
Research Article

Lorenzo D’Ambrosio and Enzo Mitidieri*

Quasilinear elliptic systems in divergence
form associated to general nonlinearities
Accepted July 31, 2018

Abstract: The paper is concernedwith a priori estimates of positive solutions of quasilinear elliptic systems of
equations or inequalities in an open set of Ω ⊂ ℝN associated to general continuous nonlinearities satisfying
a local assumption near zero. As a consequence, in the case Ω = ℝN , we obtain nonexistence theorems of
positive solutions. No hypotheses on the solutions at infinity are assumed.
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1 Introduction
In this paper, we prove a priori estimates for the solutions of elliptic systems involving quasilinear operators
in divergence form in an open set Ω ⊆ ℝN . The simplest problem that we have in mind is the classical model

{
−∆u = f(u, v) in Ω ⊆ ℝN ,
−∆v = g(u, v) in Ω ⊆ ℝN ,

(1.1)

where f, g : [0,∞) × [0,∞)→ [0,∞) are given nonnegative continuous functions.
More generally, we prove a priori estimates for the solutions of elliptic systems in an open set Ω ⊆ ℝN

involving two quasilinear operators in divergence form. Specifically, we shall study problems of the type

{{{
{{{
{

−div(Ap(x, u, ∇u)) ≥ f(x, u, v) in Ω,
−div(Aq(x, v, ∇v)) ≥ g(x, u, v) in Ω,

u ≥ 0, v ≥ 0 in Ω,
(P)

where Ap ,Aq : Ω ×ℝ ×ℝN → ℝN are weakly p-coercive and weakly q-coercive respectively, that is, p > 1,
q > 1, and there exist a, b > 0 such that

(Ap(x, t, w) ⋅ w) ≥ a|Ap(x, t, w)|p
 for all (x, t, w) ∈ Ω ×ℝ ×ℝN ,

(Aq(x, t, w) ⋅ w) ≥ b|Aq(x, t, w)|q
 for all (x, t, w) ∈ Ω ×ℝ ×ℝN ,

f, g : Ω × [0,∞) × [0,∞)→ [0,∞) are Carathédory functions, and for u and v, a weak Harnack inequality
holds (for further details and definitions, see Section 2).

In this setting, we prove some a priori bounds for weak solutions of system (P). We shall use some of the
ideas developed in [4], where the case of scalar problems was considered.
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Our main result is Theorem 3, in which we give a sufficient condition for the nonexistence of non-
trivial solutions of (P) in the case Ω = ℝN , and the following local assumptions on f(x, u, v) = f(u, v) and
g(x, u, v) = g(u, v), concerning their behavior near zero, hold. We note that this is the first attempt to study
nonexistence of positive solutions for quasilinear elliptic systems in this generality. As it is well known,
besides their intrinsic interest, these nonexistence theorems can be used to prove existence results for related
Dirichlet problems in bounded domains via the so called blow-up technique and suitable index theorems.
See, for instance, [12] and the references therein. In addition, we point out that our approach can be used to
study similar quasilinear systems in the framework of Carnot groups in the same spirit as [4, 5]. For sake of
brevity and in order to avoid cumbersome notations, we restrict our attention to the standard euclidean case.

Assumption 1 (Assumptions on the nonlinearities). The functions f, g : [0,∞) × [0,∞)→ [0,∞) are contin-
uous and satisfy the following conditions:
(i) There exist p1 ≥ 0 and q1 > 0 such that

lim inf
t+τ→0

f(t, τ)
tp1τq1
> 0 (possibly infinity). (f0)

(ii) There exist p2 > 0 and q2 ≥ 0 such that

lim inf
t+τ→0

g(t, τ)
tp2τq2
> 0 (possibly infinity). (g0)

On the possible solution (u, v) of the system, we do not require any kind of behavior at infinity. Indeed, we
only assume that it belongs to a local Sobolev function space for which the integrals of the relevant quantities
make sense. Under these hypotheses, a special case of our main nonexistence theorem applied to (1.1) reads
as follows:

Theorem 1. Suppose the functions f, g : [0,∞) × [0,∞)→ [0,∞) are continuous and satisfy (f0) and (g0). Let
(u, v) be a weak solution of (1.1) such that

ess inf
ℝN

u = ess inf
ℝN

v = 0.

If 0 ≤ p1 < 1, 0 ≤ q2 < 1 and

N[1 − (1 − p1)(1 − q2)p2q1
] ≤ max{2 + 2q1 + 2p1(1 − q2)p2q1

, 2 + 2p2 + 2q2(1 − p1)
p2q1

}, (1.2)

then u = 0 or v = 0 a.e. inℝN . This result is sharp.

In [1, Theorem 5.3], a less general sufficient condition for the nonexistence has been proved in the case
f(x, u, v) = |x|αup1vq1 and g(x, u, v) = |x|βup2vq2 . While, the same sufficient condition (1.2) has been consid-
ered in [3, Theorem V.3] for radial solutions of (P) and the differential system involves the (∆p , ∆q) operators,
in the special case f(u, v) = up1vq1 and g(u, v) = up2vq2 . In Remark 5, we prove also that condition (1.2) is
sharp, in the sense that when it does not hold, we are able to construct an explicit nontrivial solution of (P)
in the special case when the system involves the same p-Laplacian operator.

We emphasize that conditions (f0) and (g0) allow to study problems with singular nonlinearities. For
instance, dealing with f(t, τ) = τ−1, it is easy to construct a function ̃f (t, τ) such that f(t, τ) ≥ ̃f (t, τ) and it
satisfies (f0) with p1 = 0 and any q1 > 0.

We also prove a nonexistence result for a nonautonomous system of inequalities, in which

f(x, u, v) = a(x)f(u, v) and g(x, u, v) = b(x)g(u, v),

where a, b are positivemeasurable functions, and f(u, v), g(u, v) satisfy conditions (f0) and (g0), respectively.
As a final remark, we note that, among others, Bourgain [2] studied a stationary Schrödinger systemwith

critical exponents for the Bose–Einstein condensate

{
−∆u = upvq inℝN ,
−∆v = vpuq inℝN .
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For earlier results concerning nonexistence of radial positive solutions of the more general model,

{
−∆u = up1vq1 inℝℕ,
−∆v = up2vq2 inℝℕ,

where p1, q1, p2, q2 > 0, see [6].
The paper is organized as follows: In Section 2, we give some useful definitions and preliminary results,

focusing on the weak Harnack inequality and its consequences. Section 3 is totally devoted to the general
a priori estimates for weak solutions of problem (P), while in Section 4, we prove our main results con-
cerning the nonexistence of nontrivial solutions of (P) when f(x, u, v) = f(u, v) and g(x, u, v) = g(u, v). In
Section 5, we prove a nonexistence theorem for the nonautonomous system (P) with f(x, u, v) = a(x)f(u, v)
and g(x, u, v) = b(x)g(u, v).

2 Preliminaries
Let A : ℝN ×ℝ ×ℝN → ℝN be a Carathéodory function, that is, for each t ∈ ℝ and w ∈ ℝN , A ( ⋅ , t, w) is
measurable and for a.e. x ∈ ℝN , A (x, ⋅ , ⋅ ) is continuous. We consider operators L generated by A , that is,

L(u)(x) = div(A (x, u(x), ∇u(x))).

Our model cases are the p-Laplace operator, the mean curvature operator and some related generalizations.
Let Ω ⊆ ℝN be an open set. Let p > 1, and let Ap : Ω ×ℝ ×ℝN → ℝN be a Carathéodory function. The

function Ap is called W-p-C, weakly p-coercive, if there exists a constant a > 0 such that

(Ap(x, t, w) ⋅ w) ≥ a|Ap(x, t, w)|p
 for all (x, t, w) ∈ Ω ×ℝ ×ℝN . (W-p-C)

The function Ap is called S-p-C, strongly p-coercive, if there exist two constants a, ̃a > 0 such that

(Ap(x, t, w) ⋅ w) ≥ ̃a|w|p ≥ a|Ap(x, t, w)|p
 for all (x, t, w) ∈ Ω ×ℝ ×ℝN , (S-p-C)

see [1, 8, 10] for details.

Example 1. Clearly, if Ap is S-p-C, then Ap is W-p-C.
Let p > 1. The p-Laplace operator ∆p( ⋅ ) = div(|∇( ⋅ )|p−2∇( ⋅ )) is generated by Ap(x, t, w) = |w|p−2w,

which is S-p-C. In particular, when p = 2, the Laplace operator ∆( ⋅ ) is S-2-C.
The mean curvature operator

div( ∇( ⋅ )
√1 + |∇( ⋅ )|2

), generated by Ap(x, t, w) =
w

√1 + |w|2
,

is W-2-C, but not S-2-C.
For further details and comments, we refer to [4, Section 1].

In what follows, we denote byAp a weakly p-coercive operator. Furthermore, BR stands for the ball of radius
R > 0, that is, BR = {x : |x| < R}, and AR is the annulus B2R \ BR. Therefore, we have

|BR| = ∫
BR

dx = RN ∫
|x|<1

dx = wNRN and |AR| = wN(2N − 1)RN ,

where wN is the measure of the unit ball B1 inℝN .
Consider the system of inequalities

{{{
{{{
{

−div(Ap(x, u, ∇u)) ≥ f(x, u, v) in Ω,
−div(Aq(x, v, ∇v)) ≥ g(x, u, v) in Ω,

u ≥ 0, v ≥ 0 in Ω,
(2.1)
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where Ω ⊆ ℝN is an open set, Ap ,Aq : Ω ×ℝ ×ℝN → ℝN are W-p-C and W-q-C, respectively, and

f, g : Ω × [0,∞) × [0,∞)→ [0,∞)

are Carathédory functions.
Let p ≥ 1. Throughout the paper, we shall denote

W1,p
loc (Ω) := {u ∈ L

p
loc(Ω) : |∇u| ∈ L

p
loc(Ω)} .

Definition 1. A pair of functions (u, v) ∈ W1,p
loc (Ω) ×W

1,q
loc (Ω) is a weak solution of (2.1) if

f( ⋅ , u, v), g( ⋅ , u, v) ∈ L1loc(Ω), |Ap( ⋅ , u, ∇u)| ∈ Lp


loc(Ω), |Aq( ⋅ , v, ∇v)| ∈ Lq


loc(Ω),

and the following inequalities hold for all nonnegative functions ϕ1, ϕ2 ∈ C10(Ω):

∫
Ω

(Ap(x, u, ∇u) ⋅ ∇ϕ1) ≥ ∫
Ω

f(x, u, v)ϕ1, (2.2)

∫
Ω

(Aq(x, v, ∇v) ⋅ ∇ϕ2) ≥ ∫
Ω

g(x, u, v)ϕ2. (2.3)

Moreover, we say that a weak solution (u, v) is trivial if u = 0 or v = 0 a.e. inℝN .

Lemma 1 (Weak Harnack inequality [10, 11]). If u ∈ W1,p
loc (ℝN) is a weak solution of

{
−div(Ap(x, u, ∇u)) ≥ 0 inℝN ,

u ≥ 0 inℝN ,

Ap is S-p-C and N > p > 1, then for any σ ∈ (0, N(p−1)N−p ), there exists a constant cH > 0 independent of u such
that, for all R > 0,

(
1
|BR|
∫
BR

uσ)
1
σ

≤ cH ess inf
BR/2 u.

As in [4], we introduce the following definition:

Definition 2. Let u be a weak solution of

{
−div(Ap(x, u, ∇u)) ≥ 0 in Ω,

u ≥ 0 in Ω,

whereΩ ⊆ ℝN is an open set.We say that theweakHarnack inequality holds for uwith exponent σ > 0 if there
exists a constant cH > 0 independent of u such that, for any R > 0 for which B2R ⊂ Ω, we have

(
1
|BR|
∫
BR

uσ)
1
σ

≤ cH ess inf
BR/2 u. (WH)

Remark 1. Inequality (WH) implies immediately that u ∈ Lσloc(Ω) and that either u ≡ 0 or u > 0 in Ω. More-
over, we point out that, byHölder’s inequality, if (WH) holdswith exponent σ, it also holdswith any exponent
σ0 ∈ (0, σ).

The following is a direct consequence of (WH).

Proposition 1. If (WH) holds for two nonnegative functions u and v, then (WH) also holds for u + v. Further-
more, there exists a positive constant C independent of u and v for which

ess inf
BR
(u + v) ≤ C(ess inf

BR/2 u + ess inf
BR/2 v)

for all R > 0 such that B2R ⊂ Ω.
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Proof. Let σ, δ > 0 be the exponents for which (WH) holds for u and v, respectively. Suppose that σ ≤ δ, then
(WH) holds with exponent σ for both u and v. Now, for all R > 0 such that B2R ⊂ Ω, we get

(∫
BR

(u + v)σ)
1
σ

≤ c[(∫
BR

uσ)
1
σ

+ (∫
BR

vσ)
1
σ

] (2.4)

with c := max{1, 2(1−σ)/σ}. Indeed, if σ ≥ 1, inequality (2.4) is the subadditivity of the Lσ(BR)-norm, while if
σ < 1, (2.4) follows immediately from the fact that (u + v)σ ≤ uσ + vσ and by the convexity of the power ( ⋅ )1/σ.
Hence, by (2.4) and (WH), on u and v, we have

(
1
|BR|
∫
BR

(u + v)σ)
1
σ

≤ c[( 1
|BR|
∫
BR

uσ)
1
σ

+ (
1
|BR|
∫
BR

vσ)
1
σ

]

≤ CH(ess inf
BR/2 u + ess inf

BR/2 v) ≤ CH ess inf
BR/2
(u + v), (2.5)

where CH := c ⋅ cH . That is, (WH) holds for u + v.
On the other hand,

(
1
|BR|
∫
BR

(u + v)σ)
1
σ

≥ ess inf
BR
(u + v),

thus, by (2.5), ess infBR (u + v) ≤ CH(ess infBR/2 u + ess infBR/2 v).
Remark 2. Obviously, the same conclusion of Proposition 1 holds for any finite number of nonnegative func-
tions verifying (WH).

3 A priori estimates
In this section, we prove some integral a priori bounds of the solutions of the system of inequalities (2.1) in
which we recall that Ω ⊆ ℝN is an open set, Ap ,Aq : Ω ×ℝ ×ℝN → ℝN are W-p-C and W-q-C, respectively,
that is, p > 1, q > 1, and there exist a, b > 0 such that

(Ap(x, t, w) ⋅ w) ≥ a|Ap(x, t, w)|p
 for all (x, t, w) ∈ Ω ×ℝ ×ℝN ,

(Aq(x, t, w) ⋅ w) ≥ b|Aq(x, t, w)|q
 for all (x, t, w) ∈ Ω ×ℝ ×ℝN ,

and f, g : Ω × [0,∞) × [0,∞)→ [0,∞) are Carathédory functions.

Theorem 2. Let (u, v) be a weak solution of (2.1). Then, for all test functions ϕ1, ϕ2, every ℓ ≥ 0 and every
α, β < 0, we get

∫
Ω

f(x, u, v)uαℓϕ1 + c1 ∫
Ω

(Ap(x, u, ∇u) ⋅ ∇u)uα−1ℓ ϕ1 ≤ c2 ∫
Ω

uα−1+pℓ
|∇ϕ1|p

ϕp−1
1

,

∫
Ω

g(x, u, v)vβℓϕ2 + ̃c1 ∫
Ω

(Aq(x, v, ∇v) ⋅ ∇v)v
β−1
ℓ ϕ2 ≤ ̃c2 ∫

Ω

vβ−1+qℓ
|∇ϕ2|q

ϕq−1
2

,
(3.1)

where uℓ := u + ℓ, vℓ := v + ℓ, c1 := |α| − ηp
/ap, c2 := η−p/p, η > 0, ̃c1 := |β| − μq/bq, ̃c2 := μ−q/q and

μ > 0.
If η, μ are so small that c1, ̃c1 > 0, then, for all α, β < 0 and ℓ ≥ 0,

∫
Ω

f(x, u, v)ϕ1 ≤ c3(∫
Ω

uα−1+pℓ
|∇ϕ1|p

ϕp−1
1
)

1
p
(∫
Ω

u(1−α)(p−1)ℓ
|∇ϕ1|p

ϕp−1
1
)

1
p

,

∫
Ω

g(x, u, v)ϕ2 ≤ ̃c3(∫
Ω

vβ−1+qℓ
|∇ϕ2|q

ϕq−1
2
)

1
q
(∫
Ω

v(1−β)(q−1)ℓ
|∇ϕ2|q

ϕq−1
2
)

1
q

,

(3.2)

where c3 := (c2/ac1)1/p
 and ̃c3 := ( ̃c2/b ̃c1)1/q .
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If uα−1+p , u(1−α)(p−1) ∈ L1loc(AR), vβ−1+q , v(1−β)(q−1) ∈ L1loc(AR) with R > 0 such that B2R ⋐ Ω, then, for all
α, β < 0, there exist c4, ̃c4 > 0 for which

1
|BR|
∫
BR

f(x, u, v) ≤ c4R−p(
1
|AR|
∫
AR

uα−1+p)
1
p
(

1
|AR|
∫
AR

u(1−α)(p−1))
1
p

,

1
|BR|
∫
BR

g(x, u, v) ≤ ̃c4R−q(
1
|AR|
∫
AR

vβ−1+q)
1
q
(

1
|AR|
∫
AR

v(1−β)(q−1))
1
q

.

(3.3)

If there exist σ > p − 1, δ > q − 1 such that uσ , vδ ∈ L1loc(Ω), then

1
|BR|
∫
BR

f(x, u, v) ≤ c4R−p(
1
|AR|
∫
AR

uσ)
p−1
σ

,

1
|BR|
∫
BR

g(x, u, v) ≤ ̃c4R−q(
1
|AR|
∫
AR

vδ)
q−1
δ

.

(3.4)

In particular, if (WH) holds with exponent σ > p − 1 for u and with exponent δ > q − 1 for v, then the following
inequalities hold for some appropriate constants c5, ̃c5 > 0:

1
|BR|
∫
BR

f(x, u, v) ≤ c5R−p(ess inf
BR

u)p−1,

1
|BR|
∫
BR

g(x, u, v) ≤ ̃c5R−q(ess inf
BR

v)q−1.
(3.5)

Proof. We follow essentially the proof of [4, Theorem 2.1].
Fix a test function ϕ1, and set r := dist(supp(ϕ1), ∂Ω), Ωr := {y ∈ Ω : dist(y, ∂Ω) > r}. For ε ∈ (0, r) and

ℓ > 0, we define

wε(x) :=
{
{
{

ℓ + ∫Ωr
Dε(x − y)u(y) dy if x ∈ Ωr ,

0 if x ∈ Ω \ Ωr ,

where (Dε)ε is a family of mollifiers. Thus, we can choose wα
εϕ1 as test function in (2.2). We have

∫
Ω

f(x, u, v)wα
εϕ1 + |α|∫

Ω

(Ap(x, u, ∇u) ⋅ ∇wε)wα−1
ε ϕ1 ≤ ∫

Ω

|Ap(x, u, ∇u)| ⋅ |∇ϕ1|wα
ε .

Since wε → uℓ, ∇wε → ∇u in Lploc(Ωr) as ε → 0, by Lebesgue’s dominated convergence theorem and by dual-
ity, we get

∫
Ω

f(x, u, v)uαℓϕ1 + |α|∫
Ω

(Ap(x, u, ∇u) ⋅ ∇u)uα−1ℓ ϕ1

≤ ∫
Ω

|Ap(x, u, ∇u)| ⋅ |∇ϕ1|uαℓ = ∫
Ω

|Ap(x, u, ∇u)|u(α−1)/p


ℓ ϕ1/p
1 ⋅ u

(α−1+p)/p
ℓ |∇ϕ1|ϕ

−1/p
1

≤
ηp
p ∫

Ω

|Ap(x, u, ∇u)|p
uα−1ℓ ϕ1 +

1
ηpp ∫

Ω

uα−1+pℓ |∇ϕ1|pϕ
1−p
1

≤
ηp
ap ∫

Ω

(Ap(x, u, ∇u) ⋅ ∇u)uα−1ℓ ϕ1 +
1
ηpp ∫

Ω

uα−1+pℓ |∇ϕ1|pϕ
1−p
1 ,

where, in the last steps, we used Hölder’s and Young’s inequalities and the (W-p-C) condition for Ap. This
completes the proof of the first inequality in (3.1) when ℓ > 0.
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Analogously, it is possible to prove the second one. Indeed, fix a test function ϕ2, and set

r := dist(supp(ϕ2), ∂Ω), Ωr := {y ∈ Ω : dist(y, ∂Ω) > r}.

For ε ∈ (0, r) and ℓ > 0, define

w̃ε(x) :=
{
{
{

ℓ + ∫Ωr
Dε(x − y)v(y) dy if x ∈ Ωr ,

0 if x ∈ Ω \ Ωr ,

use w̃β
εϕ2 as test function in (2.3), and proceed as above. The case ℓ = 0 follows immediately from the case

ℓ > 0 by an application of Beppo–Levi’s theorem and letting ℓ→ 0.
From now on, we only prove the inequalities concerning f , as an argument to obtain the other estimates

in exactly the same way.
In order to prove (3.2), use (2.2), and consider ℓ > 0. Thus, theweak p-coercivity ofAp, Hölder’s inequal-

ity and (3.1) imply

∫
Ω

f(x, u, v)ϕ1 ≤ ∫
Ω

|Ap(x, u, ∇u)| |∇ϕ1|

≤ (∫
Ω

1
a
(Ap(x, u, ∇u) ⋅ ∇u)u(α−1)ℓ ϕ1)

1
p
(∫
Ω

u(1−α)(p−1)ℓ |∇ϕ1|pϕ
1−p
1 )

1
p

≤ c3(∫
Ω

uα−1+pℓ |∇ϕ1|pϕ
1−p
1 )

1
p
(∫
Ω

u(1−α)(p−1)ℓ |∇ϕ1|pϕ
1−p
1 )

1
p

.

Also here, it is enough to apply Beppo–Levi’s monotone convergence theorem and/or Lebesgue’s dominated
convergence theorem to prove the remaining case ℓ = 0.

Let ϕ0 ∈ C10(ℝ) be such that 0 ≤ ϕ0 ≤ 1, cϕ0 := ‖ |ϕ0|p/ϕ
p−1
0 ‖∞ <∞ and

ϕ0(t) =
{
{
{

1, if |t| < 1,
0, if |t| > 2.

Define ϕ1(x) := ϕ0(|x/R|) so that

|∇ϕ1(x)|p

ϕ1(x)p−1
=
|ϕ0(|x/R|)|p

ϕp−1
0 (|x/R|)

R−p ≤ cϕ0R−p .

Hence, using ϕ1 as test function in (3.2) with ℓ = 0, we get

∫
Ω

f(x, u, v)ϕ1 ≤ c3(∫
AR

uα−1+pcϕ0R−p)
1
p
(∫
AR

u(1−α)(p−1)cϕ0R−p)
1
p

,

and so, since |AR| = wN(2N − 1)RN = (2N − 1)|BR|, we have

1
|BR|
∫
BR

f(x, u, v) ≤ c3(2N − 1)cϕ0R−p(
1
|AR|
∫
AR

uα−1+p)
1
p
(

1
|AR|
∫
AR

u(1−α)(p−1))
1
p

,

which gives (3.3) with c4 := c3(2N − 1)cϕ0 .
Estimates (3.4) follow easily from (3.3) by applying Hölder’s inequality. Finally, if (WH) holds, by (3.4),

we obtain
1
|BR|
∫
BR

f(x, u, v) ≤ c4(1 −
1
2N
)

1−p
σ
R−p( 1
|B2R|
∫
B2R

uσ)
p−1
σ

≤ c5R−p(ess inf
BR

u)p−1

with c5 := c4(1 − 1
2N )
(1−p)/σcp−1H .
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4 Some Liouville-type theorems
In this section, we shall prove the main results of this paper. Consider the problem

{{{
{{{
{

−div(Ap(x, u, ∇u)) ≥ f(u, v) inℝN ,
−div(Aq(x, v, ∇v)) ≥ g(u, v) inℝN ,

u ≥ 0, v ≥ 0 inℝN .
(4.1)

Throughout this section, without further mentioning, we shall assume the following:

Assumption 2. The functionsAp ,Aq : ℝN ×ℝ ×ℝN → ℝN areW-p-C andW-q-C, respectively, N > max{p, q},
(WH) holds for u with exponent σ > p − 1 and for v with exponent δ > q − 1, and Assumption 1 holds.

Example 2. Besides all the functions f such that f(t, τ) ≥ ctp1τq1 for every (t, τ) ∈ [0,∞) × [0,∞), an exam-
ple of a function satisfying condition (f0) is given by f(t, τ) = sin2 t sin2 τ in [0,∞) × [0,∞). Clearly, in this
case, f satisfies (f0) with p1 = q1 = 2.

Lemma 2 (cf. [4, Lemma 3.1]). Let u : ℝN → [0,∞) be a function such that ess infℝN u = 0. Assume that (WH)
holds with exponent σ > 0. Then, for all ε > 0,

lim
R→∞

|AR/2 ∩ Tuε |
|AR/2|

= 1, lim
R→∞

|BR ∩ Tuε |
|BR|

= 1,

where Tuε = {x ∈ ℝN : u(x) < ε} and AR = B2R \ BR.

Lemma 3. Let (u, v) be a weak solution of (4.1) such that ess infℝN u = ess infℝN v = 0. If f(u(x), v(x)) = 0 for
a.a. x ∈ ℝN , then u = 0 or v = 0 a.e. inℝN . Similarly, if g(u(x), v(x)) = 0 for a.a. x ∈ ℝN , then u = 0 or v = 0 a.e.
inℝN .

Proof. Suppose that f(u(x), v(x)) = 0 for a.a. x ∈ ℝN . Thanks to Proposition 1, we can apply Lemma 2 to the
function u + v. Hence, by (f0), we get

(ess inf
BR

u)p1 (ess inf
BR

v)q1 ≤ 1
|AR/2 ∩ Tε|

∫
AR/2∩Tε u

p1vq1 ≤ c 1
|AR/2 ∩ Tε|

∫
AR/2 f(u, v) = 0

for R sufficiently large and ε > 0, where Tε = {x ∈ ℝN : u(x) + v(x) < ε}. Using (WH) on u and v, we conclude
that u = 0 or v = 0 a.e. inℝN . If g(u(x), v(x)) = 0 for a.a. x ∈ ℝN , the proof is similar.

Let us introduce the matrix
H = (

p1 − p + 1 q1
p2 q2 − q + 1

) ,

D := −detH = p2q1 − (p − 1 − p1)(q − 1 − q2). (4.2)

Lemma 4. Let (u, v) be a nontrivial weak solution of (4.1) such that ess infℝN u = ess infℝN v = 0. Then there
exists a constant c > 0 such that, for all ε > 0 and R > 0 sufficiently large, the following estimates hold:

(ess inf
AR/2∩Tε u)p1−p+1(ess infAR/2∩Tε v)q1 ≤ cR−p ,
(ess inf
AR/2∩Tε u)p2 (ess infAR/2∩Tε v)q2−q+1 ≤ cR−q ,

(4.3)

where Tε = {x ∈ ℝN : u(x) + v(x) < ε},

∫
BR

f(u, v) ≤ cR−p|AR/2|(ess inf
BR

u)p−1 ≤ cRN[1− p−1p2
+ q2(p−1)p2(q−1) ]−p−q q2(p−1)

p2(q−1) (∫AR/2 g(u, v))
p−1
p2

(∫BR
g(u, v))

q2(p−1)
p2(q−1) , (4.4)

∫
BR

g(u, v) ≤ cR−q|AR/2|(ess inf
BR

v)q−1 ≤ cRN[1− q−1q1
+ p1(q−1)q1(p−1) ]−q−p p1(q−1)

q1(p−1) (∫AR/2 f(u, v))
q−1
q1

(∫BR
f(u, v))

p1(q−1)
q1(p−1) . (4.5)
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In particular, if q2 ≤ q − 1, then, for R sufficiently large,

(ess inf
AR/2∩Tε u)1−

(p−1−p1)(q−1−q2)
p2q1 ≤ cR−

p(q−1−q2)+qq1
p2q1 , (4.6)

∫
BR

f(u, v) ≤ cR
ND
p2q1
−p− qq1(p−1)+pp1(q−1−q2)p2q1 (∫

S

f(u, v))
(p−1−p1)(q−1−q2)

p2q1
(4.7)

with S = AR/2 or S = BR. If p1 ≤ p − 1, then, for R sufficiently large,

(ess inf
AR/2∩Tε v)1−

(p−1−p1)(q−1−q2)
p2q1 ≤ cR−

q(p−1−p1)+pp2
p2q1 , (4.8)

∫
BR

g(u, v) ≤ cR
ND
p2q1
−q− pp2(q−1)+qq2(p−1−p1)p2q1 (∫

S

g(u, v))
(p−1−p1)(q−1−q2)

p2q1
(4.9)

with S = AR/2 or S = BR.

Proof. Fix ε > 0. By the first inequality of (3.5), we get

∫
BR

f(u, v) ≤ cR−p|AR/2|(ess inf
BR

u)p−1 ≤ cR−p|AR/2|(ess inf
AR/2∩Tε u)p−1.

On the other hand, using (f0), we have

∫
BR

f(u, v) ≥ ∫
AR/2∩Tε f(u, v) ≥ c ∫AR/2∩Tε u

p1vq1 ,

hence,
∫

AR/2∩Tε u
p1vq1 ≤ cR−p|AR/2|(ess inf

AR/2∩Tε u)p−1.
Therefore,

(ess inf
AR/2∩Tε u)p1 (ess infAR/2∩Tε v)q1 ≤ cR−p |AR/2|

|AR/2 ∩ Tε|
(ess inf
AR/2∩Tε u)p−1,

and so, by Proposition 1 and by Lemma 2 applied to the function u + v, we obtain

(ess inf
AR/2∩Tε u)p1−p+1(ess infAR/2∩Tε v)q1 ≤ cR−p

for R sufficiently large. Similarly, from the second inequality of the system, we prove the second inequality
of (4.3).

By (3.5) and (g0), for R sufficiently large, it follows that

∫
BR

f(u, v) ≤ cR−p|AR/2|(ess inf
BR

u)p−1 ≤ cR−p|AR/2|(ess inf
AR/2∩Tε u)p−1

≤ cR−p|AR/2|(ess inf
AR/2∩Tε v)−

q2(p−1)
p2 (

1
|AR/2 ∩ Tε|

∫
AR/2∩Tε u

p2vq2)
p−1
p2

≤ c
R−p|AR/2|

|AR/2 ∩ Tε|
p−1
p2

(ess inf
BR

v)−
q2(p−1)

p2 ( ∫
AR/2∩Tε g(u, v))

p−1
p2

≤ cR−p|AR/2|
1− p−1p2 (

R−q|BR|
∫BR

g(u, v)
)

q2(p−1)
p2(q−1)
( ∫
AR/2 g(u, v))

p−1
p2
,

where, in the last step, we have applied Lemma 2 to the function u + v, which, thanks to Proposition 1,
satisfies all the required assumptions. Similarly, working on the second inequality of (4.1), we obtain (4.5).
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Combining the two inequalities in (4.3) and using the assumption q2 ≤ q − 1, we immediately get (4.6),

(ess inf
AR/2∩Tε u)1−

(q−1−q2)(p−1−p1)
p2q1 ≤ cR−

p(q−1−q2)+qq1
p2q1

for R sufficiently large.
From (4.4) and (4.5), we obtain

∫
BR

f(u, v) ≤ cRN[1− p−1p2
+ q2(p−1)p2(q−1) ]−p−q q2(p−1)

p2(q−1)(∫
S

g(u, v))
p−1
p2
(1− q2

q−1 )
,

∫
BR

g(u, v) ≤ cRN[1− q−1q1
+ p1(q−1)q1(p−1) ]−q−p p1(q−1)

q1(p−1)(∫
S

f(u, v))
q−1
q1
(1− p1

p−1 )

with S = AR/2 or S = BR, being f and g nonnegative and AR/2 ⊂ BR. Since q2 ≤ q − 1, these two inequalities
imply

∫
BR

f(u, v) ≤ cR−p−q
p−1
p2
+p p1(q2−q+1)

q1p2 |AR/2|
1− (p1−p+1)(q2−q+1)p2q1 (∫

S

f(u, v))
(q−1)(p−1)

q1p2
(1− p1

p−1 )(1− q2
q−1 )

.

Similarly, under the assumption p1 ≤ p − 1, we can prove (4.8) and (4.9).

Theorem 3. Let p1 < p − 1, q2 < q − 1 and

N ≥ min{(N − pp − 1 p2 +
N − q
q − 1 q2)

q1
q1 − q2 + q − 1

+ (
N − p
p − 1 p1 +

N − q
q − 1 q1)

q − 1 − q2
q1 − q2 + q − 1

,

(
N − p
p − 1 p1 +

N − q
q − 1 q1)

p2
p2 − p1 + p − 1

+ (
N − p
p − 1 p2 +

N − q
q − 1 q2)

p − 1 − p1
p2 − p1 + p − 1

}. (4.10)

If (u, v) is a weak solution of (4.1) such that ess infℝN u = ess infℝN v = 0, then either u = 0 or v = 0 a.e. inℝN .

We note that (4.10) is equivalent to

N[1 − (p − 1 − p1)(q − 1 − q2)p2q1
] ≤ max{p + qq1(p − 1) + pp1(q − 1 − q2)p2q1

,

q + pp2(q − 1) + qq2(p − 1 − p1)
p2q1

} (4.11)

when p1 < p − 1 and q2 < q − 1. Indeed, starting from (4.10), when the minimum is the first quantity in the
brackets, we get

N ≥ N − p
p − 1 ⋅

p2q1 + p1(q − 1 − q2)
q1 − q2 + q − 1

+ N q1
q1 − q2 + q − 1

−
qq1

q1 − q2 + q − 1

=
q − 1 − q2

q1 − q2 + q − 1
{
N − p
p − 1 (

p2q1
q − 1 − q2

+ p1) −
qq1

q − 1 − q2
} + N q1

q1 − q2 + q − 1
,

that is,
N q − 1 − q2
q1 − q2 + q − 1

≥
q − 1 − q2

q1 − q2 + q − 1
{
N − p
p − 1 (

p2q1
q − 1 − q2

+ p1) −
qq1

q − 1 − q2
}.

Now, since q2 < q − 1, we get

N ≥ {N − pp − 1 (
p2q1

q − 1 − q2
+ p1)−

qq1
q − 1 − q2

},

Multiplying both sides by (p−1)(q−1−q2)p2q1 , we have

(N − p)[1 + p1(q − 1 − q2)p2q1
] −

qq1(p − 1)
p2q1

≤ N (p − 1)(q − 1 − q2)
p2q1

,

namely,
N[1 − (p − 1 − p1)(q − 1 − q2)p2q1

] ≤ p + qq1(p − 1) + pp1(q − 1 − q2)p2q1
.

Similarly, we can easily prove the second part of the equivalence.
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Proof of Theorem 3. We shall distinguish two cases depending onwhether the constant D defined in (4.2), as
well as the left side of (4.11), is positive or nonpositive.

Case D > 0. Suppose that

p + qq1(p − 1) + pp1(q − 1 − q2)
p2q1

≥ q + pp2(q − 1) + qq2(p − 1 − p1)
p2q1

,

the remaining case being analogous. Without loss of generality, we prove the theorem only when

N[1 − (p − 1 − p1)(q − 1 − q2)p2q1
] = p + qq1(p − 1) + pp1(q − 1 − q2)p2q1

.

Suppose, by contradiction, that both u > 0 and v > 0 inℝN . By (4.7), we have

∫
BR

f(u, v) ≤ c( ∫
AR/2 f(u, v))

(p−1−p1)(q−1−q2)
p2q1

≤ c(∫
BR

f(u, v))
(p−1−p1)(q−1−q2)

p2q1
, (4.12)

hence f(u, v) ∈ L1(ℝN). Thus, by the first inequality of (4.12), letting R →∞, we get f(u, v) = 0 a.e. in ℝN .
By Lemma 3, we conclude that either u = 0 or v = 0 a.e. inℝN . This contradiction proves the claim.

Case D ≤ 0. Note that, in this case, condition (4.11) is trivially satisfied. Suppose, by contradiction, that both
u > 0 and v > 0. Clearly, p(q2 − q + 1) − qq1 < 0 and q(p1 − p + 1) − pp2 < 0, since p1 < p − 1 and q2 < q − 1.

Hence, if D < 0, by (4.6) and (4.8), R large and ε > 0, we get

ess inf
AR/2∩Tε u ≥ cR

−p(q−1−q2)−qq1
p2q1−(p−1−p1)(q−1−q2) , ess inf

AR/2∩Tε v ≥ cR
−q(p−1−p1)−pp2

p2q1−(p−1−p1)(q−1−q2) .
Therefore,

lim
R→∞

ess inf
AR/2∩Tε u ≥∞, lim

R→∞
ess inf
AR/2∩Tε v ≥∞,

which is impossible.
Next, if D = 0, then, by (4.6) and R large, it follows that

1 ≤ cR−p(q−1−q2)−qq1 .

Clearly, by letting R →∞, we reach a contradiction.

Remark 3. In Theorem 3, as well as in all the nonexistence theorems of this paper, we require that the solu-
tions of the system have an essential infimum on ℝN equal to zero. If, for instance, f(u, v) ≥ cup1vq1 in all
of ℝN , the assumption on the essential infimum of u and v is quite natural. Indeed, if ess infℝN u > 0 and
ess infℝN v > 0, then every solution (u, v) of (4.1) is also a solution of

{{{
{{{
{

−div(Ap(x, u, ∇u)) ≥ const. > 0 inℝN ,
−div(Aq(x, v, ∇v)) ≥ g(u, v) inℝN ,

u ≥ 0, v ≥ 0 inℝN .
(4.13)

The first inequality of (4.13) does not have any weak solutions (see e.g. [4, Corollary 2.4]), therefore also
system (4.1) has no weak solutions.

Furthermore, if ess infℝN v = 0 and Ap does not depend explicitly on u, we have the following result.

Corollary 1. Let (u, v) be a weak solution of the problem

{{{
{{{
{

−div(Ap(x, ∇u)) ≥ up1vq1 inℝN ,
−div(Aq(x, v, ∇v)) ≥ up2vq2 inℝN ,

u ≥ 0, v ≥ 0 inℝN
(4.14)

with q2 < q − 1. If ess infℝN v = 0 and ess infℝN u > 0, then v = 0 a.e. inℝN .
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Proof. Put u0 := ess infℝN u > 0 and ̃u := u − u0. Then ( ̃u, v) solves the problem

{{{
{{{
{

−div(Ap(x, ∇ ̃u)) ≥ ( ̃u + u0)p1vq1 inℝN ,
−div(Aq(x, v, ∇v)) ≥ ( ̃u + u0)p2vq2 inℝN ,

̃u ≥ 0, v ≥ 0 inℝN .
(4.15)

Consider the functions f, g : [0,∞) × [0,∞)→ [0,∞) defined by

f(t, τ) = (t + u0)p1τq1 and g(t, τ) = (t + u0)p2τq2

for all (t, τ) ∈ [0,∞) × [0,∞). It follows that

lim inf
t+τ→0

f(t, τ)
t ̃p1τq1
= lim inf

t+τ→0

(t + u0)p1τq1
t ̃p1τq1

= +∞ > 0 for all ̃p1 > 0,

lim inf
t+τ→0

g(t, τ)
t ̃p2τq2
= lim inf

t+τ→0

(t + u0)p2τq2
t ̃p2τq2

= +∞ > 0 for all ̃p2 > 0,

that is, f and g satisfy (f0) and (g0) with exponents ̃p1, q1, ̃p2, q2. Next, by choosing ̃p1 and ̃p2 so small so
that ̃p1 < p − 1 and ̃p2q1 < (p − 1 − ̃p1)(q − 1 − q2), we see that we can apply Theorem 3 to problem (4.15).
Consequently, u − u0 = 0 or v = 0 a.e. inℝN . If v = 0 a.e. inℝN , we are done. On the other hand, if u = u0 a.e.
inℝN , then, by the first inequality of (4.14), it follows that v = 0 a.e. inℝN .

Obviously, an analogous result as above can be obtained when ess infℝN u = 0, ess infℝN v > 0, p1 < p − 1,
and Aq does not depend explicitly on v.

Remark 4. In the case p = q, p1 < p − 1, q2 < p − 1 and D > 0, condition (4.11) is sharp also for systems of
equations. Indeed, if

N[1 − (p − 1 − p1)(p − 1 − q2)p2q1
] > max{p + pq1(p − 1) + pp1(p − 1 − q2)p2q1

,

p + pp2(p − 1) + pq2(p − 1 − p1)
p2q1

},

then we can construct an explicit nontrivial solution of the problem

{{{
{{{
{

−div(|∇u|p−2∇u) = f(u, v) inℝN ,
−div(|∇v|p−2∇v) = g(u, v) inℝN ,

u ≥ 0, v ≥ 0 inℝN ,
(4.16)

where f, g : [0,∞) × [0,∞)→ [0,∞) are continuous and such that, for all (t, τ) ∈ [0, 1] × [0, 1],

f = f(t, τ) = ( αp
p − 1)

p−1
τ(α+1)(p−1)/β{N − (α + 1)p + (α + 1)pt1/α},

g = g(t, τ) = ( βp
p − 1)

p−1
t(β+1)(p−1)/α{N − (β + 1)p + (β + 1)pτ1/β},

where

α := (p − 1)(q1 + p − 1)
p2q1 − (p − 1)2

, β := (p − 1)(p2 + p − 1)
p2q1 − (p − 1)2

.

Hence f and g satisfy (f0) and (g0)with exponents p1 = 0, q1 = (α + 1)(p − 1)/β, p2 = (β + 1)(p − 1)/α, q2 = 0.
By straightforward calculation, it follows that the functions defined by

u(x) = 1
(1 + |x|p/(p−1))α

, v(x) = 1
(1 + |x|p/(p−1))β

are weak solutions of (4.16).
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Remark 5. In the case p1 < p − 1, q2 < q − 1 and D > 0, condition (4.11) is sharp for systems of inequalities.
Indeed, if

N[1 − (p − 1 − p1)(q − 1 − q2)p2q1
] > max{p + qq1(p − 1) + pp1(q − 1 − q2)p2q1

,

q + pp2(q − 1) + qq2(p − 1 − p1)
p2q1

}, (4.17)

then (4.1) has a nontrivial solution. Indeed, if (4.17) holds, then we can construct an explicit solution of the
problem

{{{
{{{
{

−div(|∇u|p−2∇u) ≥ f(u, v) inℝN ,
−div(|∇v|q−2∇v) ≥ g(u, v) inℝN ,

u ≥ 0, v ≥ 0 inℝN ,
(4.18)

where f and g satisfy (f0) and (g0), respectively. Consider the functions defined by

u(x) = 1
(1 + |x|p/(p−1))α

, α := p − 1
p
⋅

qq1 + p(q − 1 − q2)
p2q1 − (p − 1 − p1)(q − 1 − q2)

,

v(x) = 1
(1 + |x|q/(q−1))β

, β := q − 1
q
⋅

pp2 + q(p − 1 − p1)
p2q1 − (p − 1 − p1)(q − 1 − q2)

.

Denoting ϱ := |x|, an easy computation shows that

−∆pu
up1vq1
= (

αp
p − 1)

p−1
(1 + ϱp/(p−1))αp1−(α+1)(p−1)−1(1 + ϱq/(q−1))βq1{[N − (α + 1)p]ϱp/(p−1) + N},

−∆qv
up2vq2
= (

βq
q − 1)

q−1
(1 + ϱq/(q−1))βq2−(β+1)(q−1)−1(1 + ϱp/(p−1))αp2{[N − (β + 1)q]ϱq/(q−1) + N}.

By (4.17) and our assumptions p1 < p − 1 and q2 < q − 1, it follows that N > (α + 1)p and N > (β + 1)q.
Hence, if we denote

h1(ϱ) := (
αp
p − 1)

p−1
(1 + ϱp/(p−1))αp1−(α+1)(p−1)−1(1 + ϱq/(q−1))βq1{[N − (α + 1)p]ϱp/(p−1) + N},

h2(ϱ) := (
βq
q − 1)

q−1
(1 + ϱq/(q−1))βq2−(β+1)(p−1)−1(1 + ϱp/(p−1))αp2{[N − (β + 1)q]ϱq/(q−1) + N},

it follows that h1(ϱ) > 0 and h2(ϱ) > 0 for all ϱ ≥ 0. Moreover, by the definitions of α and β, we get
p

p − 1 [αp1 − (α + 1)(p − 1)] +
q

q − 1βq1 = 0,

p
p − 1αp2 +

q
q − 1 [βq2 − (β + 1)(q − 1)] = 0,

hence,
lim
ϱ→∞

h1(ϱ) = (
αp
p − 1)

p−1
⋅ [N − (α + 1)p] > 0,

and similarly,

lim
ϱ→∞

h2(ϱ) = (
βq
q − 1)

q−1
⋅ [N − (β + 1)q] > 0.

Therefore, since h1 and h2 are continuous functions, there are two positive constants C1 and C2 such that
h1(ϱ) ≥ C1 and h2(ϱ) ≥ C2 for all ϱ ≥ 0. Thus, we have, for all x ∈ ℝN ,

−∆pu
up1vq1
≥ C1 > 0 and

−∆qv
up2vq2
≥ C2 > 0,

that is, (u, v) is a nontrivial solution of (4.18) with f(u, v) = C1up1vq1 and g(u, v) = C2up2vq2 .
By our construction, it follows that 0 < u(x) ≤ 1 and 0 < v(x) ≤ 1 for all x ∈ ℝN . Hence this counter-

example works also for all continuous functions f, g : [0,∞) × [0,∞)→ [0,∞) such that f(t, τ) = C1tp1τq1
and g(t, τ) = C2tp2τq2 for all (t, τ) ∈ [0, 1] × [0, 1] and nonnegative elsewhere.
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Corollary 2. Let (u, v) be a weak solution of the system

{{{
{{{
{

−div(Ap(x, u, ∇u)) ≥ f(v) inℝN ,
−div(Aq(x, v, ∇v)) ≥ g(u) inℝN ,

u ≥ 0, v ≥ 0 inℝN ,
(4.19)

where f, g : [0,∞)→ [0,∞) are continuous functions satisfying the following conditions:
(i) There exists q1 > 0 such that

lim inf
t→0+ f(t)

tq1
> 0 (possibly infinity). (f0)

(ii) There exists p2 > 0 such that
lim inf
t→0+ g(t)

tp2
> 0 (possibly infinity). (g0)

If
N[1 − (p − 1)(q − 1)p2q1

] ≤ max{p + q(p − 1)p2
, q + p(q − 1)

q1
} (4.20)

and ess infℝN u = ess infℝN v = 0, then u ≡ v ≡ 0 a.e. inℝN .

Proof. By Theorem 3, with p1 = q2 = 0, we have that u = 0 or v = 0 a.e. in ℝN . If v ≡ 0, by W-q-C, for Aq,
we have Aq( ⋅ , v, ∇v) = 0 a.e. in ℝN , and in turn, g(u) = 0 a.e. in ℝN . Thus, by (WH) on the first inequality of
system (4.19), (g0) and Lemma 2, we obtain, for R large,

(
1
|B2R|
∫
B2R

uσ)
1
σ

≤ cH ess inf
BR

u ≤ cR−N/p2( ∫
AR/2 g(u))

1
p2
= 0,

that is, u = 0 a.e. inℝN .

Remark 6. Note that condition (4.20) is equivalent to

max{ qq1 + p(q − 1)
p2q1 − (p − 1)(q − 1)

−
N − p
p − 1 ,

pp2 + q(p − 1)
p2q1 − (p − 1)(q − 1)

−
N − q
q − 1 } ≥ 0. (4.21)

This is the assumption required in [7, Theorem 2.1], when f(v) = vq1 and g(u) = up2 . In [7, Section 3], the
authors prove also that the nonexistence result is sharp, in the sense that if (4.21) is not valid, they are able
to construct a solution (u, v) ̸= (0, 0) of (4.19). Corollary 2 in a more general setting has been studied in [5].

Remark 7. Consider the problem

{{{
{{{
{

−div(|∇u|p−2∇u) ≥ up1vq1 inℝN ,
−div(|∇v|q−2∇v) ≥ up2vq2 inℝN ,

u ≥ 0, v ≥ 0 inℝN
(4.22)

with p, q > 1, p1, q2 ≥ 0 and p2, q1 > 0. As pointed out in [1, Remark5.1], it is possible to obtain anonoptimal
sufficient condition of nonexistence for (4.22), as a consequence of Corollary 2. Since −∆p and −∆q are S-p-C
and S-q-C, respectively, inequality (WH) holds for both u and v. Hence, by Remark 1, either u ≡ 0 or u > 0
in ℝN , and analogously, either v ≡ 0 or v > 0 in ℝN . Therefore, with a change of variables, we can obtain,
from problem (4.22), a system of the type (4.19). More precisely, let θ, τ ∈ (0, 1). Set w := uθ, z := vτ. Then

{
−∆pw ≥ Cw[p1−(1−θ)(p−1)]/θzq1/τ inℝN ,
−∆qz ≥ Cwp2/θz[q2−(1−τ)(q−1)]/τ inℝN ,

where C > 0. When p1 < p − 1 and q2 < q − 1, we can choose θ = 1 − p1
p−1 , τ = 1 −

q2
q−1 and find

{
−∆pw ≥ Czq1/τ inℝN ,
−∆qz ≥ Cwp2/θ inℝN .
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Hence, if q1
τ > q − 1,

p2
θ > p − 1 (i.e. q1 > q − 1 − q2 and p2 > p − 1 − p1), and if we require condition (4.20)

with q1
τ in place of q1 and p2

θ in place of p2, that is,

N[1 − (p − 1 − p1)(q − 1 − q2)p2q1
] ≤ max{p + q(p − 1 − p1)p2

, q + p(q − 1 − q2)
q1

}, (4.23)

then problem (4.22) has no nontrivial solutions by Corollary 2. Nevertheless, condition (4.23) is not sharp,
as Theorem 3 proves.

Theorem 4. Assume that p1 ≤ p − 1 and q2 ≤ q − 1. If (u, v) is a weak solution of (4.1) such that ess infℝN u =
ess infℝN v = 0 and

N[1 − (p − 1 − p1)(q − 1 − q2)p2q1
] < max{p + qq1(p − 1) + pp1(q − 1 − q2)p2q1

,

q + pp2(q − 1) + qq2(p − 1 − p1)
p2q1

}, (4.24)

then u = 0 or v = 0 a.e. inℝN .

Proof. From Theorem 3, if p1 < p − 1 and q2 < q − 1, we already know a stronger result. Therefore, we
prove this result only when p1 = p − 1 and q2 ≤ q − 1, and we omit the similar proof in the case p1 ≤ p − 1
and q2 = q − 1. Suppose, by contradiction, that problem (4.1) admits a nontrivial solution (u, v). By (4.7)
and (4.9), we have, for R sufficiently large,

∫
BR

f(u, v) ≤ cRN−p−p1 qq1+p(q−1−q2)
p2q1 , ∫

BR

g(u, v) ≤ cRN−q− p(q−1)q1 .

By hypothesis (4.24) and letting R →∞, we get f(u, v) = 0 or g(u, v) = 0 a.e. in ℝN . We complete the proof
by using Lemma 3.

Lemma 5. Let (u, v) be a weak solution of (4.1) such that ess infℝN u = ess infℝN v = 0. If there exists z ∈ [0, 1]
such that

{{{{{{{
{{{{{{{
{

p2
p − 1 z + (

p1
p − 1 − 1)(1 − z) ≥ 0,

(
q2

q − 1 − 1)z +
q1

q − 1 (1 − z) ≥ 0,

N > (N − pp − 1 p1 +
N − q
q − 1 q1)(1 − z) + (

N − p
p − 1 p2 +

N − q
q − 1 q2)z,

(4.25)

then u = 0 or v = 0 a.e. inℝN .

Proof. By contradiction, if u > 0 and v > 0, from (4.4) and (4.5), we have, for R large and for all z ∈ [0, 1],

(∫
BR

f(u, v))
p2
p−1 z
(∫
BR

g(u, v))
( q2q−1−1)z

≤ cRN( p2p−1+ q2
q−1−1)z−p p2

p−1 z−q q2
q−1 z ,

(∫
BR

f(u, v))
( p1p−1−1)(1−z)

(∫
BR

g(u, v))
q1
q−1 (1−z)
≤ cRN( q1q−1+ p1

p−1−1)(1−z)−q q1
q−1 (1−z)−p p1

p−1 (1−z),
and so

(∫
BR

f(u, v))
α

(∫
BR

g(u, v))
β

≤ cR−γ , (4.26)

where
α := p2

p − 1 z + (
p1

p − 1 − 1)(1 − z), β := ( q2
q − 1 − 1)z +

q1
q − 1 (1 − z),

γ := N − (N − pp − 1 p2 +
N − q
q − 1 q2)z − (

N − p
p − 1 p1 +

N − q
q − 1 q1)(1 − z).

By (4.25), α ≥ 0, β ≥ 0 and γ > 0, hence, by (4.26), f(u, v) = 0 or g(u, v) = 0 a.e. in ℝN , and so, by Lemma 3,
we have that u = 0 or v = 0 a.e. inℝN . This completes the proof.
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Theorem 5. Let (u, v) be a weak solution of (4.1) such that ess infℝN u = ess infℝN v = 0.
(i) If p1 ≥ p − 1, q2 ≤ q − 1 and

N > min{N − pp − 1 p1 +
N − q
q − 1 q1, (

N − p
p − 1 p2 +

N − q
q − 1 q2)

q1
q1 − q2 + q − 1

+ (
N − p
p − 1 p1 +

N − q
q − 1 q1)

q − 1 − q2
q1 − q2 + q − 1

}, (4.27)

then u = 0 or v = 0 a.e. inℝN .
(ii) If p1 ≤ p − 1, q2 ≥ q − 1 and

N > min{N − pp − 1 p2 +
N − q
q − 1 q2, (

N − p
p − 1 p1 +

N − q
q − 1 q1)

p2
p2 − p1 + p − 1

+ (
N − p
p − 1 p2 +

N − q
q − 1 q2)

p − 1 − p1
p2 − p1 + p − 1

}, (4.28)

then u = 0 or v = 0 a.e. inℝN .
(iii) If p1 ≥ p − 1, q2 ≥ q − 1 and

N > min{N − pp − 1 p1 +
N − q
q − 1 q1,

N − p
p − 1 p2 +

N − q
q − 1 q2}, (4.29)

then u = 0 or v = 0 a.e. inℝN .

Proof. (i) Let (u, v) be a weak solution of (4.1). By Lemma 5, for all z ∈ [0, 1] satisfying (4.25), we have that
(u, v) is trivial. Now, system (4.25) is equivalent to

{{{
{{{
{

z ≤ q1
q1 + q − 1 − q2

,

N > (N − pp − 1 p1 +
N − q
q − 1 q1)(1 − z) + (

N − p
p − 1 p2 +

N − q
q − 1 q2)z,

(4.30)

since p1 ≥ p − 1 and q2 ≤ q − 1. Put

φ(z) := (N − pp − 1 p1 +
N − q
q − 1 q1)(1 − z) + (

N − p
p − 1 p2 +

N − q
q − 1 q2)z.

If
N − p
p − 1 p1 +

N − q
q − 1 q1 ≤

N − p
p − 1 p2 +

N − q
q − 1 q2,

then φ is nondecreasing, and we obtain the best condition taking z = 0 in the second inequality of (4.30),
namely,

N > N − p
p − 1 p1 +

N − q
q − 1 q1.

While, if
N − p
p − 1 p1 +

N − q
q − 1 q1 >

N − p
p − 1 p2 +

N − q
q − 1 q2,

then we have the best condition taking z = q1
q1+q−1−q2 in second inequality of (4.30), that is

N > (N − pp − 1 p2 +
N − q
q − 1 q2)

q1
q1 − q2 + q − 1

+ (
N − p
p − 1 p1 +

N − q
q − 1 q1)

q − 1 − q2
q1 − q2 + q − 1

.

Finally, by an easy calculation, we see that

(
N − p
p − 1 p2 +

N − q
q − 1 q2)

q1
q1 − q2 + q − 1

+ (
N − p
p − 1 p1 +

N − q
q − 1 q1)

q − 1 − q2
q1 − q2 + q − 1

<
N − p
p − 1 p1 +

N − q
q − 1 q1

if and only if
N − p
p − 1 p2 +

N − q
q − 1 q2 <

N − p
p − 1 p1 +

N − q
q − 1 q1.
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This completes the proof of the first part of the theorem.
(ii) The proof is similar to the proof of (i), and it is omitted.
(iii) Let (u, v) be as in the statement. By Lemma 5, for all z ∈ [0, 1] satisfying (4.25), we have that (u, v)

is trivial. Now, system (4.25) is equivalent to

N > (N − pp − 1 p1 +
N − q
q − 1 q1)(1 − z) + (

N − p
p − 1 p2 +

N − q
q − 1 q2)z, (4.31)

since p1 ≥ p − 1 and q2 ≥ q − 1. Now, if

N − p
p − 1 p1 +

N − q
q − 1 q1 ≤

N − p
p − 1 p2 +

N − q
q − 1 q2,

then the function φ defined in part (i) is nondecreasing, and we obtain the best condition taking z = 0 in
(4.31), namely,

N > N − p
p − 1 p1 +

N − q
q − 1 q1.

While, if
N − p
p − 1 p1 +

N − q
q − 1 q1 >

N − p
p − 1 p2 +

N − q
q − 1 q2,

then we have the best condition taking z = 1 in (4.31), that is,

N > N − p
p − 1 p2 +

N − q
q − 1 q2.

Remark 8. If p1 = p − 1 and q2 = q − 1, then (4.27) jointly with (4.28) give the same condition as (4.29).
Moreover, in this case, this curve is equivalent to condition (4.24).

Theorem 6. Let (u, v) be a weak solution of (4.1) with ess infℝN u = ess infℝN v = 0.
(i) If q2 < q − 1, D > 0 and

N ≥ (N − pp − 1 p2 +
N − q
q − 1 q2)

q1
q1 − q2 + q − 1

+ (
N − p
p − 1 p1 +

N − q
q − 1 q1)

q − 1 − q2
q1 − q2 + q − 1

, (4.32)

then u = 0 or v = 0 a.e. inℝN . In particular, if q2 < q − 1, p1 ≥ p − 1 and (4.32) holds, then (u, v) is trivial.
(ii) If p1 < p − 1, D > 0 and

N ≥ (N − pp − 1 p1 +
N − q
q − 1 q1)

p2
p2 − p1 + p − 1

+ (
N − p
p − 1 p2 +

N − q
q − 1 q2)

p − 1 − p1
p2 − p1 + p − 1

, (4.33)

then u = 0 or v = 0 a.e. inℝN . In particular, if p1 < p − 1, q2 ≥ q − 1 and (4.33) holds, then (u, v) is trivial.

Proof. (i) By contradiction, let (u, v)be anontrivialweak solution of (4.1). By (4.4) and (4.5), for R sufficiently
large, we have

(∫
BR

f(u, v))
p2
p−1
(∫
BR

g(u, v))
q2
q−1
≤ cRN( p2p−1−1+ q2

q−1 )−p p2
p−1−q q2

q−1 ∫
AR/2 g(u, v) (4.34)

and

(∫
BR

g(u, v))
q1
q−1
(∫
BR

f(u, v))
p1
p−1
≤ cRN( q1q−1−1+ p1

p−1 )−q q1
q−1−p p1

p−1 ∫
AR/2 f(u, v). (4.35)

By (4.34),

∫
BR

g(u, v) ≥ c(Rp p2
p−1+q q2

q−1−N( p2p−1−1+ q2
q−1 )) q−1

q−1−q2 (∫
BR

f(u, v))
p2(q−1)(p−1)(q−1−q2)

since q2 < q − 1. Combining this last inequality with (4.35), we get

∫
AR/2 f(u, v) ≥ cR

pp1
p−1 + qq1q−1−N( p1p−1+ q1

q−1−1)+[ pp2p−1 + qq2q−1−N( p2p−1+ q2
q−1−1)] q1

q−1−q2 (∫
BR

f(u, v))
p1
p−1+ p2q1(p−1)(q−1−q2)

, (4.36)

Brought to you by | Universita di Trieste
Authenticated

Download Date | 1/10/19 8:36 AM

17



442 | L. D’Ambrosio and E. Mitidieri, Quasilinear elliptic systems in divergence form

and so

(∫
BR

f(u, v))
D(p−1)(q−1−q2)
≤ cR−γ (4.37)

for R large, where

γ := pp1
p − 1 +

qq1
q − 1 − N(

p1
p − 1 +

q1
q − 1 − 1) + [

pp2
p − 1 +

qq2
q − 1 − N(

p2
p − 1 +

q2
q − 1 − 1)]

q1
q − 1 − q2

.

By hypothesis (i), γ ≥ 0. Now, by (4.37), ∫ℝN f(u, v) <∞, since
D

(p−1)(q−1−q2) > 0, so that by (4.36), f(u, v) = 0
a.e. in ℝN . The contradiction follows by Lemma 3. For the second part of the statement, it is enough to note
that if q2 < q − 1 and p1 ≥ p − 1, then D > 0.

(ii) The proof is analogous to the proof of (i).

Remark 9. Note that, in the case p1 = p − 1 and q2 = q − 1, condition (4.25) is equivalent to (4.24).Moreover,
when

q2 < q − 1, p1 ≥ p − 1,
N − p
p − 1 p1 +

N − q
q − 1 q1 ≤

N − p
p − 1 p2 +

N − q
q − 1 q2, (4.38)

then condition (4.32) is stronger than (4.27). Similarly, if

p1 < p − 1, q2 ≥ q − 1,
N − p
p − 1 p2 +

N − q
q − 1 q2 ≤

N − p
p − 1 p1 +

N − q
q − 1 q1, (4.39)

then (4.33) is stronger than (4.28).
Now we prove that conditions (4.32) and (4.33) are sharp at least when (4.38) and (4.39) hold, respec-

tively.
For simplicity, we show a counterexample for (4.32) when p = q.
Let q2 < p − 1 ≤ p1, p1 + q1 ≤ p2 + q2 and

N(p − 1)
N − p

< (p2 + q2)
q1

q1 − q2 + q − 1
+ (p1 + q1)

q − 1 − q2
q1 − q2 + q − 1

. (4.40)

We prove that, under these assumptions, the system

{{{
{{{
{

−div(|∇u|p−2∇u) ≥ f(u, v) inℝN ,
−div(|∇v|p−2∇v) ≥ g(u, v) inℝN ,

u ≥ 0, v ≥ 0 inℝN ,

where f and g satisfy (f0) and (g0), admits a nontrivial solution. Consider the functions

u(x) = 1
(1 + |x|p/(p−1))α

, α := (p − 1)(q1 + p − 1 − q2)
p2q1 − (p − 1 − p1)(p − 1 − q2)

,

v(x) = 1
(1 + |x|p/(p−1))β

, β := (p − 1)(p2 + p − 1 − p1)
p2q1 − (p − 1 − p1)(p − 1 − q2)

,

and denote ϱ := |x|.
By straightforward computation, we know that

−∆pu
up1vq1
= h1(ϱ),

−∆qv
up2vq2
= h2(ϱ),

where
h1(ϱ) := (

αp
p − 1)

p−1
(1 + ϱp/(p−1))αp1+βq1−(α+1)(p−1)−1{[N − (α + 1)p]ϱp/(p−1) + N},

h2(ϱ) := (
βq
q − 1)

q−1
(1 + ϱp/(p−1))αp2+βq2−(β+1)(p−1)−1{[N − (β + 1)p]ϱp/(p−1) + N}.

The exponents α and β are such that

{
αp1 + βq1 − (α + 1)(p − 1) − 1 = 0,
αp2 + βq2 − (β + 1)(p − 1) − 1 = 0,
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p1 < p − 1 p1 = p − 1 p1 > p − 1
q2 < p − 1 (4.41) A1 < A2 A1 = A2 A1 > A2 A2 ≤ A1 A2 > A1

(4.42) (4.46) (4.43) (4.46) (4.43)

q2 = p − 1 A1 < A2 A1 = A2 A1 > A2 (4.42)⇔ (4.45) (4.45)(4.42) (4.47) (4.44)

q2 > p − 1 A1 ≤ A2 A1 > A2 (4.45) (4.45)(4.47) (4.44)

Table 1: Conditions implying that the solutions of (4.1) are trivial.

hence, the expressions of h1 and h2 become simply

h1(ϱ) := (
αp
p − 1)

p−1
{[N − (α + 1)p]ϱp/(p−1) + N},

h2(ϱ) := (
βq
q − 1)

q−1
{[N − (β + 1)p]ϱp/(p−1) + N}.

By (4.40) and our assumptions q2 < p − 1 ≤ p1 and p1 + q1 ≤ p2 + q2, it follows that N > (α + 1)p and
N > (β + 1)q. Hence, h1(ϱ) > 0 and h2(ϱ) > 0 for all ϱ ≥ 0.

For simplicity, we summarize the results obtained in Theorems 3, 4 and 5 for p = q.

Corollary 3. Consider system (4.1) with p = q. Let (u, v) be a weak solution of this problem such that

ess inf
ℝN

u = ess inf
ℝN

v = 0.

Denote A1 := p1 + q1, A2 := p2 + q2, α = p2
p2−p1+p−1 , β =

q1
q1−q2+p−1 and

N(p − 1)
N − p

≥ min{A1α + A2(1 − α), A2β + A1(1 − β)}, (4.41)

N(p − 1)
N − p

> min{A1α + A2(1 − α), A2β + A1(1 − β)}, (4.42)

N(p − 1)
N − p

> min{A1, A2β + A1(1 − β)}, (4.43)

N(p − 1)
N − p

> min{A2, A1α + A2(1 − α)}, (4.44)

N(p − 1)
N − p

> min{A1, A2}, (4.45)

N(p − 1)
N − p

≥ A2β + A1(1 − β), (4.46)

N(p − 1)
N − p

≥ A1α + A2(1 − α). (4.47)

Then, under the assumptions described in Table 1, it follows that either u = 0 or v = 0 a.e. inℝN .

In problem (4.1), we have excluded the cases q1 = 0 or p2 = 0. In this final part of the section,wewould like to
show that these cases can be treated essentially with the tools used in [4] for the inequalities. For simplicity,
we consider now problem (4.1) with p = q. Moreover, we require that the functions f, g : [0,∞) × [0,∞) →
[0,∞) are continuous and satisfy conditions (f0) and (g0), introduced in Section 1, with q1 = 0 or p2 = 0.

Theorem 7. Consider system (4.1). Let q1 = 0 or p2 = 0, and suppose that p1 > p − 1, q2 > p − 1 and

N(p − 1)
N − p

≥ min{p1 + q1, p2 + q2}. (4.48)

If (u, v) is a weak solution of (4.1) such that ess infℝN u = ess infℝN v = 0, then u = 0 or v = 0 a.e. inℝN .
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Proof. Suppose that q1 = 0. If p1 ≤ p2 + q2, we can proceed as in the proofs of [4, Theorems 3.3 and 3.4].
Indeed, for R large and for all ε > 0, we have, by (3.5) and (f0),

∫
BR

f(u, v) ≤ cR−p|AR/2|(ess inf
BR

u)p−1

≤ cR−p|AR/2|(
1

|AR/2 ∩ Tε|
∫

AR/2∩Tε u
p1)

p−1
p1

≤ cR−p|AR/2|
1− p−1p1 ( ∫

AR/2 f(u, v))
p−1
p1

≤ cRN−p− N(p−1)p1 ( ∫
AR/2
̃f (u, v))

p−1
p1
.

Hence, f(u, v) = 0 a.e. inℝN by (4.48), since p1 > p − 1. Therefore, (u, v) is trivial.
If p1 > p2 + q2, we distinguish two cases. If u = 0 a.e. in ℝN , then we are done. If u > 0 a.e. in ℝN , then,

by (3.5), (g0) and Lemma 2, we obtain, for R large enough and for all ε > 0,

∫
BR

g(u, v) ≤
cR−p|AR/2|

(ess infAR/2∩Tε u) p2(p−1)q2

(
1

|AR/2 ∩ Tε|
∫

AR/2∩Tε u
p2vq2)

p−1
q2

≤ cR−p+N(1−
p−1
q2
)+ (N−p)p2q2

(∫AR/2 g(u, v))
p−1
q2

(∫BR
f(u, v))

p2
q2

, (4.49)

that is,

(∫
BR

f(u, v))
p2
q2
∫
BR

g(u, v) ≤ cR−p+N(1−
p−1
q2
)+ (N−p)p2q2 ( ∫

AR/2 g(u, v))
p−1
q2

≤ cR−p+N(1−
p−1
q2
)+ (N−p)p2q2 (∫

BR

g(u, v))
p−1
q2
.

Now, by (4.48), we have that the exponent of R in the right side is nonpositive. Without loss of generality,
we consider only the case for which the exponent of R is equal to 0, i.e., when (4.48) holds with the equality
sign. Thus, since q2 > p − 1, we can have three cases. Either ∫BR

g(u, v)→ 0 and ∫BR
f(u, v)→∞ as R →∞

or vice versa. In both cases, we conclude that g(u, v) = 0 or f(u, v) = 0 a.e. in ℝN , and we are done. In the
third case, ∫BR

g(u, v)→ const. and ∫BR
f(u, v)→ const. as R →∞. Hence, in particular, g(u, v) ∈ L1(ℝN),

and so ∫AR/2 g(u, v)→ 0 as R →∞. Hence, we conclude that g(u, v) = 0 a.e. in ℝN by (4.49). In the case
p2 = 0, the proof is analogous.

5 A nonautonomous system of inequalities
In this section, we consider the problem

{{{
{{{
{

−div(Ap(x, u, ∇u)) ≥ a(x)f(u, v) inℝN ,
−div(Aq(x, v, ∇v)) ≥ b(x)g(u, v) inℝN ,

u ≥ 0, v ≥ 0 inℝN ,
(5.1)

where we assume the following:

Assumption 3. All conditions of Assumption 2 hold. Moreover, a, b : ℝN → ℝ+0 are nonnegative measurable
functions.
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Theorem 8. Let p1 < p − 1, q2 < q − 1, p2q1 > (p − 1 − p1)(q − 1 − q2), and suppose there exist r, s > 0 such
that a−r ∈ L1loc(ℝN \ {0}) and b−s ∈ L1loc(ℝN \ {0}). Let (u, v) be a weak solution of (5.1) such that ess infℝN u =
ess infℝN v = 0. If one of the conditions

lim
R→∞

RN[1− (p−1−p1)(q−1−q2)p2q1
]−q p−1

p2
−p[1+ p1(q−1−q2)p2q1

]( −∫
AR/2 a
−r)

(p−1)(q−1−q2)
rp2q1
( −∫
AR/2 b
−s)

p−1
sp2
<∞, (5.2a)

lim
R→∞

RN[1− (p−1−p1)(q−1−q2)p2q1
]−p q−1

q1
−q[1+ q2(p−1−p1)p2q1

]( −∫
AR/2 a
−r)

q−1
rq1
( −∫
AR/2 b
−s)

(p−1−p1)(q−1)
sp2q1
<∞ (5.2b)

holds, then u = 0 or v = 0 a.e. inℝN .

Proof. Suppose that (5.2b) holds, the remaining case being analogous. If v = 0 a.e. in ℝN , we are done.
Otherwise, put ̃r = 1 + 1/r and ̃s = 1 + 1/s. By the first inequality of (3.5), Lemma 2 and (g0), we get, for R
sufficiently large,

∫
BR

a(x)f(u, v) ≤ cR−p|AR/2|(ess inf
BR

u)p−1 ≤ cR−p|AR/2|
1− ̃s(p−1)

p2 ( ∫
AR/2∩Tε u

p2/ ̃s)

̃s(p−1)
p2

≤ cR−p|AR/2|
1− ̃s(p−1)

p2 (ess inf
AR/2∩Tε v)−

q2(p−1)
p2 ( ∫

AR/2∩Tε u
p2/ ̃svq2/ ̃s)

̃s(p−1)
p2

≤ cR−p|AR/2|
1− ̃s(p−1)

p2 (ess inf
AR/2 v)−

q2(p−1)
p2 ( ∫

AR/2 b(x)
−1/ ̃s(b(x)g(u, v))1/ ̃s)

̃s(p−1)
p2

≤ cR−p|AR/2|
1− ̃s(p−1)

p2 (ess inf
AR/2 v)−

q2(p−1)
p2 ( ∫

AR/2 b
−( ̃s−1)) p−1

p2( ̃s−1)
( ∫
AR/2 b(x)g(u, v))

p−1
p2
, (5.3)

where, in the last step, we have used Hölder’s inequality. By the second inequality of (3.5),

∫
BR

b(x)g(u, v) ≤ cR−q|AR/2|(ess inf
BR

v)q−1 ≤ cR−q|AR/2|(ess inf
AR/2∩Tε v)q−1,

thus

ess inf
AR/2∩Tε v ≥ c( Rq

|AR/2|
∫
BR

b(x)g(u, v))
1

q−1
≥ c( Rq

|AR/2|
∫

AR/2 b(x)g(u, v))
1

q−1
. (5.4)

Combining (5.3) and (5.4), we have

∫
BR

a(x)f(u, v) ≤ cR−p|AR/2|(ess inf
BR

u)p−1

≤ cR−p−q
q2(p−1)
p2(q−1) |AR/2|

1− (p−1) ̃s
p2
+ q2(p−1)p2(q−1)( ∫

AR/2 b(x)
−( ̃s−1)) p−1

p2( ̃s−1)
( ∫
AR/2 b(x)g(u, v))

p−1
p2
− q2(p−1)p2(q−1)

. (5.5)

Similarly, for g, we obtain

∫
BR

b(x)g(u, v) ≤ cR−q|AR/2|(ess inf
BR

v)q−1

≤ cR−q−p
p1(q−1)
q1(p−1) |AR/2|

1− (q−1) ̃r
q1
+ p1(q−1)q1(p−1)( ∫

AR/2 a(x)
−( ̃r−1)) q−1

q1( ̃r−1)
( ∫
AR/2 a(x)f(u, v))

q−1
q1
− p1(q−1)q1(p−1)

.

Brought to you by | Universita di Trieste
Authenticated

Download Date | 1/10/19 8:36 AM

21



446 | L. D’Ambrosio and E. Mitidieri, Quasilinear elliptic systems in divergence form

Hence, by (5.5), we obtain

∫
BR

b(x)g(u, v) ≤ cRN[1− (p−1−p1)(q−1−q2)p2q1
]−p q−1

q1
−q[1+ q2(p−1−p1)p2q1

]

⋅ ( −∫
AR/2 a
−( ̃r−1)) q−1

q1( ̃r−1)
( −∫
AR/2 b
−( ̃s−1))

(p−1−p1)(q−1)
p2q1( ̃s−1)

( ∫
AR/2 b(x)g(u, v))

(p−1−p1)(q−1−q2)
p2q1

.

Therefore, by hypothesis (5.2b), it follows that b(x)g(u, v) = 0 for a.a. x ∈ ℝN , since

p2q1 > (p − 1 − p1)(q − 1 − q2).

Using (WH) on the first inequality of the system and by (5.5), we get, for R sufficiently large,

(
1
|B2R|
∫
B2R

uσ)
p−1
σ

≤ c(ess inf
BR

u)p−1

≤ cR−q
q2(p−1)
p2(q−1) |AR/2|

− (p−1) ̃s
p2
+ q2(p−1)p2(q−1)( ∫

AR/2 b(x)
−( ̃s−1)) p−1

p2( ̃s−1)
( ∫
AR/2

b(x)g(u, v))
p−1
p2
− q2(p−1)p2(q−1)
= 0.

Hence, u = 0 a.e. inℝN .

Remark 10. It is worth pointing out that, in the case a ≡ b ≡ 1, requesting the validity of condition (5.2a)
or (5.2b) of Theorem 8 is equivalent to hypothesis (4.11) of Theorem 3.

Furthermore, if a and b are nonnegative, periodic, continuous functions, then there exists M > 0 such
that −∫

AR/2 a(x)
−r dx < M, −∫

AR/2 b(x)
−s dx < M,

see [4, Theorem 3.23] for further details. Hence, in this setting, the condition (5.2a) or (5.2b) of Theorem 8
reduces to

N[1 − (p − 1 − p1)(q − 1 − q2)p2q1
] ≤ max{p + qq1(p − 1) + pp1(q − 1 − q2)p2q1

,

q + pp2(q − 1) + qq2(p − 1 − p1)
p2q1

},

namely, we find again the same sufficient condition (4.11) of Theorem 3.

Corollary 4. Let p1 < p − 1, q2 < q − 1, p2q1 > (p − 1 − p1)(q − 1 − q2), and suppose that a(x) = |x|θ and
b(x) = |x|η. Let (u, v) be a weak solution of (5.1) such that ess infℝN u = ess infℝN v = 0. Put

D = p2q1 − (p − 1 − p1)(q − 1 − q2),

as usual. If the condition

N ≤ 1
D
max{qq1(p − 1) + p[p2q1 + p1(q − 1 − q2)] + θ(p − 1)(q − 1 − q2) + ηq1(p − 1),

pp2(q − 1) + q[p2q1 + q2(p − 1 − p1)] + θp2(q − 1) + η(q − 1)(p − 1 − p1)}

holds, then u = 0 or v = 0 a.e. inℝN .

Proof. It is enough to apply Theorem 8 by taking into account that, for any r > 0 such that N − θr > 0 and
s > 0 such that N − ηs > 0, it follows that−∫

AR/2 a(x)
−r dx = 1

|AR/2|
∫

AR/2 |x|
−θr dx = cR−N R

N−θr − (R/2)N−θr
N − θr

= cR−θr ,

−∫
AR/2 b(x)

−s dx = 1
|AR/2|
∫

AR/2 |x|
−ηs dx = cR−N R

N−ηs − (R/2)N−ηs
N − ηs

= cR−ηs ,

where c denotes a positive constant.
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