
Online Monitoring of Spatio-Temporal Properties for
Imprecise Signals

Ennio Visconti
TU Wien

Vienna, Austria

Ezio Bartocci
TU Wien

Vienna, Austria

Michele Loreti
University of Camerino

Camerino, Italy

Laura Nenzi
TU Wien

Vienna, Austria
University of Trieste

Trieste, Italy

ABSTRACT
From biological systems to cyber-physical systems, monitoring the
behavior of such dynamical systems often requires reasoning about
complex spatio-temporal properties of physical and computational
entities that are dynamically interconnected and arranged in a par-
ticular spatial configuration. Spatio-Temporal Reach and Escape
Logic (STREL) is a recent logic-based formal language designed to
specify and reason about spatio-temporal properties. STREL con-
siders each system’s entity as a node of a dynamic weighted graph
representing its spatial arrangement. Each node generates a set of
mixed-analog signals describing the evolution over time of compu-
tational and physical quantities characterizing the node’s behavior.
While there are offline algorithms available for monitoring STREL
specifications over logged simulation traces, here we investigate for
the first time an online algorithm enabling the runtime verification
during the system’s execution or simulation. Our approach extends
the original framework by considering imprecise signals and by en-
hancing the logics’ semantics with the possibility to express partial
guarantees about the conformance of the system’s behavior with its
specification. Finally, we demonstrate our approach in a real-world
environmental monitoring case study.

CCS CONCEPTS
• Theory of computation → Logic and verification; Modal and
temporal logics; • Software and its engineering → Abstraction,
modeling and modularity.

KEYWORDS
Runtime verification, online monitoring, spatio-temporal logic, im-
precise signal, signal temporal logic

ACM Reference Format:
Ennio Visconti, Ezio Bartocci, Michele Loreti, and Laura Nenzi. 2021. On-
line Monitoring of Spatio-Temporal Properties for Imprecise Signals. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MEMOCODE ’21: ACM-IEEE International Conference on Formal Meth-
ods and Models for System Design, November 20–22, 2021, Beijing, China.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3487212.3487344

1 INTRODUCTION
Complex emergent spatio-temporal patterns such as traffic conges-
tion or traveling waves are central in understanding networked dy-
namical systems where locally interacting entities operate at different
temporal and spatial scales. We can observe these patterns both in
biological systems [3, 5, 11] as well as human-engineered artifacts
such as Collective Adaptive Systems [22] (CAS) and Cyber-Physical
Systems [31] (CPS). CAS and CPS consist of a large number of
heterogeneous (physical and computational in CPS) and spatially dis-
tributed entities featuring complex interactions among themselves,
with humans and other systems. Examples include biking sharing
systems, the internet of things, contact tracing devices preventing
the epidemic spread, vehicular networks, and smart cities. Many of
these systems are also safety-critical [31], meaning that a failure
could result in loss of life or in catastrophic consequences for the
environment.

The complex interaction with the physical environment in which
these systems are embedded prevents them from being exhaustively
verified at design time. A common alternative is testing [4]: traces
generated during their execution/simulation are stored and moni-
tored offline with respect to a formal specification used as an oracle.
However, testing may provide limited coverage and does not take
into account physical failures that may happen during the execu-
tion. Online monitoring is instead a preferable solution when the
monitoring verdict requires the immediate action of a policymaker
during the system’s execution or when it is very computationally
expensive [32], generating and storing the system’s execution traces
to be monitored offline.
Motivating example. As a case study, we consider a sensor network
for environmental monitoring. Air pollution is the primary cause
of the loss of biodiversity, of the reduction of agricultural produc-
tivity and of many diseases for humans’ lungs and cardiovascular
system. Policymakers are constantly monitoring the amount of 𝑁𝑂2,
an air pollutant that forms from the combustion of fossil fuels, to
activate special policies that mitigate its release when levels grow
too significantly for the public concern. For example, in the Italian
region of Lombardy, there are over 80 stations distributed throughout
the region monitoring the level of 𝑁𝑂2 in the air. Figure 1 shows

78

MEMOCODE '21, November 20–22, 2021, Beijing, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9127-6/21/11…$15.00
https://doi.org/10.1145/3487212.3487344

https://doi.org/---------------
https://doi.org/---------------

MEMOCODE ’21, November 20–22, 2021, Beijing, China Visconti, et al.

Figure 1: On the left the NO2 measuring stations of Lombardy; the lighter-colored dot represents the station 6859 - Rezzato. On the
right the detailed view of the NO2 measured by the Rezzato station [20] in terms of 𝜇g/m3. Red crosses and dotted line represent
missing values. Data from the open data initiative of ARPA Lombardia [21].

the location of these stations, and the value reported in the town
of Rezzato for the first quarter of 2021. The measurements happen
regularly every hour, but sometimes the sensors fail to communicate
the measurements because of meteorological issues or temporary
faults, and the actual values are provided later on. Furthermore, the
values measured by the sensors are noisy, and they have a certain
degree of uncertainty. Another way to deal with the missing values
could be to check that nearby locations (e.g., within 10 Km) do not
register alarming values of particles in the air, which is possible only
if we consider spatio-temporal properties.

In this paper, we address the problem of online monitoring of
spatio-temporal properties over systems from which we can observe
noisy signals with possible missing data or out-of-order samples.
Spatio-temporal monitoring. In the last decade, there has been
a great effort to develop logic-based specification languages and
monitoring frameworks for spatio-temporal properties. Examples
include SpaTeL [12], SSTL [29], (SaSTL) [23, 24] and STREL [1].
For more details on the underlying spatial models and the language
expressiveness, we refer the reader to [28]. In this paper, we con-
sider STREL [1] a spatio-temporal logic operating over a dynamic
weighted graph representing the spatial arrangement of spatially dis-
tributed entities. Each node generates a set of mixed-analog signals
describing the evolution over time of computational and physical
quantities characterizing the node’s behavior. STREL extends the
Signal Temporal Logic (STL) [25] with the reach and escape oper-
ators that generalize the somewhere, everywhere, and surrounded
spatial modalities, simplifying the monitoring that can be computed
locally with respect to each node. However, the original work on
STREL [1, 2] provides only an offline monitoring algorithm. In
contrast, we present here the first online monitoring algorithm for
STREL and, in general, for spatio-temporal monitoring.

Online Monitoring. To the best of our knowledge, the only online
monitoring techniques [7, 8, 14, 15, 26, 27, 30] that are available
in the literature can handle temporal specification languages such
as STL [25] and Metric Temporal Logic [17] (MTL). One of the
main challenges for online monitoring is how and when to decide the
satisfaction/violation of a formula with temporal operators reasoning
about future and not yet observed events. In [8], the authors provide,
for the first time, a dynamic programming algorithm for the online
monitoring of the robustness metric of MTL formulas with bounded
future and unbounded past. The past formula is used to reason about
the robustness of the actual system observations, while for evalu-
ating the future formula, they use a predictor to estimate the likely
robustness. However, the value forecasted by the predictor needs to
be trusted because it is not the actual value that the system will pro-
vide. Other approaches [14, 15, 30] address the problem of deciding
about the future using a technique called pastification that rewrites
the future operators as past ones and delays the verdict. Similarly,
the works of Mamouras et al. [26, 27] delay the output verdict until
some part of the future input is seen. In [7], the authors present an
efficient online algorithm to compute the robust interval semantics
for bounded horizon formulas. All these approaches assume that the
data and the events to be observed come synchronously and in-order.
Our contribution In contrast to these works, we present a novel
approach to monitoring online imprecise spatio-temporal signals
(signals are defined on intervals, not just the robustness) where the
samples can also be processed out-of-order. The notion of an interval
is instrumental when representing partial knowledge about a value
that is at least known to be within some boundaries. This might be
because of errors in the measurement or maybe because of some
other sources of uncertainty throughout the process of acquiring and
processing them. We define both a Boolean, and a quantitative inter-
val semantics for STREL and we prove the robust interval semantics’

79

Online Monitoring of Spatio-Temporal Properties for Imprecise Signals MEMOCODE ’21, November 20–22, 2021, Beijing, China

soundness and the correctness. We design and implement, as exten-
sions to the Moonlight tool1, the first online monitoring algorithm
for not-in-order sampled signals and the first online spatio-temporal
monitoring tool. Our experiments also demonstrate convincing per-
formances comparing with the state-of-the-art tool BREACH [9] for
the online monitoring of temporal properties over in-order sampled
signals.
Paper organization The rest of this paper is structured as follows.
We provide the essential aspects of interval algebra and our notion
of imprecise signals in Section 2. In Section 3, we introduce the
interval extension of the STREL logic, and its primary results, while
in Section 4, we present our approach for the online monitoring of
imprecise signals. Lastly, we present a realistic use case in Section 5,
and we share our concluding remarks in Section 6.

2 INTERVAL ALGEBRA, SIGNALS AND
SPATIAL MODEL

In this section, we define the key elements of interval algebra, signal
and spatial model, which will be useful to characterize samples of
the kind depicted in Figure 1.

Definition 2.1 (Intervals). Let I(R∞) be the set of intervals defined
over the set R∞ ≡ R∪ {+∞,−∞}. We call closed interval (or simply
interval) any set 𝐼 ⊆ R∞ such that 𝐼 ≡ [𝑎, 𝑏] := {𝑥 ∈ R∞ : 𝑎 ⩽ 𝑥 ⩽
𝑏;𝑎, 𝑏 ∈ R∞}. For any 𝐼 ≡ [𝑎, 𝑏] ∈ I(R∞), we will indicate as 𝐼 ≡ 𝑎

and 𝐼 ≡ 𝑏 the extremes of the interval.

In addition to the classical notion of an interval, it is helpful to
recall some basic operations that can be performed.

Definition 2.2 (Interval Basic Operations). Consider 𝐼 , 𝐼1, 𝐼2 ∈ I(R∞),
𝑐 ∈ R∞, we define the following interval operators:

𝑐 + 𝐼 := [𝐼 + 𝑐, 𝐼 + 𝑐] −𝐼 := [−𝐼 ,−𝐼]

𝐼1 + 𝐼2 := [𝐼1 + 𝐼2, 𝐼1 + 𝐼2] 𝐼1 − 𝐼2 := 𝐼1 + (−𝐼2)

[max] (𝐼1, 𝐼2) := [max(𝐼1, 𝐼2),max(𝐼1, 𝐼2)]
[min] (𝐼1, 𝐼2) := [min(𝐼1, 𝐼2),min(𝐼1, 𝐼2)]

We also consider the extensions of [min] and [max] operators de-
fined over an arbitrary subset 𝐴 ⊆ I(R∞), denoted by {} instead of
() for function arguments.
We call interval radius of I, the operator:

|𝐼 | := [min(|𝐼 |, |𝐼 |),max(|𝐼 |, |𝐼 |)]

Interval relations are described in this way:

Definition 2.3 (Interval Inequalities). Let 𝐼1, 𝐼2 ∈ I(R∞), we say
that 𝐼1 < 𝐼2 when 𝐼1 < 𝐼2. Symmetrically, we say that 𝐼1 > 𝐼2 when
𝐼1 > 𝐼22.

To measure distances between intervals, we consider the Haus-
dorff Distance.

Definition 2.4 (Hausdorff Distance). Let 𝑋,𝑌 be two non-empty
subsets of a metric space ⟨𝑀,𝑑⟩, we will call (Hausdorff) distance

1Source code available at: github.com/MoonLightSuite/MoonLight
2We will write 𝐼 < 𝑐 (respectively 𝐼 > 𝑐) in place of 𝐼 < [𝑐, 𝑐] (resp. 𝐼 > [𝑐, 𝑐])

the function 𝑑𝐻 : P(𝑋) × P(𝑋) → R≥0 defined as

𝑑𝐻 := max

{
sup
𝑥 ∈𝑋

inf
𝑦∈𝑌

𝑑 (𝑥,𝑦), sup
𝑦∈𝑌

inf
𝑥 ∈𝑋

𝑑 (𝑥,𝑦)
}

In practice, in our context, we can limit at considering the metric
space defined by the euclidean distance over the real numbers, and
thus 𝑑𝐻 reduces to computing max(|𝐼1 − 𝐼2 |, |𝐼1 − 𝐼2 |) for any two
𝐼1, 𝐼2 ∈ I(R∞), although for doing that we say, by definition, that if
both 𝐼1, 𝐼2 (or both 𝐼1, 𝐼2) are infinite, then their Hausdorff distance is
0.

Now we have all the tools to introduce the concept of imprecise
signals.

Definition 2.5 (Imprecise Temporal Signal). Let T ≡ [0,∞] be a
set representing the time domain, and let F (T, 𝐷𝑛), with 𝐷 ⊆ I(R)
for a fixed 𝑛 ∈ N, be the family of functions over Cartesian products
of real intervals; we call imprecise time signal, any 𝜎 ∈ F (T, 𝐷𝑛),
i.e., any function 𝜎 : T→ 𝐷𝑛

It will be convenient in the upcoming sections to slice the signals
based on the domain 𝐷 of interest. For that reason, we recall the
concept of (signal) projection.

Definition 2.6 (Signal Projection). Let 𝜋𝑖 : 𝐷1×· · ·×𝐷𝑖×· · ·×𝐷𝑛 →
𝐷𝑖 be the function that takes the 𝑖-th projection of the set-theoretic
Cartesian product 𝐷𝑛 , we will indicate as 𝜋𝑖 (𝜎 (𝑡)) the projection of
𝜎 (𝑡) to the 𝑖-th 1-dimensional signal 𝑠𝑖 : T→ 𝐷𝑖 .

To represent a set of signals distributed in the space, we introduce
the following definition.

Definition 2.7 (Imprecise Spatio-Temporal Signal). Let F (L,T, 𝐷𝑛)
be the family of functions of space and time over real intervals, with
L a set of locations, we call imprecise spatio-temporal signal – or
just signal when there is no risk of ambiguity – any 𝑠 ∈ F (L,T, 𝐷𝑛),
i.e. any function: s : L × T→ 𝐷𝑛

Considering the pollution example, where L is the set of stations,
T = [0, 10] is the time domain corresponding to an interval of 10
days, and 𝐷 is the possible range for nitrogen-dioxide values (𝑁𝑂2)
in the air; then the spatio-temporal signal s : L × T→ 𝐷 returns at
each time, in each location the value of 𝑁𝑂2, s(ℓ, 𝑡).

We can naturally describe the distance between spatio-temporal
signals by considering the Hausdorff distance from Definition 2.4
over all possible space locations and time instants.

Definition 2.8 (Spatio-Temporal Signal Distance). Let s1, s2 ∈
F (L,T, 𝐷𝑛), we will call signal distance the largest Hausdorff dis-
tance over space and time, defined as:

| |s1 − s2 | |∞ := max
𝑖≤𝑛

max
ℓ∈L

max
𝑡 ∈T

{𝑑𝐻 (𝜋𝑖 (s1 (ℓ, 𝑡)), 𝜋𝑖 (s2 (ℓ, 𝑡)))}

To describe the interplay of signals in different locations, we need
to encompass the information related to the spatial distribution of
the locations.

Definition 2.9 (Spatial model). We call spatial model the tuple
S = ⟨L,𝑊 ⟩ 3 , where L is a set of locations and𝑊 ⊆ L×R∞≥0 ×L is

3We focus on real-valued positive labels, to convey the intuitive meaning of distance
between two locations. For alternative definitions of 𝑊 , the interested reader might
refer to [1].

80

https://github.com/MoonLightSuite/MoonLight

MEMOCODE ’21, November 20–22, 2021, Beijing, China Visconti, et al.

a proximity function associating at most one label 𝑤 ∈ R∞≥0 to each
distinct pair ℓ1, ℓ2 ∈ L

A prominent spatial model for the region of Figure 1 is a graph
where every location is connected to all the others, and the proximity
function is defined by labels corresponding to the minimal aerial
distance between each pair of locations. Finally, to consider distance
on paths of locations, we introduce the notion of routes over the
spatial model.

Definition 2.10 (Routes). A route 𝜏 on S is a (potentially infinite)
sequence ℓ0, ℓ1, . . . ℓ𝑘 . . . , such that for any ℓ𝑖 , ℓ𝑖+1 ∈ 𝜏 , there is a label
(ℓ𝑖 ,𝑤, ℓ𝑖+1) ∈𝑊 . We indicate by Λ(ℓ) the set of routes on S starting
at ℓ . Moreover, we will use 𝜏 [𝑖] to denote the 𝑖-th node of the route,
𝜏 [𝑖 . . .] to denote the subroute starting at the 𝑖-th node, and 𝜏 (ℓ𝑖)
to denote the first occurrence of ℓ𝑖 in 𝜏 . Lastly, we will indicate by
ℓ1 < 𝜏 (ℓ2) the fact that ℓ1 precedes ℓ2 in the route 𝜏 .

Routes have the same intuitive meaning as they have in the physi-
cal world, and, similarly to the real world, we can define the concept
of route (or travel) distance as the aggregated sum of all the labels
traversed by the route.

Definition 2.11 (Route Distance). For a given 𝜏 on S, the distance
𝑑𝜏 [𝑖] is:

𝑑𝜏 [𝑖] =
{
0, if 𝑖 = 0
𝑤 + 𝑑𝜏 [1...] [𝑖 − 1], if 𝑖 > 0 and (𝜏 [0],𝑤, 𝜏 [1]) ∈𝑊

Lastly, routes allow us to conveniently define the distance between
any two locations ℓ1, ℓ2 ∈ L. From the location ℓ1 to ℓ2, one can
consider the minimal distance among all the routes starting at ℓ1 and
ending in ℓ2:

𝑑S [ℓ1, ℓ2] = min
𝜏 ∈Λ(ℓ1)

{𝑑𝜏 [ℓ2]}

3 STREL WITH INTERVAL SEMANTICS
We present in this section an interval semantics that allows for
a conservative analysis that considers both the minimum and the
maximum values of intervals. This way, a plethora of use scenarios
can fit into this specification language, spanning from traditional
offline monitoring of a given specification over imprecise signals
to online monitoring with out-of-order updates. All the proofs of
theorems and lemmas can be checked in the extended version of this
article at [33].

Definition 3.1 (STREL Syntax). We consider logical formulae be-
longing to the language L generated by the following BNF grammar:

𝜑 := ⊤ | ⊥ | 𝑝 ◦ 𝑐 | ¬ 𝜑 | 𝜑 ∨ 𝜑 | 𝜑 U𝐼 𝜑 | 𝜑 R≤𝑑𝜑 | E≥𝑑𝜑

where ◦ ∈ {>, <}, 𝑐 ∈ R, 𝑝 is associated to a projection function
𝜋 of Definition 2.6, i.e. 𝑝 ◦ 𝑐 are inequalities on the variables of
the systems. U𝐼 is the until temporal operator, with 𝐼 real interval,
while R≤𝑑 and E≥𝑑 are the spatial operators reach and escape , with
𝑑 ∈ R>0. In addition, we have the derived Boolean operators as and
(∧) and implies (→), temporal operators eventually (F𝐼) and globally
(G𝐼), and spatial operators somewhere (≤𝑑) and everywhere (�≤𝑑).

Considering the air pollution case study again, the current Lom-
bardy regulation requires taking action when the level of nitrogen
dioxide (𝑁𝑂2) exceeds the threshold of 400𝜇𝑔/𝑚3 for more than

three hours. Let 𝑁𝑂2 < 400 denote the atomic proposition that
states that the level of nitrogen dioxide is lower than 400𝜇𝑔/𝑚3. A
requirement as the previous one could be expressed as:

F[0,3ℎ𝑜𝑢𝑟𝑠]𝑁𝑂2 < 400 (1)

Temporal operators like F specify properties on the dynamic evolu-
tion of the system. In fact, when (1) is violated, the alerting procedure
could be triggered to inform the citizens about the danger. However,
since it is known that noise and local faults frequently happen, one
could also consider alerting the population when the close neighbor-
hood (e.g., within 10 Km) exhibits a similar phenomenon. For this
aim, a property like (2) can be monitored.

<10𝑘𝑚𝑁𝑂2 < 400 (2)

Spatial operators like instead specify properties related to the
spatial configuration, and in this context, the exact meaning is that
at least a location in a range of less than 10 km must have a level of
nitrogen dioxide lower than 400𝜇𝑔/𝑚3. We will see other examples
of the logic language in the following sections. For a more detailed
description of the logic, we refer the reader to [1]. We now present
the Boolean and quantitative interval semantics for STREL.

Definition 3.2 (STREL Boolean Semantics). Let 𝜒 : F (L,T, 𝐷𝑛)
×L × T × L → {−1, 0, 1} be a function defined as follows:

𝜒 (s, ℓ, 𝑡,⊤) = 1

𝜒 (s, ℓ, 𝑡,⊥) = −1

𝜒 (s, ℓ, 𝑡, 𝑝 ◦ 𝑐) =


1, if 𝜋𝑝 (s(ℓ, 𝑡)) ◦ 𝑐
−1, if 𝜋𝑝 (s(ℓ, 𝑡)) ◦−1 𝑐
0, otherwise4

𝜒 (s, ℓ, 𝑡,¬𝜑) = −𝜒 (s, ℓ, 𝑡, 𝜑)
𝜒 (s, ℓ, 𝑡, 𝜑1 ∨ 𝜑2) = max(𝜒 (s, ℓ, 𝑡, 𝜑1), 𝜒 (s, ℓ, 𝑡, 𝜑2))
𝜒 (s, ℓ, 𝑡, 𝜑1U𝐼𝜑2) = max

𝑡 ′∈𝑡+𝐼
{min(𝜒 (s, ℓ, 𝑡 ′, 𝜑2), min

𝑡 ′′∈[𝑡 ′,𝑡]
{𝜒 (s, ℓ, 𝑡 ′′, 𝜑1)})}

𝜒 (s, ℓ, 𝑡, 𝜑1R≤𝑑𝜑2) = max
𝜏 ∈Λ(ℓ)

max
ℓ′∈𝜏 :𝑑𝜏 [ℓ′] ≤𝑑

{min(𝜒 (s, ℓ ′, 𝑡, 𝜑2), min
ℓ′′<𝜏 (ℓ′)

{𝜒 (s, ℓ ′′, 𝑡, 𝜑1)}}

𝜒 (s, ℓ, 𝑡, E≥𝑑𝜑) = max
𝜏 ∈Λ(ℓ)

max
ℓ′∈𝜏 :𝑑S [ℓ,ℓ′] ≥𝑑

min
ℓ′′<𝜏 (ℓ′)

{𝜒 (s, ℓ ′′, 𝑡, 𝜑)}

This is a three-valued semantics, which is equal to 1 if the interval
signal 𝜒 (s, ℓ, 𝑡, 𝜑) satisfies 𝜑 , −1 if the formula is not satisfied, and
0 if we cannot answer. The semantics is directly derived from the
standard Boolean semantics and the interval algebra described in the
previous section. For atomic proposition 𝜒 (s, ℓ, 𝑡, 𝑝 ◦ 𝑐) = 1 iff the
inequality 𝜋𝑝 (s(ℓ, 𝑡)) ◦ 𝑐 is true. This means, e.g., 𝜒 (s, ℓ, 𝑡, 𝑁𝑂2 >

400) = 1 iff 𝑁𝑂2, the left extreme of the projected signal 𝑁𝑂2, is
greater than 400. 𝜒 (s, ℓ, 𝑡, 𝑁𝑂2 > 400) = −1 if the right extreme
is less than 400, and 𝜒 (s, ℓ, 𝑡, 𝑁𝑂2 > 400) = 0 otherwise, so if
400 ∈ 𝑁𝑂2 interval value. A similar calculation can be done for the
other combination of ◦ and 𝑐.

The three-valued Boolean semantics can be sufficient in appli-
cations where the interest is only whether or not the specification

4Note that ‘>’ and ‘<’are used in this context to represent interval inequalities, which
do not define a total ordering.

81

Online Monitoring of Spatio-Temporal Properties for Imprecise Signals MEMOCODE ’21, November 20–22, 2021, Beijing, China

is satisfied. However, in many complex cases, one might be inter-
ested in getting some insights into the degree to which a property
is satisfied or violated. In the following, we introduce an extension
of the quantitative semantics that provides numerical bounds to the
robustness degree of a specification.

Definition 3.3 (STREL Robust Interval Semantics). Let 𝜌 : F (L,T, 𝐷𝑛)
× L × T × L → I(R) be the function mapping signals, locations,
time instants, and formulae defined as follows:

𝜌 (s, ℓ, 𝑡,⊤) = [+∞, +∞]

𝜌 (s, ℓ, 𝑡,⊥) = [−∞,−∞]

𝜌 (s, ℓ, 𝑡, 𝑝 ◦ 𝑐) =
{
𝜋𝑝 (s(ℓ, 𝑡)) − 𝑐, if ◦ is ‘ > ’
𝑐 − 𝜋𝑝 (s(ℓ, 𝑡)), if ◦ is ‘ < ’

𝜌 (s, ℓ, 𝑡,¬𝜑) = −𝜌 (s, ℓ, 𝑡, 𝜑)

𝜌 (s, ℓ, 𝑡, 𝜑1 ∨ 𝜑2) = [max] (𝜌 (s, ℓ, 𝑡, 𝜑1), 𝜌 (s, ℓ, 𝑡, 𝜑2))

𝜌 (s, ℓ, 𝑡, 𝜑1U𝐼𝜑2) =
[
max
𝑡 ′∈𝑡+𝐼

]
{
[min]

(
𝜌 (s, ℓ, 𝑡 ′, 𝜑2),

[
min

𝑡 ′′∈[𝑡 ′,𝑡]

]
{𝜌 (s, ℓ, 𝑡 ′′, 𝜑1)}

)}
𝜌 (s, ℓ, 𝑡, 𝜑1R≤𝑑𝜑2) =

[
max

𝜏 ∈Λ(ℓ)

] [
max

ℓ′∈𝜏 :𝑑𝜏 [ℓ′] ≤𝑑

]
{
[min] (𝜌 (s, ℓ ′, 𝑡, 𝜑2),

[
min

ℓ′′<𝜏 (ℓ′)

]
{𝜌 (s, ℓ ′′, 𝑡, 𝜑1)}

}
𝜌 (s, ℓ, 𝑡, E≥𝑑𝜑) =

[
max

𝜏 ∈Λ(ℓ)

] [
max

ℓ′∈𝜏 :𝑑S [ℓ,ℓ′] ≥𝑑

] [
min

ℓ′′<𝜏 (ℓ′)

]
{𝜌 (s, ℓ ′′, 𝑡, 𝜑)}

We will indicate with 𝜌
𝜑
𝑠 : L×T→ I(R∞) the robustness signal,

i.e., the signal generated by the partial application of the 𝜌 function to
a given formula 𝜑 and a given signal s, so that 𝜌𝜑𝑠 (ℓ, 𝑡) ≡ 𝜌 (s, ℓ, 𝑡, 𝜑).

Note that without the interval semantics we have defined, miss-
ing values should be substituted by some values that approximate
the actual value (e.g., by linear interpolation), and therefore only
approximate the actual value of satisfaction or robustness of a given
property at that specific time point. Conversely, by exploiting the
interval semantics, one could get upper/lower bounds at those points,
which can be sufficient in real-world applications.

Theorem 3.1 (Soundness of Robust Interval Semantics). The Ro-
bust Interval Semantics of Definition 3.3 is sound w.r.t the Boolean
Semantics of Definition 3.2, i.e. for any s ∈ F (L,T, 𝐷𝑛), ℓ ∈ L,
𝑡 ∈ T, 𝜑 ∈ L:

if 𝜌 (s, ℓ, 𝑡, 𝜑) > 0 then 𝜒 (s, ℓ, 𝑡, 𝜑) = 1
if 𝜌 (s, ℓ, 𝑡, 𝜑) < 0 then 𝜒 (s, ℓ, 𝑡, 𝜑) = −1
if 0 ∈ 𝜌 (s, ℓ, 𝑡, 𝜑) then 𝜒 (s, ℓ, 𝑡, 𝜑) = 0

PROOF SKETCH. The theorem can be proved by induction on
the subformulae of the formula 𝜑 , starting from 𝜑 ≡ ⊤, which is
immediate from semantics, since 𝜌 (s, ℓ, 𝑡,⊤) > 0.

See the extended version of this article [33] for the complete
proof. □

To provide the correctness of the interval semantics over imprecise
signals, we introduce the following lemma:

Lemma 3.1 (Metric Lemma). Let s1, s2 ∈ F (T, 𝐷𝑛). For any 𝑡 ∈ T,
for any ℓ ∈ L, for any 𝜑 ∈ L, for any 𝛿 > 0, we have:

if | |s1 − s2 | |∞ < 𝛿 then | |𝜌𝜑𝑠1 − 𝜌
𝜑
𝑠2 | |∞ < 𝛿

PROOF. See the extended version of this article [33] for the proof.
□

Theorem 3.2 (Correctness of Robust Interval Semantics). The Ro-
bust Interval Semantics of Definition 3.3 is correct w.r.t the Boolean
Semantics of Definition 3.2, i.e. for any s ∈ F (L,T, 𝐷𝑛), ℓ ∈ L,
𝑡 ∈ T, 𝜑 ∈ L:

if | |s1 − s2 | |∞ < |𝜌 (s1, ℓ, 𝑡, 𝜑) | then 𝜒 (s1, ℓ, 𝑡, 𝜑) = 𝜒 (s2, ℓ, 𝑡, 𝜑)

for all 𝑖 ≤ 𝑛, where | · | is the interval radius of Definition 2.2.

PROOF SKETCH. The proof essentially consists in two cases de-
pending on the value of |𝜌 (s1, ℓ, 𝑡, 𝜑) |. If 𝜌 (s1, ℓ, 𝑡, 𝜑) > 0 (the case
for < 0 is symmetric), then by Theorem 3.1 𝜒 (s1, ℓ, 𝑡, 𝜑) = 0. From
Lemma 3.1, we have that 𝑑𝐻 (𝜌 (s1, ℓ, 𝑡, 𝜑),
𝜌 (s2, ℓ, 𝑡, 𝜑)) < 𝜌 (s1, ℓ, 𝑡, 𝜑). But this also implies that 𝜌 (s1,𝑡, 𝜑) −
𝜌 (s2, ℓ, 𝑡, 𝜑) < 𝜌 (s1, ℓ, 𝑡, 𝜑), and therefore that 𝜌 (s2, ℓ, 𝑡, 𝜑) > 0. If,
instead, 0 ∈ 𝜌 (s1, ℓ, 𝑡, 𝜑): we have that | |s1−s2 | |∞ < min(𝜌 (s1, ℓ, 𝑡, 𝜑),
−𝜌 (s1, ℓ, 𝑡, 𝜑)) and that 𝜌 (s1, ℓ, 𝑡, 𝜑)) = 0. Whichever of the two is
the minimum, it can be shown that 0 ∈ 𝜌 (s2, ℓ, 𝑡, 𝜑), therefore we
must have 𝜒 (s2, ℓ, 𝑡, 𝜑) = 0.

See the extended version of this article [33] for the complete
proof. □

4 ONLINE MONITORING
In this section, a novel online (out-of-order) monitoring algorithm
for STREL is presented. Unlike the standard offline approach, where
all the data is available at the beginning of the execution, online
monitoring is performed incrementally when a new piece of data
is available. In this case, the uncertainty related to the absence of
information must be taken into account. For that aim, the machinery
of imprecise signals can be exploited to represent the uncertainty,
where the result of the monitoring process, whether it is a satisfaction
or a robustness signal, is refined as soon as new updates of the input
arrive.

The semantics for STREL is defined for arbitrary signals, but
algorithms, for computational reasons, are provided for piecewise
constant ones along the lines of [1, 7]. This class of signals is con-
venient and frequently chosen as the class of reference for several
reasons: (i) it naturally describes digital signals, (ii) it can be stored
in memory very efficiently and processed fast enough to be con-
sidered for real-time applications, (iii) it allows to express the vast
majority of real-valued signals of practical use with a limited loss of
information. Since the presented signals are Lipschitz-continuous
(we consider only inequalities on the variables of the system), we
can always bound our error, considering the minimum time step and
the maximum of their individual Lipschitz constants. An imprecise
piecewise-constant signal 𝜎 : T→ I(R∞), can be characterized in
the following way:

82

MEMOCODE ’21, November 20–22, 2021, Beijing, China Visconti, et al.

𝜎 (𝑡) =


𝐼𝑖 , for 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1
.
.
.

𝐼𝑛, for 𝑡𝑛 ≤ 𝑡 < ∞
and graphically represented as in Figure 2. Note that frequently

when monitoring real-time application the last part of the signal will
be characterized by the widest interval possible, as this denotes the
fact that the knowledge collected so far is insufficient for providing
any insight about the monitored specification for future values of the
signal. Similar infinite intervals can be considered for missed values.

0 2 4 7 8 +
time (s)

-

1

2

3

4

5

+

Figure 2: A graphical view of a typical piecewise-constant im-
precise signal. From the 8-th second onward, there is total ab-
sence of knowledge about what values the signal could have, but
until then, we have some bounds on the actual values observed.

We consider space-synchronized (s.s.) signals, i.e., signals de-
fined on the same time intervals for any location of the space model.
More precisely, a p.c. s.s. signal 𝑠 : L × T → 𝐷𝑛 is a signal that
can be represented as a sequence of pairs {(𝑡𝑖 ,V𝑖)}𝑖∈N, where each
pair (𝑡𝑖 ,V𝑖) of the sequence represents a piece of the signal, such
that it maps any time-instant between 𝑡𝑖 and 𝑡𝑖+1 in T, to the |L| × 𝑛

matrix V𝑖 that represents the values of the 𝑛 dimensions of the sig-
nal at each location ℓ in L. The space-synchronization restriction
might appear to be a severe limitation, but this shows one of the
conceptual differences between online and offline monitoring. In an
offline setting, the space-synchronization hypothesis would likely
have detrimental effects on the performances, as it would force all
the processing to happen at a temporal granularity that is the union
of the temporal granularities of the signals at the different locations.
In an online setting, on the other hand, the temporal granularity is
determined by the time when new information is available, and the
space-synchronization hypothesis makes it possible to exploit in fu-
ture work the Single-Instruction Multiple-Data (SIMD) capabilities
of modern processors (see [13, 18]), resulting in execution times that
are virtually independent from the number of locations, when appro-
priate hardware is available. In this context, we call signal update u
the triplet (𝑡𝑎, 𝑡𝑏 ,V), representing a mapping to the value matrix V
for any time instant between 𝑡𝑎 (included) and 𝑡𝑏 (excluded). Signal
updates can be seen as some special kinds of signals that we use to
represent upcoming partial information from the online behavior of

the monitored system. In the context of our analysis, we always as-
sume updates to provide truthful information (the case of hard faults,
i.e., where updates provide wrong information, will be explored in
future work), and, for that reason, we can always assume updates to
be well-formed, meaning that the interval V they provide is always
included in the previous interval of the signal we stored for that time
and location. To express the online nature of the computation we
want to pursue, we need some way of describing the incremental
evaluation of new information.

Definition 4.1 (Signal refinement). Let s1, s2 ∈ F (L,T, 𝐷𝑛), we say
that s1 is refined by s2, and we write s1 ≻ s2, iff for any ℓ ∈ L, 𝑡 ∈
T, 𝑖 ≤ 𝑛, 𝜋𝑖 (s2 (ℓ, 𝑡)) ⊆ 𝜋𝑖 (s1 (ℓ, 𝑡)), and there is some ℓ ′ ∈ L, 𝑡 ′ ∈
T, 𝑖 ′ ≤ 𝑛, such that 𝜋𝑖′ (s2 (ℓ ′, 𝑡 ′)) ⊂ 𝜋𝑖′ (s1 (ℓ ′, 𝑡 ′)), i.e. each interval
of the co-domain of the signal s2 is contained in the corresponding
interval of the signal s1, and some of them are strictly contained.

The refinement relation expresses the fact that s1 and s2 represent
the same information, except that s2 has a lower degree of uncer-
tainty. By the notions of signal update and signal refinement, we can
easily represent the online evolution of a signal as a chain of signal
refinements s0 ≻ · · · ≻ s𝑗 ≻ . . . , where the signal s𝑗+1 at the step
𝑗 + 1 can be computed from s𝑗 and update u𝑗 like in Algorithm 1.

Algorithm 1 Signal Refinement

1: procedure REFINE(s : {(𝑡0,V0), . . . , (𝑡𝑁 ,V𝑁)}, u : (𝑡𝑎, 𝑡𝑏 ,V))
2: for (𝑡𝑖 ,V𝑖) in s do
3: if 𝑡𝑖 < 𝑡𝑎 < 𝑡𝑖+1 and V ⊂ V𝑖 then
4: s := s ∪ (𝑡𝑎,V)
5: else if 𝑡𝑖 = 𝑡𝑎 and V ⊂ V𝑖 then
6: s := s \ (𝑡𝑖 ,V𝑖) ∪ (𝑡𝑖 ,V)
7: else if 𝑡𝑎 < 𝑡𝑖 < 𝑡𝑏 then
8: s := s \ (𝑡𝑖 ,V𝑖)
9: end if

10: if 𝑡𝑖 < 𝑡𝑏 < 𝑡𝑖+1 then
11: s := s ∪ (𝑡𝑏 ,V𝑖)
12: end if
13: end for
14: end procedure

The REFINE() procedure takes a signal s𝑗 as a sequence of or-
dered pairs and an update as the triplet (𝑡𝑎, 𝑡𝑏 ,V). In practice, it
removes all the pieces of the signal that start within the interval
[𝑡𝑎, 𝑡𝑏), and adds a piece with value V in the case 𝑡𝑎 and/or 𝑡𝑏 lay in
between of 𝑡𝑖 and 𝑡𝑖+1. Clearly, for efficiency reasons, the algorithm
can jump to the next pair each time 𝑡𝑖+1 < 𝑡𝑎 , and can terminate as
soon as 𝑡𝑖 > 𝑡𝑏 . At the end of the execution, the updated signal is the
next element of the refinement chain, i.e., s𝑗+1.
The Monitoring Problem. When monitoring online a given speci-
fication 𝜑 , let s0 be the signal representing the starting information
on which the atoms of the formula 𝜑 are defined. Let also (u𝑗) 𝑗 ∈N
denote a (finite or infinite) sequence of signal updates. The online
monitoring problem can be framed as computing the robustness
signal 𝜌𝜑s𝑗+1 , given 𝜌

𝜑
s𝑗 (or, alternatively, the satisfaction signal 𝜒𝜑s𝑗+1

given 𝜒
𝜑
s𝑗), with s𝑗 ≻ s𝑗+1, starting from s0. A naïve implementation

of an online monitor could simply ignore the information coming
from previous monitoring steps and restart the computation over

83

Online Monitoring of Spatio-Temporal Properties for Imprecise Signals MEMOCODE ’21, November 20–22, 2021, Beijing, China

u

tj+1tj

tj tj+1

x < 0

t

t

tj tj+1

x > 0

tj tj+1

d

tj - b tj+1 - a

F[a, b]

tj-b-d tj+1-a-c

U[c, d]

tj tj+1

t

t

t

t

Figure 3: The ripple effect generated from the propagation
of an update of the signal 𝑥 , over the formula 𝜑 := (E

𝑑
𝑥 <

0) U[𝑐,𝑑] (F[𝑎,𝑏]𝑥 > 0).

the whole signal each time new information is available. As already
noted in [7, 8], such an implementation would result in vast amounts
of wasted resources when monitoring time signals, and it would be
even more costly when monitoring space-time signals. To properly
scope the effect that an out-of-order update of the input signal gen-
erates for the evaluation of a formula, it is convenient to think of
updates as starting from the atoms of the monitored formula and then
propagating their effects up through the syntactic tree, generating
a ripple effect where the impacted time-span widens based on the
operators of the subformulae. Figure 3 shows the ripple effect result-
ing from propagating the update’s information through the syntactic
tree. From this intuition, we can define the update ripple function to
scope the resulting update’s time-span, based on the provided update
and on the operator being computed in the following way:

Definition 4.2 (Update Ripple). Let OP𝐼 denote any temporal oper-
ator on the time interval 𝐼 , given a signal update u ≡ (𝑡𝑎, 𝑡𝑏 ,V), we
call update ripple the function

𝔲𝔯(u, 𝜑) =
{
[𝑡𝑎, 𝑡𝑏) − 𝐼 𝜑 ≡ OP𝐼𝜓 or 𝜑 ≡ 𝜓1OP𝐼𝜓2
[𝑡𝑎, 𝑡𝑏) otherwise

Being able to assess the time boundaries of the effect of an update,
we can therefore define an online monitoring procedure that updates
the robustness (or satisfaction) signal when needed and that keeps
the valid parts otherwise. In general, we have that at the step 𝑗 + 1,
the monitoring function can be evaluated as:

𝜌 𝑗+1 (s𝑗+1, ℓ, 𝑡, 𝜑) =
{

MONITOR(u𝑗 , 𝜑) [ℓ, 𝑡] 𝑡 ∈ 𝔲𝔯(u𝑗 , 𝜑)
𝜌 𝑗 (s𝑗 , ℓ, 𝑡, 𝜑) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note that in all the cases where the updates overlap, they must be
processed sequentially in order to generate correct results.
Monitoring Procedure. To compute the monitoring result signal
online, it is crucial to be able to exploit the knowledge from the past

each time new information is available. The most natural way for
doing so is to develop a stateful algorithm that stores the relevant
information from previous computations. We will represent by M
the persistent memory (i.e., the state) that we keep throughout the
various iterations of the monitoring process and by M[𝑥] the access
to the item 𝑥 from memory. The memory M is organized around
a data structure representing the set of robustness signals of all the
subformulae of the monitored formula 𝜑 , as computed in the last
iterations. This set can be encoded as an array indexed on some
ordering of the subformulae. We represent as M[𝜌𝜓] the access
to the respective robustness signal for some formula 𝜓 . This data
structure is essential to maximize the time performance of the moni-
toring process, as the subsequent iterations will re-compute only the
differing fragments based on the update ripple. Before starting the
monitoring process, the memory is initialized by storing an unde-
fined signal for any subformula 𝜓 in the set of the subformulae of
the formula 𝜑 being monitored. We call undefined signal the special
signal 𝑠 : L × T→ [−∞, +∞], which represents the total absence of
knowledge about the value at any possible time instant.

Once the memory is initialized, the monitoring can start. We
assume that the signal is always received as a sequence of signal up-
dates u𝑗 , starting from 𝑗 = 0, where the input signal is considered to
be undefined. Algorithm 2 represents the base routine triggered when
receiving an update u of the input signal. The recursive procedure
MONITOR(M, 𝜑, u) is responsible for propagating the input signal
update to the subformulae and then fetching the corresponding up-
dates of the robustness signal. We indicate by ⟨M, {𝑢𝜑 }⟩ the return
value of the algorithm, to mean that it returns an updated version of
the memory, and a list of robustness updates of the formula 𝜑 that
might either be used by the caller or discarded. The general proce-
dure of Algorithm 2 calls the specific procedures of Algorithms 3-6
depending on the operators encountered while traversing the tree of
the formula. Note that all of the above exploit the REFINE() primitive
operation from Algorithm 1.

Algorithm 2 Online Monitoring Procedure

1: procedure MONITOR(M, 𝜑, u)
2: switch 𝜑 do
3: case 𝑝 ◦ 𝑐
4: ⟨M, {𝑢𝜑 }⟩ := ATOM(M, 𝜑, u)
5: case ¬𝜓 or E≥𝑑𝜓
6: ⟨M, {𝑢𝜑 }⟩ := UNARY(M, 𝜑, u)
7: case𝜓1 ∨𝜓2 or𝜓1R≤𝑑𝜓2
8: ⟨M, {𝑢𝜑 }⟩ := BINARY(M, 𝜑, u)
9: case F𝐼𝜓

10: ⟨M, {𝑢𝜑 }⟩ := SLIDINGWINDOW(M, 𝜑, u)
11: case𝜓1U𝜓2
12: ⟨M, {𝑢𝜑 }⟩ := UNBOUNDEDUNTIL(M, 𝜑, u)

13: return ⟨M, {𝑢𝜑 }⟩
14: end procedure

Online Monitoring Of Non-temporal Operators When monitor-
ing formulae contain Boolean or Spatial operators, the online eval-
uation can be performed very efficiently by simply updating the
robustness signal at times corresponding to the received update.

84

MEMOCODE ’21, November 20–22, 2021, Beijing, China Visconti, et al.

Algorithm 3 shows the algorithm for monitoring atomic formulae,
Algorithm 4 presents the one for monitoring unary operators (i.e.,
¬ and E

𝑑
), and Algorithm 5 shows the one for binary operators

(i.e., ∨ and R
𝑑

). We represent by COMPUTE_OP(OP,V) (and COM-
PUTE_OP(OP,V1,V2)) the execution of the semantic operation cor-
responding to the operator OP, along the lines of Definitions 3.2,3.3,
i.e., [max]/[min] direct computation for Booleans, and the classical
reach/escape routines [1] for spatial operators. A key difference from
the offline version of the spatial algorithms, however, is that in our
online version, the COMPUTE_OP implementation has been crafted
to enable spatial-parallelization, i.e., monitors’ users with appropri-
ate hardware and the need to speed-up for large spaces, can opt-in for
the multi-threaded version of the algorithm, where COMPUTE_OP is
executed in parallel for any location of the spatial model.

Algorithm 3 Atomic Formula Monitoring

1: function ATOM(M, 𝑝 ◦ 𝑐, u)
2: (𝑡𝑎, 𝑡𝑏 ,V) := u
3: u𝑝◦𝑐 := (𝑡𝑎, 𝑡𝑏 , COMPUTE_OP(𝑝 ◦ 𝑐,V))
4: REFINE(M[𝜌𝑝◦𝑐], {u𝑝◦𝑐 })
5: return ⟨M, {u𝑝◦𝑐 }⟩
6: end function

Algorithm 4 Unary Operator Monitoring

1: function UNARY(M,OP𝜓, u)
2: ⟨M, {u𝜓 }⟩ := MONITOR(M,𝜓, u)
3: {uOP𝜓 } := ∅
4: for (𝑡𝑎, 𝑡𝑏 ,V) ∈ {u𝜓 } do
5: {uOP𝜓 } := {uOP𝜓 } ∪ (𝑡𝑎, 𝑡𝑏 , COMPUTE_OP(OP,V))
6: end for
7: REFINE(M[𝜌OP𝜓], {uOP𝜓 })
8: return ⟨M, {uOP𝜓 }⟩
9: end function

The algorithm for monitoring binary operators is slightly more
complex, as it requires taking into account the corresponding value
of the other subformula when an update is processed. In this context,
we indicate by SELECT(s, 𝑡1, 𝑡2) the restriction of the signal s to the
time interval that starts at 𝑡1 and ends at 𝑡2 (excluded).

Algorithm 5 Binary Operator Monitoring

1: function BINARY(M,𝜓1OP𝜓2, u)
2: {u𝜓1OP𝜓2 } := ∅
3: ⟨M, {u𝜓1 }⟩ := MONITOR(M,𝜓1, u)
4: for (𝑡𝑎, 𝑡𝑏 ,V𝜓1) ∈ {u𝜓1 } do
5: V𝜓2 := SELECT(M[𝜌𝜓2], 𝑡𝑎, 𝑡𝑏)
6: {u𝜓1OP𝜓2 } := {u𝜓1OP𝜓2 } ∪
7: (𝑡𝑎, 𝑡𝑏 , COMPUTE_OP(OP,V𝜓1 ,V𝜓2)
8: end for
9: Repeat lines 3-8 symmetrically for𝜓2...

10: REFINE(M[𝜌𝜓1OP𝜓2], {u𝜓1OP𝜓2 })
11: return ⟨M, {u𝜓1OP𝜓2 }⟩
12: end function

Online Monitoring Of Temporal Operators To execute temporal
operators quickly enough for online monitor, on the other hand,
we need to store some extra information throughout the process.
Firstly, it is helpful to recollect that, in general, every temporal oper-
ator can be decomposed [10] in the conjunction of two (efficiently
computable) operators:

• the bounded eventually F𝐼 (or equivalently the bounded glob-
ally G𝐼)

• the unbounded until U
We propose here an enhanced algorithm for monitoring bounded
globally/eventually operators with out-of-order updates. For that
aim, we slightly adapted the classical sliding window algorithm from
Lemire [19] so that it is constrained on the 𝔲𝔯 function and that it
can deal seamlessly with numerical and interval values. Algorithm 6
presents the primary routine of the sliding window for computing
updates of bounded unary temporal operators OP𝐼 . The algorithm
exploits an additional data structure W that is a deque, such that new
elements of the window are added at the end, and such that when
the window is saturated (i.e., the elements inside denote a time span
bigger than the definition interval 𝐼 of the operator), they are removed
from left and propagated as updates. The logic of the algorithm is
essentially the following: for each update received in input, the
sliding window is initialized on the fragment of the robustness signal
of the subformula defined by the update ripple function 𝔲𝔯. For each
piece of the fragment, the sliding window is updated (line 10), and
each time the new piece makes the data in the window exceed the
maximum size, the sliding window slides to the right, removing from
the window some elements that can be safely propagated as updates
(line 8); some edge cases are not covered to keep the algorithm
concise (e.g., the case when the current piece is by itself wider
than the window size). The precise behavior of SLIDE and ADD that
control the mutation of W can be examined in the extended version
of the paper [33] or in the Moonlight implementation.

Algorithm 6 Sliding Window

1: procedure SLIDINGWINDOW(M,OP[𝑡𝑎,𝑡𝑏]𝜓, u)
2: ⟨M, {u𝜓 }⟩ := MONITOR(M,𝜓, u)
3: {uOP𝜓 } := ∅
4: for u𝜓 ∈ {u𝜓 } do
5: (𝑡𝑠 , 𝑡𝑒) := 𝔲𝔯(u𝜓 ,OP[𝑡𝑎,𝑡𝑏]𝜓)
6: for (𝑡,V) ∈ SELECT(M[𝜌𝜓], 𝑡𝑠 , 𝑡𝑒) do
7: if 𝑡 > 𝑡𝑏 + W.first.start then
8: {uOP𝜓 } := {uOP𝜓 } ∪ SLIDE(𝑡 − 𝑡𝑏)
9: end if

10: ADD(𝑡 − 𝑡𝑎,V)
11: end for
12: end for
13: REFINE(M[𝜌OP𝜓], {uOP𝜓 })
14: return ⟨M, {uOP𝜓 }⟩
15: end procedure

The second fundamental temporal algorithm is the one for com-
puting the unbounded until. Unfortunately, being unbounded, any
update might require to recompute, in the worst case, the whole ro-
bustness/satisfaction signal. In our implementation, we consider the

85

Online Monitoring of Spatio-Temporal Properties for Imprecise Signals MEMOCODE ’21, November 20–22, 2021, Beijing, China

algorithm in [7]. Note that it requires keeping the minimum value of
preceding computations of 𝜑1 and the maximum value of preceding
computations of the whole formula as secondary data structures.
A last remark about the implementation must be made: while the
algorithms have been developed with the goal to enable out-of-order
execution, all of them have also been implemented in an in-order
variant, so that the execution time penalty from not assuming that
updates are at the end, does not affect the users of the tool when the
use case of interest allows to.

5 EXPERIMENTAL EVALUATION
The interval semantics we presented in Section 3 and the online
(in-order and out-of-order) monitoring strategies of Section 4 have
been implemented as extensions to the Moonlight tool. To showcase
the kind of applications where they can be exploited and to compare
the performances with other state-of-the-art approaches, we propose
here three different examples: (i) we present and discuss the results
of the properties previously introduced in the context of air quality
monitoring; (ii) we compare the performances of our approach for
the evaluation of a temporal property on the Abstract Fuel Con-
trol Simulink model from the Breach [9] tool; (iii) we compare the
performances of the online approach versus the offline version of
Moonlight on a simulated sensor network adopting the ZigBee pro-
tocol. All the computations have been executed on an Intel® Core™

i7-5820K CPU @ 3.30GHz, 15M cache, 6 cores (12 threads), with
32GB RAM, running Ubuntu® 20.04.2 LTS, and Matlab™ R2021a.

5.1 Use case: Air pollution monitoring
Recalling Properties 1, 2 from Section 3, we can see in Figure 4 the
results of the monitoring. Note that when both the upper and lower
bounds are below the 0 threshold, the property is certainly violated,
while when only the lower bound is below 0, then the property
is potentially violated. Property 1 gives some important insights
into the faults observed in Figure 1. In fact, we can see that of the
six observed failures for the ten-days span of interest, only three
happen for a time that is long enough to potentially trigger public
concern, which correspond to the spikes to minus infinity in the lower
bound of Figure 4 (left). In essence, with the interval semantics, we
learn that the property could potentially be violated in those time-
spans, while it is certainly not for the other missing values. However,
Property 2 tells us something more about the neighborhood: in fact,
by combining the observations registered from close locations, it
is apparent that just one of the failures (the one happening during
March 20th) likely corresponds to a violation of the property, since
there is no close location exhibiting low levels of nitrogen dioxide
in Figure 4 (right).

5.2 Online comparison: Abstract Fuel Control
Consider a Simulink® model that describes a black-box represen-
tation of an engine’s air-fuel ratio controller aimed at complying
with emission targets of a vehicle, where the user has direct control
over the engine speed and pedal angle. Each input and output is
represented as a signal that is sampled regularly, the outputs be-
ing the actual air-to-fuel ratio (AF) and the mean air-to-fuel ratio
value for the given input parameters (AFref) at a sampling period
𝑇 = 0.1𝑠. For a complete description of the model, the reader can

see [16], while [7] provides the reference implementation for online
monitoring in Breach.

In our experiments, we monitored the following STL property
(note that STREL is an extension of STL, and therefore each STL
formula is also a STREL formula)

𝜑 = G[10,30] (|𝐴𝐹 −𝐴𝐹𝑟𝑒 𝑓 | > 0.1 → (F[0,1] |𝐴𝐹 −𝐴𝐹𝑟𝑒 𝑓 | < 0.1))
for different sample sizes, considering both updates as an order chain
and by shuffling them at random to simulate out-of-order retrieval
and processing. The result of |𝐴𝐹 − 𝐴𝐹𝑟𝑒 𝑓 | from the model has
been stored in a file and loaded before starting the stopwatch for
both monitors to eliminate the simulation and loading time from
the performance evaluation. Breach monitor has been measured via
the reference implementation as a Simulink model (removing the
execution time of the model), while Moonlight is implemented as a
Java program. Table 1 reports a summary of the performances of the
monitors for different sample sizes.

N. samples Breach Exec. Time Moonlight Exec. Time
In-order In-order Out-of-order

500 7.603 s 0.004 s 0.157 s
1000 8.143 s 0.016 s 0.489 s
5000 10.770 s 0.096 s 9.790 s
10000 13.730 s 0.113 s 44.894 s

Table 1: Performances for monitoring the property 𝜑 for differ-
ent sample size. Times are averaged over 100 runs.

The interesting insight of the comparison is the fact that, while
our in-order implementation provides reliably faster performances
(note that the offline version of Moonlight had already shown better
performance than Breach in [2]), the penalty that comes from not
assuming ordered inputs grows substantially with the increase of the
input size, as this requires longer searches in the output signal, to
find the spot where the update should be applied. Nevertheless, the
biggest sample size we considered is quite extreme (ten thousand
randomly shuffled samples), yet the execution time (4.489 ms/sample
on average) is way smaller than the sampling time (0.1 s), which
therefore makes it reasonable for most real-time scenarios.

5.3 Moonlight comparison: ZigBee Protocol
Consider a collection of moving devices communicating via the
ZigBee (IEEE 802.15.4) protocol. From the protocol description,
we know that the devices can have three roles: they can either be
coordinators, routers, or sensor-node. Each device is equipped with
a humidity sensor ℎ(𝑡) that reports at each time instant the observed
value of the humidity at the current location. The humidity observed
can be described as an MA(0) process, i.e.

ℎ(𝑡) = 𝑐0 + 𝜀 (𝑡), (𝜀 ∼𝑊𝑁 (0, 𝜆2))
where the observed value comes from the real value 𝑐0, with some

perturbation from the zero-mean white noise 𝜀 of variance 𝜆2. Each
device can communicate with the ones that are close enough directly,
but they can also communicate with furthest ones, as long as there
is some router between them that can bridge the communication.
Let 𝑋𝐻 denote the actual value of humidity for a given device at
a given time, let 𝑋𝑆 denote the role of a given sensor, and 𝑇 some

86

MEMOCODE ’21, November 20–22, 2021, Beijing, China Visconti, et al.

13 14 15 16 17 18 19 20 21 22 23
2021-Mar

-

40

20

0

20

40

60

+

13 14 15 16 17 18 19 20 21 22 23
2021-Mar

40

20

0

20

40

60

+

Figure 4: The results of monitoring robustness for Property 1 (on the left), and Property 2 (on the right) at the Rezzato station. Despite
the missing values, reliable values of the robustness of the property can be provided.

time threshold to warn the observers. We monitored the following
properties on the system:

𝜑1 = (𝑋𝐻 > 60) → F[0,𝑇] (𝑋𝐻 < 30)
𝜑2 = �

𝑑<10 (𝑋𝑆 = coordinator)
Property 𝜑1 denotes an alert condition: if the humidity measured
by a device 𝑋𝐻 goes beyond 60%, then it must fall down at 30%
afterward, within the time threshold 𝑇 . Property 𝜑2, on the other
hand, defines a reachability criterion between the sensors: it checks
whether it is true that from any location, it is possible to reach a
coordinator (𝑋𝑆 = coordinator) in less than 10 hops. Similar to
previous versions of this model [1, 6], we can consider the spatial
model as a graph where all the devices are the nodes, and the edges
between the nodes are all labeled by 𝑑 = 1 to denote the networking
hop from one device to another. Table 2 shows the difference in
monitoring 𝜑1 and 𝜑2 both online and offline. It is interesting to
see how the different algorithms behave on the same formula and
data: in fact, the online temporal algorithms are penalized by the
complexity added by the fact that some values must be recomputed.
Conversely, the online spatial ones benefit from the hypothesis of
spatial synchronization of the locations, resulting in slightly more
efficient computations in the case we explored. Lastly, it can be
seen that the benefit of parallelization is particularly evident when
the number of nodes is strictly smaller than the number of cores
of the CPU (10 in our case). In contrast, the benefit practically
vanishes (actually resulting in more overhead) as the number of
parallel threads grows significantly more than the cores available.

6 CONCLUSIONS & FUTURE WORK
We extended the traditional definition of signals also to consider
imprecise signals defined by intervals of values. We presented an
interval semantics for STREL, we proved its soundness and cor-
rectness, and we introduced an online monitoring algorithm for
STREL that exploits imprecise signals that can be refined by up-
dates arriving in any order and that can monitor updates on different

Time N. Offline Online Online(Parallel)
samples nodes 𝜑1 𝜑2 𝜑1 𝜑2 𝜑1 𝜑2

100
10 9 77 116 29 49 58
50 8 1028 151 430 84 583
100 15 6919 197 2993 137 3017

500
10 8 200 621 45 461 760
50 17 4058 1901 1783 1549 2009
100 25 32561 3333 15641 2889 15486

Table 2: Execution times registered for monitoring 𝜑1 and 𝜑2
with different versions of Moonlight. Times in ms, averaged
over 100 runs.

locations in parallel. We implemented the proposed methodology
in the Moonlight monitoring tool. We motivated our framework
from an air pollution control specification with real data from the
region of Lombardy, Italy. Lastly, we compared the new methodol-
ogy with other state-of-the-art tools and discussed the differences.
Many directions for future work can be followed. For example, the
space-synchronization hypothesis helped us simplifying the imple-
mentation of the algorithms but is not needed from a theoretical
point of view. It will be interesting in the future to clearly assess the
computational advantages and disadvantages of that hypothesis and
to which extent it can be relaxed. Another intriguing topic for future
development concerns spatial models representing (and interacting
as) distributed systems. In that context, multiple directions could be
pursued, like considering an ownership model for the atomic formu-
lae, or by reasoning on an actor-based communication model among
locations. Another interesting idea could be to expand the kind of
failures we can monitor. For example, we could consider some form
of error correction in case some received updates later prove to have
provided wrong information (maybe because of some broken sen-
sors). Lastly, different forms of computational optimization could

87

Online Monitoring of Spatio-Temporal Properties for Imprecise Signals MEMOCODE ’21, November 20–22, 2021, Beijing, China

be explored, like stopping when some bounds on the satisfiabil-
ity/robustness have been reached, and intensive parallelization and
hardware acceleration of the main algorithms.

ACKNOWLEDGMENTS
The authors would like to acknowledge Davide Prandini for his thesis
work (unpublished) where a preliminary work on imprecise signals
for STL had been conducted, together with many ideas that have
been used for developing the proofs of the theorems presented. This
research has been partially supported by the Austrian Science Fund
(FWF): ZK-35, and LogiCS DK W1255-N23; and by Italian MIUR
project PRIN 2017FTXR7S IT MATTERS and by Marche Region in
implementation of the financial programme POR MARCHE FESR
2014-2020, project "Miracle".

REFERENCES
[1] Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Laura Nenzi. 2017. Mon-

itoring mobile and spatially distributed cyber-physical systems. In Proc. of
MEMOCODE 2017: the 15th ACM-IEEE International Conference on For-
mal Methods and Models for System Design. ACM, Vienna, Austria, 146–155.
https://doi.org/10.1145/3127041.3127050

[2] Ezio Bartocci, Luca Bortolussi, Michele Loreti, Laura Nenzi, and Simone Silvetti.
2020. MoonLight: A Lightweight Tool for Monitoring Spatio-Temporal Properties.
In Runtime Verification, Jyotirmoy Deshmukh and Dejan Ničković (Eds.). Springer
International Publishing, Cham, 417–428.

[3] Ezio Bartocci, Luca Bortolussi, Dimitrios Milios, Laura Nenzi, and Guido San-
guinetti. 2015. Studying Emergent Behaviours in Morphogenesis Using Signal
Spatio-Temporal Logic. In Hybrid Systems Biology, Alessandro Abate and David
Šafránek (Eds.). Springer International Publishing, Cham, 156–172.

[4] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Specification-Based
Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Applica-
tions. Springer International Publishing, Cham, 135–175. https://doi.org/10.1007/
978-3-319-75632-5_5

[5] Ezio Bartocci, Ebru Aydin Gol, Iman Haghighi, and Calin Belta. 2018. A Formal
Methods Approach to Pattern Recognition and Synthesis in Reaction Diffusion
Networks. IEEE Trans. Control. Netw. Syst. 5, 1 (2018), 308–320. https://doi.org/
10.1109/TCNS.2016.2609138

[6] L. Bortolussi, J. Hillston, D. Latella, and M. Massink. 2013. Continuous Approxi-
mation of Collective Systems Behaviour: a Tutorial. Performance Evaluation 70,
5 (May 2013), 317–349. https://doi.org/10.1016/j.peva.2013.01.001

[7] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin,
Garvit Juniwal, and Sanjit A. Seshia. 2017. Robust online monitoring of signal
temporal logic. Formal Methods in System Design 51, 1 (01 Aug 2017), 5–30.
https://doi.org/10.1007/s10703-017-0286-7

[8] Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. 2014. On-Line Monitoring
for Temporal Logic Robustness. In Runtime Verification, Borzoo Bonakdarpour
and Scott A. Smolka (Eds.). Springer International Publishing, Cham, 231–246.

[9] Alexandre Donzé. 2010. Breach, A Toolbox for Verification and Parameter Syn-
thesis of Hybrid Systems. In Computer Aided Verification, Tayssir Touili, Byron
Cook, and Paul Jackson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
167–170.

[10] Alexandre Donzé, Thomas Ferrère, and Oded Maler. 2013. Efficient Robust
Monitoring for STL. In Computer Aided Verification, Natasha Sharygina and
Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 264–279.
https://doi.org/10.1007/978-3-642-39799-8_19

[11] Radu Grosu, Scott A. Smolka, Flavio Corradini, Anita Wasilewska, Emilia
Entcheva, and Ezio Bartocci. 2009. Learning and detecting emergent behav-
ior in networks of cardiac myocytes. Commun. ACM 52, 3 (2009), 97–105.
https://doi.org/10.1145/1467247.1467271

[12] Iman Haghighi, Austin Jones, Zhaodan Kong, Ezio Bartocci, Radu Grosu, and
Calin Belta. 2015. SpaTeL: a novel spatial-temporal logic and its applications to
networked systems. In Proc. of HSCC’15: the 18th International Conference on
Hybrid Systems: Computation and Control. IEEE, Seattle, WA, USA, 189–198.
https://doi.org/10.1145/2728606.2728633

[13] Timothy Hayes, Oscar Palomar, Osman Unsal, Adrian Cristal, and Mateo Valero.
2016. Future Vector Microprocessor Extensions for Data Aggregations. SIGARCH
Comput. Archit. News 44, 3 (June 2016), 418–430. https://doi.org/10.1145/

3007787.3001182
[14] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang Nguyen,

and Dejan Nickovic. 2015. From signal temporal logic to FPGA monitors. In
Proc. of MEMOCODE 2015: the 13th ACM/IEEE International Conference on
Formal Methods and Models for Codesign. IEEE, New York City at 3 Park Ave,
218–227. https://doi.org/10.1109/MEMCOD.2015.7340489

[15] Stefan Jaksic, Ezio Bartocci, Radu Grosu, and Dejan Nickovic. 2018. An Algebraic
Framework for Runtime Verification. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 37, 11 (2018), 2233–2243. https://doi.org/10.1109/TCAD.2018.
2858460

[16] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken
Butts. 2014. Powertrain Control Verification Benchmark. In Proceedings of the
17th International Conference on Hybrid Systems: Computation and Control
(Berlin, Germany) (HSCC ’14). Association for Computing Machinery, New York,
NY, USA, 253–262. https://doi.org/10.1145/2562059.2562140

[17] Ron Koymans. 1990. Specifying Real-Time Properties with Metric Tempo-
ral Logic. Real-Time Systems 2, 4 (1990), 255–299. https://doi.org/10.1007/
BF01995674

[18] Daniel Kusswurm. 2020. Armv8-32 SIMD Architecture. Apress, Berkeley, CA,
131–140. https://doi.org/10.1007/978-1-4842-6267-2_7

[19] D. Lemire. 2006. Streaming Maximum-Minimum Filter Using No More than
Three Comparisons per Element. Nord. J. Comput. 13 (2006), 328–339.

[20] ARPA Lombardia. 2021. Dati sensori aria. https://www.dati.lombardia.it/
Ambiente/Dati-sensori-aria/nicp-bhqi.

[21] ARPA Lombardia. 2021. Stazioni qualità dell’aria. https://www.dati.lombardia.it/
Ambiente/Stazioni-qualit-dell-aria/ib47-atvt.

[22] Michele Loreti and Jane Hillston. 2016. Modelling and Analysis of Collective
Adaptive Systems with CARMA and its Tools. Springer International Publishing,
Cham, 83–119. https://doi.org/10.1007/978-3-319-34096-8_4

[23] Meiyi Ma, Ezio Bartocci, Eli Lifland, John A. Stankovic, and Lu Feng. 2020.
SaSTL: Spatial Aggregation Signal Temporal Logic for Runtime Monitoring
in Smart Cities. In Proc. of ICCPS 2020: the 11th ACM/IEEE International
Conference on Cyber-Physical Systems. IEEE, Sydney, Australia, 51–62. https:
//doi.org/10.1109/ICCPS48487.2020.00013

[24] Meiyi Ma, Ezio Bartocci, Eli Lifland, John A. Stankovic, and Lu Feng. 2021.
A Novel Spatial-Temporal Specification-Based Monitoring System for Smart
Cities. IEEE Internet of Things Journal 8, 15 (2021), 11793–11806. https:
//doi.org/10.1109/JIOT.2021.3069943

[25] Oded Maler and Dejan Nickovic. 2013. Monitoring properties of analog and mixed-
signal circuits. STTT 15, 3 (2013), 247–268. https://doi.org/10.1007/s10009-012-
0247-9

[26] Konstantinos Mamouras, Agnishom Chattopadhyay, and Zhifu Wang. 2021. Alge-
braic Quantitative Semantics for Efficient Online Temporal Monitoring. In Tools
and Algorithms for the Construction and Analysis of Systems, Jan Friso Groote
and Kim Guldstrand Larsen (Eds.). Springer International Publishing, Cham,
330–348.

[27] Konstantinos Mamouras and Zhifu Wang. 2020. Online Signal Monitoring With
Bounded Lag. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39, 11 (2020), 3868–3880. https://doi.org/10.1109/TCAD.
2020.3013053

[28] Laura Nenzi, Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Ennio Visconti.
2020. Monitoring Spatio-Temporal Properties (Invited Tutorial). In Runtime Veri-
fication, Jyotirmoy Deshmukh and Dejan Ničković (Eds.). Springer International
Publishing, Cham, 21–46.

[29] Laura Nenzi, Luca Bortolussi, Vincenzo Ciancia, Michele Loreti, and Mieke
Massink. 2015. Qualitative and Quantitative Monitoring of Spatio-Temporal
Properties. In Proc. of RV 2015: the 6th International Conference on Runtime
Verification, Vol. 9333. Springer, Vienna, Austria, 21–37. https://doi.org/10.1007/
978-3-319-23820-3_2

[30] Dejan Ničković and Tomoya Yamaguchi. 2020. RTAMT: Online Robustness
Monitors from STL. In Automated Technology for Verification and Analysis,
Dang Van Hung and Oleg Sokolsky (Eds.). Springer International Publishing,
Cham, 564–571.

[31] Denise Ratasich, Faiq Khalid, Florian Geissler, Radu Grosu, Muhammad Shafique,
and Ezio Bartocci. 2019. A Roadmap Toward the Resilient Internet of Things for
Cyber-Physical Systems. IEEE Access 7 (2019), 13260–13283. https://doi.org/
10.1109/ACCESS.2019.2891969

[32] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl, Udo Hafner,
Ezio Bartocci, Dejan Nickovic, and Radu Grosu. 2017. Runtime Monitoring with
Recovery of the SENT Communication Protocol. In Computer Aided Verification,
Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing,
Cham, 336–355.

[33] Ennio Visconti, Ezio Bartocci, Michele Loreti, and Laura Nenzi. 2021.
Online Monitoring of Spatio-Temporal Properties for Imprecise Signals.
arXiv:arXiv:2109.08081

88

https://doi.org/10.1145/3127041.3127050
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1109/TCNS.2016.2609138
https://doi.org/10.1109/TCNS.2016.2609138
https://doi.org/10.1016/j.peva.2013.01.001
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1145/1467247.1467271
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1145/3007787.3001182
https://doi.org/10.1145/3007787.3001182
https://doi.org/10.1109/MEMCOD.2015.7340489
https://doi.org/10.1109/TCAD.2018.2858460
https://doi.org/10.1109/TCAD.2018.2858460
https://doi.org/10.1145/2562059.2562140
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-1-4842-6267-2_7
https://www.dati.lombardia.it/Ambiente/Dati-sensori-aria/nicp-bhqi
https://www.dati.lombardia.it/Ambiente/Dati-sensori-aria/nicp-bhqi
https://www.dati.lombardia.it/Ambiente/Stazioni-qualit-dell-aria/ib47-atvt
https://www.dati.lombardia.it/Ambiente/Stazioni-qualit-dell-aria/ib47-atvt
https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1109/ICCPS48487.2020.00013
https://doi.org/10.1109/ICCPS48487.2020.00013
https://doi.org/10.1109/JIOT.2021.3069943
https://doi.org/10.1109/JIOT.2021.3069943
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1007/978-3-319-23820-3_2
https://doi.org/10.1109/ACCESS.2019.2891969
https://doi.org/10.1109/ACCESS.2019.2891969
https://arxiv.org/abs/arXiv:2109.08081

	Abstract
	1 Introduction
	2 Interval Algebra, Signals and Spatial Model
	3 STREL with interval Semantics
	4 Online Monitoring
	5 Experimental Evaluation
	5.1 Use case: Air pollution monitoring
	5.2 Online comparison: Abstract Fuel Control
	5.3 Moonlight comparison: ZigBee Protocol

	6 Conclusions & Future Work
	Acknowledgments
	References

