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Abstract It is extended to twisted spectral triples the fluctuations of the metric as
bounded perturbations of the Dirac operator that arises when a spectral triple is
exported between Morita equivalent algebras, as well as gauge transformations which
are obtained by the action of the unitary endomorphisms of the module implementing
the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators,
previously introduced to generate an extra scalar field in the spectral description of
the standard model of elementary particles, in fact follow from Morita equivalence
between twisted spectral triples. The law of transformation of the gauge potentials
turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted
fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For
a self-Morita equivalence, conditions are obtained in order tomaintain self-adjointness
that are solved explicitly for the minimal twist of a Riemannian manifold.
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1 Introduction

The gauge bosons of the standard model of elementary particles are described by
(quantum) fields that, from a mathematical view-point, are connections 1-forms for
a bundle over a (four dimensional) spin manifold M, with structure (gauge) group
U (1) × SU (2) × SU (3). Noncommutative geometry provides a framework to put the
Higgs field on the same footing—that is as a connection 1-form—or more precisely
as the component of a connection 1-form in the noncommutative (discrete) part of the
geometry. For this to make sense, one needs a notion of connection extended beyond
the usual manifold case, to the noncommutative setting.

In Connes approach [9], this is done starting with a spectral triple (A,H, D)where
A is an involutive algebra acting by bounded operators on a Hilbert space H, and
the Dirac operator D is a densely defined self-adjoint operator on H with compact
resolvent, such that the commutator1

δ(a) := [D, a] (1.1)

is bounded for any a in A (or in a dense subalgebra). The noncommutative analog
of the module of sections of a vector or tensor bundle is a A-module E with some
properties. Gauge fields are given by an �-valued connection on E , where � is a A-
bimodule of 1-forms. A natural choice of these, associated with the derivation (1.1),
is the A-bimodule

�1
D(A) :=

{∑
j
a j [D, b j ], a j , b j ∈ A

}
. (1.2)

1 As usual, when there is no risk of confusion, we identify an element a ofA with its representation π(a)

as a bounded operator on H.
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The simplest choice for E is the algebra A itself. A connection is then encoded fully
in a self-adjoint element ω in �1

D(A). The later acts on the Hilbert space H, so that
D + ω makes sense as an operator on H. By taking into account more structure, in
particular the real structure J , one refines the above definition and defines the gauged
Dirac operator as2

Dω := D + ω + ε′ JωJ−1 (1.3)

where ε′ = ±1 as dictated by the KO-dimension of the spectral triple. This is an
operator on H, that has all the properties required to make (A,H, Dω) a spectral
triple. The substitution of D by Dω is a fluctuation of the metric, the latter ‘associated’
with the starting D.

When applied to the spectral triple of the standardmodel, these fluctuations generate
the gauge fields of the electroweak and strong interactions, together with the Higgs
field [4]. There is, however, a part D′ of the corresponding Dirac operator which does
not fluctuate, that is

[D′, a] = 0 for any a ∈ A. (1.4)

This pointwas not relevant until the recent discoveryof theHiggs boson.Theprediction
for its mass coming from noncommutative geometry turned out not to be in agreement
with the experimental result. As a way out, one turns the component of D′ (which was
taken to be a constant parameter ν ∈ C) into a field σ ∈ C∞(M). Doing so, one
introduces a new scalar field in the standard model that eliminates some instability in
the Higgs potential, and provides a new parameter allowing one to fit the mass of the
Higgs [3].

The substitution ν → σ does not follow from an ordinary fluctuation of the met-
ric. Nevertheless, it may be obtained in a similar manner if one relaxes one of the
defining condition of a spectral triple,—the first-order condition. This proposal has
been developed in [5,6], and the phenomenological consequences have been investi-
gated in [7]. An alternative approach, following the “grand symmetry model” of [12],
has allowed in [13] to generate the field σ within the framework of twisted spectral
triples [11]: the field σ is obtained as a twisted version of a fluctuation of the met-
ric, with a twisted first-order condition. A twisted fluctuation of the metric comes
from substituting in the forms (1.2) the commutator [D, a]with a twisted commutator
[D, a]ρ := Da − ρ(a)D, using an automorphism ρ of A, resulting into a bimodule

�1
D(A, ρ) :=

{∑
j
a j [D, b j ]ρ, a j , b j ∈ A

}
(1.5)

The twisted-gauged Dirac operator is then defined as

Dωρ := D + ωρ + ε′ Jωρ J
−1 (1.6)

where ωρ ∈ �1
D(A, ρ) is a twisted 1-form such that the resulting operator (1.6) is

self-adjoint.

2 Usually, one denotes by A a self-adjoint element of �1
D(A) considered as a gauge connection. Here, we

use ω instead, in order to avoid a profusion of symbols “A” .
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Twisted spectral triples and twisted 1-forms were introduced in [11] to deal with
type III factors. In [14] we extended the construction to encompass the real structure J,
and showed that many properties of metric fluctuations still make sense in the twisted
case. In particular:

• Given a twisted spectral triple (A,H, D; ρ) and a twisted-gauged Dirac operator
Dωρ , the data (A,H, Dωρ ; ρ) is a real twisted spectral triple with the same real
structure and KO-dimension;

• Twistedfluctuations formamonoid:3 the twistedfluctuation Dωρ +ω′
ρ+ε′ Jω′

ρ J
−1

of Dωρ is the twisted fluctuation D + ω′′
ρ + ε′ Jω′′

ρ J
−1 of D with ω′′

ρ = ωρ + ω′
ρ .

However, important aspects and consequences of fluctuating the metric are yet to be
understood for the twisted case. In particular:

• Usual fluctuations appear as a particular case of a general construction of exporting
a spectral triple (A,H, D) to a Morita equivalent algebra B. The operator (1.3)
is obtained as the covariant derivative on the bundle E that implements a Morita
equivalence of A with itself. The twisted fluctuations in (1.6) mimic the expres-
sion for the non-twisted case, but their possible interpretation in terms of Morita
equivalence has not been addressed.

• Is there an interpretation of the bimodule �1
D(A, ρ) as a module of connection

1-forms?
• What is a gauge transformation in the twisted context?

In this paper, we show that Morita equivalence is directly implemented for twisted
spectral triples. The twisted-gaugedDirac operator Dωρ is—up to an endomorphism—
a covariant operator associated with a connection on the algebra A thought of as an
A-bimodule. This result is obtained in Sect. 3 by viewingA first as a rightA-module
(Corollary 3.6), then as a left A-module (Corollary 3.11), and finally as a bimodule,
taking into account the real structure (Proposition 3.13). In Sect. 4 we deal with gauge
transformations. These are implemented as in the non-twisted case by the action of
some unitary endomorphism u, the only difference being that the law of transformation
of gauge potential has to be twisted (Proposition 4.3). We also show in Proposition 4.5
that the twisted-gauged Dirac operator is obtained by the twisted adjoint action of the
operator Ad(u). This raises the question of the self-adjointness of the gauged-twisted
Dirac operator, which is investigated in Sect. 5. We work out in Proposition 5.2 some
conditions on the unitary u guaranteeing that this self-adjointness is preserved. These
conditions are solved for the case of minimal twist of a manifold (Proposition 5.4).
Interestingly, we obtain other solutions than the obvious ones (that is the unitaries
u invariant under the twist). Before that, we begin in Sect. 2 with some recalling of
twisted spectral triples.

In [2], there is a modified definition of a real spectral triple, in which only the reality
structure is generalized while remaining in the framework of usual spectral triples
(that is no twisted commutators between the Dirac operator and algebra elements). It
is shown there that this allows for fluctuations of Dirac operators, which do not change
the bimodule of one forms.

3 There is a misprint in the statement of this property in [14, Prop. 2.7]: Dρ in (2.30) there should be D.
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2 Twisted real spectral triples

This section collects well-known material on and properties of real twisted spectral
triples.

A twisted spectral triple is the datum (A,H, D) of an involutive algebra A acting
via a representation π on a Hilbert space H, with D an operator on H having com-
pact resolvent (or with a similar condition when A is not unital), together with an
automorphism ρ of A, such that the twisted commutator

[D, a]ρ := Da − ρ(a)D (2.1)

is bounded for any a inA. It is graded if there is a grading 
 ofH, that is an operator
such that 
 = 
∗, 
2 = 1, that commutes with A and anticommutes with D.

The real structure is an antilinear operator J such that

J 2 = ε1, J D = ε′DJ, J
 = ε′′
 J (2.2)

where the sign ε, ε′, ε′′ ∈ {1,−1} define the so-called KO-dimension of the spectral
triple. The operator J allows one to define a bijection between A and the opposite
algebra A◦,

a◦ := Ja∗ J−1, (2.3)

which is used to implement a right A-module structure on H

ψa := a◦ψ ∀ψ ∈ H, a ∈ A. (2.4)

This right action of A is asked to commute with the left action (the order-zero condi-
tion),

[a, Jb∗ J−1] = 0 ∀a, b ∈ A, (2.5)

thus turningH into a A-bimodule. In addition, one requires a twisted first-order con-
dition [14]:

[[D, a]ρ, Jb∗ J−1]ρ0 = 0 ∀a, b ∈ A (2.6)

where ρ◦ is the image of ρ under the isomorphism between Aut(A) and Aut(A◦)
given by

ρ 	→ ρ◦ with ρ◦(a◦) := (ρ−1(a))◦. (2.7)

This choice of isomorphism is dictated by the requirement made in [11] that the
twisting automorphism, rather than being a ∗-automorphism, it satisfies the condition:

ρ(a∗) = (ρ−1(a))∗. (2.8)

Equation (2.7) thus guarantees that “the automorphism commutes with the real struc-
ture”, since one has:

ρ◦(Jb∗ J−1) = ρ◦(b◦) = (ρ−1(b))◦ = J (ρ−1(b))∗ J−1 = Jρ(b∗)J−1. (2.9)
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Definition 2.1 A twisted spectral triple (A,H, D; ρ) together with a grading
, a real
structure J satisfying (2.2) as well as the order-zero condition (2.5), and the twisted
first-order condition (2.6) is called a real twisted spectral triple.

For ρ the identity automorphism, one gets back the usual notion of a real spectral
triple.

The set of twisted 1-forms is the A-bimodule �1
D(A, ρ) defined in (1.5) with

product
a · ωρ · b = ρ(a) ωρb ∀a, b ∈ A, ωρ ∈ �1

D(Aρ). (2.10)

The left action of A is twisted by ρ to guarantee the twisted commutator

δρ( · ) := [D, · ]ρ (2.11)

be a derivation of A in �1
D(A, ρ), that is (cf. [11])

δρ(ab) = ρ(a) · δρ(b) + δρ(a) · b. (2.12)

Thus, �1
D(A, ρ) is the A-bimodule generated by δρ ; and it acts as bounded operator

on H, since so do both A and [D,A]ρ . It is worth stressing a difference between the
right and left action of A on 1-forms when acting on H. By the very definition in
(2.10), one has

(ωρ · a)ψ = ωρaψ = ωρ(aψ), (2.13)

while
(a · ωρ)ψ = ρ(a)ωρψ 
= a(ωρψ). (2.14)

3 Twisted fluctuation by Morita equivalence

In the non-twisted case, the fluctuations of the metric arise as a way to export a spectral
triple (A,H, D) to an algebra B which is Morita equivalent toA, in a way compatible
with the real structure. An important role is played by a connection on a module that
is moved to the Hilbert space (Sect. 3.1) thus resulting into a gauged Dirac operator
(Sect. 3.2). This construction is extended to the twisted situation in Sects. 3.3–3.6. The
main result is Proposition 3.13, which shows that the twisted-gauged Dirac operator
(1.6) is obtained by Morita equivalence, in a way similar to the one for the usual
gauged Dirac operator (1.3).

3.1 Moving connections to Hilbert spaces

We recall how an �-valued connection on a right (or left) A-module E yields a map
∇ on E ⊗C H (or H ⊗C E), when both the A-bimodule � and the algebra A act on
H. This map does not pass to the tensor product E ⊗A H (or H ⊗A E). We get in
Propositions 3.1 and 3.2 compatibility conditions between the actions of A and �
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which guarantees that this lack ofA-linearity of ∇ is captured by the derivation δ that
generates �.

A derivation of an algebra A with value in a A-bimodule � is a map δ : A → �

such that
δ(ab) = δ(a) · b + a · δ(b) (3.1)

where · denotes the right and leftA-module structures of �. An �-valued connection
on a right A-module E is a map ∇ : E → E ⊗A � satisfying the Leibniz rule

∇(ηa) − ∇(η) · a = η ⊗ δ(a) ∀η ∈ E, a ∈ A, (3.2)

where the right action of A on E ⊗A � comes from the right module structure of �:

(η ⊗ ω) · a := η ⊗ (ω · a) ∀η ∈ E, ω ∈ �. (3.3)

When both A and � acts (on the left) on a Hilbert spaceH, we use the connection
∇ to define an operator (still denoted ∇) from E ⊗CH to itself. To this end, it is useful
to use a Sweedler-like notation: for any η ∈ E we write

∇(η) = η(0) ⊗ η(1) η(0) ∈ E, η(1) ∈ � (3.4)

where a summation is understood. By the action of � on H, there is a natural map

E ⊗C � × H → E ⊗C H, (η ⊗ ω)ψ = η ⊗ (ωψ), (3.5)

that induces a map

∇ : E ⊗C H → E ⊗C H (3.6)

defined by

∇(η ⊗ ψ) := (
η(0) ⊗ η(1)

)
ψ = η(0) ⊗ (η(1)ψ) ∀η ∈ E, ψ ∈ H. (3.7)

Somewhat abusing notation, this is often denoted as ∇(η)ψ .
This map cannot be extended to the tensor product E ⊗AH overA because there is

no reason that∇(ηa)ψ −∇(η)aψ vanishes. However, this incompatibility is captured
by the derivation δ, providing the actions of � and A onH are compatible.

Proposition 3.1 If the (left) actions of � and A on H are such that

(ω · a) ψ = ω(aψ), (3.8)

then the map ∇ in (3.7) satisfies the Leibniz rule

∇(ηa)ψ − ∇(η)aψ = η ⊗ δ(a)ψ ∀η ∈ E, a ∈ A, ψ ∈ H. (3.9)
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Proof In Sweedler notations, the Leibniz rule (3.2) reads

(ηa)(0) ⊗ (ηa)(1) − η(0) ⊗ (η(1) · a) = η ⊗ δ(a). (3.10)

Hence, using condition (3.8) in the second equality

∇(ηa)ψ − ∇(η)aψ = (ηa)(0) ⊗ (ηa)(1)ψ − η(0) ⊗ η(1)(aψ)

= (ηa)(0) ⊗ (ηa)(1)ψ − η(0) ⊗ (η(1) · a)ψ

= (
(ηa)(0) ⊗ (ηa)(1) − η(0) ⊗ (η(1) · a)

)
ψ

= (η ⊗ δ(a)) ψ.

Equation (3.9) follows by (3.5). 
�
Similarly, an�-valued connection on a leftA-module E is a map∇ : E → �⊗A E

such that
∇(aη) − a · ∇(η) = δ(a) ⊗ η ∀a ∈ A, η ∈ E, (3.11)

with left multiplication byA on � ⊗A E coming from the left module structure of �,

a · (ω ⊗ η) := (a · ω) ⊗ η ∀η ∈ E, ω ∈ �. (3.12)

For any η ∈ E , we shall now write with Sweedler-like notation

∇(η) = η(−1) ⊗ η(0) η(0) ∈ E, η(−1) ∈ �. (3.13)

WhenA acts (on the right) and� acts (on the left) on aHilbert spaceH, the connection
on the left module defines a map similar to the one in (3.6) with minimal changes. The
map

H × � ⊗C E → H ⊗C E, (ψ)(ω ⊗ η) = (ωψ) ⊗ η, (3.14)

induces now a map ∇ : H ⊗C E → H ⊗C E

∇(ψ ⊗ η) := (ψ)(η(−1) ⊗ η(0)) = (η(−1)ψ) ⊗ η(0) ∀η ∈ E, ψ ∈ H. (3.15)

We denote this map as ψ∇(η). Again, the obstruction to extend (3.15) to H ⊗A E is
captured by the derivation δ, if the actions of � and A are compatible.

Proposition 3.2 If the left action of � and the right action of A on H are such that

(a · ω)ψ = ω(ψa), (3.16)

then the map ∇ in (3.15) satisfies the Leibniz rule

ψ∇(aη) − ψa∇(η) = δ(a)ψ ⊗ η. (3.17)
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Proof In Sweedler notations, the left Leibniz rule (3.11) becomes

(aη)(−1) ⊗ (aη)(0) − (a · η(−1)) ⊗ η(0) = δ(a) ⊗ η. (3.18)

Using condition (3.16) in the second equality:

ψ∇(aη) − ψa∇(η) = (aη)(−1)ψ ⊗ (aη)(0) − η(−1)(ψa) ⊗ η(0)

= (aη)(−1)ψ ⊗ (aη)(0) − (a · η(−1))ψ ⊗ η(0)

= (ψ)
(
(aη)(−1) ⊗ (aη)(0) − (a · η(−1)) ⊗ η(0)

)

= (ψ)
(
δ(a) ⊗ η

)
.

Equation (3.17) follows by (3.14). 
�

3.2 The non-twisted case

For completeness, the details of the construction are reported in Sect. 1, while here we
recall the important steps. Following [8], a fluctuation from D to the gauged operator
Dω given in (1.3) with ω ∈ �1

D(A), is seen as a two-step process: starting with a
real spectral triple (A,H, D), J one first implements a self-Morita equivalence of A
using as module the algebra itself, viewed as a right A-module ER = A. This yields
a new spectral triple (A,H, D + ω) with ω ∈ �1

D(A). However, this is not a real
spectral triple. To correct this lacking, one repeats the operation using still the algebra
as a module, but this time as a left A-module EL = A. The iteration yields the real
spectral triple (A,H, Dω = D + ω + JωJ−1).

Recall that at a first level, the algebra B is Morita equivalent to the unital algebra
A if it is isomorphic to the algebra of A-linear (adjointable) endomorphisms of a
finite projective (right say) A-module ER , that is B � EndA(ER). Assuming ER is a
hermitian module, that is it carries an A-hermitian structure, one use this structure to
make the tensor product

HR = ER ⊗A H

into a Hilbert space (with Hilbert product recalled in (A.2)), on which the algebra B
acts on the left in a natural manner. The “simplest” action of D onHR , that is

DR(η ⊗ ψ) := η ⊗ Dψ ∀η ∈ ER, ψ ∈ H (3.19)

is not compatible with the tensor product of A; it needs be corrected by a connection
∇ with value in �1

D(A). The resulting covariant derivative, DR := DR + ∇, is well
defined onHR . With the notation (3.4) for the connection, this operator can be written
as

DR(η ⊗ ψ) = η ⊗ Dψ + η(0) ⊗ (η(1)ψ) ∀η ∈ E, ψ ∈ H. (3.20)
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When∇ is self-adjoint, the datum (B,HR, DR) is a spectral triple [1]. It could be said
to be ‘Morita equivalent’ to the starting (A,H, D). However, when (A,H, D) is a
real spectral triple, its real structure J is not a real structure for (B,HR, DR). To cure
that, one uses the right action (2.4) of A on H to fluctuate a second time, using a left
module EL endowed with an A-hermitian structure. One considers the Hilbert space

HL := H ⊗A EL

on which the simple operator,

DL(ψ ⊗ η) := Dψ ⊗ η, (3.21)

is now made compatible with the tensor product thanks to a (left) connection ∇◦. The
resulting covariant operator DL+∇◦ is well defined onHL , with an expression similar
to that in (3.20).

Combining the two constructions, one obtains an operator D′ = D + ∇ + ∇◦ on a
Hilbert space HRL = ER ⊗A H ⊗A EL . The real structure requires that ∇ = ∇◦.

For a self-Morita equivalence of A, that is B � A, one gets that D′ is the gauged
operator Dω defined in (1.3), for a self-adjoint elementω in�1

D(A). Thus, the spectral
triple (A,H, Dω) obtained by fluctuation of the metric is self-Morita equivalent to the
starting one (A,H, D).

3.3 Lifting automorphisms

To adapt the construction above to the twisted case, one needs some action of D on
HR and HL whose non-compatibility with the tensor product can be corrected by
derivations with value in �1

D(A, ρ). Such operators are obtained in Propositions 3.5
and 3.9 below, by twisting the operators DR and DL of (3.19) and (3.21) with a lift
of the automorphism ρ to the module.

Assumption 3.3 With a right A-module E (resp. a left A-module E), the automor-
phism ρ can be lifted to E in the sense that there is an invertible linear map ρ̃ : E → E
such that,

ρ̃(ηa) = η ρ(a) resp. ρ̃(aη) = ρ(a) η ∀η ∈ E, a ∈ A. (3.22)

Example 3.4 With a right A-module ER = pAN for a projection p = (p jk) ∈
MatN (A), which is invariant for ρ, that is ρ(p jk) = p jk , one defines the action of
ρ ∈ Aut(A) on E by

ρ̃(η) := p

⎛
⎜⎝

ρ(η1)
...

ρ(ηN )

⎞
⎟⎠ for η = p

⎛
⎜⎝

η1
...

ηN

⎞
⎟⎠ ∈ ER, η j ∈ A. (3.23)
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Similarly, the action of ρ on a leftA-module EL = AN p with an invariant projection
is given by

ρ̃(η) := (ρ(η1), . . . , ρ(ηN )) p for η = (η1, . . . , ηN ) p ∈ EL , η j ∈ A. (3.24)

In particular, for the trivial module ER = EL � A (that is p = 1) which is the case
relevant for the self-Morita equivalence, then ρ̃ is simply the automorphism ρ.

3.4 Morita equivalence by right module

We first investigate the implementation of Morita equivalence for a twisted spectral
triple (A,H, D; ρ) using a hermitian finite projective rightA-module ER (definitions
are in Sect. 1).

Consider the Hilbert spaceHR = ER ⊗A H. As “natural action” of D onHR , one
considers the composition of DR in (3.19) with the endomorphism ρ of Assumption
3.3, that is,

((ρ̃ ⊗ 1) ◦ DR)(η ⊗ ψ) = ρ̃(η) ⊗ Dψ ∀η ∈ ER, ψ ∈ H. (3.25)

This is not compatible with the tensor product over A since

((ρ̃ ⊗ 1) ◦ DR)(ηa ⊗ ψ) − ((ρ̃ ⊗ 1) ◦ DR)(η ⊗ aψ)

= ρ̃(ηa) ⊗ Dψ − ρ̃(η) ⊗ Daψ

= ρ̃(η)ρ(a) ⊗ Dψ − ρ̃(η) ⊗ Daψ

= ρ̃(η) ⊗ ρ(a)Dψ − ρ̃(η) ⊗ Daψ

= −ρ̃(η) ⊗ [D, a]ρψ (3.26)

has no reason to vanish. The r.h.s. of (3.26) is—up to a twist—the action on HR of
the derivation (2.11). So to turn (3.25) into a well-defined operator onHR , one should
proceed as in the non-twisted case and add the action of a connection.

Proposition 3.5 Let ∇ be an �1
D(A, ρ)-valued connection on ER. Then, the operator

D̃R := (ρ̃ ⊗ 1) ◦ (DR + ∇) (3.27)

is well defined on HR, with ∇ the map on ER ⊗ H induced by the connection, as in
(3.7).

Proof The module law (2.10) guarantees that (ωρ · a)ψ = ωρ(aψ), so that by Propo-
sition 3.1 the map ∇ satisfies the Leibniz rule

∇(ηa)ψ − ∇(η)aψ = ∇(ηa ⊗ ψ) − ∇(η ⊗ aψ) = η ⊗ δρ(a)ψ. (3.28)

Therefore,

((ρ̃ ⊗ 1) ◦ ∇)(ηa ⊗ ψ) − ((ρ̃ ⊗ 1) ◦ ∇)(η ⊗ aψ) = ρ̃(η) ⊗ δρ(a)ψ. (3.29)
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Putting this together with (3.26), one obtains

D̃R(ηa ⊗ ψ) − D̃R(η ⊗ aψ) = 0, ∀a ∈ A, η ∈ ER, ψ ∈ H. (3.30)

Hence the result. 
�
The explicit form of D̃R , with the Sweedler-like notation of (3.7), is

D̃R(η ⊗ ψ) := ρ̃(η) ⊗ Dψ + ρ̃(η(0)) ⊗ (η(1)ψ), ∀η ∈ ER, ψ ∈ H. (3.31)

For the case of a self-Morita equivalence, that isB = ER = A, this operator reduces
to a bounded perturbation of D by elements in �1

D(A, ρ).

Corollary 3.6 In case ER is the algebra A itself, then D̃R = D + ωρ , with ωρ ∈
�1

D(A, ρ).

Proof Clearly now ρ̃ = ρ. With δρ( · ) := [D, ·]ρ , as for the non-twisted case recalled
in Sect. 1, any connection ∇ on ER = A decomposes as

∇ = ∇0 + ωρ where

{∇0(a) = 1 ⊗ δρ(a) is the Grassmann connection,
ωρ(a) = 1 ⊗ ωρ a with ωρ ∈ �1

D(A, ρ).

(3.32)
Hence

D̃R(a ⊗ ψ) := (ρ ⊗ 1)
(
a ⊗ Dψ + 1 ⊗ δρ(a)ψ + 1 ⊗ ωρaψ

)
, (3.33)

= ρ(a) ⊗ Dψ + 1 ⊗ δρ(a)ψ + 1 ⊗ ωρaψ

= 1 ⊗ (D + ωρ)aψ.

Identifying a ⊗ ψ = 1⊗ aψ with aψ and 1⊗ (D + ωρ)aψ with (D + ωρ)aψ , one
gets that D̃R acts on H � A ⊗A H as D + ωρ . 
�
The operator D + ωρ has a compact resolvent, being a bounded perturbation of an
operator with compact resolvent; and [D + ωρ, a]ρ = [D, a]ρ + [ωρ, a]ρ is bounded
for any a ∈ A, since ωρ is bounded. Furthermore, any grading 
 of (A,H, D) will
anticommute with ωρ , hence with D + ωρ . Thus, as soon as ωρ is self-adjoint, one
gets a twisted spectral triple

(A,H, D + ωρ; ρ). (3.34)

However, and as it happens for the non-twisted case, a priori a real structure J of
(A,H, D; ρ) needs not be a real structure for (3.34). Indeed, J (D + ωρ) = ε′(D +
ωρ)J if and only if ωρ = Jωρ J−1 which has no reason to be true due to the following
lemma.

Lemma 3.7 Let (A,H, D; ρ) together with J be a real twisted spectral triple. With

ωρ =
∑

j
a j [D, b j ]ρ ∈ �1

D(A, ρ), (3.35)
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one has
Jωρ J

−1 = ε′ ∑
j
(a∗

j )
◦[D, (b∗

j )
◦]ρ◦ . (3.36)

Proof Without loss of generality, we may take ωρ = a[D, b]ρ . Then

Jωρ J
−1 = Ja[D, b]ρ J−1 = Ja J−1 J [D, b]ρ J−1 = (a∗)◦ J [D, b]ρ J−1

= (a∗)◦(J DbJ−1 − Jρ(b)DJ−1)

= ε′(a∗)◦(DJbJ−1 − Jρ(b)J−1D)

= ε′(a∗)◦(DJbJ−1 − ρ◦(JbJ−1)D

= ε′(a∗)◦[D, (b∗)◦]ρ◦ , (3.37)

where we used (2.9) in the fourth line. 
�
To implement the self-Morita equivalence of A in a way which is compatible with

the real structure, one proceeds as in the non-twisted case, and fluctuates the triple
(3.34) using also a left-module structure thus considering altogether an A-bimodule
E .

3.5 Morita equivalence by left module

Let (A,H, D; ρ), J be a real twisted spectral triple.Given a leftA-moduleEL , the right
A-module structure (2.4) ofH allows one to define the Hilbert spaceHL = H⊗A EL
with Hilbert product recalled in (A.17). As an action of D onH, we consider the twist
of the action (3.21) by the endomorphism ρ̃−1, following Assumption 3.3:

(1 ⊗ ρ̃−1) ◦ DL : HL → HL , ψ ⊗ η → Dψ ⊗ ρ̃−1(η). (3.38)

As before, this is not compatible with the tensor product since

(
(1 ⊗ ρ̃−1)◦DL

)
(ψ ⊗ aη) − (1 ⊗ ρ̃−1) ◦ DL(ψa ⊗ η)

= Dψ⊗ ρ̃−1(aη) − D(ψa)⊗ ρ̃−1(η)

= (Dψ)ρ−1(a) ⊗ ρ̃−1(η) − Da◦ψ ⊗ρ̃−1(η)

= (ρ−1(a))◦Dψ ⊗ ρ̃−1(η) − Da◦ψ ⊗ ρ̃−1(η)

= −([D, a◦]ρ◦ψ) ⊗ ρ̃−1(η), (3.39)

where in the last line we used (2.7). Again, equation (3.39) has no reason to vanish.
In order to correct it via a connection, one needs to check that [D, a◦]ρ◦ is actually a
derivation.

Lemma 3.8 The twisted commutator

δ◦
ρ(a) := [D, a◦]ρ◦ (3.40)
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is a derivation of A in the A-bimodule

�1
D(A◦, ρ◦) :=

{ ∑
j
a◦
j [D, b◦

j ]ρ◦, a◦
j , b

◦
j ∈ A◦}, (3.41)

with product law

a · ω◦
ρ · b := ρ◦(b◦) ω◦

ρ a
◦ ∀a, b ∈ A, ω◦

ρ ∈ �1
D(A◦, ρ). (3.42)

Proof By explicit computation of the twisted commutator, one has

δ◦
ρ(ab) = [D, b◦a◦]ρ◦ = ρ◦(b◦)[D, a◦]ρ◦ + [D, b◦]ρ◦a◦ = δ◦

ρ(a◦) · b + a · δ◦
ρ(b).
(3.43)

To check that (3.41) is aA-bimodule, first notice that by construction it is stable under
the left multiplication by A◦, hence under the right multiplication by A defined by
(3.42). In addition,

ω◦ · (ab) = ρ◦((ab)◦) ω◦ = ρ◦(b◦)ρ◦(a◦)ω◦ = (ω◦ · a) · b, (3.44)

showing that �1
D(A◦, ρ◦) is a right A-module. Stability for the left multiplication by

A follows from (3.43):

a · [D, b◦]ρ◦ = [D, b◦]ρ◦a◦ = [D, (ab)◦]ρ◦ − [D, a]◦ρ · b. (3.45)

The left A-module structure is obtained checking that

(ab) · ω◦ = w◦(ab)◦ = w◦b◦a◦ = (b · ω◦)a◦ = a · (b · ω◦)). (3.46)

Finally, the bimodule structure follows from

(a · ω◦) · b = (ω◦
ρa

◦) · b = ρ◦(b◦) ω◦
ρ a

◦ = (ω◦
ρ · b)a◦ = a · (ω◦

ρ · b). (3.47)

This finishes the proof. 
�
Therefore, the r.h.s. of (3.39) is—up to a twist—the action onHL of the derivation

δ◦
ρ . And once again, in order to define a linear operator on HL using D, one needs to
correct the action (3.38) with a connection, this time with value in �1

D(A◦, ρ◦).

Proposition 3.9 Let∇◦ be an�1
D(A◦, ρ◦)-valued connection on themodule EL . Then

the following operator is well defined on HL ,

D̃L := (1 ⊗ ρ̃−1) ◦ (DL + ∇◦), (3.48)

where ∇◦ denotes the map induced on H ⊗C EL by the connection, as in (3.15).
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Proof By (3.42), the actions of �1
D(A◦, ρ) andA onHL are compatible as in (3.16),

that is,
(a · ω◦

ρ)ψ = ω◦
ρa

◦ψ = ω◦
ρ(ψa). (3.49)

Hence by Proposition 3.2 the connection ∇◦ satisfies the Leibniz rule

∇◦(ψ ⊗ aη) − ∇◦(ψa ⊗ η) = δ◦
ρ(a)ψ ⊗ η. (3.50)

Therefore

(
(1 ⊗ ρ̃−1) ◦ ∇◦) (ψ ⊗ aη) −

(
(1 ⊗ ρ̃−1) ◦ ∇̃

)
(ψa ⊗ η) = δ◦

ρ(a)ψ ⊗ ρ−1(η).

(3.51)
Together with (3.39) this yields D̃R(ψ ⊗ aη) − D̃R(ψa ⊗ η) = 0, hence the result. 
�

With the Sweedler-like notations of (3.15), the explicit form of D̃L is

D̃L(ψ ⊗ η) := Dψ ⊗ ρ̃−1(η) + (η(−1)ψ) ⊗ ρ̃−1(η(0)). (3.52)

To get the more friendly D̃L for a self-Morita equivalence, one needs a relation
between �1

D(A, ρ) and �1
D(A◦, ρ◦) similar to the one between �1

D(A) and �1
D(A◦)

given in Lemma A.3.

Lemma 3.10 Any ω◦
ρ = ∑

j a
◦
j [D, b◦

j ]ρ◦ in �1
D(A◦, ρ◦) acts onH as

ω◦
ρ = ε′ Jωρ J

−1 (3.53)

for ωρ = ∑
j a

∗
j [D, b∗

j ]ρ ∈ �1
D(A, ρ).

Proof Without loss of generality, we may take ω◦
ρ = a◦[D, b◦]ρ◦ . Using equation

(2.9) one gets

a◦[D, b◦]ρ◦ = a◦Db◦ − a◦ρ◦(b◦)D = Ja∗ J−1DJb∗ J−1 − Ja∗ J−1 Jρ(b∗)J−1D,

= ε′ (Ja∗Db∗ J−1 − Ja∗ρ(b∗)DJ−1
)

= Jωρ J
−1 (3.54)

where ωρ := a∗[D, b∗]ρ ∈ �1
D(A). 
�

In case of a self-Morita equivalence B = EL = A, then D̃L is just a bounded per-
turbation of D by �1

D(A◦, ρ), similarly to the right module case of Corollary 3.6.

Corollary 3.11 In case EL is the algebra itself, then

D̃L = D + ε′ Jωρ J
−1 with ωρ ∈ �1

D(A, ρ). (3.55)
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Proof Any �1
D(A◦, ρ)-valued connection ∇̃◦ on EL = A decomposes as

∇◦ = ∇◦
0 + ω◦

ρ where

{∇◦
0 (a) = δ◦

ρ(a) ⊗ 1 is the Grassmann connection,
ω◦

ρ(a) = (ω◦
ρa

◦) ⊗ 1 where ω◦
ρ ∈ �1

D(A◦, ρ).

(3.56)
Hence

D̃L(ψ ⊗ a) = Dψ ⊗ ρ−1(a) + δ◦
ρ(a)ψ ⊗ 1 + ω◦

ρa
◦ψ ⊗ 1,

= (Dψ)ρ−1(a) ⊗ 1 + (Da◦ − ρ◦(a◦)D)ψ ⊗ 1 + ω◦
ρa

◦ψ ⊗ 1,

= (ρ−1(a))◦Dψ ⊗ 1 + (Da◦ − ρ◦(a◦)D)ψ ⊗ 1 + ω◦
ρa

◦ψ ⊗ 1

= Da◦ψ ⊗ 1 + ω◦
ρa

◦ψ ⊗ 1, (3.57)

where in the last line we used (2.7). By identifying H ⊗A A � H, that is ψ ⊗ a =
a◦ψ ⊗ 1 with ψ and similarly for (Da◦ψ) ⊗ 1 and (ω◦

ρa
◦ψ) ⊗ 1, one gets that D̃L

is the operator D + ω◦
ρ . The results follows from Lemma 3.10, which states that ω◦

ρ

acts as ε′ Jωρ J−1 for some ωρ ∈ �1
D(A, ρ). 
�

For reasons similar to those of the right module case, and explained below Corollary
3.6, for a self-adjoint ωρ one has that the triple (A,H, D + ε′ Jωρ J−1) is a (graded)
twisted spectral triple failing to admit J as a real structure, thus the need of a bimodule.

Remark 3.12 In (3.38), we have used ρ−1 rather than ρ, so that the failure of linearity
is captured by δ◦

ρ . Twisting by ρ, one would arrive at δ◦
ρ−1 . Alternatively one may

require that ρ is a ∗-automorphism: equation (2.8) then implies ρ−1 = ρ.

3.6 Bimodule and the real structure

To make the real structure compatible with Morita equivalence of twisted spectral
triples, one combines the two constructions above in a way similar to the non-twisted
case. Firstly, fluctuate the real twisted spectral triple (A,H, D; ρ), J using the right
module ER = A, then fluctuate the resulting triple (3.34) via the left module EL = A.
This yields the triple (A,H, D′) where

D′ = D + ωL
ρ + ε′ JωR

ρ J−1 (3.58)

with ωR
ρ and ωL

ρ two elements of �1
D(A, ρ) that are a priori distinct.

Proposition 3.13 It holds that D′ J = ε′D′ J if and only if there exists an element ωρ

in �1
D(A, ρ) such that

D′ = D + ωρ + ε′ Jωρ J
−1. (3.59)

Proof From (3.58), one finds that J D′ = ε′D′ J if and only if

(ωR
ρ − ωL

ρ ) − ε′ J (ωR
ρ − ωL

ρ )J−1 = 0. (3.60)
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Adding half of this expression to the r.h.s. of (3.58), one gets

D′ = D + 1
2 (ω

R
ρ + ωL

ρ ) + ε′ J 1
2 (ω

R
ρ + ωL

ρ )J−1. (3.61)

Hence the result with ωρ := 1
2 (ω

R
ρ + ωL

ρ ). 
�
Proposition 3.13 shows that Morita equivalence together with the real structure

yields the twisted fluctuation (1.6). This answers the first question raised in the intro-
duction, and puts the twisted-gauged Dirac operator D′ = Dωρ on the same footing
as the covariant operator Dω, namely as a covariant derivative associated with a con-
nection. The only difference is that, in the twisted case, the action DR,L of the Dirac
operator onHR,L and the action of the�1

D(A, ρ)-valued connection have to be twisted
by (1 ⊗ ρ̃) and (1 ⊗ ρ̃−1).

Remark 3.14 It is worth stressing that fluctuations by Morita equivalence translate to
the twisted case because the conditions (3.8) and (3.16), that allow one to pass the
Leibniz rule from the connection, as a map on E , to the connection as a map on ER ⊗H
or H ⊗ EL , are still valid in the twisted case, that is it holds that

(ωρ · a)ψ = ωρaψ = ωρ(aψ), ψ(a · ω◦
ρ) = ω◦

ρ a
◦ψ = (ψa)ω◦

ρ. (3.62)

Remark 3.15 By choosing the Grassmann connection, that isω = 0 in Corollaries 3.6
and 3.11, one gets D̃L = D̃R = D, so that D′ = D in (3.58). In other terms—and as
in the non-twisted case (see Remark A.6)—implementing the self-Morita equivalence
of A in a twisted spectral triple with the Grassmann connection yields no fluctuation
Dωρ = D.

4 Twisted gauge transformation

A gauge transformation on a module E is the action of a unitary endomorphism u of
E on a �-valued connection ∇ on the module (see Sect. A.2 for details),

∇ → ∇u := u∇u∗ u ∈ U(E). (4.1)

Given a spectral triple (A,H, D), with E = A and � = �1
D(A), a gauge transfor-

mation by u = u∗ a unitary element of A, amounts to substituting the gauged Dirac
operator D + ω + J ω J−1 with D + ωu + J ωu J−1 where

ωu = u[D, u∗] + u ω u∗. (4.2)

(see (A.52)). This transformation maps a self-adjoint ω ∈ �1
D(A) to a self-adjoint

ωu ∈ �1
D(A), and gives the usual transformation rule of the gauge potential when

applied to almost commutative geometry (that is the product of a manifold by a finite
dimensional spectral triple).

It is clear that (4.2) cannot be valid in the twisted case, when one considers a con-
nection with value in the bimodule of twisted 1-forms. Indeed, given ωρ ∈ �1

D(A, ρ),

123

17



G. Landi, P. Martinetti

there is no reason for u[D, u∗] + u ωρ u∗ to be in �1
D(A, ρ), because [D, u∗] has no

reason to be in �1
D(A, ρ) (let alone to be a bounded operator). We show in Sect. 4.1

that a gauge transformation (4.1) in fact substitutes ωρ in the twisted-gauged Dirac
operator Dωρ = D + ωρ + ε′ Jωρ J−1 with

ωu
ρ := ρ(u)[D, u∗]ρ + ρ(u)ωρu

∗. (4.3)

Furthermore, we show in Sect. 4.2 that a gauge transformation is equivalent to the
twisted conjugate action on the Dirac operator of the adjoint representation (A.55) of
the unitaries of A, that is,

Dωu
ρ

= ρ(U )DωρU
∗ for U = Ad(u), u ∈ U(A). (4.4)

4.1 Transformation of the gauge potential

In all this section, (A,H, D; ρ), J is a real twisted spectral triple, E a hermitian
A-module and U(E) its group of unitary endomorphisms.

Lemma 4.1 Let ∇ be a �1
D(A, ρ)-valued connection on E . Then, for any u ∈ U(E),

one has

(ρ̃ ⊗ 1)∇u =(ρ̃ ◦ u)∇u∗ for a right module, (4.5)

(1 ⊗ ρ̃) ∇u =(ρ̃ ◦ u)∇u∗ for a left module, (4.6)

with ∇u the gauge transformation (4.1) and ρ̃ the endomorphism of E in the Assump-
tion 3.3. In particular, taking for E the algebra itself, one gets

(ρ ⊗ 1)∇u(a) = ρ(u) ⊗ δρ(u∗a) + ρ(u) ⊗ ωρu
∗a for E = ER = A as right module,

(1 ⊗ ρ)∇u(a) = δ◦
ρ(au) ⊗ ρ(u∗) + ω◦

ρ(au)◦ ⊗ ρ(u∗) for E = EL = A as left module,

where now u is a unitary element ofA, while ωρ ∈ �1
D(A, ρ) and ω◦

ρ ∈ �1
D(A◦, ρ◦)

are the 1-forms associated with ∇ as defined in Corollaries 3.6 and 3.11.

Proof Assume E is a rightA-module. For any η ∈ E and u ∈ U(E), write∇(u∗(η)) =
ηu(0) ⊗ ηu(1) with ηu(0) ∈ E and ηu(1) ∈ �1

D(A, ρ) (with an implicit sum). By (A.40), one
gets on the one hand

(
(ρ̃ ⊗ 1)(u∇u∗)

)
(η) = (ρ̃ ⊗ 1)

(
u(ηu(0)) ⊗ ηu(1)

)
= ρ̃(u(ηu(0))) ⊗ ηu(1), (4.7)

while on the other hand

(
(ρ̃ ◦ u)∇u∗) (η) = (ρ̃ ◦ u)(ηu(0) ⊗ ηu(1)) =

(
ρ̃ ◦ u(ηu(0))

)
⊗ ηu(1) = ρ̃(u(ηu(0))) ⊗ ηu(1). (4.8)

Hence (4.5). The proof is similar for a left A-module.
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For the second part of the lemma, for any a ∈ ER � A with ∇ = ∇0 + ωρ , by
(A.47) and (3.32) one writes the r.h.s. of (4.5) as

(
(ρ ◦ u)∇u∗) (a) = ((ρ ◦ u)∇) (u∗a) = (ρ ◦ u)

(∇0(u
∗a) + ωρ(u∗a)

)
,

= (ρ ◦ u)(1 ⊗ δρ(u∗a) + 1 ⊗ ωρu
∗a)

= ρ(u) ⊗ δρ(u∗a) + ρ(u) ⊗ ωρu
∗a. (4.9)

Similarly, for a ∈ EL � Awith ∇ = ∇◦
0 +ω◦

0, by (A.47) and (3.56), the r.h.s. of (4.6)
reads

(
(ρ ◦ u)∇u∗) (a) = ((ρ ◦ u)∇) (au) = (ρ ◦ u)

(∇◦
0 (au) + ω◦

ρ(au)
)
,

= (ρ ◦ u)(δ◦
ρ(au) ⊗ 1 + ω◦

ρ(au)◦ ⊗ 1)

= δ◦
ρ(au) ⊗ ρ(u∗) + ω◦

ρ(au)◦ ⊗ ρ(u∗). (4.10)

Hence the result. 
�
A gauge transformation (4.1) amounts to substituting (ρ̃ ⊗1)◦∇ with (ρ̃ ⊗1)◦∇u in
the definition (3.27) of D̃R , and (1⊗ ρ̃−1)◦∇◦ with (1⊗ ρ̃−1)◦∇◦u in the definition
(3.48) of D̃L . For the cases E = A, one obtains the following explicit formulas.

Proposition 4.2 For a gauge transformation with a unitary u ∈ A, the operators
D̃R = D + ωρ and D̃L = D + ω◦

ρ of Corollaries 3.6 and 3.11 are mapped to

D̃u
R = D + ωu

ρ and D̃u
L = D + ω◦

ρ
u where the transformed twisted 1-forms are given

by

ωu
ρ := ρ(u)[D, u∗]ρ + ρ(u) ωρ u

∗ (4.11)

ω◦
ρ
u := ρ◦(u∗◦)[D, u◦]ρ◦ + ρ◦(u∗◦) ω◦

ρ u
◦. (4.12)

Proof By Lemma 4.1, substituting ∇ with ∇u in (3.33) yields the operator

D̃u
R(a ⊗ ψ) = ρ(a) ⊗ Dψ + ρ(u) ⊗ δρ(u∗a)ψ + ρ(u) ⊗ ωρu

∗aψ,

= 1 ⊗ (
ρ(a)D + ρ(u)[D, u∗a]ρ

)
ψ + 1 ⊗ ρ(u)ωρu

∗aψ,

= 1 ⊗ (
D + ρ(u)[D, u∗]ρ

)
aψ + 1 ⊗ ρ(u)ωρu

∗aψ, (4.13)

where in the last line we used

ρ(a)D + ρ(u)[D, u∗a]ρ = ρ(u)Du∗a = (D + ρ(u)[D, u∗]ρ)a. (4.14)

Identifying a ⊗ ψ = 1 ⊗ aψ with aψ in A ⊗A H � H, Eq. (4.13) shows that D̃u
R

acts on H as D + ωu
ρ with ωu

ρ as in (4.11).
Similarly, substituting ∇◦ with ∇◦ in (3.57) yields the operator

D̃u
L (ψ ⊗ a)

= Dψ ⊗ ρ−1(a) + δ◦(au)ψ ⊗ ρ−1(u∗) + ω◦
ρ(au)◦ψ ⊗ ρ−1(u∗),
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=
(
(ρ−1(a))◦D + (ρ−1(u∗))◦[D, (au)◦]ρ◦

)
ψ ⊗ 1 + (ρ−1(u∗))◦ω◦

ρ(au)◦ψ ⊗ 1,

= (
ρ◦(a◦)D + ρ◦(u∗◦)[D, (au)◦]ρ◦

)
ψ ⊗ 1 + ρ◦(u∗◦)ω◦

ρ(au)◦ψ ⊗ 1,

=
(
D + ρ◦(u∗◦

)[D, u◦]ρ◦
)
a◦ψ ⊗ 1 + ρ◦(u∗◦)ω◦

ρu
◦a◦ψ ⊗ 1, (4.15)

where we used (2.7) and, in the last line,

ρ◦(a◦)D + ρ◦(u∗◦)[D, (au)◦]ρ◦ = ρ◦(u∗◦)D(au)◦ = (
D + ρ◦(u∗◦)[D, u◦]ρ◦

)
a◦. (4.16)

Identifying ψ ⊗ a = a◦ψ ⊗ 1 with a◦ψ inH ⊗A A � H Eq. (4.15) shows that D̃u
L

acts on H as D + ω◦
ρ
u , with ω◦

ρ
u as defined in (4.12). 
�

Proposition 4.3 In a twisted spectral triple (A,H, D; ρ), the law of transformation
of the gauge potential is ωρ → ωu

ρ , with ωu
ρ given in (4.3).

Proof By Lemma 3.10, we substitute ω◦
ρ in (4.12) with ε′ JωL

ρ J−1, with ωL
ρ ∈

�1
D(A, ρ). Explicitly, using (2.7) and (2.8) to write

ρ◦(u∗◦) = (ρ−1(u∗))◦ = (ρ(u)∗)◦ = Jρ(u)J−1, (4.17)

one obtains

ω◦
ρ
u = ρ◦(u∗◦)[D, u◦]ρ◦ + ρ◦(u∗◦)ω◦

ρu
◦

= Jρ(u)J−1[D, u◦]ρ◦ + Jρ(u)J−1ω◦
ρu

◦

= ε′ J
(
ρ(u)[D, u∗]ρ + ρ(u) ωL

ρ u∗) J−1 = ε′ J (ωL
ρ )u J−1, (4.18)

where in the third line we used again (4.17) to write

[D, u◦]ρ◦ = Du◦ − ρ◦(u◦)D = DJu∗ J−1 − Jρ(u∗)J−1D = ε′ J [D, u∗]ρ J−1. (4.19)

Therefore, with the notation of Proposition 3.13, one has that ωρ = 1
2 (ω

R
ρ + ωL

ρ ) is
mapped under a gauge transformation to

1
2 ((ω

R
ρ )u + (ωL

ρ )u) = ρ(u)[D, u∗]ρ + 1
2ρ(u)(ωR

ρ + ωL
ρ )u∗,

= ρ(u)[D, u∗]ρ + ρ(u)ωρu
∗, (4.20)

that is ωu
ρ as defined in (4.3). 
�

The transformation of the gauge potential of a twisted spectral triple is thus the usual
gauge transformation (A.52), in which the left action of u and the commutator have
been twisted by the automorphism. This suggests that a twisted fluctuation may also
be obtained by twisting the left action of Ad(u) in (A.56).
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4.2 Twisted action of unitaries

Let Ad(u) = u Ju J−1 denote the adjoint action on H of a unitary u ∈ A as recalled
in (A.55):

Ad(u)ψ := u ψ u∗ = u Ju J−1ψ ∀ψ ∈ H. (4.21)

We show in Proposition 4.5 that a twisted conjugation by Ad(u) of a twisted-gauged
Dirac operator Dωρ yields the gauge transformation of Proposition 4.3. Preliminarily,
we begin by proving a twisted version of (A.56).

Lemma 4.4 Let (A,H, D; ρ) be a real twisted spectral triple; for any u ∈ U(A)

define
ρ(Ad(u)) := Ad(ρ(u)) = ρ(u)Jρ(u)J−1. (4.22)

Then, it holds that

ρ(Ad(u)) DAd(u)−1 = D + ρ(u)[D, u∗]ρ + ε′ J ρ(u)[D, u∗]ρ J−1. (4.23)

Proof Let v := Ju J−1 ∈ A◦. By (4.17) one has ρ◦(v) = ρ◦(u∗◦) = Jρ(u)J−1, so
that

Ad(u) = uv = vu, ρ(Ad(u)) = ρ(u)ρ◦(v) = ρ◦(v)ρ(u) (4.24)

by the order 0 condition. Using the twisted first-order condition (2.6) one computes:

ρ(Ad(u)) DAd(u)−1 = ρ◦(v) (ρ(u)Du−1) v−1 = ρ◦(v)(D + ρ(u)[D, u−1]ρ)v−1

= ρ◦(v)Dv−1 + ρ◦(v)ρ(u)[D, u−1]ρv−1

= D + ρ◦(v)[D, v−1]ρ◦ + ρ(u)[D, u−1]ρ. (4.25)

By (2.2), one has

ρ◦(v)[D, v−1]ρ◦ = ρ◦(v)Dv−1 − D = ε′ Jρ(u)Du−1 J−1 − D,

= ε′ J
(
D + ρ(u)[D, u−1]ρ

)
J−1 − D,

= (ε′)2D + Jε′ρ(u)[D, u−1]ρ J−1 − D = ε′ Jρ(u)[D, u−1]ρ J−1.

(4.26)

Plugged into (4.25), one gets (4.23). 
�
Proposition 4.5 Let (A,H, D; ρ), J be a real twisted spectral triple and consider a
twisted-gauged Dirac operator Dωρ = D + ωρ + ε′ Jωρ J−1 as in (3.45). Then, for
any u ∈ U(A), one has

ρ(Ad(u)) Dωρ Ad(u)−1 = D + ωu
ρ + ε′ J ωu

ρ J−1 (4.27)

with transformed ωu
ρ given in (4.3).
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Proof For ωρ = a[D, b]ρ (without loss of generality), one needs to compute
ρ(Ad(u)) ωρ Ad(u)−1 and ρ(Ad(u)) Jωρ J−1 Ad(u)−1. By the twisted first-order
condition, one gets

ρ(Ad(u)) ωρ Ad(u)−1 = ρ(u)
(
ρ◦(v)a[D, b]ρv−1

)
u−1,

= ρ(u)
(
a[D, b]ρ

)
u−1 = ρ(u)ωρu

−1. (4.28)

In order to compute ρ(Ad(u)) Jωρ J−1 Ad(u)−1, one uses on the one hand,

ρ(u) Jωρ J
−1 u−1 = ρ(u) Ja[D, b]ρ J−1 u−1 = J (J−1ρ(u)J ) a[D, b]ρ J−1 u−1,

= Ja[D, b]ρ (J−1u J ) J−1u−1 = Ja[D, b]ρ J−1 = Jωρ J
−1,

(4.29)

and on the other hand

ρ◦(v) Jωρ J
−1 v−1 = Jρ(u)J−1 Jωρ J

−1 Ju−1 J−1 = Jρ(u)ωρu
−1 J−1, (4.30)

so that

ρ(Ad(u))Jωρ J
−1 Ad(u)−1 = ρ◦(v)

(
ρ(u) Jωρ J

−1 u−1
)

v−1 = Jρ(u)ωρu
∗ J−1.

(4.31)
Collecting (4.31) and (4.28) one gets

ρ(Ad(u))
(
ωρ + ε′ Jωρ J

−1
)
Ad(u)−1 = ρ(u)ωρu

−1+ε′ Jρ(u)ωρu
−1 J−1. (4.32)

Together with (4.23), this yields the result. 
�

5 Self-adjointness

In the non-twisted case, a gauge transformation preserves the self-adjointness of the
Dirac operator. The transformed operator

Dωu = Ad(u)) Dω Ad(u)−1 (5.1)

is self-adjoint if and only if so is Dω, since Ad(u) is unitary (see Lemma 5.1 below).
Thus, starting with a spectral triple (A,H, Dω), a gauge transformation yields a spec-
tral triple (A,H, Dωu ), which is unitary equivalent to the former [10]. This result is
no longer true in the twisted case: by Proposition 4.5 the gauge transformed of the
twisted-gauged Dirac operator Dωρ is

Dωu
ρ

= ρ(Ad(u)) Dωρ Ad(u)∗, (5.2)

which has no reason to be self-adjoint, even if Dωρ is self-adjoint.
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We next work out conditions on the unitary element u to guarantee that the opera-
tor Dωu

ρ
be self-adjoint. A simple condition would be that u is invariant for the twist:

ρ(u) = u. We show, for the example of the minimal twist of a spin manifold con-
structed in [14], that there exists other solutions than this trivial one.

5.1 Conditions for self-adjointness

Let us begin with recalling some properties of antilinear operators. The adjoint of an
antilinear operator C on a Hilbert space H is the antilinear operator C∗ such that

〈Cξ, ζ 〉 = 〈ξ,C∗ζ 〉, ∀ξ, ζ ∈ H. (5.3)

Such an operator is antiunitary if

〈Cξ,Cζ 〉 = 〈ξ, ζ 〉, that is C∗C = CC∗ = 1. (5.4)

Hence C∗ = C−1, as for linear unitary operators. However, one has to be careful that
the usual rule for the adjoint holds for the product of two antilinear operators C,C ′,

〈CC ′ξ, ζ 〉 = 〈C ′ξ,C∗ζ 〉 = 〈ξ,C ′∗Cζ 〉 so that (CC ′)∗ = C ′∗C∗ (5.5)

but not for the product of an antilinear C with a linear T , for

〈CT ξ, ζ 〉 = 〈T ξ,C∗ζ 〉 = 〈ξ, T ∗Cζ 〉. (5.6)

On the other hand, the usual rule for the adjoint holds for any product involving an
even number of antilinear operators, such as JT J−1 with T linear, that often appear
in this work. This is shown explicitly in the following lemma for T = u an unitary
element.

Lemma 5.1 Let (A,H, D) be a real spectral triple with real structure (the antilinear
operator) J . Then, for any unitary u ∈ A, one has that Ad(u) = u Ju J−1 is unitary.

Proof The operator Ju J−1 is linear, hence Ad(u)∗ = (Ju J−1)∗u∗. A direct compu-
tation yields

〈Ju J−1ξ, ζ 〉 = 〈u J−1ξ, J ∗ζ 〉 = 〈J−1ξ, u∗ J ∗ζ 〉 = 〈ξ, (J−1)∗u∗ J ∗ζ 〉 (5.7)

that is, using J ∗ = J−1, (
Ju J−1

)∗ = Ju∗ J−1. (5.8)

Hence, Ad(u)∗ = Ju∗ J−1u∗, so that Ad(u)∗ Ad(u) = Ad(u)Ad(u)∗ = 1. 
�
We now work out a condition on a unitary element u which is equivalent to Dωu

ρ

being self-adjoint. Taking advantage of the two formulas for Dωu
ρ
[the two sides of

(4.23)], we actually exhibit two conditions which are equivalent.
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Proposition 5.2 Let (A,H, D; ρ), J be a real twisted spectral triple, Dωρ a twisted-
gauged Dirac operator and u a unitary element of A. Then, the gauge transformed
operator Dωu

ρ
in (5.2) is self-adjoint if and only if

Jω(u)J−1 = −ε′ω(u), (5.9)

for
ω(u) = u◦ [D, ρ(u)∗u]ρ u∗◦ or ω(u) = u [D, ρ(u)∗u]ρu∗, (5.10)

the two choices being equivalent.

Proof We write D = Dωρ , taken to be self-adjoint. Then Dωu
ρ

= ρ(Ad(u))DAd(u)∗
is self-adjoint by Lemma 5.1 if and only if ρ(Ad(u))DAd(u)∗ = Ad(u)Dρ(Ad(u))∗
or, equivalently

Ad(u)∗ρ(Ad(u))D = Dρ(Ad(u))∗ Ad(u). (5.11)

By (2.8) and (2.5),

ρ(Ad(u))∗ = ρ(u)∗ Jρ(u)∗ J−1 = ρ−1(u∗) J ρ−1(u∗)J−1 = ρ−1(Ad(u)∗),
(5.12)

so that ρ (ρ(Ad(u))∗ Ad(u)) = Ad(u)∗ρ(Ad(u)). Hence, condition (5.11) becomes

[D, ρ(Ad(u))∗ Ad(u)]ρ = 0. (5.13)

By the order-zero condition, one has

ρ(Ad(u))∗ Ad(u) = ρ(u)∗ Jρ(u)∗ J−1 u Ju J−1 = ρ(u)∗u Jρ(u)∗u J−1 = uJuJ−1

(5.14)

where u := ρ(u)∗u. Therefore

[D, ρ(Ad(u))∗ Ad(u)]ρ = [D, uJuJ−1]ρ
= ρ(u)[D, JuJ−1]ρ + [D, u]ρ JuJ−1 = ε′ Jω(u)J−1 + ω(u), (5.15)

with
ω(u) := Jρ(u)J−1[D, u]ρ, (5.16)

where we used the twisted first-order condition as well as

ρ(u)[D, JuJ−1]ρ = J−1
(
Jρ(u)J−1 J [D, JuJ−1]ρ

)

= ε′ J−1
(
Jρ(u)J−1

(
DJ 2u − J 2ρ(u)D

))
J−1,

= ε′ε′′ J−1
(
Jρ(u)J−1[D, u]ρ

)
J−1

= ε′ J
(
Jρ(u)J−1[D, u]ρ

)
J−1 = ε′ Jω(u)J−1.
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The first part of the proposition follows from (5.15), noticing that

ρ(u) = ρ(ρ(u)∗u) = ρ(ρ(u)∗)ρ(u) = u∗ρ(u), (5.17)

so that

ω(u) = Ju∗ρ(u)J−1[D, ρ(u)∗u]ρ = Ju∗ J−1[D, ρ(u)∗u]ρ Ju J−1

= u◦ [D, ρ(u)∗u]ρ u∗◦
.

The second part of the proposition is obtained turning back to the definition of Dωu
ρ

that is the right-hand side of (4.23). One has that Dωu
ρ
is self-adjoint if and only if

(
ωu

ρ − (ωu
ρ)∗

) + ε′ J
(
ωu

ρ − (ωu
ρ)∗

)
J−1 = 0. (5.18)

By hypothesis Dωρ = D + ωρ + Jωρ J−1 is self-adjoint, so that (ωρ − ω∗
ρ) +

ε′ J
(
ωρ − ω∗

ρ

)
J−1 = 0. Therefore, from the definition (4.3) of ωu

ρ , equation (5.18)
becomes ω(u) + ε′ Jω(u)J−1 = 0 with

ω(u) := ρ(u)[D, u∗]ρ − (ρ(u)[D, u∗]ρ)∗. (5.19)

The result follows remembering that ρ(u)[D, u∗]ρ = ρ(u)Du∗ − D, so that

ω(u) = ρ(u)Du∗ − uDρ(u)∗ = u
(
u∗ρ(u)D − Dρ(u)∗u

)
u∗ = −u[D, ρ(u)∗u]ρ u∗, (5.20)

where we used (5.17). 
�
Remark 5.3 One may check directly the equivalence of the two choices for ω(u) in
(5.10). Writing ω := [D, ρ(u)∗u]ρ , one gets that for ω(u) = u◦ [D, ρ(u)∗u]ρ u∗◦ =
u◦ω u∗◦, equation (5.9) is equivalent to

ω = −ε′(u◦)∗
(
Ju◦ω u∗◦ J−1

)
(u∗◦)∗ = −ε′ u∗ Ju ω u∗ J−1u, (5.21)

where we use that u◦ is unitary, with (u◦)∗ = (u∗)◦ so that (u∗◦)∗ = u◦, as well as

(u◦)∗ Ju◦ = Ju J−1 J Ju∗ J−1 = ε′′ Ju J−1u∗ J−1 = ε′′u∗ Ju(J−1)2 = u∗ Ju,

(5.22)
and similarly u∗◦ J−1 u◦ = u∗ J−1u. On the other hand, for ω(u) = u [D, ρ(u)∗u]ρ
u∗ = uωu∗, Eq. (5.9) is equivalent to

ω = −ε′ u∗ Ju ω u∗ J−1u, (5.23)

which is precisely the r.h.s. of (5.21).

An obvious solution to (5.9) is that ρ(u)∗u twist-commutes with D. This happens in
particular when u is invariant under the twist, ρ(u) = u, so that ρ(u)∗u = 1. An
extensive study of (5.9) and its solutions will be undertaken elsewhere. Here, we just
solve it in the simple example of the minimal twist of manifold.
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5.2 Minimal twist of a manifold

The minimal twist of a closed spin manifold M of even dimension 2m, m ∈ N, has
been defined in [14] as the real, graded, twisted spectral triple

A = C∞(M) ⊗ C
2, H = L2(M, S), D = /∂, J, ρ (5.24)

where C∞(M) is the algebra of smooth functions onM, the Hilbert space L2(M, S)

is that of square integrable spinors, with usual Dirac operator

/∂ = −i
2m∑

μ=1

γ μ∇μ and ∇μ = ∂μ + ωμ (5.25)

(γ μ are the Dirac matrices of size 2m , ωμ is the spin connection), the real structure
J is the charge conjugation operator composed with complex conjugation, and the
automorphism ρ

ρ( f, g) = (g, f ) ∀( f, g) ∈ A � C∞(M) ⊕ C∞(M). (5.26)

is the flip. The grading 
 (the product of all the Dirac matrices) splits H in two
orthogonal subspaces H±, on which each copy of C∞(M) acts independently (by
point-wise multiplication). The representation π of A on H = H+ ⊕ H− is

π(a) =
(

f 12m−1 0
0 g12m−1

)
∀a = ( f, g) ∈ A with f, g ∈ C∞(M). (5.27)

Finally, the KO-dimension of the twisted spectral triple (5.24) is 2m mod 8.

Proposition 5.4 In KO-dim = 0, 4, any unitary of A is a solution of (5.9). On the
other hand, in KO-dim = 2, 6, the only solutions are the trivial one ω(u) = 0.

Proof A unitary u of A is (omitting the representation symbol and the identity oper-
ator)

u =
(
eiθ1 0
0 eiθ2

)
, (5.28)

where θ1, θ2 are smooth real functions on M. Hence,

ρ(u)∗u =
(
e−iθ2 0
0 e−iθ1

) (
eiθ1 0
0 eiθ2

)
=

(
eiϕ 0
0 e−iϕ

)
with ϕ := θ1 − θ2.

(5.29)
For any a ∈ A, one has [14, eq. (5.9)]

[/∂, a]ρ = −iγ μ(∂μa), (5.30)
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so that

[/∂, ρ(u)∗u]ρ = − iγ μ

(
∂μeiϕ 0
0 ∂μe−iϕ

)
= −iγ μ

(
i(∂μϕ)eiϕ 0

0 −i(∂μϕ)e−iϕ

)
.

(5.31)
In addition [14, eq.(5.10)],

γ μu = ρ(u)γ μ, (5.32)

so by an easy calculation

u[/∂, ρ(u)∗u]ρu∗ = −iγ μ

(
i∂μϕ 0
0 −i∂μϕ

)
. (5.33)

Furthermore, by [14, Lem. 5.2], for ωρ = −iγ μρ(a)∂μb, one has

Jωρ J
−1 =

{−iγ μρ(a∗)∂μb∗ if KO-dim = 0, 4,
−iγ μa∗∂μρ(b∗) if KO-dim = 2, 6.

(5.34)

Therefore, for KO-dim = 0, 4, one obtains (remembering that ϕ is a real function)

Ju[/∂, ρ(u)∗u]ρu∗ J−1 = − iγ μ

(
∂μ(iϕ)∗ 0

0 ∂μ(−iϕ)∗
)

= − iγ μ

( −i∂μϕ 0
0 i∂μϕ

)

= − u[/∂, ρ(u)∗u]ρu∗, (5.35)

whereas for KO-dim = 2, 6 one has

Ju[/∂, ρ(u)∗u]ρu∗ J−1 = − iγ μ

(
∂μ(−iϕ)∗ 0

0 ∂μ(iϕ)∗
)

= − iγ μ

(
i∂μϕ 0
0 −i∂μϕ

)

= u[/∂, ρ(u)∗u]ρu∗. (5.36)

The result follows noticing that in even dimension, one has the sign ε′ = 1, so that
(5.35) is solution to (5.9) for any u, while (5.36) is solution only when ω(u) = 0. 
�

This simple example exhibits two interesting cases: the unitaries that preserve the
self-adjointness of theDirac operator are either thewhole groupC∞(M,U (1)×U (1))
of unitaries ofA, or the trivial solution to (5.9). Intriguingly, the groupC∞(M,U (1))
of unitaries which are invariant under the twist is of no particular importance.

To understand why this is the case, recall from [14, Lemma 5.1] that in KO-
dimension 0, 4, one has Ju J−1 = u∗, so that Ad(u) = 1. Therefore, the Dirac
operator is invariant under any gauge transformation, no matter whether u is invariant
under the twist or not. Moreover, the fact that the action of Ad(u) is trivial indicates
that the twisted fluctuations, are not generated by the action of a unitary. This fact can
be checked explicitly, computing ωρ = ρ(a)[D, a′]ρ for a = ( f, g), a′ = ( f ′, g′):
one gets from (5.30) and (5.32)

ωρ = ρ(a)[D, a′]ρ = −iγ μa ∂μa
′ = −iγ μ

(
f ∂μ f ′ 0
0 g ∂μg′

)
, (5.37)
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and by (5.34)

Jωρ J
−1 = −iγ μa∗∂μa

′∗ = −iγ μ

(
f̄ ∂μ f̄ ′ 0
0 ḡ ∂μḡ′

)
, (5.38)

so that

ωρ + Jωρ J
−1 = −iγ μ

(
fμ 0
0 gμ

)
(5.39)

with fμ = f ∂μ f ′ + f̄ ∂μ f̄ ′ and gμ = g ∂μg′ + ḡ ∂μḡ′ real function onM. The r.h.s.
of (5.39) is self-adjoint if and only if

0 = − iγ μ

(
fμ 0
0 gμ

)
−

(
−iγ μ

(
fμ 0
0 gμ

))∗

= − iγ μ

(
fμ 0
0 gμ

)
− iγ μ

(
gμ 0
0 fμ

)

= − i( fμ + gμ)γ μ, (5.40)

that is if and only if fμ = −gμ. In that case, (5.39) yields /∂ωρ
= /∂ − i fμγ μ
, as

already shown in [14]. The point is that such a fluctuation cannot be obtained with
a = u a unitary and a′ = u∗, that is for f = eiθ1 , g = eiθ2 , f ′ = e−iθ1 , g′ = e−iθ2 ,
since this would give fμ = gμ = 0.

In KO-dimension 2, 6, one has that ω(u) = 0 if and only if

[/∂, ρ(u)∗u]ρ = 0. (5.41)

By (5.31), this mean that u = (eiθ1 , eiθ2) with θ1 − θ2 a constant function. Notice that
this is a bigger set than the unitaries invariant under the twist (for which the constant
is zero). However, in any case, such unitaries do not generate a fluctuation. Indeed,
ωρ is still given by (5.37), but

Jωρ J
−1 = − iγ μ

(
ḡ ∂μḡ′ 0

0 f̄ ∂μ f̄ ′
)

. (5.42)

Thus ωρ + Jωρ J−1 is given by (5.39) with

fμ = f ∂μ f ′ + ḡ ∂μḡ
′, gμ = f̄μ. (5.43)

With f = eiθ1 , g = eiθ2 , f ′ = e−iθ1 , g = e−iθ2 , one gets fμ = i ∂μ(θ1 − θ2), which
vanishes when θ1 − θ2 is constant. More generally, one finds back the result of [14]
noticing that for arbitrary f, f ′ and g, g′, a computation similar to (5.40) yields that
ωρ + Jωρ J−1 is self-adjoint if and only if fμ = gμ = 0.

To summarize, one has the following result.
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Proposition 5.5 In K O-dimension 0, 4, the operator /∂ has non-zero twisted self-
adjoint fluctuations given by

/∂ωρ
= /∂ − i fμγ μ
, fμ ∈ C∞(M,R). (5.44)

They are invariant under a gauge transformation, but are not generated by the action
of unitaries. In K O-dimension 2, 6, there is no non-zero self-adjoint fluctuations.

A. The non-twisted case

The material in this Appendix is well known and taken mainly from [10] and [8].

A.1 Fluctuations and Morita equivalence

Recall that a finitely generated, projective (right, say) A-module E is hermitian if it
comes equipped with an A-valued inner product, that is a sesquilinear map 〈·, ·〉• :
E × E → A such that 〈ξ, ξ 〉• ≥ 0 for any ξ ∈ E , (〈ξ, η〉•)∗ = 〈η, ξ 〉• and 〈ξa, ηb〉• =
a∗ 〈ξ, η〉• b, for all ξ, η ∈ E and a, b ∈ A. A similar notion goes for left modules with
a sesquilinear map •〈·, ·〉 : E × E → A which is now linear in the first entry (and
anti-linear on the second). The module E is taken to be self-dual for the A-valued
hermitian structure [16, Prop. 7.3], in the sense that for any ϕ ∈ HomA(E,A) there
exists a unique ζϕ ∈ E such that ϕ(ξ) = 〈

ζϕ, ξ
〉
•, for all ξ ∈ E .

In the crudest version [16], the algebraB is Morita equivalent to the (unital) algebra
A if there exists a hermitian finite projective A-module E such that B is isomorphic
to the algebra EndA(E) of A-linear endomorphisms of E which are adjointable (with
respect to the hermitian structure of E). In particular, an algebra is Morita equivalent
to itself. In that case, the module E can be taken to be the algebra itself, with hermitian
map 〈a, b〉• = a∗b or •〈a, b〉 = ab∗.

A.1.1 Morita equivalence by right module

Let us assume that the module implementing theMorita equivalence betweenA andB
is a rightA-moduleER withA-valued inner product 〈·, ·〉•. The action ofB � EndA(E)

on ER is not suitable to build a spectral triple, for ER is not an Hilbert space. However,
the tensor product

HR := ER ⊗A H (A.1)

is an Hilbert space for the inner product [9, p. 562]

〈η1 ⊗ ψ1, η2 ⊗ ψ2〉HR
= 〈ψ1, 〈η1, η2〉•ψ2〉H ∀ η1, η2 ∈ ER, ψ1, ψ2 ∈ H,

(A.2)
with 〈·, ·〉H the inner product of H. The action of B � EndA(E) is then extended to
HR as

πR(b)(η ⊗ ψ) := bη ⊗ ψ ∀b ∈ B. (A.3)
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To make D act on HR , the simplest guess,

DR(η ⊗ ψ) := η ⊗ Dψ, (A.4)

is not compatible with the tensor product over A [8, p. 204] since

DR(ηa ⊗ ψ) − DR(η ⊗ aψ) = ηa ⊗ Dψ − η ⊗ Daψ = −η ⊗ [D, a]ψ (A.5)

has no reason to vanish. To correct this, one uses the derivation δ = [D, · ] of A in
the A-bimodule �1

D(A) of 1-forms as defined in (1.2). Since both �1
D(A) and A act

on H as bounded operators in a compatible way (3.8), the r.h.s. of (A.5), viewed as
−(η ⊗ δ(a))ψ , is made zero by adding to DR an �1

D(A)-valued connection ∇ on E .
One thus defines the gauged operator

DR(η ⊗ ψ) := η ⊗ Dψ + (∇η)ψ ∀η ∈ ER, ψ ∈ H, (A.6)

and checks by Proposition 3.1 that this is linear, since

DR(ηa ⊗ ψ) − DR(η ⊗ aψ) = DR(ηa ⊗ ψ − η ⊗ aψ) + ∇(ηa)ψ − (∇η)aψ,

= −η ⊗ [D, a]ψ + η ⊗ δ(a)ψ = 0. (A.7)

If the right A-module ER is finite projective thus of the type ER = pAN for some
N ∈ N, with p a self-adjoint matrix in MN (A) such that p2 = p. Moreover, given a
derivation δ of A in a A-bimodule �, any �-valued connection is of the form

∇ = ∇0 + ω (A.8)

where

∇0 η = p

⎛
⎜⎝

δ(η1)
...

δ(ηN )

⎞
⎟⎠ ∀ η = p

⎛
⎜⎝

η1
...

ηN

⎞
⎟⎠ ∈ ER, η j ∈ A, (A.9)

is the Grassmann connection, while ω is an A-linear map ER → ER ⊗ �, that is

ω(ηa) = ω(η) · a ∀η ∈ ER, a ∈ A. (A.10)

In particular, for a self-Morita equivalence, the operator DR has a friendlier form.

Proposition A.1 For B = A and ER = A, one obtains

DR = D + ω for some ω ∈ �1
D(A). (A.11)

Proof Any connection∇ on ER = A is written as∇ = δ+ω for a 1-formω ∈ �1
D(A).

Then,
DR(a ⊗ ψ) = a ⊗ Dψ + 1 ⊗ (δ(a) + ωa)ψ. (A.12)
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Identifying a ⊗ ψ ∈ HR with aψ ∈ H, one rewrites (A.12) as

DR(aψ) = aDψ + δ(a)ψ +ωaψ = aDψ + (Da−aD)ψ +ωaψ = (D+ω)(aψ),

(A.13)
meaning that the action of DR onH coincides with the operator D + ω. 
�

Since ω is bounded, the operator DR has a compact resolvent and bounded com-
mutator with A. Consequently, for a self-adjoint ω one gets that

(A,H, D + ω) (A.14)

is a spectral triple [1], Morita equivalent to (A,H, D). Furthermore, any grading 


of (A,H, D), since anticommutes with any a[D, b], hence with ω, thus with DR , is
also a grading of (A,H, DR).

However, if (A,H, D) is a real spectral triple with real structure J , the later is not
necessarily a real structure for (A.14). Indeed, J (D+ω) = ε′(D+ω)J if and only if
ω = ε′ JωJ−1. This has no reason to be true, because of the following lemma [whose
proof follows from (2.2), (2.3)].

Lemma A.2 Let (A,H, D), J be a real spectral triple, and ω = ∑
j a j [D, b j ] ∈

�1
D(A). Then

JωJ−1 = ε′
⎛
⎝∑

j

(a∗
j )

◦[D, (b∗
j )

◦]
⎞
⎠ . (A.15)

A.1.2 Morita equivalence by left module

To implement A self-Morita equivalence in a way compatible with the real structure,
one uses A not only as a right A-module ER , but also as a left A-module EL (as
explained in this section), then as aA-bimodule E (this is the content of Sect. A.1.3).

In defining the Hilbert space HR in (A.1), one takes advantage of the left A-
module structure ofH induced by the representationπ . Alternatively, one has available
the right A-module structure (2.4) of H, ψa = a◦ψ for ψ ∈ H, a ∈ A, which
offers a possibility to implement the Morita equivalence betweenA and B thanks to a
hermitian finite projective left A-module EL , withA-valued inner product •〈·, ·〉. One
thus considers the Hilbert space

HL := H ⊗A EL , (A.16)

with inner product

〈ψ1 ⊗ η1, ψ2 ⊗ η2〉HL = 〈ψ1 •〈η1, η2〉 , ψ2〉H. (A.17)

The right action of B � EndA(E) on EL is extended toHL as

(ψ ⊗ η) b := ψ ⊗ ηb. (A.18)
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Again, the natural action
DL(ψ ⊗ η) := Dψ ⊗ η (A.19)

of D on HL is not compatible with the tensor product over A because

DL (ψ ⊗ aη) − DL (ψa ⊗ η) = (Dψ) ⊗ aη − D(ψa) ⊗ η = (Dψ)a ⊗ η − D(ψa) ⊗ η,

= a◦(Dψ) ⊗ η − D(a◦ψ) ⊗ η = −[D, a◦]ψ ⊗ η (A.20)

does not vanish. To correct this, one uses a connection ∇◦ on EL with value in the
A-bimodule

�1
D(A◦) =

{ ∑
j
a◦
j [D, b◦

j ], a◦
j , b

◦
j ∈ A◦} (A.21)

generated by the derivation
δ◦(a) := [D, a◦], (A.22)

with bimodule law
a · ω◦ · b := b◦ω◦a◦. (A.23)

This law guarantees that (A.21) is indeed a bimodule over A and δ◦ a derivation of
A (not of A◦) with values in �1

D(A◦). The relation between �1
D(A◦) and �1

D(A) is
given by the following lemma, whose proof follows from (2.2) and (2.3).

Lemma A.3 Anyω◦ = ∑
j a

◦
j [D, b◦

j ] in�1
D(A◦) acts on the left onH as the bounded

operator
ω◦ = ε′ JωJ−1 (A.24)

for ω = ∑
j a

∗
j [D, b∗

j ] ∈ �1
D(A).

The right action ofA and the left action of �1
D(A◦) onH (corresponding to a right

action of �1
D(A)) are compatible in the sense of condition (3.16):

(a · ω◦)ψ = (ω◦a◦)ψ = ω◦(ψa). (A.25)

The connection ∇◦ thus defines an operator HL → HL which satisfies the Leibniz
rule (3.17); therefore, the following is a well-defined operator onHL ,

DL(ψ ⊗ η) := Dψ ⊗ η + ∇◦(ψ ⊗ η). (A.26)

For a left module EL � AN p with p = p2 ∈ MN (A), the connection decomposes
as

∇◦ = ∇◦
0 + ω◦ (A.27)

with Grassmann connection

∇◦
0 η = (δ◦(η1), . . . , δ◦(ηN )) p ∀ η = (η1, . . . , ηN ) ∈ EL , η j ∈ A, (A.28)

while ω◦ is a map EL → �1
D(A◦) ⊗A EL which is A-linear in the sense that

ω◦(aη) = a · ω◦(η). (A.29)

We use this to get a more tractable expression for DL , for a self-Morita equivalence.
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Proposition A.4 For B = A and EL = A, the construction above yields

DL = D + ω◦ = D + ε′ JωJ−1 (A.30)

for some ω◦ = ε′ JωJ−1 ∈ �1
D(A◦), with ω ∈ �1

D(A).

Proof The decomposition (A.27) will now read ∇◦ = δ◦ + ω◦ with the form ω◦ be
such that

ω◦(a) = a · ω◦ = (a · ω◦) = ω◦a◦. (A.31)

Therefore;

DL(ψ ⊗ a) = Dψ ⊗ a + δ◦(a)ψ ⊗ 1 + ω◦a◦ψ ⊗ 1,

= (Dψ)a ⊗ 1 + (Da◦ − a◦D)ψ ⊗ 1 + ω◦a◦ψ ⊗ 1,

= a◦Dψ ⊗ 1 + (Da◦ − a◦D)ψ ⊗ 1 + ω◦a◦ψ ⊗ 1

= D(a◦ψ) ⊗ 1 + ω◦a◦ψ ⊗ 1. (A.32)

Identifying a◦ψ ⊗ 1 = ψ ⊗ a = ψa ⊗ 1 inHL with a◦ψ ∈ H, one obtains that DL

acts as D + ω◦. The rest of the result follows from Lemma A.2. 
�
As in the right module case, when ω is self-adjoint the datum

(A,H, D + ε JωJ−1) (A.33)

is a spectral triple, admitting as grading any grading of (A,H, D). However, it is
not a real spectral triple for the real structure J , because J (D + ε′ JωJ−1) = (D +
ε′ JωJ−1)J if and only if ω = ε′ JωJ−1. This has no reason to be true, by Lemma
A.2.

A.1.3 Morita equivalence by bimodule and the real structure

To make the real structure compatible with Morita equivalence of spectral triples, one
needs to combine the two constructions above. Explicitly, given a real spectral triple
(A,H, D), one first implements the self-Morita equivalence of A by using the right
module ER = A—thus obtaining the spectral triple (A.14), and then uses this with
the left module EL = A. This yields the Morita equivalent spectral triple (A,H, D′)
where

D′ = D + ωR + ε′ JωL J
−1 (A.34)

withωR ,ωL two self-adjoint elements of�1
D(A), a priori distinct. It is the real structure

that forces these two 1-forms to be equal.

Proposition A.5 The real structure J of (A,H, D) is a real structure for the Morita
equivalent spectral triple (A,H, D′) if and only if there exists ω ∈ �1

D(A) such that

D′ = Dω := D + ω + ε′ JωJ−1. (A.35)
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Proof By an easy computation, one finds that J D′ = ε′DJ if and only if

(ωL − ωR) − ε′ J (ωL − ωR)J−1 = 0. (A.36)

Adding half of this expression to the r.h.s. of (A.34), one gets

D′ = D + 1
2 (ωR + ωL) + ε′ J 1

2 (ωR + ωL)J−1. (A.37)

Hence the result with ω := 1
2 (ωR + ωL). 
�

Remark A.6 Taking as a connection the Grassmann connection in the definition (A.6)
of DR (i.e. ∇ = ∇0), one finds that DR coincides with D. Similarly, taking ∇◦ = ∇◦

0
in (A.26) yields DL = D. Then D′ in (A.34) coincide with D as well. In other terms,
given a real spectral triple (A,H, D), implementing the self-Morita equivalence of
A using the Grassmann connection on the A-bimodule A leaves the Dirac operator
invariant (i.e., it fluctuates with ω = 0).

A.2 Gauge transformations

Also the material in this section is well known and mainly taken from [10] and [8].

A.2.1 Gauge transformations on a hermitian module

An endomorphisms u ∈ EndA(E) of a hermitian A-module E is unitary if u∗u =
uu∗ = idE , where the adjoint of an operator is defined using the hermitian structure
by

〈T ∗η, ξ 〉 := 〈η, T ξ 〉, ∀T ∈ EndA(E), ξ, η ∈ E . (A.38)

Unitary endomorphisms form a group U(E), acting on �-valued connections on E as

∇u := u∇u∗ ∀u ∈ U(E), (A.39)

where U(E) acts on E⊗� (if E is a rightA-module) or�⊗E (if E is a leftA-module)
as

u ⊗ id�, or id� ⊗ u. (A.40)

Not surprisingly, such an action is a gauge transformation.

Proposition A.7 The operator ∇u is a connection, for any u ∈ U(E) and connection
∇.

Proof In case E is a right A-module, one gets from (A.40) and (3.3) that

u(∇(η) · a) = (u∇(η)) · a . (A.41)

Hence,

∇u(ηa) = u∇(u∗(ηa)) = u∇(u∗(η)a) = u
(∇(u∗(η)).a + u∗(η) ⊗ δ(a)

)
,
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= (u∇(u∗(η))).a + η ⊗ δ(a) = ∇u(η).a + η ⊗ δ(a),

showing that ∇u is a connection. For a left A-module E one has from (3.12)

u(a · ∇(η)) = a · u(∇(η)), (A.42)

so that

∇u(aη) = u∇(u∗(aη)) = u∇(au∗(η)) = u
(
a · ∇(u∗(η)) + δ(a) ⊗ u∗(η)

)
,

= a · u∇(u∗(η)) + δ(a) ⊗ η = ∇u(η).a + δ(a) ⊗ η.

Hence the result. 
�
With∇0 theGrassmann connections anω defined in (A.8) or (A.27), any connection

∇ = ∇0 + ω (A.43)

is mapped under a gauge transformation to

∇u = ∇0 + ωu . (A.44)

with the gauge transformation fully encoded in the law of transformation of the gauge
potential

ω → ωu . (A.45)

Explicitly, given a right (or left) A-module ER = pAN (or EL = AN p), a unitary
endomorphism is a unitary matrix in MN (A) that commutes with p,

U(EL ,R) := {
u ∈ MN (A), [u, p] = 0, u∗u = idE

}
, (A.46)

and acts by ordinary matrix multiplication

u(η) := p(uη) for η ∈ ER, u(η) := (ηu∗)p for η ∈ EL . (A.47)

The choice to act with u∗ instead of u in the left-module case is discussed in Remark
A.9.

Given a derivation δ of A, we denote by δ(u), δ(u∗) the elements of MN (�) with
components δ(ui j ) or δ(u∗

i j ) ∈ �, 1 ≤ i, j ≤ N , where ui j , u∗
i j ∈ A are the compo-

nents of u, u∗.

Proposition A.8 The gauge transformations on right and left modules are given by

ωu(η) := p u · δ(u∗) · η + u(ω(u∗(η))) ∀η ∈ ER, (A.48)

ωu(η) := η · δ(u) · u∗ p + u(ω(u∗(η))) ∀η ∈ EL . (A.49)
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Proof For η = p(η j ) ∈ ER (with η j ∈ A), using that p commutes with u∗ and
pη = η, one gets

∇0(u
∗(η)) = ∇0(pu

∗η) = ∇0(u
∗ pη) = ∇0(u

∗η)

= p

⎛
⎜⎝

δ(u∗
1 jη j )

...

δ(u∗
N jη j )

⎞
⎟⎠ = p

⎛
⎜⎝

δ(u∗
1 j ) · η j + u∗

1 j · δ(η j )

...

δ(u∗
N j ) · η j + u∗

N j · δ(η j )

⎞
⎟⎠

= pδ(u∗) · η + u∗∇0(η),

with summation on the index j = 1, . . . , N . Acting with u on the left, one gets

∇u
0 = ∇0 + p u · δ(u∗). (A.50)

the result follows from (A.43), (A.44). Similarly, for η ∈ EL , one has

∇0(u
∗(η)) = (

δ(η j u j1), . . . , δ(η j u j N )
)
p

= (
δ(η j ) · u j1 + η j · δ(u j1), . . . , δ(η j ) · u jN + η j · δ(u jN )

)
p

= ∇0(η) · u + η · δ(u)p.

Acting with the endomorphism u on the left, which by (A.47) amounts to multiply by
the matrix u∗ on the right, one obtains

∇u
0 (η) = ∇0(η) + η · δ(u) · u∗ p. (A.51)

Hence the result. 
�

A.2.2 Gauge transformation for a spectral triple

Let (A,H, D) be a real spectral triple, and consider the rightA-module ER = A, with
derivation δ(·) = [D, ·] in the A-bimodule �1

D(A) defined in (1.2). The equation
(A.48) yields the usual law of transformation of the gauge potential,

ωu = u[D, u∗] + u ω u∗. (A.52)

Under a gauge transformation, the gauged Dirac operator Dω in (1.3) is thus mapped
to

Dωu = D + ωu + ε′ Jωu J−1. (A.53)

Remark A.9 To write (A.53), one applies the gauge transformation ω → ωu on the
operator Dω obtained in Proposition A.5, that is once ωL and ωR have been identified.

For the sake of coherence, let us check that the same result follows by applying the
gauge transformation on ωL and ωR independently. Consider the left module EL = A
with derivation δ◦(a) = [D, a◦] in�1

D(A◦) defined in (A.21). ByLemmaA.3, a gauge
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potential in�1
D(A◦) isω◦ = ε′ JωL J−1 withωL ∈ �1

D(A). The lawof transformation
(A.49) reads

ω◦u = δ◦(u) · u∗ + u · ω◦ · u∗ = u∗◦
δ◦(u) + u∗◦

ω◦u◦,
= u∗◦[D, u◦] + u∗◦

ω◦u◦ = ε′ Ju[D, u∗]J−1 + ε′ J u ωLu
∗ J−1 = ε′ J ωu

L J−1.

Thus, the operator D + ωR + ε′ JωL J−1 in Proposition A.5 is mapped under a gauge
transformation to D+ωu

R + ε′ Jωu
L J

−1, meaning that ω = 1
2 (ωR +ωL) is mapped to

1
2 (ω

u
R + ωu

L) = u[D, u∗] + u
1

2
(ωR + ωL)u∗ = u[D, u∗] + uωu∗. (A.54)

One thus finds back (A.52), as expected.

Remarkably [10], the gauge transformation Dω → Dωu can be retrieved from the
adjoint action onH of the unitary group ofA, defined by using the real structure. That
is, for any unitary element u ∈ A, u∗u = uu∗ = 1, one defines

Ad(u)ψ := u ψ u∗ = u Ju J−1ψ ∀ψ ∈ H. (A.55)

Under this action, the Dirac operator is mapped to Ad(u) DAd(u)−1. By the order-
zero and the first-order conditions, one shows that [8, Prop. 1.141]

Ad(u) DAd(u)−1 = D + u[D, u∗] + ε′ Ju[D, u∗]J−1, (A.56)

which is nothing but the operator Dωu of (A.53) obtained for ω = 0 so that ωu =
u[D, u∗] from (A.52). More generally, for a gauged Dirac operator

Dω = D + ω + ε′ JωJ−1 (A.57)

where ω is an arbitrary self-adjoint element of �1
D(A), one has [8, Prop. 1.141])

Ad(u) Dω Ad(u)−1 = Dωu (A.58)

with ωu defined in (A.52).
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