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1 Introduction

In this paper, we prove a priori estimates for the solutions of elliptic systems involving quasilinear operators
in divergence form in an open set Q ¢ RV, The simplest problem that we have in mind is the classical model

- = i N
{ Au=f(u,v) inQcRY, (1.1)

-Av=g(u,v) inQc RY,
where f, g: [0, 0c0) x [0, 00) — [0, co0) are given nonnegative continuous functions.

More generally, we prove a priori estimates for the solutions of elliptic systems in an open set Q ¢ RV
involving two quasilinear operators in divergence form. Specifically, we shall study problems of the type

—div(#) (x, u, Vu)) > f(x,u,v) inQ,
—div(e(x, v, Vv)) > g(x,u,v) inQ, (P)
u>0,v>0 inQ,
where o7,, @;: Q@ x Rx RNV — RY are weakly p-coercive and weakly g-coercive respectively, that is, p > 1,
q > 1, and there exist a, b > 0 such that
(p(x, t, W) - W) > alep(x, t, )P forall (x,t,w) € Q x Rx RV,
(y(x, t, w) - w) > blzy(x, t,w)|? forall (x, t,w) € Q x Rx RV,
f,g: Qx[0, 00) x [0, 00) — [0, 00) are Carathédory functions, and for u and v, a weak Harnack inequality
holds (for further details and definitions, see Section 2).

In this setting, we prove some a priori bounds for weak solutions of system (P). We shall use some of the
ideas developed in [4], where the case of scalar problems was considered.
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Our main result is Theorem 3, in which we give a sufficient condition for the nonexistence of non-
trivial solutions of (P) in the case Q = RY, and the following local assumptions on f(x, u, v) = f(u, v) and
g(x, u,v) = g(u, v), concerning their behavior near zero, hold. We note that this is the first attempt to study
nonexistence of positive solutions for quasilinear elliptic systems in this generality. As it is well known,
besides their intrinsic interest, these nonexistence theorems can be used to prove existence results for related
Dirichlet problems in bounded domains via the so called blow-up technique and suitable index theorems.
See, for instance, [12] and the references therein. In addition, we point out that our approach can be used to
study similar quasilinear systems in the framework of Carnot groups in the same spirit as [4, 5]. For sake of
brevity and in order to avoid cumbersome notations, we restrict our attention to the standard euclidean case.

Assumption 1 (Assumptions on the nonlinearities). The functions f, g: [0, c0) x [0, co) — [0, co) are contin-
uous and satisfy the following conditions:
(i) There exist p; = 0 and g, > O such that

t,
liminff( 7
t+1—0 tPiTd

>0 (possibly infinity). (fo)
(ii) There exist p» > 0 and q» > O such that

t, T
lim inf GRS
t+1—0 tP2792

>0 (possibly infinity). (80)

On the possible solution (u, v) of the system, we do not require any kind of behavior at infinity. Indeed, we
only assume that it belongs to a local Sobolev function space for which the integrals of the relevant quantities
make sense. Under these hypotheses, a special case of our main nonexistence theorem applied to (1.1) reads
as follows:

Theorem 1. Suppose the functions f, g: [0, 00) x [0, c0) — [0, co) are continuous and satisfy (fo) and (go). Let
(u, v) be a weak solution of (1.1) such that

essinfu = essinfv = 0.
RN RN

Ifo<p1<1,0<qy<1and

(A -p1)A-q2)
b2q1

N|1 (1.2)

2q1 +2p1(1-q2) 94 2ps +2¢»(1 —pl)}

] < max{z + s
p2q1 b2q1

thenu = 0orv = 0 a.e. in RN, This result is sharp.

In [1, Theorem 5.3], a less general sufficient condition for the nonexistence has been proved in the case
fx, u, v) = [x|*uPrv? and g(x, u, v) = |x|BuP2v92. While, the same sufficient condition (1.2) has been consid-
ered in [3, Theorem V.3] for radial solutions of (P) and the differential system involves the (A, A,) operators,
in the special case f(u, v) = uP*v7* and g(u, v) = uP2v?2, In Remark 5, we prove also that condition (1.2) is
sharp, in the sense that when it does not hold, we are able to construct an explicit nontrivial solution of (P)
in the special case when the system involves the same p-Laplacian operator.

We emphasize that conditions (fp) and (go) allow to study problems with singular nonlinearities. For
instance, dealing with f(t, 7) = 771, it is easy to construct a function f (t, T) such that f(¢, 1) > f (t, 7) and it
satisfies (fp) with p; = 0 and any g; > O.

We also prove a nonexistence result for a nonautonomous system of inequalities, in which

fx,u,v) =a()f(u,v) and g(x,u,v)=bx)g(u,v),

where a, b are positive measurable functions, and f(u, v), g(u, v) satisfy conditions (fo) and (go), respectively.
As a final remark, we note that, among others, Bourgain [2] studied a stationary Schrodinger system with
critical exponents for the Bose—Einstein condensate
{ —Au=uPv? inRV,

-Av=vPu? inRN.



For earlier results concerning nonexistence of radial positive solutions of the more general model,

~Au = uPv?  in RN,
—Av = uP2v®  in RN,

where p1, q1, P2, g2 > 0, see [6].

The paper is organized as follows: In Section 2, we give some useful definitions and preliminary results,
focusing on the weak Harnack inequality and its consequences. Section 3 is totally devoted to the general
a priori estimates for weak solutions of problem (P), while in Section 4, we prove our main results con-
cerning the nonexistence of nontrivial solutions of (P) when f(x, u, v) = f(u, v) and g(x, u, v) = g(u, v). In
Section 5, we prove a nonexistence theorem for the nonautonomous system (P) with f(x, u, v) = a(x)f(u, v)
and g(x, u,v) = b(x)g(u, v).

2 Preliminaries

Let & : RN x Rx RYN — RY be a Carathéodory function, that is, for each t ¢ R and w € RN, &/ (-, t, w) is
measurable and for a.e. x € RV, «7(x, -, -) is continuous. We consider operators L generated by <7, that is,

L(u)(x) = div(« (x, u(x), Vu(x))).

Our model cases are the p-Laplace operator, the mean curvature operator and some related generalizations.
Let Q ¢ RY be an open set. Let p > 1, and let «,: Q x Rx RY — R¥ be a Carathéodory function. The
function %), is called W-p-C, weakly p-coercive, if there exists a constant a > 0 such that

(p(x, t,w)-w) > alay(x, t, w)P" forall (x,t,w) € Q x Rx RV, (W-p-C)
The function .7, is called S-p-C, strongly p-coercive, if there exist two constants a, @ > 0 such that
(p(x, t,w)-w) > alwlP > alap(x, t, w)P" forall (x,t,w) € Q x Rx RV, (S-p-C)
see [1, 8, 10] for details.

Example 1. Clearly, if <7, is S-p-C, then ), is W-p-C.

Let p > 1. The p-Laplace operator A,(-) =div(|V(-)[P~2V(-)) is generated by 7 (x, t, w) = |w|P2w,
which is S-p-C. In particular, when p = 2, the Laplace operator A(-) is S-2-C.

The mean curvature operator

. V()
div[ ——=2
1V<\/1+|V(-)|2

w

), generated by 7, (x, t, w) =

is W-2-C, but not S-2-C.
For further details and comments, we refer to [4, Section 1].

In what follows, we denote by %%, a weakly p-coercive operator. Furthermore, By stands for the ball of radius
R > 0, thatis, Bg = {x : |x| < R}, and Ay is the annulus Bs \ Bg. Therefore, we have

|Br| = J dx =RN J dx =wyRY and |Ag| = wN(ZN —1)RVN,
Bgr |X|<1

where wy is the measure of the unit ball B; in RV.
Consider the system of inequalities
—div(#)(x, u, Vu)) > f(x,u,v) inQ,
—div(#4(x, v, Vv)) = g(x,u,v) inQ, (2.1)

u=>0,v>0 inQ,



where Q ¢ RY is an open set, Sy, gt QxR x RY — RY are W-p-C and W-g-C, respectively, and
f,8: Qx[0,00)x[0,00) — [0, 00)

are Carathédory functions.
Let p > 1. Throughout the paper, we shall denote

Wis? (Q) := {u € Lhe(Q) : [Vul € LE,c (@)} .
Definition 1. A pair of functions (u, v) € Wi¥ (Q) x Wizd(Q) is a weak solution of (2.1) if

fCou, ), 80, u,v) € Lig (Q), | (-, u, Vu)| € L{e(Q), |4 (-, v, VV)| € Lie(Q),

and the following inequalities hold for all nonnegative functions ¢+, ¢, € C3(Q):

[ e uvw - v0 > [ fxuvign, (2.2)
Q Q
J(,Q{q(x, v, Vv) - V) > Jg(x, u, V). (2.3)
Q Q

Moreover, we say that a weak solution (u, v) is trivialif u = 0O or v = 0 a.e. in RV,
Lemma 1 (Weak Harnack inequality [10, 11]). Ifu € Wllo’f(IRN) is a weak solution of
~div(e(x, u, Vu)) 20 inRY,
u=>0 in IRN,

4y is S-p-Cand N > p > 1, then for any o < (0, %}1)), there exists a constant cg > 0 independent of u such
that, for allR > 0,

1
1 o\’ .
— | u < cyessinfu.
| Br| Bg2
Br

As in [4], we introduce the following definition:
Definition 2. Let u be a weak solution of
—div(#(x,u,Vu)) >0 inQ,
{ u>0 inQ,

where Q ¢ RY is an open set. We say that the weak Harnack inequality holds for u with exponent o > 0 if there
exists a constant cy > 0 independent of u such that, for any R > 0 for which B,r ¢ Q, we have

1

1 o\’ .

— | u < cgessinfu. WH

<|BR|BI ) " B (WH)
R

Remark 1. Inequality (WH) implies immediately that u € L{.(Q) and that either u = 0 or u > 0 in Q. More-
over, we point out that, by Holder’s inequality, if (WH) holds with exponent g, it also holds with any exponent
oo € (0, 0).

The following is a direct consequence of (WH).

Proposition 1. If (WH) holds for two nonnegative functions u and v, then (WH) also holds for u + v. Further-
more, there exists a positive constant C independent of u and v for which

essinf(u + v) < C(essinf u + essinf v)
Bg Bg2 Bgj2

forall R > O such that Bog € Q.



Proof. Let g, 6 > 0 be the exponents for which (WH) holds for u and v, respectively. Suppose that ¢ < 8, then
(WH) holds with exponent o for both u and v. Now, for all R > 0 such that B, ¢ Q, we get

(o) =l ()

with ¢ := max{1, 2(1-9/9}, Indeed, if o > 1, inequality (2.4) is the subadditivity of the L?(Bg)-norm, while if
0 < 1, (2.4) follows immediately from the fact that (u + v)? < u® + v? and by the convexity of the power (-)/7.
Hence, by (2.4) and (WH), on u and v, we have

(o) =) ()]

< Cy(essinfu + essinfv) < Cy ess 1nf(u +v), (2.5)
Bgr)2 Bg)2
where Cyg := ¢ - cg. That is, (WH) holds for u + v.
On the other hand,
1
1 i
(— J(u + v)") > essinf(u +v),
|BRr| Br
Br
thus, by (2.5), essinfp, (u + v) < Cy(essinfp,, u + essinfg, , v). O

Remark 2. Obviously, the same conclusion of Proposition 1 holds for any finite number of nonnegative func-
tions verifying (WH).

3 A priori estimates

In this section, we prove some integral a priori bounds of the solutions of the system of inequalities (2.1) in
which we recall that Q ¢ R is an open set, 7, 7;: Q x R x R¥ — RN are W-p-C and W-g-C, respectively,
thatis, p > 1, g > 1, and there exist a, b > 0 such that

(Ap(x, t,w)-w) > aldy(x, t, w)P" forall (x,t,w) € Q x Rx RY,
(Ag(x, t, W) - w) = blzy(x, t, w)|?  forall (x,t,w) € Q x Rx RV,
andf, g: Q x [0, 00) x [0, c0) — [0, co) are Carathédory functions.

Theorem 2. Let (u, v) be a weak solution of (2.1). Then, for all test functions ¢+, ¢, every £ > 0 and every
a, B <0, we get

p
Jf(x, U, Vugp + 1 j(%(x, u, Vu) - Viug ' 1 < ¢ J u, 1+p_|V(f))11 ,
Q Q o 0 6
q .
jg(X, u, v)ng.')z +C1 J—(szq(x, v, Vv) - VV)Vg_l(l)z <& j g 1+q |V(§21| ’
Q Q Q ¢2
where ug :=u+€, ve:=v+¢, c1:=lal-nP /ap’, c2:=n7P/p, n >0, é1:=|Bl -9 /bq’, & :=p/q and
u>0.
Ifn, p are so small that ¢y, ¢é1 > O, then, foralla, B < 0 and € > 0,
Jf(x u,v)p; < c3 j a1ep VPP |7 J (-0 -1 VP[P \? ’
e 1 Up o —
Q
N . (3.2)
jg(X,U,V)(Pz < 63(] 1+‘1|V¢2| ) (Jvu B)(g-1) Iszll ) ’
Q Q 2 Q 2
where C3 = (Cz/acl)l/p’ and C~3 .= (éz/bél)l/q’_



If uet+p y(-0@-1 ¢ I L (Ag), vF~1%4,y(-F)a-1) ¢ L1 (Ag) with R > O such that B € Q, then, for all
a, B < 0, there exist c4, €4 > O for which

1
( 1 J u(la)(p1)>p’
|AR|
AR

1

1 B 1 a1+p)
|BR|B.[f(XuV)<C4R (lA lju

-

n i (3.3)
1 1 q 1 q
— xX,u,v) < é,R1 Jvﬁ 1+q - J V1A= |
|Br| jg( )= ca <|A | |Agl
Bg Ag
Ifthereexisto > p - 1,8 > q - 1 such that u’, v® € L}, .(Q), then
p-1
1 1 o
— X, U, V) < c4R7P J U) ,
| Brl Jf( )= cu (lA |
- - (3.4)

! jg(xuv)<ch(1 va)ﬁ
|Bx| 7\ 14l '
R

In particular, if (WH) holds with exponent ¢ > p — 1 for u and with exponent § > q — 1 for v, then the following
inequalities hold for some appropriate constants cs, €5 > 0

1
— | fix,u,v) < csRP(essinf u)P™!,
lBRlBjﬂ ) < ¢sR 7 (essinfu)
R

. Jg(x u,v) < &R 9(essinfv)7! (3.5)
|Br| P V=55 sl )

Br
Proof. We follow essentially the proof of [4, Theorem 2.1].

Fix a test function ¢1, and set r := dist(supp(¢1), 0Q), Q, := {y € Q : dist(y, 0Q) > r}. For € € (0, r) and
¢ > 0, we define

e+ [, De(x-y)u(y)dy ifxeQ,
We(x) := o
0 ifxeQ\Q,,
where (D;), is a family of mollifiers. Thus, we can choose w2¢; as test function in (2.2). We have
Jf(x, u, v\wg 1 + lal J(%(X’ u, Vu) - Vwe)we g < JI%(x, u, Vu)| - Vo1 lwg

Q Q Q

Since we — ug, Vwe — Vuin LY, .(Q,) as € — 0, by Lebesgue’s dominated convergence theorem and by dual-
ity, we get

jf(x, Vs + lal j(%(x, u, Vu) - Vsl

Q Q

1 1 1 -1
< JI%(x,u,Vu)I-IV%Iu?: [ 10w, T Q1 P 9 1
Q

)

n? J -1 1 LD 1-p
< e, u, V)P u + —J [V IP

o ? v $1 npr 1P,

< Z j(%(x,u Vu) Vu)u (I)l + %J‘ a— 1+plv¢ |p¢)1 -p
o Q

where, in the last steps, we used Holder’s and Young’s inequalities and the (W-p-C) condition for .«7,. This
completes the proof of the first inequality in (3.1) when € > 0



Analogously, it is possible to prove the second one. Indeed, fix a test function ¢,, and set
r:= dist(supp(¢h,), 0Q), Q, :={y € Q : dist(y, 0Q) > r}.
For e € (0,r) and ¢ > 0, define

7 e+ [, De(x—yv(y)dy ifxeQ,,
We(x) 1= r .
0 ifxeQ\Q,,

use w’j ¢> as test function in (2.3), and proceed as above. The case ¢ = 0 follows immediately from the case
¢ > 0 by an application of Beppo—-Levi’s theorem and letting £ — 0.

From now on, we only prove the inequalities concerning f, as an argument to obtain the other estimates
in exactly the same way.

In order to prove (3.2), use (2.2), and consider ¢ > 0. Thus, the weak p-coercivity of <7,, Holder’s inequal-
ity and (3.1) imply

jf(x, u, V)1 < jwp(x, u, V)l V1]
Q

Q

1 - v ~a)(p- 2\
< (I 2, u, Vu) - Vuyu® 1):;1)1) (Ju? VD, P p)
Q Q

1 1

-1 1-p \? 1-a)(p-1 1-p\’

gca<ju;? PP ”) <ju§ 0D |5, 1P ") .
Q Q

Also here, it is enough to apply Beppo-Levi’s monotone convergence theorem and/or Lebesgue’s dominated
convergence theorem to prove the remaining case ¢ = 0.
Let ¢ € C(l)(IR) be such that 0 < ¢po < 1, ¢y, := | |¢>6|1"/¢)€_1||00 < oo and

1, if|t| <1,
(t) =
bo {o, i 1¢] > 2.
Define ¢4 (x) := ¢po(|x/R]) so that

V1 ()P po(Ix/RDIP __
$100P1 @271 (1x/R]) =co

R7P.

Hence, using ¢, as test function in (3.2) with € = 0, we get

1

¥ ;
Jf(x’ u, V)le < C3( j ua—1+pC¢OR—p>p < J u(l—a)(p—l)C¢OR—p) ,
Q AR

Ag

and so, since |[Ag| = wy(2¥ = 1)RN = (2¥ - 1)|Bg|, we have

3=

1 1 p 1 p
— | fx,u,v) < c32Y = 1)cy RP[ — J us-1p — J u-oe-1 )

Bgr Agr Agr

which gives (3.3) with ¢4 := ¢3(2Y - 1)cg,.
Estimates (3.4) follow easily from (3.3) by applying Holder’s inequality. Finally, if (WH) holds, by (3.4),

we obtain

1 1\7 1 B

Bzl Jf(x, u,v) < C4<1 - 2—N) R—P< T J u") < c5R‘p(es%inf uyP1
R

Bx Bor

with Cg = C4(1 - ZLN)(l—p)/UC?I—l' O



4 Some Liouville-type theorems

In this section, we shall prove the main results of this paper. Consider the problem
~div(e(x, u, Vu)) = flu,v)  inRY,
—div(a(x, v, Vv)) > g(u,v) in RN, (4.1)
u>0,v>0 inRY.
Throughout this section, without further mentioning, we shall assume the following:

Assumption 2. The functions <7y, /5: RN x R x RN — R are W-p-C and W-q-C, respectively, N > max{p, g},
(WH) holds for u with exponent ¢ > p — 1 and for v with exponent § > q — 1, and Assumption 1 holds.

Example 2. Besides all the functions f such that f(t, 7) > ctP* 79 for every (¢, T) € [0, 00) X [0, 00), an exam-
ple of a function satisfying condition (fy) is given by f(t, T) = sin? tsin? 7 in [0, 00) x [0, ©0). Clearly, in this
case, f satisfies (fo) with p; = q; = 2

Lemma 2 (cf. [4, Lemma 3.1]). Letu: RN — [0, 0o) be a function such that ess infgy u = 0. Assume that (WH)
holds with exponent o > 0. Then, for all € > 0,
|Br N T¢|

ArpNTY
1imM=1, lim =R &l _1q,
R—o00 |AR/2| R—o00 |BR|

where TY = {x e RN : u(x) < €} and Ag = Byg \ Bg.

Lemma 3. Let (u, v) be a weak solution of (4.1) such that ess infgy u = essinfyy v = 0. If f(u(x), v(x)) = O for
a.a.x € RN, thenu = 0orv =0a.e. inRN. Similarly, if g(u(x), v(x)) = O fora.a.x e RY, thenu =0 orv = O a.e.
inRN,
Proof. Suppose that f(u(x), v(x)) = 0 for a.a. x € R¥. Thanks to Proposition 1, we can apply Lemma 2 to the
function u + v. Hence, by (fy), we get

1

(esgmfu)i"l(es;E'~‘,;1nfv)‘11 < — J uPrvit < ¢

1
_ (u,v) =0
Ary 0 Tol Ary 0 Tal J 1

r2NTe R/2

for R sufficiently large and & > 0, where T, = {x € RV : u(x) + v(x) < &}. Using (WH) on u and v, we conclude
thatu = 0 or v =0 a.e. in RV, If g(u(x), v(x)) = 0 for a.a. x € RV, the proof is similar. O

Let us introduce the matrix

P2 qg2-q+1
D:=-dets =prq1 -(p-1-p1)(g-1-q>). (4.2)

Lemma 4. Let (u, v) be a nontrivial weak solution of (4.1) such that ess infgy u = essinfgy v = 0. Then there
exists a constant ¢ > 0 such that, for all ¢ > 0 and R > 0 sufficiently large, the following estimates hold:

%:<p1—p+1 T )

(essinf u)P*P*1(essinfv)?* < cR7?,
AR/ZOTE AR/ZnTE

(4.3)
(ess 1nfu)p2(ess infv)2~9*1 < cR74,
AgpanTe Ag)onTe
where Ty = {x € RN : u(x) + v(x) < €},
p-1
1 1 (-1 g(u V)
Jf(u, V)< CR"’IAR/zI(esggnfu)p‘l < cRND-5 Bt -0 ( 2@ 7 (4.4)
1
Bg (J’BR g(u, V))nz(q )
sy ( )"
_71(1__<1>_[ fu,v)
Jg(u’ V) < cR‘qIAR/zl(es]sginfv)q‘l < CR [1 qql +Zi<§ i) 3161 D el — (4.5)
1
Br (J'BR (u V))lh(P )



In particular, if q; < q — 1, then, for R sufficiently large,

_ (p=1-p1)(g-1-92) _ p(a-1-g2)+qq1

. 1
(essinf u) p2d1 <cR par (4.6)
AR/zﬂTg
(p-1-p1)(q-1-493)
ﬂ_p_ q91 (p—-1)+pp1(9-1-92) p2q1
j flu,v) < cRP2a P2t Jf(u, V) (4.7)
BR S
With S = Agjy or S = Bg. If p1 < p — 1, then, for R sufficiently large,
. 1--1-p1)@-1-43) _4Ww-1-p1)+ppy
(essinfv) Pad1 <cR = hRa (4.8)
AR/ZDT{
(p-1-p1)(q-1-93)
M_q_ppz(qfl)qu(pflfm) p241
J' g(u,v) < cRna P241 Jg(u, V) (4.9)
Br S

With S = Agjy or S = Bpg.

Proof. Fix € > 0. By the first inequality of (3.5), we get

J f(u,v) < cRP|Agal(essinf u)? ™ < cR™P|Agjal(essinf u)P .
BR AR/ZﬂTs
Bg

On the other hand, using (fy), we have

Jf(u,v)z I flu,v)=>c J uPryan,

BR AR/znTg AR/ZnTs
hence,
uPrv? < cR7P|Agjs(essinf u)? .
AR/ZnTg
AgponTe
Therefore,
. . _p  |Ars2l . _
(essinf u)P' (essinf ) < cRP — X2 (essinfu)P~l,
AR/ZnTg AR/ZnTg |AR/2 N Tg| AR/ZnTg

and so, by Proposition 1 and by Lemma 2 applied to the function u + v, we obtain

(essinf u)P* P*1(essinf v)4* < cR7P
R/ZnTs AR/zﬂTE

for R sufficiently large. Similarly, from the second inequality of the system, we prove the second inequality
of (4.3).
By (3.5) and (go), for R sufficiently large, it follows that

J flu,v) < cR‘plAR/zl(es% infu)P! < cR-P|AR,2|(§ss inf u)P~!
R

r2NTe
BR p-1
B . _ape-1 1 P2
< cRP|Agpal(essinfv) " p2 | ———— J uP2y?:
AR/zﬂTg |AR/2 n TEI
AR/zﬂT£

p-1

< C&R/zl_l(ess inf v)_%z_l> J g(u, v)) "
|Apjy N Te| 72 B ArpanTe
20-1) p-1
< cR‘PIAR/zll_I;zl(—quBRl ) Z(ql)( j g(u,v)) " ,
fswn) )

where, in the last step, we have applied Lemma 2 to the function u + v, which, thanks to Proposition 1,
satisfies all the required assumptions. Similarly, working on the second inequality of (4.1), we obtain (4.5).



Combining the two inequalities in (4.3) and using the assumption ¢, < g — 1, we immediately get (4.6),
_ (g-1-g2)(p-1-p1) _ p(g-1-43)+qq1

(essinf u) p2a1 <cR P21
AR/znTg

for R sufficiently large.
From (4.4) and (4.5), we obtain

E(l_ﬂ)
N[l_L—l_'_qz(pfl)]_p_qqz(pfl) P2 q-1
Jf(u, V) < cR p2 " p2(g-D p2(¢-D Jg(u, V) s
Br S
4-1(q_P1
N[1-41 6Dy ey & (1-5%)
g(u,v) <cR a tae 01791 P oD flu,v)
Br S

with S = Ag> or S = Bg, being f and g nonnegative and Ag,> ¢ Bg. Since g, < g — 1, these two inequalities

imply
(@-D-1) (1_L11 )(1_‘LZ)

—p—qL_l+p P1(92-g+1) 1- (p1-p+1)(q2—g+1) q1p2 p-
flu,v) <cR ™ 70 o |Agp| P241 flu,v)
BR S

Similarly, under the assumption p; < p — 1, we can prove (4.8) and (4.9). O

Theorem 3. Letp; <p-1,q, <q-1and

. [(N-p N-q q1 N-p N-gq q-1-q
szm{( + ) +( + ) ,
p-172" 1) mga g1 T\ po 1P T g T g — gy v g1
N-p N-q ) P> <N—p N-q ) p-1-p; }
s . N . (4.10)
<p—1p1 a-11)p—prip-1 \p-1P2" g1 %)p, prap-1

If (u, v) is a weak solution of (4.1) such that ess infgy u = essinfgy v = 0, then eitheru = 0 or v = O a.e. in RV,

We note that (4.10) is equivalent to

N[l— (p—l—pl)(q—l—qz)] Smax{p+ qql(p—1)+pp1(q—1—qz)’
b2q1 D291
q+ppz(q—1)+qqz(p—1—p1)} (4.11)
pP2q1

when p; < p-1and g, < g - 1. Indeed, starting from (4.10), when the minimum is the first quantity in the
brackets, we get
N> N-P paqi+pi@-1-42) o 9 B 991
r-1 qg1-q2+q-1 G1-902+9-1 q1-q2+q-1
~-1- N -
__4a 92 { P( baq1 +p)— 491 }+N a1 ’
G1-q2+q-1lp-1\g-1-q» q-1-q» aG1-q2+q-1

that is,

g-1-a _ 4q-1-@ {N—p( P2q1 +p)— 491 }
G1-q2+q9q-1 q1-q2+q-1lp-1\g-1-q> a-1-¢q»
Now, since g, < g — 1, we get

N-p/ poqa qq1
Nz{—(—+ )——}
p-1\g-1-q PV q-1-q,

Multiplying both sides by %, we have

1+p1(q—1—qz)]_qq1(p—1) NP-D@-1-4g)

N :
( p) b2q1 p2q1 b2q1

namely,

(p-1-pi)(g-1 —42)] <p+ q9:1(p - 1) +pp1(q -1-q>)
pP2q1 N P2q1 '
Similarly, we can easily prove the second part of the equivalence.

W1-

10



Proof of Theorem 3. We shall distinguish two cases depending on whether the constant D defined in (4.2), as
well as the left side of (4.11), is positive or nonpositive.

Case D > 0. Suppose that

. qq1(p - 1)+ pp1(q-1-q>) . qupzﬂz(q—1)+f1qz(p—1—pl)
P2q1 - D2q1 ’

p

the remaining case being analogous. Without loss of generality, we prove the theorem only when

N[l— (p-1-p1)(g- 1—(12)] _p 40PV +ppig-1-65)
b2q1 p2q1
Suppose, by contradiction, that both u > 0 and v > 0in RY. By (4.7), we have
(p-1-p1)(g-1-43) (p-1-p1)(g-1-492)

Jf(u, V) < c( J flu, v)) o < c( J flu, v)) o R (4.12)
By A B

R/2 R

hence f(u, v) € LY(RN). Thus, by the first inequality of (4.12), letting R — co, we get f(u, v) = 0 a.e. in RV,
By Lemma 3, we conclude that either u = 0 or v = 0 a.e. in RY. This contradiction proves the claim.

Case D < 0. Note that, in this case, condition (4.11) is trivially satisfied. Suppose, by contradiction, that both
u>0andv > 0.Clearly,p(q2 —q+1) —qq1 <Oand g(p1 —p+ 1) — pp> < 0,sincep; <p-1landg, < q-1.
Hence, if D < 0, by (4.6) and (4.8), R large and € > 0, we get
-p(g-1-92)-991 -q(p-1-p1)-pp)

essinfu > cRP201-G-1-PD@-1-42) |, essinf v > cRP2a1-¢v-1-p1)4-1-02)
AR/ZnTs AR/zﬂTg

Therefore,

lim essinfu > 0o, lim essinfv > oo,
R—o00 Ag)pNnT, R—o00 Ag/pNTe

which is impossible.
Next, if D = 0, then, by (4.6) and R large, it follows that

1 < cR7P@-1-42)-qa:

Clearly, by letting R — oo, we reach a contradiction. O

Remark 3. In Theorem 3, as well as in all the nonexistence theorems of this paper, we require that the solu-
tions of the system have an essential infimum on RY equal to zero. If, for instance, f(u, v) > cuP'v4! in all
of RY, the assumption on the essential infimum of u and v is quite natural. Indeed, if essinfgv u > 0 and
essinfgv v > 0, then every solution (u, v) of (4.1) is also a solution of
—div(e#} (X, u, Vu)) > const. >0 in RN,
—div(e(x, v, Vv)) > g(u, v) inRY, (4.13)
u>0,v>=0 inRV,

The first inequality of (4.13) does not have any weak solutions (see e.g. [4, Corollary 2.4]), therefore also
system (4.1) has no weak solutions.

Furthermore, if ess infgy v = 0 and <7, does not depend explicitly on u, we have the following result.
Corollary 1. Let (u, v) be a weak solution of the problem

~div(e,(x, Vu)) 2 uPv  inRY,
- div(e7(x, v, Vv)) > uP?v9? inRY, (4.14)

u=0,v>0 inRY

with q; < q - 1. Ifessinfgy v = 0 and essinfgv u > 0, thenv = 0 a.e. in RV,

11



Proof. Put ug :=essinfgy u > 0 and i := u — ug. Then (i@, v) solves the problem

—div(ep(x, VD)) = (i + ug’' v inRY,
—div(e(x, v, Vv)) = (i + ug)’>v® in RV, (4.15)

u=>0,v=0 inRN.
Consider the functions f, g: [0, c0) x [0, c0) — [0, c0) defined by
flt,7) = (t +ug)’*7?* and g(t, T) = (t + ug)’2 1%

for all (¢, 7) € [0, 00) x [0, 00). It follows that

t, Lo t DP1r4q1 ~
liminfu = hmmfw =+00>0 forallp; >0,
t+1—0 tP1Td1 t+7—0 tPiTd

D2 rq>2
liminf 8, 1) = liminf (t+ uo)2® =+00>0 forallp, >0,

t+1—0 tP2792 t+7—0 th2 142

that is, f and g satisfy (fp) and (go) with exponents pq, q1, P2, q2. Next, by choosing p; and p, so small so
that p; < p-1and poq1 < (p -1 -pP1)(q -1 - q2), we see that we can apply Theorem 3 to problem (4.15).
Consequently, u —up =0orv =0a.e.in RN Ifv = O a.e. in RY, we are done. On the other hand, if u = ug a.e.
in RV, then, by the first inequality of (4.14), it follows that v = 0 a.e. in RV, O

Obviously, an analogous result as above can be obtained when essinfry u = 0, essinfgyv v >0, p; <p -1,
and «7; does not depend explicitly on v.

Remark 4. Inthecasep=q,p1 <p-1,q, <p-1and D > 0, condition (4.11) is sharp also for systems of
equations. Indeed, if

N[l _(p-1-p)p-1 —qz)] . max{p+ pPqi(p -1 +pp1(p -1 —qz)’
p2aq1 p2qa
pp2(p-1)+pga(p-1 _pl)}
p+ ’
p2d:

then we can construct an explicit nontrivial solution of the problem

—div(|VulP2Vu) = f(u,v)  inRVN,
—div(|Vv[P~>Vv) = g(u,v) inRVN, (4.16)
u>0,v>0 inRV,

where f, g: [0, 0c0) x [0, 00) — [0, 00) are continuous and such that, for all (¢, 7) € [0, 1] x [0, 1],

p-1
f=fit0) = (I%) @ DE-DBIN _ (a + 1)p + (a + 1)pt'/],

g=slt,0)= (1%),,71%1)@_1)/“{]\[ ~(B+Dp+ B+ prA,

where
qoe P-D@1+tp-1) . P-Dp2+tp-1)
p2qi-(p-12% "’ p2q1-(p-1)2%

Hence f and g satisfy (fp) and (go) with exponents p; = 0,q; = (@ + 1)(p — 1)/B,p2 = B+ 1)(p - 1)/a, g2 = O.
By straightforward calculation, it follows that the functions defined by

1 1

U = A ey V0T T ey

are weak solutions of (4.16).

12



Remark 5. Inthecasep; <p-1,¢g> < q-1and D > 0, condition (4.11) is sharp for systems of inequalities.
Indeed, if

N1 - (p—l—pl)(q—l—qz)] >max{p+ qql(p—1)+pp1(q—1—qz),
P2q1 p2q1
-1 -1-
q+Pp2(q ) +492(p pl)}, (4.17)
p2q1

then (4.1) has a nontrivial solution. Indeed, if (4.17) holds, then we can construct an explicit solution of the

problem
—div(|VulP2vu) > f(u,v)  inRY,

—div(|Vv|92Vv) > g(u,v) inRY, (4.18)
u>0,v>0 inR"N,

where f and g satisfy (fo) and (go), respectively. Consider the functions defined by

u(x) = 1 R e 991 +p(q-1-42) ’
(1 + [x|p/P-D)a P pP2q1-(p-1-p1)g-1-q2)
V() = 1 L g2l pp2 +q(p-1-p1) _
(1 + |x|9/(a-1)B g pq1-(p-1-p1)@-1-q)

Denoting p := |x|, an easy computation shows that

—Apu :< ap )p_l(l + QPO D)@ D111, pa/@-DYBar ([N _ (@ + 1)p]gP/ D 4 N},

uPiya p-1
—AqV _ﬁq -t q/(q-1)\Bq2~-(B+1)(g-1)-1 p/(p-1)\ap q/(g-1)
ub2v4q: :<q_1) (1+Q ) ’ (1+Q ) 2{[N_(B+1)Q]Q +N}-

By (4.17) and our assumptions p; <p -1 and g, < q - 1, it follows that N > (¢ + 1)p and N > (8 + 1)q.
Hence, if we denote

p-1
hi(o) := (p_"‘_pl) (1 + QP/P-D) =@ DE-D-1(q 4 pa/@-DYBa [N _ (@ + 1)p]g?/ D + N},

qg-1
hy(p) := <qﬁ_q1> 1+ QII/(II*l))BQz*(ﬁH)(P*l)*l(1 + QP/(pfl))ﬂpz{[N -(B+ 1)q]gq/(q—1) + N},

it follows that h1(p) > 0 and h,(p) > O for all p > 0. Moreover, by the definitions of « and j3, we get

p q
p-1 q-1

(Bg> - (B+1)(g-1)] =0,

Bq1 =0,

[ap1 - (a+1)(p-1)] +

q
qg-1

plz 1 apr +
hence,

p-1
Jm m@=(%5) -+ pl>o0,

and similarly,

pg o
m) [IN=(B+1)q] >0.

Therefore, since h; and h; are continuous functions, there are two positive constants C; and C, such that
hi(p) = C1 and h»(p) = C; for all p > 0. Thus, we have, for all x € RY,

nggo hy(e) = <

-Ayu A%
P~ >C;>0 and a

>(C2>0
uPryd ub2v42 2 ’

that is, (u, v) is a nontrivial solution of (4.18) with f(u, v) = CiuP1v?t and g(u, v) = CouP2vi2,

By our construction, it follows that 0 < u(x) <1 and 0 < v(x) < 1 for all x € RN. Hence this counter-
example works also for all continuous functions f, g: [0, co) x [0, co) — [0, o) such that f(t, T) = C1tP1 T4
and g(t, T) = CotP21%2 for all (¢, T) € [0, 1] x [0, 1] and nonnegative elsewhere.
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Corollary 2. Let (u, v) be a weak solution of the system
—div(ep(x, u, Vu)) = f(v) inRN,
—div(ez4(x, v, Vv)) > g(u) inRY, (4.19)
u>0,v>0 inRY,

where f, g: [0, 0c0) — [0, c0) are continuous functions satisfying the following conditions:
(i) There exists q1 > O such that

litm ('1)r+1f % >0 (possibly infinity). (fo)'
(ii) There exists p, > O such that
.. 8 . . . '
112 (1)1+1f Y >0 (possibly infinity). (80)
If
N[l— w-D@a-1) 1)] smax{p+ q(p—l)’q+p(q—1)} (4.20)
b2q1 b2 q1

and essinfgy u = essinfgy v =0, thenu = v=0a.e.in RV,

Proof. By Theorem 3, with p; = g, = 0, we have that u =0 or v =0 a.e. in RN.If v =0, by W-q-C, for <7,
we have <7 (-, v, Vv) = 0a.e.in RY, and in turn, g(u) = 0 a.e. in RY. Thus, by (WH) on the first inequality of
system (4.19), (go)’ and Lemma 2, we obtain, for R large,

1 1
1 4 23
<@ J u") <ch es%infu < cR‘N/pZ( J g(u)) =0,
R

Bor Agp2
thatis, u = O a.e. in RN, O

Remark 6. Note that condition (4.20) is equivalent to

max{ q9:1 +p(q—1) _N—p’ pp2+4q(p-1) _N—q}zo_
p2qi-p-1(@-1) p-1 pagi-p-1@-1) g-1
This is the assumption required in [7, Theorem 2.1], when f(v) = v4t and g(u) = u”2. In [7, Section 3], the

authors prove also that the nonexistence result is sharp, in the sense that if (4.21) is not valid, they are able
to construct a solution (u, v) # (0, 0) of (4.19). Corollary 2 in a more general setting has been studied in [5].

(4.21)

Remark 7. Consider the problem

—div(|VulP2vu) > uP'vi*  in RV,
—div(|vv]92Vv) > uP2v®  in RN, (4.22)

u>0,v=0 in RN

withp, ¢ > 1,p1, g2 > 0and p,, q1 > 0. As pointed out in [1, Remark 5.1], it is possible to obtain a nonoptimal
sufficient condition of nonexistence for (4.22), as a consequence of Corollary 2. Since -A, and -A, are S-p-C
and S-q-C, respectively, inequality (WH) holds for both u and v. Hence, by Remark 1, either u =0 oru > 0
in RY, and analogously, either v = 0 or v > 0 in RY. Therefore, with a change of variables, we can obtain,
from problem (4.22), a system of the type (4.19). More precisely, let 8, T € (0, 1). Set w := u%, z := v". Then

{ “Apw > CwlPi=(-0F-0)0,a/T iy RN

~Dgz > CwP2/0712-1-1)(@-Dl/T iy RN

where C > 0. When p; <p—1andq2<q—1,wecanchoose6:1—l%,rz1—%andﬁnd

{ ~Apw = Cz1/T  in RV,

~Agz > CwP% in RV,
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Hence, if 41 >q- 1, 2>p-1(@G.e.q1>q-1-gandp, >p-1-p1), and if we require condition (4.20)
with qu in place of g, and I‘g in place of p,, that is,

PpP-1-p1)@-1-q2) qp-1-p1) qup(q—l—qz)}
b2q1 P2 ’ q1 ’

then problem (4.22) has no nontrivial solutions by Corollary 2. Nevertheless, condition (4.23) is not sharp,
as Theorem 3 proves.

Nf1-

] < max{p + (4.23)

Theorem 4. Assumethatp, < p —1and q; < q - 1.If (u, v) is a weak solution of (4.1) such that ess infpy u =
essinfgpy v = 0 and

N1 - (p—l—pl)(q—l—qz)] <max{p+ 40P - 1) +Pp1(g-1-4d2)
b2q1 b2q1
-1 ~_1-
q+ppz(q )+qq2(p pl)}’ (4.24)
b2q1

thenu=0o0rv=0a.e. inRV.

Proof. From Theorem 3, if p1 <p -1 and g, < g — 1, we already know a stronger result. Therefore, we
prove this result only when p; = p — 1 and g, < g - 1, and we omit the similar proof in the case p; <p -1
and ¢, = q - 1. Suppose, by contradiction, that problem (4.1) admits a nontrivial solution (u, v). By (4.7)
and (4.9), we have, for R sufficiently large,

491 +p(q-1-93)

Jf(u, V) < cRN PP T e , jg(u V) < cRN"
BR BR

p(q 1)

By hypothesis (4.24) and letting R — oo, we get f(u, v) = 0 or g(u, v) = 0 a.e. in RN, We complete the proof

by using Lemma 3. O
Lemma 5. Let (u, v) be a weak solution of (4.1) such that essinfgy u = essinfry v = 0. If there exists z € [0, 1]
such that
P2 Z+( P —1)(1—2)20,
p- -1
q> ) q1
z+ (1-2)=0, 4.25
(5 2 (4.25)
N-p N-q N-p N-q
N> Ja-2+( )
> p_1p1+q_1q1( z) + p_1p2+q_1QZZ

thenu=0orv=0a.e. inRV.

Proof. By contradiction, if u > 0 and v > 0, from (4.4) and (4.5), we have, for R large and for all z € [0, 1],

=i (1) v 0
(Jf(u,V)> (Jg(u,V)> < RN ) p g
B B

R R
2L -1)(1-2) L(1-2)
(Jf(u,v)>(p1 | (Jg(“,v))q < RN+ -1)1-9-q3 (1-9)-p 4 (1-2)
Br Bg
and so
(Jf(mﬂ)( g(u V)> < cR”, (4.26)
Br
where
a = P2 z+( P1 —1)(1 z), ( )z+ a1 (1-2),
p-1" \p-1 q- q-1
. N-p N-¢q p N-q )
y=N (p_lpz 7- 1q) (p_1p1+q_1q1 (1-2).

By (4.25), a = 0, = 0 and y > 0, hence, by (4.26), f(u, v) = 0 or g(u, v) = O a.e. in RY, and so, by Lemma 3,
we have that u = 0 or v = 0 a.e. in RY. This completes the proof. O



Theorem 5. Let (u, v) be a weak solution of (4.1) such that ess infgy u = ess infgy v = 0.
() Ifpi=p-1,q2<q-1land

. |N-p N-gq (N—p N-q ) q1
N 9’
>mm{p—1pl+q—1q1 p-1P2" o1 ) mqvq-1
N-p N-gq ) qg-1-q }
+ + , (4.27)
(p—lp1 -1 g -q+q-1
thenu=0o0rv=0ae. inRY,
(i) Ifpr<p-1,q22q-1and
. [N-p N-q (N—P N-gq ) D2
N ,
>mm{p—1m+q—1q2 p-1P T T ) g —prrp-1
N-p N-gq > p-1-p1 }
+ + s (4.28)
<p—1p2 a-12)p—prep-1
thenu=0o0rv=0a.e. inRV.
(i) Ifp1r=2p-1,q2 2q—-1and
. IN-p N-q N-p N-gq
N , , 4.2
>m1n{ _1p1+q_1611 p—1p2+q—1q2 (4.29)

thenu=0o0rv=0a.e. inRY,
Proof. (i) Let (u, v) be a weak solution of (4.1). By Lemma 5, for all z € [0, 1] satisfying (4.25), we have that
(u, v) is trivial. Now, system (4.25) is equivalent to
z < L,
gG1+q9-1-q;

N-p N-g¢ ) <N—p N-q )
N>(p_1p1+q_1q1 (1-2)+ 1Pt 92)%

sincep; >p-1landg, <q-1.Put

(4.30)

_(N-p N-gq ) _ (N—p N-gq >
<p(Z)-—(p_1p1+q_1ql 1-2)+ poiP2t T2 )%

If
N-p N-q N-p N-q
<
p—1p1+ q_lql_ p_1P2+ q_qu
then ¢ is nondecreasing, and we obtain the best condition taking z = 0 in the second inequality of (4.30),
namely,

N-p N-gq
N .
>p_1p1+q_1fh
While, if
N-p N-gq N-p N-gq
p—1p1+q—1q1>p—1p2+q—1q2’
then we have the best condition taking z = m in second inequality of (4.30), that is
N-p N-q q1 N-p N-gq 9-1-q»
N>( + ) +( + ) .
p-1P2 ) g —g a1 T\ p P T i —q g -1

Finally, by an easy calculation, we see that

N-p N-q ) q1 (N—p N-q ) q-1-q> N-p N-q
(p-lp”q—lq2 G-grq-1 \p-1P T g1 ) g T rg-1 T p-1Pt T g ™
if and only if
N-p N-gq N-p N-gq
p—1p2+q—1q2<p—1p1+q—1q1'
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This completes the proof of the first part of the theorem.

(ii) The proof is similar to the proof of (i), and it is omitted.

(iii) Let (u, v) be as in the statement. By Lemma 5, for all z € [0, 1] satisfying (4.25), we have that (u, v)
is trivial. Now, system (4.25) is equivalent to

N-p N -

+
p-171" g

N-p N-gq
p-12" 4

N> ( f(h)(l -2)+ < q2>z, (4.31)

since p; > p-1and g, > g - 1. Now, if
N-p N-gq N-p N-gq
p_1P1+ q_1Q1Sp_1pz+ 7-1

q2,

then the function ¢ defined in part (i) is nondecreasing, and we obtain the best condition taking z = 0 in
(4.31), namely,

N-p N-q
N .
> p_1P1+ q_1Q1
While, if
N-p N-q N-p N-¢q
p_1P1+ q—lql > p—1p2+ q_ICIz,
then we have the best condition taking z = 1 in (4.31), that is,
N - N -
N> pp2+ qqz. O

r-1 q-1

Remark 8. If p; =p -1 and g, = g - 1, then (4.27) jointly with (4.28) give the same condition as (4.29).
Moreover, in this case, this curve is equivalent to condition (4.24).

Theorem 6. Let (u, v) be a weak solution of (4.1) with essinfgy u = essinfgy v = 0.
(i) Ifga<q-1,D>0and
N- - N- N- -1-
p qq2> q1 +( pp1+ q 1) q q> ’
p-1 1°7"/aq1-q2+9-1 \p-1 g-1""/q1-g2+q-1
thenu = 0orv =0 a.e.in RN. In particular, if > < g - 1, p1 > p — 1 and (4.32) holds, then (u, v) is trivial.
(ii) Ifp1<p-1,D > 0and

N-p N-gq ) 3] N-p N-q p-1-p;
Nz( + ) +( + ) , (4.33)
p-1P T T prrp-1 \po1 P2 1) cpip-1

N
N> ( P2+ 7 (4.32)

thenu =0orv = 0a.e.in RN, In particular,if p1 < p - 1, q» > q — 1 and (4.33) holds, then (u, v) is trivial.

Proof. (i) By contradiction, let (u, v) be a nontrivial weak solution of (4.1). By (4.4) and (4.5), for R sufficiently
large, we have

(jf(u, v)>H<J gu, v))ll_1 < cRNGE- 1+ &) piE-agh J g(u,v) (4.34)

R R Agp2

and
q1 p1
-1

<Jg(u,v)>41(1f(u,v))p < RV -1+ h)-adhpik J flu, v). (4.35)
R Bg ARj2

By (4.34),

p2(g-1)
J g, v) > c(RPPE I NE 1)) 7 ( J flu, V)) e
Bg Br
since g, < g — 1. Combining this last inequality with (4.35), we get
r1 p24d1
J flu,v) = CRPIT T (ﬁ+ﬁ_1)+[%+%w(ﬁ+‘f‘2_1)]q"1]1‘12(1f(u, V))p1 (pil)(qilim, (4.36)

Agj2 Br
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and so

(J flu, v)>(p_l)(q_l_m < cRY (4.37)

Bg
for R large, where

y = pp1 | 49 —N( pr | 4 _1>+[PP2 4 992 —N( P2 | 4 _1>] a
p-1 ¢g-1 p-1 g-1 p-1 g-1 p-1 g¢g-1 a-1-q
By hypothesis (i), y > 0. Now, by (4.37), [, f(u, v) < oo, since m > 0, so that by (4.36), f(u,v) =0

a.e.in RN, The contradiction follows by Lemma 3. For the second part of the statement, it is enough to note
thatifg, <g-1andp; >p-1,thenD > 0.
(ii) The proof is analogous to the proof of (i). O

Remark 9. Note that,inthecasep; = p — 1and g, = g — 1, condition (4.25) is equivalent to (4.24). Moreover,

when N N N N
-p -q -p - q

-1, >p-1, < , 4.38

4 <q p1=p p—1p1+q—1q1 p_1p2+q_1Qz (4.38)

then condition (4.32) is stronger than (4.27). Similarly, if

N-p N-gq

p-172" g1

Q1 > (4-39)

< 1 > 1 <N—p +N_
pl p ) qz—q s qz—p_lpl q_

[l B

then (4.33) is stronger than (4.28).

Now we prove that conditions (4.32) and (4.33) are sharp at least when (4.38) and (4.39) hold, respec-
tively.

For simplicity, we show a counterexample for (4.32) when p = q.

Letg <p-1<p1,p1+q1<pr+qrand

Np-1)

_ _1-
N_p < P2t n Fpr+q)———— 12 (4.40)

1-q2+q-1 qg1-q2+q-1
We prove that, under these assumptions, the system
—div(|VulP~2Vu) > f(u,v)  inRN,
—div(|Vv[P2Vv) > g(u,v) inRY,

u>0,v>0 inR"Y,

where f and g satisfy (fo) and (go), admits a nontrivial solution. Consider the functions

v s 0-V@i+p-1-4)
MO e T pag (- 1P -1-a2)°
v(x) = ! gi (- D@2tp-1-py)

(1 + [x|p/=D)B” p2q1-p-1-p)p-1-q2)’
and denote p := |x]|.

By straightforward computation, we know that
-Apu
ubryd1

-Agv
ub2v4:

= hi(0), = h(0),

where B
hi(p) := <l%>p 1+ Qp/(pfl))aP1+ﬁ611*(f1+1)(P*1)*1{[N —(a+ 1)p]gp/(p71) + N},
Ba \*!
hy(p) := (m) (1+ Qp/(p—l))apz+ﬁlh—(ﬁ+1)(p—1)—1{[N —(B+ 1)p]0p/(p—1) " N}.
The exponents a and f3 are such that

{0(171+ﬁ6h—(a+1)(p—1)—1=0,
ap> + g -(B+1)(p-1)-1=0,
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pi<p-1 pi=p-1 p1>p-1
A1 <Ay A=A Ai>A Ay <A1 A > A

g2<p-1 (4.41) G42)  (4.46)  (443)  (4.46)  (4.43)
_ A1 <A2 A1 =A2 A1 >A2
g2=p-1 G4 G447 (4.4d) (4.42) & (4.45) (4.45)
A1 <A AL > A
g>p-1 “.47) 6.44) (4.45) (4.45)

Table 1: Conditions implying that the solutions of (4.1) are trivial.

hence, the expressions of h; and h, become simply

o
p-1

p-1
hi(o) := ( ) {IN - (a+ 1)p]gp/(p—1) +N},

q-1
ha(0) = (%) {IN - (B +1)plg? ™ + N}.

By (4.40) and our assumptions g, < p — 1 < p; and p; + g1 < p2 + g2, it follows that N > (a + 1)p and
N > (8 +1)g. Hence, hy(g) > 0 and h,(p) > O forall p > 0.

For simplicity, we summarize the results obtained in Theorems 3, 4 and 5 for p = q.

Corollary 3. Consider system (4.1) with p = q. Let (u, v) be a weak solution of this problem such that

essinfu = essinfv = 0.
RN RN

= . — b2 — b1
Denote Ay :=p1 +q1, Az :=p2 + q2, @ = 520, B = — o and

% 2min{A1a +A>(1-a), A2B+A1(1—‘8)}’ (441)

% > min{A;a + Ay (1 - a), Aof+A1(1- B}, (4.42)

% >min{A1, A;8+A1(1-B)}, (4.43)

ﬁg;i2>mmmbzha+Axl—mL (4.44)
N-p

Np-1 _

%p) >min{A4, A}, (4.45)

% >AB+A1(1-P), (4.46)

MP=D) . pra+ Ay - a). 4.47)
N-p

Then, under the assumptions described in Table 1, it follows that either u = 0 or v = 0 a.e. in RV.

In problem (4.1), we have excluded the cases g; = 0 or p, = 0. In this final part of the section, we would like to
show that these cases can be treated essentially with the tools used in [4] for the inequalities. For simplicity,
we consider now problem (4.1) with p = q. Moreover, we require that the functions f, g: [0, c0) x [0, c0) —
[0, co) are continuous and satisfy conditions (f) and (go), introduced in Section 1, with g1 = 0 or p; = 0.

Theorem 7. Consider system (4.1). Let q¢; = 0 or p; = 0, and suppose thatp; >p-1,q, >p -1 and

Np-1)

N_p > min{p1 + g1, P2 + q2}. (4.48)

If (u, v) is a weak solution of (4.1) such that essinfgy u = essinfgy v = 0, thenu = O or v = 0 a.e. in RV,
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Proof. Suppose that g1 = 0. If p; < p, + g2, we can proceed as in the proofs of [4, Theorems 3.3 and 3.4].
Indeed, for R large and for all € > 0, we have, by (3.5) and (fy),

Jf(u, V) < CR’plAR/zl(es%inf u)p1
R

Br
p-1
RPIA |< ! p )1”1
< cRPIARpl| ——— J ub1
/ [ARs2 N Tel
AR/ZnTs
p-1
1-22L P
< cR 71wl ([ faw)
Agrp2
p-1
o Np-1 _ P1
< cRVPh ( J f(u,V)) :
ARj2

Hence, f(u, v) = 0 a.e. in RN by (4.48), since p; > p — 1. Therefore, (u, v) is trivial.
If p1 > p2 + g2, we distinguish two cases. If u = 0 a.e. in RY, then we are done. If u > 0 a.e. in RV, then,
by (3.5), (g0) and Lemma 2, we obtain, for R large enough and for all € > 0,

-1

CR7P|Ag)2] 1 “
§ P2,,92
J g(u, V) S p2(p-1) |AR/2 n Tgl j e

Br (essinfpy,nt, u) « ApjanT,
p-1
_ ey, oo ([, 80)) "
<cR p+N(1 T M (4.49)
([, f, )™
that is,
P p-1
2 _ _p-1), N-p)p 92
(If(U,v)> Jg(u,v) <CR PN (-5 2( J g(U,v)>
BR BR AR/Z
—p+N(1—E)+ (N-p)p2 %
< CcR a2 a2 J g(u,v) .
Br

Now, by (4.48), we have that the exponent of R in the right side is nonpositive. Without loss of generality,
we consider only the case for which the exponent of R is equal to 0, i.e., when (4.48) holds with the equality
sign. Thus, since g, > p - 1, we can have three cases. Either | 5, 84, V) — Oand IBR fu,v) > c0as R — oo
or vice versa. In both cases, we conclude that g(u, v) = 0 or f(u,v) =0 a.e. in RY, and we are done. In the
third case, IBR g(u, v) — const. and jBR f(u,v) — const. as R — co. Hence, in particular, g(u, v) € LY(RN),
and so IAR/Z g(u,v) = 0 as R — oo. Hence, we conclude that g(u, v) = 0 a.e. in RY by (4.49). In the case
p> = 0, the proof is analogous. O

5 A nonautonomous system of inequalities

In this section, we consider the problem
—div(e(x, u, Vu)) > a()f(u,v) inRY,
~div(/y(x, v, Vv)) = b(x)g(u,v) inR", (5.1)
u=>0,v>0 inRYN,
where we assume the following:

Assumption 3. All conditions of Assumption 2 hold. Moreover, a, b: RN — R{ are nonnegative measurable
functions.
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Theorem 8. Letp; <p-1,9,<q-1,p2q1 >(p-1-p1)(@-1-q>), and suppose there exist r, s > 0 such
that a™™ € LL (RN \ {0}) and b=5 € L1 (RN \ {0}). Let (u, v) be a weak solution of (5.1) such that ess infgy u =
essinfyy v = 0. If one of the conditions

(p-1)(g-1-43) p-1
) N[l_(Pflfpl)(qfl’QZ)]_qp;l_p[l_'_pl(q 1- 412)] . "P2d1 5\
Rhm R P2d1 P2 p2d1 Jt a :|: b < 00, (5.2a)
—00
Agj2 Agp2
g-1 (p-1-p1)(g-1)
. N[li(pflfpl)(qflfqz)] _pot [1+q2(p717p1)] . q1 s sp241
Rllm R 241 ”1 P241 :[ a ][ b < 00 (5.2b)
—00
Agp2 Agj2

holds, thenu =0 orv = 0 a.e. in RV,

Proof. Suppose that (5.2b) holds, the remaining case being analogous. If v = 0 a.e. in RY, we are done.
Otherwise, put 7= 1 + 1/r and § = 1 + 1/s. By the first inequality of (3.5), Lemma 2 and (go), we get, for R
sufficiently large,

5(p-1)
_ -1 \ P2
[ atftu, ) < cR P anlesgintur < crPlagal ([ w)
Br ) AR/ZOTE
S(p-1)
(171) _ . I
<cR p|AR/2| T (essmfv) J upz/quz/s)
AR/zﬂT£
AR/znTE
Sp-1)
e -1/3 15\
<cR p|AR/2| o (es:flnfv) j b(x) 3 (b(x)g(u, v))/
R/2
Agj2

oD oy
<cR P|AR/2| e (essmfv) = )< j b‘(s"—1)>p2(s )( J b(x)g(u,v))p , (5.3)

R/Z
AR/Z AR/Z

where, in the last step, we have used Holder’s inequality. By the second inequality of (3.5),

J b(x)g(u,v) < cR™ qlAR/zl(es%mfv)q L <cR q|AR/2|(§ssmfv)q L

r/2NTe
Br
thus
1 1
inf (Rq [ poog ))“><Rq [ b >)1 (5.4)
essmiv =>c¢ X u,v >C X u,v . .
i, Ar)2] § ARl §

R Agp2
Combining (5.3) and (5.4), we have

J a(x)f(u,v) < cR7? IAR/zl(es%infu)p‘1
R

Br p-1 p-1_ax(p-1)

s (p-1) o $'-1) p2 p2(g-1)
< cRP 9D IAR/zI1 AT ”( J b(x)™¢ _1))102 ( J b(x)g(u,v)> . (5.5)

ARz Agr)2

Similarly, for g, we obtain

J b(x)g(u,v) < cR‘qlAR/zl(es%inf v)a-1
R

Br -1 g-1_pi@-1)

p1(a-1) _(g-DF  p1(g-1) 2 q1(F-1) a1 a1-D)
< cR 9 PawD ARl @ +q1w—1>< J a(x)—(r—l)) ( J a(x)f(u,v)) .

Agp Ag)2
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Hence, by (5.5), we obtain

_@o1ope-1o09) |_pas1 [, 020-1op)
[1 p241 ] p‘il q[1+ P24y ]

J b(x)g(u,v) < cRY

Br (p=1-p1)(g-1) (p=1-p1)(g-1-43)

q-1
(} a—(f'_1)>‘11(' 1’( :’: b_(§"l)> p2a16"-D ( J~ b(x)g(u,v)) P241
Agp2 ARy ARy

Therefore, by hypothesis (5.2b), it follows that b(x)g(u, v) = 0 for a.a. x € RY, since

p2q1> (PP -1-p1)g-1-qa).
Using (WH) on the first inequality of the system and by (5.5), we get, for R sufficiently large,

p-1

1 i . _
J u’ < c(essinf u)P~?
|B2rl B
Bor p-1 p-1_a(-1)
7qm _ -5 ap(p-1) ~(5'-1) p2s’-1) p2  p2(@-D
< cR "D |AR/2| p2 " p2(-D) J b(x) J b(x)g(u, v) =0.
AR AR/2
Hence, u = 0 a.e. in RV, O

Remark 10. It is worth pointing out that, in the case a = b = 1, requesting the validity of condition (5.2a)
or (5.2b) of Theorem 8 is equivalent to hypothesis (4.11) of Theorem 3.

Furthermore, if a and b are nonnegative, periodic, continuous functions, then there exists M > 0 such
that

][ a(x)Tdx < M, { b(x)Sdx <M,
Ag)2 Agj2

see [4, Theorem 3.23] for further details. Hence, in this setting, the condition (5.2a) or (5.2b) of Theorem 8
reduces to

N[l_ (p—l—pl)(q—l—qz)] SmaX{er qql(p—1)+pp1(q—1—qz),
p2q1 p2q1
q+ppz(q—1)+qqz(p—1—p1)}
p2q1 ’

namely, we find again the same sufficient condition (4.11) of Theorem 3.

Corollary 4. Let p1 <p-1, g2 <q-1, p2q1 > (p—-1-p1)(q-1-q>), and suppose that a(x) = |x|° and
b(x) = |x|". Let (u, v) be a weak solution of (5.1) such that essinfy~ u = essinfy~ v = 0. Put

D=pg1-(p-1-p1)(g-1-¢q2),
as usual. If the condition
1
N<o5 max{qq1(p - 1) + p[p2q1 +P1(@-1- @)1 +0(p - 1)(q - 1 - q2) + nq:1(p - 1),
pp2(q-1)+qlp2g1 + @2(p -1 -p1)] +Opa(g - 1) +n(g - 1)(p - 1 - p1)}
holds, thenu = 0 orv = 0 a.e. in RV,

Proof. 1t is enough to apply Theorem 8 by taking into account that, for any r > 0 such that N - 6r > 0 and
s > O such that N — n1s > 0, it follows that

1 RN—Gr _ (R/z)N—Or
T dx = —6r dx = R—N _ R—Gr
][ a(x)""dx —|AR/2| J [x] x=c N_or c ,
AR/Z AR/Z
1 RN—qs —(R/2 N-ns
} b(x)Sdx=—— J x| dx = cR™N (R/2) = cR7"S,
|AR2l N-ns
AR/Z AR/Z
where ¢ denotes a positive constant. O
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