The Frölicher–Nijenhuis bracket of A and B is the vector-valued
2-form given by1

�A, B�(X, Y ) :=
(
AB + BA

)
[X, Y ] + [AX, BY ] + [BX, AY ]

−A
(
[X, BY ] + [BX, Y ]

)
− B

(
[X, AY ] + [AX, Y ]

)
, X, Y ∈ X(M). (5)

The local expression of the components of the Frölicher–Nijenhuis bracket reads

�A, B�i
jk =

n∑
l=1

(
Al

[ j∂|l|Bi
k] − Ai

l ∂[ j Bl
k] + Bl

[ j∂|l|Ai
k] − Bi

l ∂[ j Al
k]

)
. (6)

This bracket has relevant geometric applications [18], in particular in the theory of
almost-complex structures and in the detection of obstructions to integrability [12]. The
bracket is symmetric andR-linear (but notC∞(M)-linear) in A and B. In fact, it satisfies
the identity

� f A, gB�(X, Y ) = f g�A, B�(X, Y ) − g
(
T(B, A) − TT (B, A)(d f, X, Y )

)

− f
(
T(A, B) − TT (A, B)(dg, X, Y )

)
.

(7)

HereT(A, B) : X∗(M)×X(M)×X(M) → X(M) is the vector-valued 3–tensor defined
by

T(A, B)(α, X, Y ) := (I ⊗ AB − A ⊗ B)(α, X, Y ). (8)

1 For sake of clarity, in this article we have renounced to the usual unified notation [·, ·] which, depending
on the context, should stand for both the standard Lie bracket of vector fields and the Frölicher–Nijenhuis
bracket of operators. Instead, we have preferred to maintain the symbol �·, ·� for the Frölicher–Nijenhuis
bracket and to introduce the notation [·, ·] for the Lie bracket of two vector fields as well as the commutator
of two operators.
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We shall denote by TT (α, X, Y ) := T(α, Y, X) the transposed of T w.r.t. the last two
arguments. We also recall that for each operator A, B, and for all α ∈ X∗(M), X, Y ∈
X(M),

(A ⊗ B)(α, X, Y ) = 〈α, AX〉 BY.

Note that for each operator B : X(M) → X(M), we have

�I, B�(X, Y ) = 0, ∀X, Y ∈ X(M). (9)

Choosing A = B in Eq. (5), one gets twice the Nijenhuis torsion:

�A, A�(X, Y ) = 2 τA(X, Y ).

For all f, g ∈ C∞(M), the following identity holds:

τ f A+gB(X, Y ) = f 2τA(X, Y ) − f
(
T(A, A) − TT (A, A)

)
(d f, X, Y ) + g2τB(X, Y )

− g
(
T(B, B) − TT (B, B)

)
(dg, X, Y ) + f g �A, B�(X, Y )

− f
(
T(A, B) − TT (A, B)

)
(dg, X, Y )

− g
(
T(B, A) − TT (B, A)

)
(d f, X, Y ).

(10)
This identity allows us to characterize modules of Nijenhuis operators.

Proposition 8. Let A and B be two Nijenhuis operators. They generate a module of
Nijenhuis operators if and only if the following conditions are fulfilled

�A, B� = 0, (11)

T(A, A) = TT (A, A), T(B, B) = TT (B, B), (12)

T(A, B) = TT (A, B), T(B, A) = TT (B, A). (13)

In particular, they generate a vector space of Nijenhuis operators if and only if their
Frölicher–Nijenhuis bracket identically vanishes.

Example. (i) The couple of Nijenhuis operators A = f (x) ∂
∂x1

⊗ dxn , B = g(x) ∂
∂x1

⊗
dxn satisfy conditions (11)–(13); then, they generate amodule ofNijenhuis operators.

(ii) The couple of Nijenhuis operators A = f (xi ) ∂
∂xi ⊗ dxi , B = g(xk) ∂

∂xk ⊗ dxk ,
whose Frölicher–Nijenhuis bracket vanishes, generate a vector space of Nijenhuis
operators.
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3.2. A new family of higher brackets. Hereafter, we shall present the main algebraic
construction of this work, namely the recursive definition of an infinite “tower” of new
brackets of couples of operators.

Definition 9. Let M be a differentiablemanifold of dimension n and let A, B : X(M) →
X(M) be two (1, 1)-tensors. The Haantjes bracket of level m ∈ N\{0} of A and B is
the vector–valued 2–form defined, for any X, Y ∈ X(M), by the relations

H(1)
A,B(X, Y ) := �A, B�(X, Y )

and

H(m)

A,B(X, Y ) :=
(
AB + BA

)
H(m−1)

A,B (X, Y ) +H(m−1)
A,B (AX, BY ) +H(m−1)

A,B (BX, AY )

−A
(
H(m−1)

A,B (X, BY ) +H(m−1)
A,B (BX, Y )

)

−B
(
H(m−1)

A,B (X, AY ) +H(m−1)
A,B (AX, Y )

)
, m ≥ 2. (14)

None of these brackets for m ≥ 2 is R-linear in A and B; however, they are symmetric
in the interchange of A and B.
The following statement can be useful for computational purposes.

Lemma 10. The expression in local coordinates of the Haantjes brackets of level m, for
m ≥ 2, reads

(H(m)

A,B)i
jk =

n∑
α,β=1

(
Ai

αB
α
β(H(m−1)

A,B )
β
jk + Bi

α A
α
β(H(m−1)

A,B )
β
jk + (H(m−1)

A,B )i
αβ A

α
j B

β
k

+(H(m−1)
A,B )i

αβ B
α
j A

β
k − Ai

α

(
(H(m−1)

A,B )αjβ B
β
k + (H(m−1)

A,B )αβk B
β
j

)

−Bi
α

(
(Hm−1

A,B)αjβ A
β
k + (H(m−1)

A,B )αβk A
β
j

))
. (15)

Proof. This formula comes directly from the expression in local coordinates of the
Frölicher–Nijenhuis bracket (6), applied to the recursive formula (14). ��
If we take A = B, then the previous family of brackets reduces to the generalized
torsions proposed independently in [13] and in [23]. Here we remind the main definition
of that construction, according to the formulation proposed in [23], since it will be crucial
in the subsequent discussion.

Definition 11. Let A : X(M) → X(M) be a (1,1)-tensor. The generalized Nijenhuis
torsion of A of level m, for each integer m ≥ 1, is the vector–valued 2–form defined by

τ
(m)

A (X, Y ) := 1

2m
H(m)

A,A(X, Y ) = A2τ
(m−1)
A (X, Y ) + τ

(m−1)
A (AX, AY )

−A
(
τ

(m−1)
A (X, AY ) + τ

(m−1)
A (AX, Y )

)
, X, Y ∈ X(M). (16)

Here the notation τ
(0)
A (X, Y ) := [X, Y ], τ

(1)
A (X, Y ) := τA(X, Y ) and τ

(2)
A (X, Y ) :=

HA(X, Y ) is used.
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We also remind a useful formula, proved in [13] (Section 4.6), by means of a suitable
polynomial representation of (1, 2)-tensors:

τ
(m)

A (X, Y ) =
m∑

p=0

m∑
q=0

(−1)2m−p−q
(

m

p

)(
m

q

)
Ap+q[

Am−p X, Am−qY
]
. (17)

Alternatively, this formula can also be proved by induction over m.
Hereafter, we shall discuss some relevant properties of the new brackets (14).

Lemma 12. Let M be a differentiable manifold and A, B : X(M) → X(M) be two
operators. For any X, Y ∈ X(M), we have

H(m)

I,B(X, Y ) = 0, m ∈ N\{0}. (18)

Moreover, if [A, B] := AB − BA = 0, we have

H(m)

f A, gB(X, Y ) = f m gm H(m)

A,B(X, Y ), m ∈ N\{0, 1}. (19)

Consequently,
H(m)

f I,B(X, Y ) = 0. (20)

Proof. Relation (18) is obtained by induction over m, starting with the case m = 1
already stated in Eq. (9). Similarly, property (19) can be proved by induction overm ≥ 2;
the case m = 2 simply requires a direct calculation. Equation (20) is an immediate
consequence of Eqs. (18) and (19). ��
Proposition 13. Let M be a differentiable manifold and A, B : X(M) → X(M) two
commuting operators. For any f, g, h, k ∈ C∞(M), X, Y ∈ X(M) and for each integer
m ≥ 2, we have

H(m)

f I+gA,h I+kB(X, Y ) = gmkmH(m)

A,B(X, Y ). (21)

Proof. The formula can be proved by induction over m, starting with the case h = 0 and
k = 1. Then, the result follows as a consequence of the symmetry w.r.t. the interchange
of the first and second operator. ��
Corollary 14. Let A : X(M) → X(M) be an operator. Then, for all f ∈ C∞(M) the
relations

τ
(m)

I (X, Y ) = 0, m ∈ N\{0} (22)

τ
(m)

f I+gA(X, Y ) = g2mτ
(m)

A (X, Y ), m ∈ N\{0, 1}. (23)

hold.

Proof. Equations (22) and (23) are obtained by choosing g = 1, h = f , k = 1, B = A
into Eq. (21). ��
The value m = 1 has been excluded in Eq. (23), since for this case a separate formula
for the Nijenhuis torsion holds:

τgA(X, Y ) = g2τA(X, Y ) − g
(
T(A, A) − TT (A, A)

)
(dg, X, Y ). (24)

This equation can be easily obtained from Eq. (7), choosing f = g and B = A.
Let us consider in more detail the properties of the Haantjes bracket of level m = 2 of

twoarbitrary commutingoperators.Hereafter the notationHA,B(X, Y ) := H(2)
A,B(X, Y )

will be used.
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Proposition 15. Let M be a differentiable manifold, f, g ∈ C∞(M) and let A, B :
X(M) → X(M) be two (1, 1)-tensors. Then, the following identity holds:

H f A, gB(X, Y ) = f 2g2HA,B(X, Y )

+ f g2
(
I ⊗ [A, B[A, B]] − B ⊗ [A, [A, B]] − A ⊗ B[A, B] + BA ⊗ [A, B]

)

(d f, X, Y )

− f g2
(
I ⊗ [A, B[A, B]] − B ⊗ [A, [A, B]] − A ⊗ B[A, B] + BA ⊗ [A, B]

)

(d f, Y, X)

+ f 2g

(
I ⊗ [B, A[B, A]] − A ⊗ [B, [B, A]] − B ⊗ A[B, A] + AB ⊗ [B, A]

)

(dg, X, Y )

− f 2g

(
I ⊗ [B, A[B, A]] − A ⊗ [B, [B, A]] − B ⊗ A[B, A] + AB ⊗ [B, A]

)

(dg, Y, X). (25)

Formula (25) can be derived by a direct (although cumbersome) calculation.
FromDefinition 9, by means of some algebraic manipulations one can derive another

useful result.

Lemma 16. Let M be a differentiable manifold, f ∈ C∞(M) and let A, B : X(M) →
X(M) be two (1, 1)-tensors. Then, for all f ∈ C∞(M) we have

H f I+A,B(X, Y ) = HA,B(X, Y ) + (I ⊗ B + B ⊗ I)[A, B](d f, X, Y )

−(I ⊗ B + B ⊗ I)[A, B](d f, Y, X).

The following result clarifies the geometric meaning of the Haantjes bracket of level 2.

Lemma 17. Let M be a differentiable manifold and A, B : X(M) → X(M) two com-
muting (1, 1)-tensors which can be simultaneously diagonalized in a local chart of M.
Then, for any X, Y ∈ X(M), the Haantjes bracket HA,B(X, Y ) vanishes.

Proof. Wedenote by Ai
i and B j

j the non-vanishing components of A and B, respectively.
Then, in a local chart where the operators diagonalize simultaneously, using Eq. (15),
by means of a direct calculation we get

(HA,B)i
jk = �A, B�i

jk

(
2Ai

i B
i
i + A j

j B
k
k + Ak

k B
j
j − Ai

i (B
k
k + B j

j ) − Bi
i (A

k
k + A j

j )

)
,

where �A, B�i
jk is explicitly given in formula (6). If i , j , k are all different, then

�A, B�i
jk = 0. Moreover, if i = k = j or i = j = k, the sum in the r.h.s. vanishes as

well. ��
The latter property, which does not hold in the case of the Frölicher–Nijenhuis bracket, is
analogous to the one valid for the standard Haantjes torsion of diagonalizable operators.
In fact, their Haantjes torsion vanishes, whereas the Nijenhuis one does not necessarily.
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3.3. Haantjes brackets and Haantjes modules. In the following analysis,we shall further
illustrate the algebraic relevance of Haantjes brackets of level 2. Indeed they play a
crucial role in the study of the C∞(M)-modules of Haantjes operators, that we shall call
Haantjes modules.

Definition 18. A Haantjes module is a pair (M,HM) which satisfies the following
conditions:

• M is a differentiable manifold of dimension n;
• HM is a set of Haantjes operators K : X(M) → X(M) such that

H(
f K1+gK 2

)(X, Y ) = 0, ∀X, Y ∈ X(M), ∀ f, g ∈ C∞(M), ∀K 1, K 2 ∈ HM.

(26)

Thus, a Haantjes module is a free module of Haantjes operators over the ring of smooth
functions on M . If property (26) is satisfied only when f, g are real constants, we shall
use the denomination of Haantjes vector space.

We determine now the tensorial compatibility conditions ensuring the existence of the
Haantjes module generated by two Haantjes operators A, B : X(M) → X(M). First, we
construct these conditions in full generality, namely for non-semisimple, non-commuting
Haantjes operators. Then, we shall restrict to the important case of semisimple, com-
muting operators, which arises for instance in Hamiltonian classical mechanics, in the
discussion of integrable systems [21,22].

3.3.1. The general case We shall start our analysis with the following identity, valid for
all f, g ∈ C∞(M), X, Y∈ X(M):

H f A+gB(X, Y ) = f 4HA(X, Y ) + g4HB(X, Y ) + σ f A,gB(X, Y ), (27)

where

σA,B(X, Y ) := HA,B(X, Y )+H1(A, B)(X, Y )+H2(A, B)(X, Y )+H2(B, A)(X, Y )

(28)
and H1(A, B), H2(A, B) are the vector valued 2–forms

H1(A, B)(X, Y ) := B2τA(X, Y ) + τA(BX, BY ) − B
(
τA(BX, Y ) + τA(X, BY )

)

+ A2τB(X, Y ) + τB(AX, AY ) − A
(
τB(AX, Y ) + τB(X, AY )

)
,

H2(A, B)(X, Y ) := (AB + BA)τA(X, Y ) + τA(AX, BY ) + τA(BX, AY )

− A
(
τA(BX, Y ) + τA(X, BY )

) − B
(
τA(AX, Y ) + τA(X, AY

))

+ A2�A, B�(X, Y ) + �A, B�(AX, AY ) − A
(
�A, B�(AX, Y ) + �A, B�(X, AY )

)
.

(29)

They represent new, auxiliary brackets which complement the role of the Haantjes
bracket HA,B .
Now, some technical results are in order. Let us introduce the three vector-valued 3–
tensors

Ti : X∗(M) × X(M) × X(M) → X(M), (α, X, Y ) �→ Ti (α, X, Y ), i = 1, 2, 3 :
T1(A, B)(α, X, Y ) :=

((
T(A, B) + T′(A, B)

)
[A, B]

)
(α, X, Y ), (30)
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T2(A, B)(α, X, Y ) :=
((

T(A, A) + T′(A, A)
)
[A, B]

)
(α, X, Y ),

T3(A, B)(α, X, Y ) :=
((

T(B, B) + T′(B, B)
)
[A, B]

)
(α, X, Y ),

(31)

where T(A, B) is defined in Eq. (8) and

T′(A, B)(α, X, Y ) := (AB ⊗ I − A ⊗ B)(α, X, Y ). (32)

These brackets satisfy the relations

T1(A, B) = −T1(B, A), T3(A, B) = −T2(B, A). (33)

Lemma 19. Let A, B : X(M) → X(M) be two operators. For all f, g ∈ C∞(M) and
X, Y ∈ X(M), the following identities hold:

H f A,gB(X, Y ) +H1( f A, gB)(X, Y ) = f 2g2
(
HA,B(X, Y ) +H1(A, B)(X, Y )

)

+ f g2
(
T 1(A, B) − T T

1 (A, B)
)
(d f, X, Y ) − f 2g

(
T 1(A, B) − T T

1 (A, B)
)
(dg, X, Y )

H2( f A, gB)(X, Y ) = f 3g H2(A, B)(X, Y )
)
+ f 2g

(
T 2(A, B) − T T

2 (A, B)
)
(d f, Y, X)

)

− f 3
(
T 2(A, B) − T T

2 (A, B)
)
(dg, X, Y )

H2(gB, f A)(X, Y ) = f g3H2(B, A)(X, Y )
)
+ g3

(
T 3(A, B) − T T

3 (A, B)
)
(d f, Y, X)

)

− f g2
(
T 3(A, B) − T T

3 (A, B)
)
(dg, X, Y ).

(34)

From Eq. (34) we get the identity

σ f A,gB(X, Y ) = f 2g2
(
H(A, B)(X, Y ) +H1(A, B)(X, Y )

)

+ f 3g H2(A, B)(X, Y ) + f g3H2(B, A)(X, Y )

+
((

g3(T3 − TT
3 ) + g2 f (T1 − TT

1 ) + g f 2(T2 − TT
2 )

)
(A, B)

)

(d f, X, Y )

+
((

f 3(T3 − TT
3 ) + f 2g (T1 − TT

1 ) + f g2(T2 − TT
2 )

)
(B, A)

)

(dg, X, Y ).

(35)
From Eqs. (27), (35) and (33), taking into account the previous discussion, we obtain
our tensorial characterization of Haantjes modules.

Theorem 20. Let M be a differentiable manifold and let A, B : X(M) → X(M) be
two Haantjes operators. Then, A and B generate a Haantjes module if and only if the
differential conditions

HA,B +H1(A, B) = 0, H2(A, B) = 0, H2(B, A) = 0, (36)

together with the algebraic conditions

T1(A, B) = TT
1 (A, B), T2(A, B) = TT

2 (A, B), T2(B, A) = TT
2 (B, A) (37)
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are satisfied. In particular, A and B generate a Haantjes vector space if and only if the
differential conditions (36) are fulfilled.

Corollary 21. Let A and B be two commuting Haantjes operators. They generate a
Haantjes module if and only if conditions (36) are fulfilled.

Some examples of applications are in order.

• Haantjes moduli: In [22], theHaantjes algebra generatedby theoperators {I , K (PW )
2 ,

K (PW )
3 } for the Post-Winternitz superintegrable system has been constructed. This

algebra has rank 4, with a basis given by {I, K (PW )
2 , K (PW )

3 , K (PW )
2 K (PW )

3 }. It
admits a submodule, whose basis is provided by the subset of non-commuting oper-
ators {K (PW )

2 , K (PW )
3 }, which fulfill conditions (36) and (37).

• Haantjes vector spaces: In [8], (2+1)-dimensional hydrodynamic type systems of
the form ut = A(u)ux + B(u)uy , where u = u(x, y, t) have been considered. In the
case of the generalized Benney system and of an isoentropic gas, the two associated
operators A(u) and B(u) do not commute. Also, they fulfill Eq. (36) but not Eq. (37).
Therefore, these operators generate a Haantjes vector space.

3.3.2. The semisimple, Abelian case In the previous analysis, the Haantjes operators A
and B are not supposed to be semisimple. Let us show that if A and B commute and they
are semisimple, then the three differential conditions (36) reduce to the vanishing of the
Haantjes bracket HA,B . Although this is a special case of the previous construction, it
requires an ad hoc analysis.

To this aim, we need to evaluate the Frölicher–Nijenhuis bracket, as well as the
brackets HA,B , H1(A, B) and H2(A, B) over two common eigenvectors Xμ and Yν

of two (arbitrary) operators A and B (the details of the calculation are reported in
Appendix 6.3).

Proposition 22. Let A and B two Haantjes operators and Xμ, Yν two common eigen-
vectors. Then

H1(A, B)(Xμ, Yν) = 0. (38)

In addition, if A and B also commute, then

H2(A, B)(Xμ, Yν) = 0, H2(B, A)(Xμ, Yν) = 0. (39)

Proof. From Eq. (84) in Appendix 6.3 and the assumption that A and B are Haantjes
operators, it follows that

[Xμ, Yν] ∈ (
ker(A−μ1 I)⊕ker(A−ν1 I)

)∩ (
ker(B−μ2 I)⊕ker(B−ν2 I)

)
, (40)

where the subindices 1 and 2 refer to the operators A and B, respectively.
Consequently, it is evident from Eq. (87) that Eq. (38) holds for any pair of Haantjes

operators A and B. In addition, if A and B commute, from Eqs. (87) it follows that
Eqs. (39) also hold. ��

We can now formulate our main result concerning the characterization of Haantjes
modules.

Theorem 23. Let A, B : X(M) → X(M) be two commuting semisimple Haantjes
operators. They generate a Haantjes module if and only if

HA,B(X, Y ) = 0, ∀X, Y ∈ X(M). (41)
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Proof. As A and B are semisimple commuting operators, they share a local eigenframe.
In this eigenframe, the two operators take simultaneously a diagonal form. Since they
are also Haantjes operators, all of the brackets H1(A, B), H2(A, B) and H2(B, A)

identically vanish as a consequence of Proposition 22. Thus, from Corollary 21 the
result follows. ��

3.4. Spectral analysis. At this stage, we wish to discuss some of the spectral properties
of non-semisimple operators on a manifold from the perspective of the theory of higher-
level Nijenhuis torsions. Let us denote by Spec(A) := {λ1(x), λ2(x), . . . , λs(x)} the
set of the distinct eigenvalues of an operator A : X(M) → X(M). In the forthcoming
considerations, we shall always assume that these eigenvalues are real and pointwise
distinct. We denote by

Di (x) := ker
(
A(x) − λi (x)I

)ρi
, i = 1, . . . , s (42)

the i-th generalized eigen-distribution of index ρi , that is the distribution of all the
generalized eigenvectors corresponding to the eigenvalue λi . In Eq. (42), ρi stands for
the Riesz index of λi , which is the minimum integer such that

ker
(
A(x) − λi (x)I

)ρi ≡ ker
(
A(x) − λi (x)I

)ρi+1; (43)

we also assume that ρi is (locally) independent of x. When ρi = 1,Di is a proper eigen-
distribution. Hereafter, unless differently stated, we shall use the adjective “generalized”
to include the case of proper eigen-distributions as well.

In several applications, it is also useful to consider the action of our higher-level
torsions on the generalized eigenvectors of A. Inspired by a formula for the Nijenhuis
torsion evaluated on eigenvectors (proved in Appendix 6.2), we construct a generalized
expansion, in terms of commutators, for the torsions of any level. It can be proved by
induction over the integers m ≥ 2.

Proposition 24. Let Abe a (1,1)-tensor and Xα , Yβ be two of its generalized eigenvectors
of Dμ, Dν , respectively (see formulae (81) and (82)). Then, for any integer m ≥ 2 the
following formula holds:

τ
(m)

A (Xα, Yβ) =
m∑

i, j=0

(−1)i+ j
(

m

i

)(
m

j

)(
A − μI

)m−i(
A − νI

)m− j [Xα−i , Yβ− j ].
(44)

This proposition will be useful in the proof of Lemmas 36 and 38, stated below.

4. Generalized Nijenhuis Torsions and Haantjes Brackets for Nilcyclic Operators

In order to clarify the geometric relevance of both the generalized Nijenhuis torsions
and the Haantjes brackets of level m, we shall focus first on the case of nilcyclic opera-
tors (namely operators which are both nilpotent and cyclic). According to the classical
Jordan–Chevalley decomposition theorem, given a vector space V , any linear endomor-
phism L : V → V with real eigenvalues can be written in a unique way as the sum
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L = D + N , where D is a diagonalizable operator and N is a nilpotent one, commut-
ing with D. In turn, the nilpotent operator N can be decomposed as the direct sum of
nilcyclic operators.

Hereafter, the symbol 〈 〉 will denote a C∞(M)-linear span of vector fields.

Definition 25 (Natural flag). Let (U, x1, . . . , xn) be a local coordinate chart and(
∂

∂x1
, . . . , ∂

∂xn

)
the natural reference frame associated with it. The flag of integrable

distributions

C0 = {0} ⊂ C1 =< e1 >⊂ C2 =< e1, e2 >⊂ · · · ⊂ Cn−1

= < e1, . . . , en−1 >⊂ Cn = X(U ),

where ei := ∂
∂xi (i = 1, . . . , n − 1), will be called the natural flag associated with the

local chart (x1, . . . , xn).

4.1. Triangular form of nilcyclic operators. Let M be an n-dimensional differentiable
manifold, and A : X(M) → X(M) be a nilcyclic [5] operator, that is a nilpotent (1,1)-
tensor of maximal index n:

An = 0 and An−1 = 0.

This condition implies that there exist local reference frames, possibly non integrable
ones, in which A is represented by a single, upper strictly triangular Jordan block. Under
these assumptions, the characteristic null flag of A

{0} ⊂ ker A ⊂ ker A2 ⊂ · · · ⊂ ker An = X(M)

is a complete flag [14], that is, rank(ker A j ) = j, j = 1, . . . , n. Also, the following
inclusions hold:

Ak(ker A j ) ⊆ ker A j−k, j ≥ k = 1, . . . , n. (45)

Let us assume that there exists a local coordinate chart (x1, . . . , xn) on M where A takes
the upper strictly triangular form

A =
n∑

i, j=1

ai
j (x)

∂

∂xi
⊗ dx j , ai

j = 0 if i ≥ j. (46)

Here ai
j (x) = ai

j (x1, . . . , xn) are smooth arbitrary functions depending on the local
coordinates on M . In this case, the integrable distributions of the natural flag coincide
with the kernels of the powers of the operator A. Precisely,

C j = ker A j
|U , j = 1, . . . , n. (47)

The following result establishes a necessary condition for a nilcyclic operator to be
represented in the upper triangular form, in a suitable coordinate chart.

Proposition 26. Let M be an n-dimensional differentiable manifold, and A : X(M) →
X(M) be a nilcyclic (1,1)-tensor on M. If there exists a local chart where the operator
A takes the triangular form (46), then the generalized Nijenhuis torsion of level (k − 1)
vanishes for all X, Y ∈ ker Ak:

τ
(k−1)
A (ker Ak, ker Ak) = 0, k ∈ N\{0, 1}. (48)
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Proof. First, we observe that the (strong) invariance conditions

Ap(C j ) ⊆ C j−p, p = 0, . . . , n, (49)

hold as a consequence of relations (45) and (47). In the latter conditions, it is understood
that C j−p ≡ C0 for j ≤ p.

Then, we can proceed by induction over k = 2, . . . , n − 1. To this aim, notice that
for k = 2, we have

τA(e1, e2) = A2����[e1, e2] + [��Ae1, Ae2] − A([��Ae1, e2] + [e1, Ae2])
= −�����A[e1, Ae2] = 0.

The first addend vanishes because both e1, e2 are constant fields, the second and third
one vanish because e1 ∈ ker A; the last term is zero due to both the invariance condition
(49) and the involutivity of ker A, which is a distribution of rank 1. Now we assume that

τ
(k−1)
A (ei , e j ) = 0, i, j = 1, . . . , k. (50)

This hypothesis, jointly with Definition 11 and the A-invariance of ker Ak implies

τ
(k)

A (ei , e j ) = 0, i, j = 1, . . . , k.

We are left with the terms

τ
(k)

A (ei , ek+1), i = 1, . . . , k,

which can be evaluated by means of Eq. (17). We obtain

τ
(k)

A (ei , ek+1) =
k∑

p,q=0

(−1)−(p+q)

(
k

p

)(
k

q

)
Ap+q

[
Ak−pei , Ak−qek+1

]
i = 1, . . . k.

As ei ∈ ker Ak , the addends corresponding to p = 0 vanish. Moreover, for p > 0, by
virtue of Eq. (49), the following inclusions hold:

Ap+q
[
Ak−pei , Ak−qek+1

]
⊆ Ap+q

[
Ci−(k−p), Ck+1−(k−q)

]
⊆ Ap+q(Cmax(i−k+p,1+q))

⊆ C−(p+q)+max(i−k+p,1+q) = C0. (51)

��
We can now infer a direct, but important consequence of Proposition (26).

Corollary 27. Let M be an n-dimensional differentiable manifold, n ≥ 2 and A :
X(M) → X(M) be a nilcyclic (1,1)-tensor on M. Then, the condition

τ
(n−1)
A (X, Y ) = 0, X, Y ∈ X(M), (52)

is necessary for the existence of a local chart where A takes the triangular form (46).

Proof. It is sufficient to apply Proposition (26) to the torsion of level k = n and to
observe that ker An = X(M), as A is nilcyclic. ��
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Consider the slightly more general case of a tensor of the form

L = λI + A, λ ∈ C∞(M), (53)

where A is a nilcyclic operator. We have the following result.

Corollary 28. Let M be an n-dimensional differentiable manifold, n ≥ 3 and L :
X(M) → X(M) be a (1,1)-tensor of the form (53). If there exists a local chart where L
takes the triangular form

L =
n∑

i, j=1

(
λ(x)δi

j + ai
j (x)

) ∂

∂xi
⊗ dx j , ai

j = 0 if i ≥ j, (54)

then

τ
(k−1)
L (X, Y ) = 0, ∀ X, Y ∈ ker(L − λI)k, 3 ≤ k ≤ n − 1, (55)

and

τ
(n−1)
L (X, Y ) = 0, ∀ X, Y ∈ X(M). (56)

Proof. The previous relations hold as a consequence of Proposition 26, Corollary 27
and Corollary 14. ��

4.2. An open problem: a Jordan–Chevalley decomposition. The relevance of the higher-
level Nijenhuis torsions in the study of nilcyclic operators suggests, in a natural way, an
interesting problem: namely, to ascertain whether there exists a Jordan–Chevalley-type
decomposition for generic operators. Precisely, we propose the following, general

Problem. Let M be an n-dimensional differentiable manifold. Determine under
which conditions there exist coordinate charts on M such that an operator field L :
X(M) → X(M) can be decomposed into the sum of two operators L = D + N , where
D is a diagonal operator and N is an upper strictly triangular operator, commuting with
D.

4.3. Conjecture for higher Haantjes brackets. Inspired by the previous discussion, we
conjecture the following result (which has been tested in many examples).

Conjecture 29. Let M be an n-dimensional differentiable manifold, and A, B : X(M) →
X(M) be two nilpotent commuting (1,1)-tensors on M. The vanishing of their generalized
Haantjes bracket of level (n − 1)

H(n−1)
A,B (X, Y ) = 0 (57)

is a necessary condition for the existence of a local chart where the tensors A, B take
simultaneously the triangular form (46).
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5. Frobenius Integrability and a Generalized Haantjes Theorem

5.1. Integrability of eigen-distributions: necessary and sufficient conditions. We shall
illustrate now the role of the new families of generalized torsions introduced in this paper
in the detection of the properties of integrability of the generalized eigen-distributions
admitted by a generic (1, 1)-tensor.

In the first part of this discussion, the eigenvalues and eigenvectors of operators are
supposed to be known. However, this hypothesis will be removed in the statement of our
main theorem: indeed, no knowledge a priori of the spectrum and the eigen-distributions
of the operators involved will be assumed.

Remark 30. All the eigen-distributions considered are supposed to be regular, that is
they have constant rank on M . For involutive distributions, this condition is equivalent
to their Frobenius integrability.

Definition 31. Let us consider a set of distributions {Di ,D j , . . . ,Dk}. We shall say that
such distributions are mutually integrable if

(i) each of them is integrable;
(ii) any sum Di +D j + · · · +Dk is also integrable.

First we state the following

Lemma 32. Let A : X(M) → X(M) be a non-invertible operator. For any X, Y ∈
ker A, we have

τ
(m)

A (X, Y ) = A2m[X, Y ], m ∈ N\{0}. (58)

Proof. Equation (58) comes fromEq. (17) taking into account that the termswith p < m
and q < m vanish. ��
Let us recall that the Riesz index of a non-invertible operator A is the Riesz index ρ of
its zero eigenvalue (supposed to be constant in an open dense subset of M), namely the
minimum integer ρ that makes stationary the sequence

{0} ⊂ ker A ⊂ ker A2 ⊂ · · · ⊂ ker Aρ = ker Aρ+ j ⊆ X(M), j ∈ N. (59)

Proposition 33. Let A : X(M) → X(M) be an operator and ρ its Riesz index. The
following conditions are equivalent:

(1) the distribution ker Aρ is involutive;
(2)

∃ m ∈ N\{0} such that τ
(m)

Aρ (ker Aρ, ker Aρ) = 0; (60)

(3)
∀ m ∈ N\{0}, τ

(m)

Aρ (ker Aρ, ker Aρ) = 0. (61)

Proof. 1) ⇐⇒ 2). From Eq. (58) applied to Aρ , we get

τ
(m)

Aρ (ker Aρ, ker Aρ) = A2 ρ m[ker Aρ, ker Aρ]. (62)

Consequently,

[ker Aρ, ker Aρ] ⊆ ker A2ρm (59)= ker Aρ

if and only if the l.h.s. of Eq. (62) vanishes for some m ∈ N\{0}.
1) �⇒ 3) It is a direct consequence of Eq. (62). The converse statement can be

proved by following the same reasoning used in the proof of the first equivalence. ��
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The equivalence of the conditions (2) and (3) can be geometrically interpreted by ob-
serving that, if the distribution D = ker Aρ is integrable, then the operator Aρ can be
restricted to each integral leaf ofD; besides, each of these restricted operators vanishes.

Thus, applying Proposition 33 to each operator Bi := A−λi I , we obtain a novel nec-
essary and sufficient condition for the integrability of the generalized eigen-distributions
of an operator with real eigenvalues.

Corollary 34. Let A : X(M) → X(M) be an operator and Di = ker(A − λi I)ρi ,
where λi ∈ Spec(A). Then, the distribution Di is involutive if and only if there exists
m ∈ N\{0}, such that

τ
(m)

(A−λi I)ρi (Di ,Di ) = 0. (63)

Remark 35. The original Nijenhuis theorem [19] was not stated in the general case of
non-semisimple operators. However, the previous analysis allows us to conclude that
both the Nijenhuis torsion and the higher-level ones are equally valid, from a theoretical
point of view, to detect the integrability properties of the generalized eigen-distributions
of a non-semisimple operator.

5.2. Main theorem. The results stated above provide new necessary and sufficient con-
ditions for the integrability of eigen-distributions of generalized eigenvectors. However,
as we have remarked, they require the knowledge a priori of the eigenvalues and eigen-
vectors of the considered operator. Instead, in the spirit of the seminal theorems by
Nijenhuis and Haantjes, it is desirable to have integrability conditions which do not re-
quire to solve explicitly eigenvalue problems, since this task becomes computationally
intractable for large values of n. To this aim, we shall propose a novel strategy, based on
the notion of higher-level Nijenhuis torsions.

Formally, the problem we shall address is the following: to establish the conditions
ensuring a priori the integrability of the generalized eigen-distributions of an operator A
whose Haantjes torsion does not vanish, without recurring to the explicit determination
of its eigen-distributions. To the best of our knowledge, no result is known regarding
this problem. In the main theorem stated below, we will offer a solution to this problem
by introducing a family of sufficient conditions for integrability.

First, let us prove some preliminary results.

Lemma 36. Let A : X(M) → X(M) be an operator, μ ∈ Spec(A) and Xα , Yβ ∈ Dμ

two of its generalized eigenvectors, of index α, β respectively, belonging to (possibly
different) Jordan chains (see formulae (81) and (82)). If there exists an integer m ≥ 1
such that

τ
(m)

A (Dμ,Dμ) = 0, (64)
then we have:

[Xα, Yβ ] ∈ ker
(
A−μI

)α+β+m = ker
(
A−μI

)min(α+β+m,ρμ) ⊆ ker
(
A−μI

)ρμ

, (65)

where min(· , · ) stands for the minimum of its arguments.

Proof. First, we prove the case m ≥ 2. If α = β = 1 and μ = ν, Eq. (44) implies

that [X1, Y1] ∈ ker
(
A − μI

)2m
. By induction over (α + β) and applying the operator

(
A − μI

)α+β−m
to both members of Eq. (44), it follows that

[Xα, Yβ ] ∈ ker
(
A − μI

)α+β+m
.
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In order to prove the case m = 1, we observe that if the Nijenhuis torsion τ
(1)
A vanishes

over the vector fields of Dμ, then τ
(m)

A vanishes as well, for m ≥ 1. ��
Proposition 37. Let A : X(M) → X(M) be an operator. Each of its generalized eigen-
distributions Dμ with Riesz index ρμ ≥ 1 is involutive if

τ
(m)

A (Dμ,Dμ) = 0, (66)

for some integer m ≥ 1. In addition, in the semisimple case (ρμ = 1), if Dμ is involutive,
then condition (66) is fulfilled for each integer m ≥ 2.

Proof. Assuming condition (66), Lemma36 immediately implies thatDμ is an involutive
distribution, since

[Dμ,Dμ] ⊆ Dμ. (67)

In the specific case ρμ = 1, every μ-eigenvector of A is a proper eigenvector, and from
Eq. (44) for m ≥ 2 one infers that

τ
(m)

A (Dμ,Dμ) = 0 ⇐⇒ [X1, Y1] ∈ ker
(
A − μI

)2m = ker
(
A − μI

)
= Dμ.

We deduce that for ρμ = 1, condition (66) is also necessary for the involutivity of Dμ,
for m ≥ 2. ��
Lemma 38. Let A : X(M) → X(M) be an operator andDμ,Dν two eigen-distributions
satisfying, for some integer m ≥ 1, the condition

τ
(m)

A (Dμ,Dν) = 0. (68)

Then, the commutator of two generalized eigenvectors of A with respect to two different
eigenvalues μ, ν, satisfies the property

[Xα, Yβ ] ∈ ker
(
A − μI

)α+m−1 ⊕ ker
(
A − νI

)β+m−1

= ker
(
A − μI

)min(α+m−1,ρμ) ⊕ ker
(
A − νI

)min(β+m−1,ρν)

⊆ ker
(
A − μI

)ρμ ⊕ ker
(
A − νI

)ρν

, (69)

with 1 ≤ α ≤ ρμ, 1 ≤ β ≤ ρν .

Proof. If α = β = 1 and μ = ν, Eq. (44) for m ≥ 2 implies that

[X1, Y1] ∈ ker
(
A − μI

)m ⊕ ker
(
A − νI

)m
.

By induction over (α + β), the result follows for m ≥ 2 applying the operator
(
A −

μI
)α−1(

A − νI
)β−1

to both members of Eq. (44). If τ
(1)
A (Dμ,Dν) = 0, we also have

τ
(m)

A (Dμ,Dν) = 0 for m ≥ 1. This completes the proof. ��
The latter Lemma also implies [Dμ,Dν] ⊂ Dμ ⊕ Dν . This observation ensures the
validity of the next result.
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Proposition 39. Let A : X(M) → X(M) be an operator and Dμ, Dν two eigen-
distributions with Riesz indices ρμ, ρν respectively. Assume that for some m ≥ 1,

τ
(m)

A (Dμ,Dν) = 0. (70)

Then the distribution

Dμ ⊕ Dν ≡ ker
(
A − μI

)ρμ ⊕ ker
(
A − νI

)ρν

, μ = ν

is involutive.

Now, we can prove our main result concerning the mutual integrability of the eigen-
distributions of operators.

Theorem 40. Let A : X(M) → X(M) be an operator. Assume that

τ
(m)

A (X, Y ) = 0, X, Y ∈ X(M) (71)

for some m ≥ 1. Then, each generalized eigen-distribution of A as well as each direct
sum of its eigen-distributions is integrable.

Proof. This result is a direct consequence of Propositions 37 and 39 whose hypotheses
are indeed fulfilled once we assume the validity of condition (71). ��

5.3. Block-diagonalization. As a nontrivial application of Theorem (40), we shall prove
that given an operator A, condition (71) is also sufficient to ensure the existence of a local
chart where the operator A can be block-diagonalized. Potentially relevant applications
can be found, for instance, in the theory of hydrodynamic-type systems [3], in the study
of partial separability of Hamiltonian systems [6] and, more generally, in the context of
Courant’s problems for first-order hyperbolic systems of partial differential equations
[7].

Let A be an operator satisfying condition (71); we denote by ri the rank of the
distribution Di of A. We also introduce the distribution (of corank ri )

Ei := I m
(
A − λi I

)ρi =
s⊕

j=1, j =i

D j , i = 1, . . . , s (72)

which is spanned by all the generalized eigenvectors of A, except those associated with
the eigenvalueλi (we remind that A by hypothesis has real eigenvalues).We shall say that
Ei is a characteristic distribution of A. Let E◦

i denote the annihilator of the distribution
Ei . The cotangent spaces of M can be decomposed as

T ∗
x M =

s⊕
i=1

E◦
i (x). (73)

As a consequence of Theorem 40, each characteristic distribution Ei is integrable. We
shall denote by Ei the foliation associated with Ei and by Ei (x) the connected leave
through x, belonging to Ei . Thus, given the set of distributions {E1, E2, . . . , Es}, we
have associated an equal number of foliations {E1,E2, . . . ,Es}. This set of foliations is
referred to as the characteristic web of A and the leaves Ei (x) of each foliation Ei as
the characteristic fibers of the web.
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Definition 41. Let A : X(M) → X(M) be an operator satisfying Eq. (71). A collection
of ri smooth functions will be said to be adapted to the foliation Ei of the characteristic
web of A if the level sets of such functions coincide with the characteristic fibers of Ei .

Definition 42. Let A : X(M) → X(M)be anoperator satisfyingEq. (71).Aparametriza-
tion of the characteristic web of A is an ordered set of n independent smooth func-
tions listed as ( f 1, . . . , f i , . . . , f s), such that for any i = 1, . . . , s, the ordered subset
f i = ( f i,1, . . . , f i,ri ) is adapted to the i-th characteristic foliation of the web:

f i,k
|Ei (x)

= ci,k ∀Ei (x) ∈ Ei , k = 1, . . . , ri . (74)

Here ci,k are real constants depending on the indices i and k only. In this case, we shall
say that the collection of these functions is adapted to the web and that each of them is
a characteristic function.

Proposition 43. Let A : X(M) → X(M) be an operator.
If

τ
(m)

A (X, Y ) = 0, X, Y ∈ X(M) (75)

for some m ≥ 1, then A admits local charts where it takes a block-diagonal form.

Proof. Theorem 40 ensures that each characteristic distribution Ei is integrable. Thus,
we can also deduce the existence of ri exact one-forms (dxi,1, . . . , dxi,ri ) in the cor-
responding annihilator E◦

i ; consequently, there exist functions xi = (xi,1, . . . , xi,ri )

adapted to the characteristic foliation Ei . Collecting together all these functions, we get
a local chart {U, (x1, . . . , xi , . . . , xs)}, adapted to the characteristic web. The natural

frame associated
{

∂
∂x1 , . . . ,

∂
∂xi , . . . ,

∂
∂xs

}
is a generalized eigen-frame. To prove this,

it is sufficient to observe that the following decomposition holds:

D◦
i =

s⊕
j=1, j =i

E◦
j . (76)

Thus, any generalized eigenvector W ∈ Di leaves invariant all the coordinate functions
except at most the characteristic functions xi = (xi,1, . . . , xi,ri ) of Ei . Thus, we deduce
that

W = W (xi )
∂

∂xi
=

ri∑
k=1

W (xi,k)
∂

∂xi,k
.

Therefore

Di|U =
〈

∂

∂xi,1 , . . . ,
∂

∂xi,ri

〉
. (77)

Thismeans that each frameequivalent to
{

∂
∂x1 , . . . ,

∂
∂xi , . . . ,

∂
∂xs

}
is an integrable eigen-

frame of generalized eigenvectors. Consequently, there exists an equivalence class of
integrable frames, with their local charts associated. In these charts, the operator A, due
to the invariance of its eigen-distributions, takes a block-diagonal form. ��
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5.4. A comparison with Haantjes’s classical theorem. Let A : X(M) → X(M) be an
operator with real eigenvalues. In his seminal paper [11], Haantjes proved the following,
fundamental theorem:

(i) If A is a semisimple operator, the vanishing of its Haantjes torsion

HA(X, Y ) = 0, ∀ X, Y ∈ X(M) (78)

is a necessary and sufficient condition for the mutual integrability of all of its
eigen-distributions.

(ii) If A is non-semisimple, then condition (78) is sufficient to guarantee the mutual
integrability of its generalized eigen-distributions, but it is not necessary.

Our improvement of the Haantjes theorem consists in the family of conditions (71),
which are more general than the standard vanishing condition of the Haantjes torsion. In
fact, given a non-semisimple operator A, no conclusion about integrability of its eigen-
distributions can be deduced from the Haantjes theorem, if HA(X, Y ) = 0. However,
if there exists m > 2 such that τ

(m)

A (X, Y ) = 0, this weaker condition is sufficient to
ensure integrability.

In the semisimple case (ρi = 1 ∀i = 1, . . . , s), we recover Haantjes’s result on
integrability directly from Proposition 37. Instead, in the most general, non-semisimple
case (ρi > 1), Theorem 40 provides an infinite family of new sufficient conditions.

The following, simple example can illustrate the potential relevance of Theorem 40
in applicative contexts. Indeed, already in the case n = 3 a generic non-semisimple op-
erator is not necessarily a Haantjes one. Therefore, the Haantjes theorem does not apply.
However, in our example, the associated generalized torsion of level three vanishes; this
guarantees mutual integrability.

Example 44. Let M be a 3-dimensional manifold and (x1, x2, x3) a local chart in M .
Consider the operator

L(x) = λ1(x)

(
∂

∂x1
⊗ dx1 +

∂

∂x2
⊗ dx2

)
+ λ2(x)

∂

∂x3
⊗ dx3

+ f (x)
∂

∂x1
⊗ dx2 + g(x)

∂

∂x2
⊗ dx3, (79)

with λ1, λ2, f, g ∈ C∞(M), λ1 = λ2. A direct calculation shows that, for generic
choices of these functions, the Nijenhuis and Haantjes torsions do not vanish identically;
however, τ (3)

L (X, Y ) = 0. Therefore, according to Theorem 40, the generalized eigen-
distributions of L are mutually integrable. To construct them explicitly, observe that the
minimal polynomial of L is m(λ) := (λ − λ1)

2(λ − λ2), so that the Riesz indices of λ1
and λ2 are ρ1 = 2, ρ2 = 1, respectively. We obtain the generalized eigen-distribution
D1 = ker(L − λi I)2 = 〈 ∂

∂x1
, ∂

∂x2
〉, which is trivially integrable, as well as the proper

eigen-distribution D2 = ker(L − λ2 I) = 〈Xλ2〉, with

Xλ2 = f g
∂

∂x1
+ (λ2 − λ1)g

∂

∂x2
+ (λ1 − λ2)

2 ∂

∂x3
.

The latter eigen-distribution is of rank 1 and obviously integrable. Thus, asD1 = E2 and
D2 = E1, we get the spectral decompositions of the tangent spaces TxM = D1 ⊕ E1 =
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D2 ⊕ E2. Correspondingly, for the cotangent spaces, we obtain T ∗
x M = E◦

1 ⊕ E◦
2 , where

the annihilators of the characteristic distributions of L are

E◦
1 = 〈(λ1 − λ2)

2dx1 − f g dx3, (λ1 − λ2)dx1 + f dx2〉, E◦
2 = 〈dx3〉.

In order to construct explicitly a local chart where L takes a block-diagonal form (as
ensured by Proposition 43), let us consider the spaceR3 endowed with Cartesian coordi-
nates (x1, x2, x3). We make the simple choice λ1 = x1 + x2 + x3, λ2 = x1 + x2, f = x3,
g = x1 in M = R3\{x3 = 0} (to guarantee λ1 = λ2). By integrating the annihilators of
the characteristic distributions (as explained in the proof of Proposition 43), we find the
local coordinate chart

y1 = x1 + x2, y2 = x1

x3
, y3 = x3.

On this chart, the operator L takes the block-diagonal form

L =
⎡
⎣

y1 + 2y3 −(y3)2 0
1 y1 0
0 0 y1

⎤
⎦ . (80)

As we have shown, in the case of non-semisimple operators, the criterion of the
vanishing of the Haantjes torsion, being only sufficient, may fail to detect the mutual
integrability of the eigen-distributions even for very basic examples. Nevertheless, Theo-
rem 40 provides us with a more general tensorial test, guaranteeing integrability without
the need for an explicit analysis of the eigen-distributions involved. Once integrabil-
ity is ascertained, one can enter this kind of analysis in order to block-diagonalize the
considered operator.
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6. Appendix

6.1. On the Haantjes bracket. We propose an explicit formula for the Haantjes bracket
of level 2 in terms of commutators of vector fields:

HA,B(X, Y ) := 1

2

(
AB + BA

)2[X, Y ] + AB
(
2[AX, BY ] + 2[BX, AY ] + [ABX, Y ]

+[X, ABY ]
)

− 2A
(
AB + BA

)([BX, Y ] + [X, BY ]
)
+ [A2X, B2Y ] + [ABX, BAY ]

−2A
(
[BAX, BY ] + [AX, B2Y ] + [ABX, BY ] + [B2X, AY ] + [BX, ABY ]

+[BX, BAY ]
)
+ A2

(
[X, B2Y ] + 2[BX, BY ] + [B2X, Y ]

)

+symmetric terms in A, B.

6.2. The Nijenhuis torsion evaluated over generalized eigenvectors. Let A : X(M) →
X(M) be an operator. Without loss of generality, we shall focus only on two eigenvalues
of A, μ = μ(x) and ν = ν(x) ∈ Spec(A), possibly coincident. Let us denote by Xα ,
Yβ two generalized eigenvectors, with indices α and β, associated with μ and ν:

Xα ∈ ker
(
A−μI

)α \ ker
(
A−μI

)(α−1)
, Yβ ∈ ker

(
A− νI

)β \ ker
(
A− νI

)(β−1)
.

(81)
They belong to Jordan chains defined in Dμ, Dν , respectively:

AXα = μXα + Xα−1, AYβ = νYβ + Yβ−1, 1 ≤ α ≤ ρμ, 1 ≤ β ≤ ρν, (82)

where X0 and Y0 are, by definition, null vector fields. Evaluating the Nijenhuis torsion
on such eigenvectors, we obtain

τA(Xα, Yβ) =
(
A − μI

)(
A − νI

)
[Xα, Yβ ] + (μ − ν)

(
Xα(ν)Yβ + Yβ(μ)Xα

)

−
(
A − μI

)
[Xα, Yβ−1] −

(
A − νI

)
[Xα−1, Yβ ] + [Xα−1, Yβ−1]

−
(

Xα(ν)Yβ−1 + Yβ−1(μ)Xα

)
+

(
Xα−1(ν)Yβ + Yβ(μ)Xα−1

)
. (83)

6.3. Haantjes brackets evaluated over common eigenvectors. Let A and B be two ar-
bitrary (not necessarily Haantjes) operators, and let Xμ and Yν be two common eigen-
vectors. Precisely, let us consider

Xμ ∈ ker(A − μ1 I) ∩ ker(B − μ2 I), Yν ∈ ker(A − ν1 I) ∩ ker(B − ν2 I). (84)

The Frölicher–Nijenhuis bracket satisfies the identity

�A, B�(Xμ, Yν) =
(

(A − μ1 I)(B − ν2 I) + (B − μ2 I)(A − ν1 I)
)

[Xμ, Yν]

+

(
(μ1 − ν1)Y (μ2) + (μ2 − ν2)Y (μ1)

)
Xμ

+

(
(μ1 − ν1)Xμ(ν2) + (μ2 − ν2)Xν(μ1)

)
Yν .

(85)
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Thus, we get

HA,B(Xμ, Y ) =
(
(A − μ1 I)(B − ν2 I) + (B − μ2 I)(A − ν1 I)

)2[Xμ, Yν ], (86)

H1(A, B)(Xμ, Yν) = (B − μ2 I)(B − ν2 I)(A − μ1 I)(A − ν1 I)[Xμ, Yν ]
+ (A − μ1 I)(A − ν1 I)(B − μ2 I)(B − ν2 I)[Xμ, Yν ] ,

H2(A, B)(Xμ, Yν)

=
(
(A − μ1 I)(B − ν2 I) + (B − μ2 I)(A − ν1 I)

)
(A − μ1 I)(A − ν1 I)[Xμ, Yν ]

+ (A − μ1 I)(A − ν1 I)
(
(A − μ1 I)(B − ν2 I) + (B − μ2 I)(A − ν1 I)

)
[Xμ, Yν ] .

(87)
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