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Self-assembling minimalistic peptides embedded with an orga-
nocatalytic moiety were designed. By controlling the formation
of fibrils via external intervention, it was shown that the
activation is accelerated when the organocatalyst is in its
supramolecular state. The effect of the accelerated catalysis was
demonstrated in a Michael benchmark reaction.

Over the last two decades asymmetric organocatalysts gained a
prominent role in modern research;[1–3] its often low turnover
may be tackled by immobilization, recycle, engineering highly
active catalysts,[4] or combining different types of catalysts
synergistically.[5] On a more complex level, molecular machines
have been used in organocatalysis.[6] On the other hand, self-
assembling short peptides have attracted great interest;[7]

derivatives of the dipeptide Phe-Phe stand out, thanks to the
high propensity towards fibrillization in a variety of solvents,
giving scope for chemical diversity of the building blocks.[8–10]

Combining self-assembly of short peptides and organo-
catalysis, we embarked in a proof of concept to accelerate
organocatalysis. We surmised that self-assembling minimalistic
peptides embedded with an organocatalytic moiety could be
designed. Creating a lipophilic pocket and excluding water
from its structure, an easily prepared peptide could function as
an enhanced organocatalyst in its supramolecular assembly; it
might also provide a cooperative interaction of different
functions of the structure, or its activity be switched on and off,
or from one type of catalysis to another.[8,11] There are examples,
albeit limited, of simple catalytic activity with self-assembled
structures.[12,13]

Proline and its derivatives have a prominent role in organo-
catalysis. Proline-containing amphiphiles in Mannich
reactions,[14] proline derivatives self-assembling with other
organocatalysts,[15] and a self-assembling lipopeptide featuring
proline residues were previously reported.[16] However, all these
examples rely on moderately complex structures.[17] Simpler
catalysts, such as tripeptides, are attractive alternatives.[18] We
reasoned that combining the privileged proline with the self-
assembling propensity of Phe-Phe would provide
supramolecular catalysts showing higher activity.

Herein, we report the first proof of concept of
supramolecular fibril organocatalysts, composed solely of a
tripeptide, that exhibit higher activity than their non-self-
assembled structures in the Michael reaction of aldehydes to
nitroalkenes (Scheme 1).

D-Pro-L-Phe-L-Phe (DPFF) was, therefore, selected to pro-
mote aminocatalysis in aqueous media. The stereoconfiguration
was chosen based on a recent study on Pro-Phe-Phe isomers
which, above a critical concentration, formed macroscopic
hydrogels.[19] Our rationale was that a high-ordered
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Scheme 1. Enhancement of catalytic activity in a Michael reaction via a self-
assembled organocatalyst.
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supramolecular structure is capable of creating a more
organized lipophilic pocket and cooperative interactions to
accelerate the catalysis. As previously reported, DPFF fibrils self-
assembled in HFIP/H2O and in a phosphate buffer saline
solution (PBS), whereas homochiral analogue LPFF and the DPF
derivative only yielded amorphous aggregates (see ESI).[19,20]

The Michael addition of isovaleraldehyde to β-nitrostyrene
was chosen as a benchmark reaction to test the proof of
concept of the effect on the catalytic activity of the tripeptide
fibrils.[21] The aldehyde partner was chosen for its limited
reactivity[22] to appreciate better the enhancement in catalysis
via fibrils.

The reaction catalyzed by DPFF when no fibrils are formed
(Table 1, entry 1) was compared with solvent mixtures where
the peptide self-assembles (entries 2–3). HFIP/H2O provided
poor results, but a very encouraging improvement was
observed in PBS (entry 3 vs 1). The lack of conversion in the
uncatalyzed reaction (entry 4) proved that the PBS alone had
no effect. These results were the first indication that organo-
catalysis could be enhanced in fibrils. The epimer peptide LPFF
forms agglomerates and it showed only a small increase in
conversion in PBS (entries 5 and 6). The best results were
obtained with 5% catalyst loading (entries 3, 7–8); note that a
lower catalyst loading at the same catalyst concentration means
a higher reagent concentration. Increasing the temperature and
the equivalents of 1a improved the conversion without
significantly affecting the ee (entries 3 vs 9–10). The outcome of
DPFF in water and with the non-self-assembling LPFF in PBS at

35 °C confirmed the acceleration on catalysis imparted by fibrils
(74% vs 41% and 56% conversion, entries 10–12). A further set
of experiments ruled out the effect of PBS alone on the catalysis
and proved that the supramolecular assembly improved the
conversion rate, underpinning the initial concept that we set
out to prove. In fact, comparing DPFF and LPFF is not entirely
correct; experiments with DPF, the inferior analogue of DPFF
that does not form fibrils, showed a negligible increase in
conversion (entries 13–14).

Plotting the conversion vs time, the reaction catalyzed in
the presence of fibrils is clearly faster over the 24 h observed
(Figure 1).

The effect on the organocatalytic addition of aldehydes 1a–
g to nitroalkenes 2a–i was evaluated over 24 h. The catalysis
promoted by the organocatalyst in its supramolecular assembly
is faster and the acceleration imparted by the supramolecular
assemblies is evident in all cases, proving an enhanced catalysis
in fibrils (11% to 74% increments in conversion, Table 2).
Aldehyde 1b, probably thanks to its smaller size, proved to be
the one that benefitted the most from the fibrils (entry 2),
whereas 1g showed the smallest enhancement (entry 7),
supposedly because of its steric hindrance hampering the
penetration in the fibrils. In general, the acceleration of the
reaction is comparable for all nitroalkenes, regardless of
whether they are aromatic with electron-withdrawing or
electron-donating groups (entries 3, 8–12), or aliphatic (en-
tries 13–15).

Having established that supramolecular DPFF accelerates
the catalysis of the Michael reaction, we evaluated the scope of
the organocatalytic reaction between aldehydes 1a–g and
nitroalkenes 2a–i (Table 3). Less steric hindered aldehydes
provided higher yields and conversions (e.g., entries 1–3). Yields
of aromatic nitroalkenes with electron-withdrawing groups
(entries 8–9) were lower than the ones with electron-donating
groups (entries 10–11). Aliphatic nitroalkenes proved to be less
reactive. In general, all isolated yields are in good agreement
with the conversion.

In conclusion, we report the first proof of concept of a
simple tripeptide, featuring proline and able to self-assemble
into fibrils, that accelerates organocatalysis in its supramolecular
state. This approach opens interesting options to explore to
accelerate organocatalysis. The nature of the self-assembling

Table 1. Optimization of reaction conditions for the addition of isovaler-
aldehyde 1a to β-nitrostyrene 2a.[a]

Entry Cat Cat [%] Solvent Conv. [%][b] ee [%][c,d]

1 DPFF 5 H2O 17 69
2 DPFF 5 HFIP/H2O 7 53
3 DPFF 5 PBS 51 72
4 – – PBS <1 n.d.
5 LPFF 5 H2O 22 � 43
6 LPFF 5 PBS 33 � 48
7 DPFF 10 PBS 49 71
8 DPFF 15 PBS 44 71
9[e] DPFF 5 PBS 64 69
10[e,f] DPFF 5 PBS 74 66
11[e,f] DPFF 5 H2O 41 69
12[e,f] LPFF 5 PBS 56 � 50
13[e,f] DPF 5 H2O 8 70
14[e,f] DPF 5 PBS 12 71

[a] Reaction conditions: isovaleraldehyde 1a (0.34 mmol, 1 equiv.), β-
nitrostyrene 2a (0.34 mmol, 1 equiv.), d.r.>94 :6 syn/anti in all cases; [b]
Conversion was determined by 1H NMR spectroscopy; [c] ee reported of
syn (major) diastereomer; [d] The ee value was determined by HPLC on a
chiral stationary phase; [e] Reaction performed at 35 °C; [f] Reaction
performed with 2 equiv. of 1a.

Figure 1. Comparison of the conversion to 3aa in reactions catalyzed by
DPFF, in PBS and H2O over 24 h.
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organocatalyst makes it modular and a range of amino acids
can be chosen to affect the formation of fibrils. Further work is
underway for the development of different organocatalytic
fibrils that would deploy a range of activations based on their
constituents, and it will be reported in due course.
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