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Abstract
We address the stability issue in Calderón’s problem for a special class of
anisotropic conductivities of the form σ = γA in a Lipschitz domain Ω ⊂ R

n,
n � 3, where A is a known Lipschitz continuous matrix-valued function and
γ is the unknown piecewise affine scalar function on a given partition of Ω.
We define an ad hoc misfit functional encoding our data and establish stability
estimates for this class of anisotropic conductivity in terms of both the misfit
functional and the more commonly used local Dirichlet-to-Neumann map.

Keywords: Calderón’s problem, anisotropic conductivity, stability, misfit func-
tional

1. Introduction

The paper addresses the so-called Calderón’s inverse conductivity problem of recovering the
conductivity σ of a body Ω ⊂ R

n by taking measurements of voltage and electric current on its
surface ∂Ω. More specifically, the case when the conductivity is anisotropic and it is a priori
known to be of type σ = γA, where A is a known Lipschitz continuous matrix valued function
on Ω and γ is a piecewise-affine unknown function on a given partition of Ω, is considered.
It is well known that in absence of internal sources or sinks, the electrostatic potential u in a
conducting body, described by a domain Ω ⊂ R

n, is governed by the elliptic equation
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div(σ∇u) = 0 in Ω, (1.1)

where the symmetric, positive definite matrix σ(x) = (σi j(x))n
i, j=1, x ∈ Ω represents the

(possibly anisotropic) electric conductivity. The inverse conductivity problem consists of
finding σ when the so called Dirichlet-to-Neumann (D–N) map

Λσ : H
1
2 (∂Ω) � u|∂Ω → σ∇u · ν|∂Ω ∈ H− 1

2 (∂Ω)

is given for any u ∈ H1(Ω) solution to (1.1). Here, ν denotes the unit outer normal to ∂Ω. If
measurements can be taken only on one portion Σ of ∂Ω, then the relevant map is called the
local D–N map (ΛΣ

σ ).
This problem arises in many different fields such as geophysics, known as DC method,

medicine, known as electrical impedance tomography (EIT) and non-destructive testing of
materials. The first mathematical formulation of the inverse conductivity problem is due to
Calderón [23], where he addressed the problem of whether it is possible to determine the
(isotropic) conductivity σ = γI by the D–N map. This seminal paper opened the way to the
solution to the uniqueness issue where one is asking whether σ can be determined by the
knowledge of Λσ or its local version when measurements are available on a portion of ∂Ω
only.

The case when measurements can be taken over the full boundary has been studied exten-
sively in the past and the fundamental papers [2, 43, 44, 54, 61] had led the way of solving the
problem of uniqueness in the isotropic case. We also recall the uniqueness results of Druskin
who, independently from Calderón, dealt directly with the geophysical setting of the problem
in [28–30]. His uniqueness result obtained in [29] was for conductivities described by piece-
wise constant functions (see also [11]). The problem of recovering the conductivity σ by local
measurements has been treated more recently (see [45, 46]). We also refer to the fundamental
papers [12, 25] and the result in [50] for the two dimensional case. In the present paper, we
consider the issue of stability in the inverse conductivity problem, therefore we refer to [22, 24,
63] for an overview regarding the issues of uniqueness and reconstruction of the conductivity.

Regarding the stability issue, Alessandrini proved in [1] that, in the isotropic case and
dimension n � 3, assuming a priori bounds on σ of the form ‖σ‖Hs(Ω) � E, s > n

2 + 2, leads
to a continuous dependance of σ in Ω upon Λσ of logarithmic type. We also refer to [14,
15, 50] for subsequent results in this direction and to [3] for and overview of the stability
issue. Even though stability at the boundary ∂Ω is of Lipschitz type (see [5, 6]), Mandache
[53] showed that in the interior of Ω, the inconvenient logarithmic type of stability is the
best possible, in any dimension n � 2, under a priori smoothness assumptions on σ. It seems
therefore reasonable to think that, in order to restore stability in a really (Lipschitz) stable
fashion, one needs to replace in some way the a priori assumptions expressed in terms of
regularity bounds with a priori pieces of information of a different type that suit the under-
lying physical problem. Alessandrini and Vessella showed in [11] that when σ is isotropic
and piecewise constant on a given partition of Ω, then Lipschitz stability can be restored
in terms of the local D–N map (conditional stability). Rondi [56] proved that the Lipschitz
constant has an exponential behaviour with respect to the number of subdomain of the par-
tition. From a medical imaging point of view, the partition of Ω may represent different
volumes occupied by different tissues or organs and one can think that their geometrical
configuration is given by means of other imaging modalities such as MRI. We also recall
[7, 8, 17–21, 57, 58] where similar Lipschitz stability results have been obtained for the clas-
sical and fractional Calderòn’s problem, the Lamé parameters and for a Schrödinger type of
equation.
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In this paper we address the issue of stability in Calderòn’s problem in presence of
anisotropy. This choice is motivated by the fact that anisotropy appears quite often in nature.
Most tissues in the human body are anisotropic. In the theory of homogenization, anisotropy
results as a limit in layered or fibrous structures such as rock stratum or muscle, as a result of
crystalline structure or of deformation of an isotropic material. In the geophysical context, in
1920, Schlumberger [59] recognized that anisotropy may affect geological formations’ elec-
trical properties and anisotropic effects when measuring electromagnetic fields in geophysical
applications have been studied ever since. Individual minerals are typically anisotropic but
rocks composed of them can appear to be isotropic.

From a mathematical point of view, the inverse problem with anisotropic conductivities
is an open problem. Since Tartar’s observation [42] that any diffeomorphism of Ω which
keeps the boundary points fixed has the property of leaving the D–N map unchanged,
whereas σ is modified, different lines of research have been pursued. One direction has
been to find the conductivity up to a diffeomorphism which keeps the boundary fixed
(see [13, 16, 45–47, 54, 60]). Another direction has been the one to formulate suitable a
priori assumptions (possibly fitting some physical context) which constrain the structure of
the unknown anisotropic conductivity. For instance, one can formulate the hypothesis that the
directions of anisotropy are known while some scalar space dependent parameter is not. Along
this line of reasoning, we mention the results in [1, 5, 6, 36, 37, 43, 48]. We also refer to
[4, 13, 16, 26, 27, 34, 45] and for related results in the anisotropic case and to [4, 40, 41] for
examples of non-uniqueness.

Here, we follow this second direction by a priori assuming that the conductivity is of type

σ(x) =
N∑

m=1

γm(x)χDm(x) A(x), for any x ∈ Ω, (1.2)

where γm(x) is an unknown affine scalar function on Dm, A is a known Lipschitz continuous
matrix-valued function on Ω and {Dm}N

m=1 is a given partition of Ω (the precise assumptions on
σ, A and {Dm}N

m=1 are given in subsections 2.1 and 2.2). Allowable partitions for our machinery
to work include, in the geophysical setting, models of layered media and bodies with multiple
inclusions. The ill-posed nature of the EIT inversion is aggravated the deeper one tries to image
inside a body Ω [55], where EIT image resolution becomes quite poor (see [39]), leading to
blurry images. Thus, in a geophysical context for example, it becomes difficult to recognise
individual thin sediments and rock layers or fractures in the deep subsurface, but the ‘average’
effect at large scale of fine layering and fracturing are still shown as equivalent anisotropic
media. It seems therefore reasonable to model the conductivity σ within each layer Dm by
an anisotropic conductivity σm to make it up for the finer layering structure within Dm that
otherwise might have been neglected the deeper one goes inside Ω due to poor resolution.

In order to introduce the misfit functional, consider two anisotropic conductivities σ(1) and
σ(2) of type (1.2). If measurements are locally taken on an open portion Σ ⊂ ∂Ω, we con-
veniently enlarge the physical domain Ω to an augmented domain Ω̃ and consider Green’s
functions Gi for div(σ(i)∇·) in Ω̃, for i = 1, 2, with poles y, z ∈ Ω̃\Ω̄ respectively. Hence we
express the error in the measurements corresponding to σ(1) and σ(2) by means of the misfit
functional

J (σ(1), σ(2)) =
∫

Dy×Dz

∣∣SU0 (y, z)
∣∣2dy dz, (1.3)

where Dy, Dz are suitably chosen sets compactly contained in Ω̃\Ω̄ and SU0 (y, z) is defined by
the surface integral
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SU0 (y, z) =
∫
Σ

[
G2(·, z)σ(1)(·)∇G1(·, y) · ν − G1(·, y)σ(2)(·)∇G2(·, z) · ν

]
dS. (1.4)

We have obtained the following stability estimate of Hölder type:

‖σ(1) − σ(2)‖L∞(Ω) � C
(
J (σ(1), σ(2))

)1/2
, (1.5)

where C > 0 is a constant that depends on the a priori information only. The augmented
domain Ω̃ is chosen in such a way that G1(·, y)|∂Ω, G2(·, z)|∂Ω are supported in Σ in the trace
sense, hence belonging to the domain of the local D–N maps ΛΣ

σi
, i = 1, 2 (see section 2.3 for

the formal definitions of the local D–N map and the appropriate spaces). Therefore, not only
(1.5), together with the well-known Alessandrini’s identity [2], implies a Lipschitz stability
estimate of σ in terms of the more commonly used local D–N map in the mathematical liter-
ature, but it also indicates that the set of measurements {G(·, y)|∂Ω}, with y,∈ Ω̃\Ω̄ is enough
to stably determine σ. A Lipschitz stability estimate in terms of ΛΣ

σ was obtained in [37] for
the case σ = γA, with γ piecewise constant instead.

The piecewise affine parametrizations considered in the present work tie in well with the
finite elements method for computations. Compared to the previous work in [37], this accounts
to iteratively determine boundary values and normal derivatives of the conductivity at the vari-
ous interfaces of the domain partition. In turn, this involves on one hand an asymptotic analysis
of Green’s functions (for the conductivity operator on Ω̃) and their derivatives up to order two
at the interfaces between contiguous domains of the partition of Ω, where the conductivity
changes (possibly) discontinuously (see proposition 3.1). On the other hand, our machinery
also relies on an argument of quantitative estimates of propagation of smallness of singular
solutions and their derivatives up to order two as well (see proposition 3.2). The argument in
[37] was based on an iterative determination of boundary values of the conductivity at the var-
ious interfaces of the domain partition only. This, in turn, required an asymptotic analysis of
Green’s functions and their first derivatives only at such interfaces together with quantitative
estimates of propagation of smallness of the singular solutions and their first derivatives only.

With the stability estimate (2.13) at hand, one can apply certain iterative methods for recon-
struction within a subspace of piecewise affine functions with a starting model at a distance
less than the radius of convergence to the unique solution [9, 31–33]. This radius is known
to be roughly inversely proportional to the stability constant appearing in the estimate. More
importantly, we can iteratively construct the best piecewise affine approximation for a given
domain partition. Since the stability constant will grow at least exponentially with the number
of subdomains in the partition [56], the radius of convergence shrinks accordingly. One can
expect accurate piecewise affine approximations with relatively less subdomains (compared to
the piecewise constant case of [37]) to describe the subsurface, noting that the domain parti-
tion need not be uniform and may show a local refinement, and hence our result provides the
necessary insight for developing a practical approach with relatively minor prior information.

To the best of our knowledge a first stability estimate in terms of an ad hoc misfit functional
was achieved in the mathematical literature in [9] in the context of the full waveform inversion.
Such an estimate proved to be key for the implementation and reliability of a reconstruction
procedure (see [9, 33]) based on the use of Cauchy data only, being the latter independent on
the availability of the D–N map. In the more recent result in [35] an ad hoc misfit functional
has been introduced in the context of imaging elastic media.

We also observe that another advantage of choosing the misfit functional over the local
D–N map (even if available) to model the measurements error in EIT is motivated by its
potentially simpler numerical implementation, compared to the computation of the norm of
bounded linear operators between H

1
2 spaces and their duals. Moreover, the misfit functional
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could also provide, again in the context of a possible numerical reconstruction of σ, additional
features compared to the more traditional least-squares approach, allowing, in particular, for a
distinction between the computational and the observational measurements. This is due to the
introduction of the possibly distinct sets Dy and Dz that can almost be arbitrarily chosen outside
the physical domain Ω. For example, Dy could be an arbitrarily chosen set for the numerical
data acquisition for the sake of the simulations, where Dz could model a more realistic set
that fits the geometric disposition of the electrodes in the actual measurements acquisition.
Hence, in the discrete setting, such distinction can potentially require minimal information
about the observational acquisition geometry of the electrodes employed for the observational
measurements. This is due to the definition of the misfit functional that does not compare sim-
ulations and observations directly, but it rather compares products of observed and simulated
measurements. Note also that with a slight modification, our arguments can apply when the
local Neumann-to-Dirichlet (N–D) map is available instead, see for instance the discussion
in [6].

The paper is organized as follows. In section 2 we introduce the main assumptions on the
domain Ω and the anisotropic conductivity σ. Section 2 contains the formal definitions of the
local D–N map (subsection 2.3), the misfit functional (subsection 2.4) and the statement of our
main result (theorem 2.1). A Lipschitz stability estimate in terms of the local D–N map follows
as a straightforward consequence (corollary 2.2). Section 3 is devoted to the introduction of
some technical tools of asymptotic estimates for the Green function (proposition 3.1) and prop-
agation of smallness (proposition 3.2) needed for the machinery of the proof of theorem 2.1.
The proof of theorem 2.1 and corollary 2.2 are also contained in this section. Section 4 contains
the proofs of proposition 3.1 and proposition 3.2.

2. Misfit functional and the main result

2.1. Assumptions about the domain Ω

For n � 3, a point x ∈ R
n will be denoted by x = (x′, xn), where x′ ∈ R

n−1 and xn ∈ R.
Moreover, given a point x ∈ R

n, we will denote with Br(x), B′
r(x

′) the open balls in R
n,Rn−1

respectively centred at x and x′ with radius r and by Qr(x) the cylinder

Qr(x) = B′
r(x

′) × (xn − r, xn + r).

Set Br = Br(0), Qr = Qr(0), the positive real half space R
n
+ = {(x′, xn) ∈ R

n : xn > 0},
the positive semisphere centred at the origin B+

r = Br ∩ R
n
+, the positive semicylinder

Q+
r = Qr ∩ R

n
+. Similar definitions for Rn

−, B−
r and Q−

r .
Let us recall a couple of definitions concerning the regularity of the boundary of the domain.

Definition 2.1. Let Ω be a bounded domain in R
n. A portion Σ of ∂Ω is of Lipschitz

class with constants r0, L > 0 if for each point P ∈ Σ there exists a rigid transformation of
coordinates under which P coincides with the origin and

Ω ∩ Qr0 =
{

x ∈ Qr0 : xn > ϕ(x′)
}

,

where ϕ is a Lipschitz function on B′
r0

such that ϕ(0) = 0 and ‖ϕ‖C0,1(B′
r0

) � Lr0.

Definition 2.2. Let Ω be a domain in R
n. A subset Σ of ∂Ω is a flat portion of size r0 if for

each point P ∈ Σ there exists a rigid transformation of coordinates under which P coincides
with the origin and

Σ ∩ Qr0 =
{

x ∈ Qr0 : xn = 0
}

, Ω ∩ Qr0 =
{

x ∈ Qr0 : xn > 0
}
.

5
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From now on, we will consider Ω ⊂ R
n, n � 3 as a bounded, measurable domain with

boundary ∂Ω of Lipschitz class with positive constants r0, L as in definition 2.1 and satisfying

|Ω| � Nrn
0, (2.1)

where |Ω| denotes the Lebesgue measure ofΩ. Moreover,we assume that there exists a partition
of bounded subdomains D = {Dm}N

m=1 contained inΩ such that the following conditions hold:

(a) Dm for m = 1, . . . , N are connected, pairwise non-overlapping subdomains with bound-
aries ∂Dm which are of Lipschitz class with constants r0, L

(b) Ω =
⋃N

m=1Dm;
(c) (Chain of subdomains.) First, we assume that there exists one region, let us call it D1,

such that the intersection ∂D1 ∩ Σ contains a flat portion Σ1 of size r0/3 (see definition
2.2) and that for every i ∈ {2, . . . , N} there exists a collection of indices m1, . . . , mK ∈
{1, . . . , N} such that Dm1 = D1 and DmK = Di and the subdomains are pairwise disjoint.
Secondly, we assume that, for every fixed sub-index k = 1, . . . , K of the chain, the inter-
section ∂Dmk ∩ ∂Dmk+1 contains a flat portion Σmk+1 of size r0/3 such that Σmk+1 ⊂ Ω
for k = 1, . . . , K − 1. Finally, for each of these flat sub-portionsΣmk+1 , k = 1, . . . , K − 1,
there exist a point Pk+1 ∈ Σmk+1 and a rigid transformation of coordinates under which
Pk+1 coincides with the origin and

Σmk+1 ∩ Qr0/3 =
{

x ∈ Qr0/3 : xn = 0
}

,

Dmk ∩ Qr0/3 =
{

x ∈ Qr0/3 : xn < 0
}

,

Dmk+1 ∩ Qr0/3 =
{

x ∈ Qr0/3 : xn > 0
}
.

Later, we will add a domain D0 ⊂ R
n\Ω so that, when indexing the chain of subdomains,

we agree that Dm0 = D0.

2.2. A priori information on the anisotropic conductivity σ

Our stability result for the Calderón inverse problem concerns a special family of anisotropic
conductivities σ. Let us describe in details their form. The conductivities σ(x) = {σi j(x)} are
real-valued, symmetric n × n matrices such that σ ∈ L∞(Ω, Symn) and have the form

σ(x) = γ(x)A(x) (2.2a)

γ(x) =
N∑

m=1

γm(x)χDm(x), γm(x) = sm + Sm · x, for any x ∈ Ω, (2.2b)

where the scalars sm ∈ R and the vectors Sm ∈ R
n, m = 1, . . . , N are the unknowns, A(x) is a

known fixed matrix and D = {Dm}N
m=1 is the known partition of Ω introduced in section 2.1.

Furthermore,

(a) The scalar functions γm are bounded, piecewise linear and there is a positive constant
γ̄ > 1 such that

γ̄−1 � γm(x) � γ̄, for any m = 1, . . .N, for any x ∈ Ω; (2.3)

(b) The matrix A(x) satisfies the following Lipschitz continuity condition: there exists a
constant Ā > 0 such that ‖A‖C0,1(Ω) � Ā;

6
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(c) There exists a constant λ > 1 such that

λ−1|ξ|2 � A(x) ξ · ξ � λ|ξ|2, for a.e. x ∈ Ω, for every ξ ∈ R
n. (2.4)

Definition 2.3. The set of positive constants {N, r0, L,λ, γ̄, Ā, n} with N ∈ N and the space
dimension n � 3, is called the a priori data.

In the paper several constants depending on the a priori data will appear. In order to simplify
our notation, we will denote them by C, C1, C2, . . . , avoiding in most cases to point out their
specific dependence on the a priori data which may vary from case to case.

2.3. The local D–N map

By now, assume simply that Ω is a bounded domain with ∂Ω of Lipschitz class. Since Dirichlet
data are different from zero on a small portionΣ ⊂ ∂Ω, we introduce a suitable trace space for
the formulation of the local D–N map.

Definition 2.4. Let Σ be a non-empty (flat) open portion of ∂Ω. The subspace of H1/2(∂Ω)
of trace functions which are compactly supported in Σ is defined as

H1/2
co (Σ) =

{
f ∈ H1/2(∂Ω) : supp f ⊂ Σ

}
. (2.5)

The trace space H1/2
00 (Σ) is the closure of H1/2

co (Σ) with respect to the H1/2(∂Ω)-norm. We

denote by H−1/2
00 (Σ) the dual of the trace space H1/2

00 (∂Ω).

Definition 2.5. The local D–N map associated with σ and Σ is the operator

ΛΣ
σ : H1/2

00 (Σ) → H−1/2
00 (Σ)

g �→ σ∇u · ν|Σ,
(2.6)

where ν is the unit outward normal of ∂Ω and u ∈ H1(Ω) is the weak solution to the boundary
value problem {

div (σ(·)∇u) = 0, in Ω,

u = g, on ∂Ω.

The map (2.6) can be identified with the bilinear form H1/2
00 (Σ) × H1/2

00 (Σ) → R defined by

〈ΛΣ
σ g, η〉 =

∫
Ω

σ(x)∇u(x) · ∇ϕ(x)dx, (2.7)

where η ∈ H1/2
00 (Σ) and ϕ ∈ H1(Ω) is any function such that ϕ|Σ = η. In (2.7) the bracket 〈·, ·〉

denotes the L2(∂Ω)-pairing between H1/2
00 (Σ) and its dual H−1/2

00 (Σ).

For simplicity, we will denote by ‖ · ‖∗ theL(H1/2
00 (Σ), H−1/2

00 (Σ))-norm of the Banach space

of bounded linear operators from H1/2
00 (Σ) to H−1/2

00 (Σ).

2.4. Misfit functional

To begin with, we introduce the Green function G in an augmented domain Ω̃ as follows. From
the assumptions on the domain Ω (section 2.1) there is a point P1 ∈ Σ that coincides with the

7
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origin, up to a rigid transformation of coordinates. For simplicity, let us assume that the locally
flat portion Σ1 coincides with the entire portion Σ. Let us define the domain D0 ⊂ R

n\Ω as

D0 =
{

x ∈ (Rn\Ω) ∩ Br0

∣∣ |xi| <
r0

3
, i = 1, . . . , n − 1, − r0

3
< xn < 0

}
, (2.8)

and such that

∂D0 ∩ ∂Ω ⊂⊂ Σ.

We define the augmented domain Ω̃ as the set

Ω̃ =
◦

Ω ∪ D0. (2.9)

It turns out that Ω̃ is of Lipschitz class with constants r0
3 and L̃, where L̃ depends on L only.

Denote

(D0)r = {x ∈ D0 : dist(x, ∂D0) > r} , r ∈
(

0,
r0

6

)
.

Finally, we introduce two sets contained in D0: the sets Dy and Dz which are compactly sup-
ported in D0, i.e. Dy, Dz ⊂⊂ D0. In the following sections, we might identify these sets with
the set (D0)r, but in general, they can be freely chosen in D0.

Consider two anisotropic conductivities σ(i), i = 1, 2 as in section 2.2. Without loss of gen-
erality, we can extend them to the augmented domain Ω̃ by setting their value equal to the
identity matrix on D0, so that they are of the form

σ(i)(x) = γ(i)(x)A(x), for any x ∈ Ω,

σ(i)|D0 = I, γ(i)|D0 = 1.

We denote with the same symbol σ the extended conductivity.
Denote with Gi the Green function associated with the operator div(σ(i)(·)∇·) and Ω̃, for

i = 1, 2. For every y ∈ D0, Gi(·, y) is the weak solution to the Dirichlet problem⎧⎨
⎩

div(σ(i)(·)∇Gi(·, y)) = −δ(· − y) in Ω̃,

Gi(·, y) = 0 on ∂Ω̃,
(2.10)

where δ(· − y) is the Dirac distribution centred at y.
We recall the following properties for the Green’s functions (see [51]):

G(x, y) = G(y, x), ∀x �= y,

and

0 < G(x, y) < C|x − y|2−n, ∀x �= y, (2.11)

where C is a positive constant depending on λ and n. For (y, z) ∈ Dy × Dz, define the following
surface integral

SU0(y, z) =
∫
Σ

[
G2(x, z)σ(1)(x)∇G1(x, y) · ν − G1(x, y)σ(2)(x)∇G2(x, z) · ν

]
dS(x). (2.12)

8
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We define the misfit functional as the quantity

J (σ(1), σ(2)) =
∫

Dy×Dz

∣∣SU0 (y, z)
∣∣2 dy dz. (2.13)

2.5. Stability estimate

In previous works (see [7, 11, 37]), Lipschitz stability estimates have been established
for piecewise constant and piecewise linear isotropic conductivities and a certain class of
anisotropic conductivities respectively, in terms of the local D–N map. Here, we extend these
results to the class of anisotropic conductivities defined in section 2.2. First, we determine a
bound to the L∞-norm of the difference between two anisotropic conductivities in terms of
the square root of the misfit functional introduced above. Then, we derive a Lipschitz stability
result in terms of the local D-N map.

Theorem 2.1. Let Ω be a bounded domain as in assumptions (2.1). Let σ(1) and σ(2) be two
anisotropic conductivities as in assumptions (2.2), i.e. of the form

σ(i)(x) =
N∑

m=1

γ(i)
m (x)χDm (x)A(x), for any x ∈ Ω, i = 1, 2, (2.14)

where D = {Dm}N
m=1 is the partition of subdomains as in assumptions (2.1), A(x) is the known

Lipschitz matrix and γ(i)
m (x) are the piecewise-affine functions given by the formula

γ(i)
m (x) = s(i)

m + S(i)
m · x, x ∈ Dm,

for s(i)
m ∈ R and S(i)

m ∈ R
n. Then there exists a positive constant C such that

‖σ(1) − σ(2)‖L∞(Ω) � C
(
J (σ(1), σ(2))

)1/2
, (2.15)

where C depends on the a priori data only.

From this result, it follows a Lipschitz stability estimate in terms of the local D–N maps.

Corollary 2.2. Assume that the hypothesis of theorem 2.1 hold, then

‖σ(1) − σ(2)‖L∞(Ω) � C‖ΛΣ
σ(1) − ΛΣ

σ(2)‖∗, (2.16)

where C > 0 is a constant depending on the a priori data only.

Remark 2.3. From now on, as we deal with two different anisotropic conductivities σ(i),
i = 1, 2, we will simply denote with the symbol Λi the local DN map ΛΣ

σ(i) .

3. Proof of the main result

The proof of theorem 2.1 is based on an argument that combines asymptotic estimates for the
Green’s function of the elliptic operator div(σ(·)∇·) (proposition 3.1), together with a result
of unique continuation (proposition 3.2). In this section we introduce these technical results
(proved in section 4), then we prove theorem 2.1 and corollary 2.2.

9
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3.1. Technical tools

3.1.1. Behaviour of Green’s function near interfaces. We shall denote with

Γ(x, y) =
1

n(2 − n)ωn
|x − y|2−n, ωn =

2 πn/2

n Γ(n/2)
, (3.1)

the fundamental solution for the Laplace operator (here ωn denotes the volume of the unit ball
in R

n).
Let {Dm}K

m=0, K ∈ {1, . . . , N} be the chain of subdomains as in assumptions (2.1),
{Σm}K

m=1 be the corresponding sequence of flat portions with special points P1, . . . , PK .
Moreover, let ν(Pm+1) denotes the unit normal to ∂Dm at the point Pm+1 pointing outside Dm.

Proposition 3.1 (Asymptotic estimates). Fix an index m ∈ {0, . . . , K − 1}, then there
exist constants α, θ1, θ2, 0 < α, θ1, θ2 < 1 and C1, C2, C3 > 0 depending on the a priori data
only and a suitable constant C4 > 1 such that the following inequalities hold true for every
x ∈ B r0

C4
(Pm+1) ∩ Dm+1 and every y = Pm+1 − rν(Pm+1), where r ∈ (0, r0

C4
)

∣∣∣∣G(x, y) − 2
γm(Pm+1) + γm+1(Pm+1)

Γ(Jx, Jy)

∣∣∣∣ � C1|x − y|3−n−α, (3.2)

∣∣∣∣∇xG(x, y) − 2
γm(Pm+1) + γm+1(Pm+1)

∇xΓ(Jx, Jy)

∣∣∣∣ � C2|x − y|1−n+θ1 , (3.3)

∣∣∣∣∇y∇xG(x, y) − 2
γm(Pm+1) + γm+1(Pm+1)

∇y∇xΓ(Jx, Jy)

∣∣∣∣ � C3|x − y|−n+θ2 , (3.4)

where J is the positive definite matrix J =
√

A(Pm+1)−1.

3.1.2. Quantitative estimates of propagation of smallness. For any number b > 0, define the
concave, non decreasing function ωb(t) on (0,+∞) as

ωb(t) =

{
2be−2| log t|−b, t ∈ (0, e−2),

e−2, t ∈ [e−2,+∞).

We recall (see (4.34) and (4.35) in [11]) that

(0,+∞) � t → tωb

(
1
t

)
is a non-decreasing function (3.5)

and for any β ∈ (0, 1) we have that

ωb

(
t
β

)
� | log eβ−1/2|bωb(t), ωb(tβ) �

(
1
β

)b

ωb(t). (3.6)

Furthermore, we shall denote the iterative compositions of ω as

ω(1)
b = ωb, ω( j)

b = ωb ◦ ω( j−1)
b j = 2, 3, . . . ,

and we set ω(0)
b (t) = tb for 0 < b < 1.

10
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Fix a chain of subdomains {Dm}K
m=0 as in assumptions (2.1) for the domain Ω̃. Set

Wk =

k⋃
m=0

Dm, Uk = Ω̃\Wk, for k = 0, . . . , K. (3.7)

Definition 3.1. For any y, z ∈ Wk, define the singular solution

SUk (y, z) =
∫
Uk

(
σ(1)(·) − σ(2)(·)

)
∇G1(·, y) · ∇G2(·, z), for k = 0, . . . , K.

The set {SUk(y, z)}K
k=0 is a family of real-valued functions which satisfies the following

inequality:

|SUk (y, z)| � C‖σ(1) − σ(2)‖L∞(Ω)(d(y)d(z))1− n
2 , for every y, z ∈ Wk, (3.8)

where d(y) = dist(y,Uk) and C is a positive constant depending on λ and n only.
One can prove (see [11]) that for every y, z ∈ Wk with k = 0, . . . , K, the functions

SUk (·, z), SUk(y, ·) belongs to H1
loc(Wk) and are weak solutions, respectively, to

div
(
σ(1)(·)∇SUk (·, z)

)
= 0, div

(
σ(2)(·)∇SUk(y, ·)

)
= 0 in Wk.

We introduce the following parameters:

β = arctan
1
L

, β1 = arctan

(
sin β

4

)
, λ1 =

r0

1 + sin β1
,

ρ1 = λ1 sin β1, a =
1 − sin β1

1 + sin β1
,

λm = aλm−1, ρm = aρm−1, for every m � 2,

dm = λm − ρm, m � 1.

(3.9)

Notice that dm = r0am, 0 < a < 1.
Choose l ∈ N, fix a point ȳ ∈ Σm+1, then define

w = wl(ȳ) = ȳ − λlν(ȳ), for every l � 1, (3.10)

where w is a point into the domain Dm near the interface Σm+1. For a given r ∈ (0, d1] define
the function

h̄(r) = min{l ∈ N : dl � r}. (3.11)

For successive estimates, it is important to point out the following inequality:

log

(
r
d1

)C

� h̄(r) − 1 � log

(
r
d1

)C

+ 1, C =
1

| log a| . (3.12)

The following estimate for SUk (y, z) holds true, for any k = 1, . . . , K.

11
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Proposition 3.2 (Estimates of unique continuation). Suppose that for a positive
number ε0 and r > 0 we have∣∣SUk(y, z)

∣∣ � r2−n
0 ε0, for every (y, z) ∈ (D0)r × (D0)r, (3.13)

then the following inequalities hold true for every r ∈ (0, d1]

∣∣SUk

(
wh̄(Qk+1),wh̄(Qk+1)

)∣∣ � Ch̄
1(E + ε0)

(
ω(2k)

1/C

(
ε0

E + ε0

))(1/C)h̄

, (3.14)

∣∣∂y j∂zi SUk

(
wh̄(Qk+1),wh̄(Qk+1)

)∣∣ � Ch̄
2(E + ε0)

(
ω(2k)

1/C

(
ε0

E + ε0

))(1/C)h̄

, (3.15)

for any i, j = 1, . . . , n, where Qk+1 ∈ Σk+1 ∩ B r0
8

(Pk+1), wh̄(r)(Qk+1) = Qk+1 − λh̄(r)ν(Qk+1),
with λh̄(r) as above, ν(Qk+1) is the exterior unit normal to ∂Dk at the point Qk+1 pointing
outside Dk and C1, C2 > 0 depend on the a-priori data only.

3.2. Proof of theorem 2.1 and the corollary 2.2

Proof of theorem 2.1. First, notice that∥∥σ(1) − σ(2)
∥∥

L∞(Ω)
�

∥∥γ(1) − γ(2)
∥∥

L∞(Ω)
Ā,

where Ā is the Lipschitz constant from assumptions (2.2). Let DK be the subdomain of Ω such
that ∥∥γ(1) − γ(2)

∥∥
L∞(Ω)

=
∥∥∥γ(1)

K − γ(2)
K

∥∥∥
L∞(DK )

.

Then, inequality (2.15) will follow from

‖γ(1)
K − γ(2)

K ‖L∞(DK ) � C
(
J (σ(1), σ(2))

)1/2
, (3.16)

for C > 1 a positive constant depending on a priori estimates.
To prove (3.16), we find convenient, as previously stated, to work in the augmented domain

Ω̃ as in (2.9), where D0 is the domain defined in (2.8), on which we have defined the extended
conductivity σ(i) for i = 1, 2 by setting σ(i)|D0 = I. Recalling that DK is the subdomain of Ω
where the maximum of |γ(1) − γ(2)| is reached, let D0, D1, . . . , DK be the chain of subdomains
as in section 2.1 and let Σ1, . . . ,ΣK be the corresponding flat portions. Set

ε0 =
(
J (σ(1), σ(2))

)1/2
, E = ‖γ(1)

K − γ(2)
K ‖L∞(DK ), (3.17)

δk = ‖γ(1) − γ(2)‖L∞(Wk), for k = 1, . . . , K. (3.18)

Given a differentiable function f on a domain Ω, we can split its differential as

D f (x) = DT f (x) + ∂ν f (x), for x ∈ Σk, k = 1, . . . , K,

where DT f is the n − 1 dimensional vector of the tangential partial derivatives of f on Σk and
∂ν f denotes the normal partial derivative of f on Σk, respectively for k = 1, 2, . . . , K.

12
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Fix 0 < r2 < r1 such that Σk ∩ Br1 (Pk) �= ∅ for k = 1, 2, . . . , K. We observe that
the norm ‖γ(1)

k − γ(2)
k ‖L∞(Dk) can be estimated in terms of the quantities

‖γ(1)
k − γ(2)

k ‖L∞(Σk∩Br1 (Pk)) and
∣∣∣∂ν(γ(1)

k − γ(2)
k )(Pk)

∣∣∣ . (3.19)

In fact, fix an orthonormal basis {ek
j} j=1,...,n−1 which generates the hyperplane containing

the flat part Σk. Set

αk + βk · x =
(
γ(1)

k − γ(2)
k

)
(x), x ∈ Dk.

If we evaluate
(
γ(1)

k − γ(2)
k

)
at the points Pk + r2ek

j, j = 1, . . . , n − 1, it follows that

∣∣αk + βk ·
(
Pk + r2ek

j

)∣∣ � |αk + βk · Pk|+ r1

n−1∑
j=1

|βk · ek
j| � C‖γ(1)

k − γ(2)
k ‖L∞(Σk∩Br1 (Pk )).

Next, notice that

|βk · ν| =
∣∣∣∂ν(γ(1)

k − γ(2)
k )(Pk)

∣∣∣ .
In conclusion, for k = 1, . . . , K,

|αk|+ |βk| � C
(
‖γ(1)

k − γ(2)
k ‖L∞(Σk∩Br1 (Pk )) +

∣∣∣∂ν(γ(1)
k − γ(2)

k )(Pk)
∣∣∣) .

Hence, our task will be to estimate the quantities introduced in (3.19) for k = 1, . . . , K in terms
of the function ω1/C introduced in section 3.1.2, ε0 and E.

3.2.1. Boundary estimates. Let us start from the case k = 1. We will prove the following
estimate:

‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 (P1)) +
∣∣∣∂ν (γ(1)

1 − γ(2)
1 )(P1)

∣∣∣ � C(ε0 + E)ω(0)
1/C

(
ε0

ε0 + E

)
. (3.20)

For every y, z ∈ (D0)r, by Green formula the following equalities hold:∫
Σ

[
G2(·, z)σ(1)(·)∇G1(·, y) · ν − G1(·, y)σ(2)(·)∇G2(·, z) · ν

]
dS

=

∫
Ω

(σ(1) − σ(2))(·)∇G1(·, y) · ∇G2(·, z), (3.21)

and ∫
Σ

[
∂zn G2(·, z)σ(1)(·)∇∂ynG1(·, y) · ν − ∂ynG1(·, y)σ(2)(·)∇∂znG2(·, z) · ν

]
dS

=

∫
Ω

(σ(1) − σ(2))(·)∇∂yn G1(·, y) · ∇∂zn G2(·, z), (3.22)

where G1(·, y) and G2(·, z) are weak solutions to the problem (2.10). Since SU0(y, z) and
∂yn∂znSU0 (y, z) are weak solutions to the following equation

div
(
σ(1)(·)∇SU0(·, z)

)
+ div

(
σ(2)(·)∇SU0 (y, ·)

)
= 0, in Dy × Dz,
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we can apply a result of local boundedness for weak solutions of a uniformly elliptic operator
(see [38, chapter 8, theorem 8.17]) that allows us to bound the supremum of SU0 (y, z) by its
L2-norm as follows:

sup
(y,z)∈(Dy )r×(Dz)r

|SU0 (y, z)| � Cr−n

(∫
Dy×Dz

|SU0(y, z)|2dy dz

)1/2

, (3.23)

where C depends on n, λ, |Ω| and r ∈ (0, r0/6).
Let ρ0 = r0/C4, where C4 is the constant introduced in proposition 3.1. Let r ∈ (0, d2] and

define the point w = w(P1) = P1 − τν(P1) where ν(P1) is the unit outward normal of ∂D1 at
the point P1 and τ = λh̄(r) = ah̄−1λ1, h̄ = h̄(r) is defined in (3.11).

Set y = z = w, split the right-hand side of (3.21) into the sum of two integrals I1(w) and
I2(w):

SU0 (w,w) = I1(w) + I2(w),

where

I1(w) =
∫

Bρ0 (P1)∩D1

(γ(1)
1 − γ(2)

1 )(·)A(·)∇G1(·,w) · ∇G2(·,w),

I2(w) =
∫
Ω\(Bρ0 (P1)∩D1)

(σ(1) − σ(2))(·)∇G1(·,w) · ∇G2(·,w).

The integral I2(w) can be easily estimate using [11, proposition 3.1] as

|I2(w)| � CEρ2−n
0 , (3.24)

Let us estimate I1(w) from below in terms of ‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 (P1)). Let x ∈ Σ1 ∩ Br1 (P1)
be such that

(γ(1)
1 − γ(2)

1 )(x) = ‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 (P1)).

Since (γ(1)
1 − γ(2)

1 )(x) = α1 + β1 · x,

I1(w) =
∫

Bρ0 (P1)∩D1

(γ(1)
1 − γ(2)

1 )(x)A(x)∇G1(x,w) · ∇G2(x,w)dx

+

∫
Bρ0 (P1)∩D1

β1 · (x − x)A(x)∇G1(x,w) · ∇G2(x,w)dx, (3.25)

which leads to

|I1(w)| �
∣∣∣∣∣
∫

Bρ0 (P1)∩D1

(γ(1)
1 − γ(2)

1 )(x̄) A(x) ∇G1(x,w) · ∇G2(x,w)

∣∣∣∣∣
− Ā

∫
Bρ0 (P1)∩D1

|β1 · (x − x̄)| |∇G1(x,w)| |∇G2(x,w)|dx. (3.26)

14
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If we set c̃(1) = 2
1+γ(1)

1 (P1)
and c̃(2) = 2

1+γ(2)
1 (P1)

, by adding and subtracting the fundamental

solution c̃(i)Γ we have

|I1(w)| �
∣∣∣∣∣
∫

Bρ0 (P1)∩D1

(γ(1)
1 − γ(2)

1 )(x̄) A(x) c̃(1) c̃(2) |∇Γ(Jx, Jw)|2
∣∣∣∣∣

−
∫

Bρ0 (P1)∩D1

|(γ(1)
1 − γ(2)

1 )(x̄)| |A(x)∇(G1(x,w) − c̃(1)Γ(Jx, Jw))

· ∇(G2(x,w) − c̃(2)Γ(Jx, Jw))|dx − Ā
∫

Bρ0 (P1)∩D1

|(γ(1)
1 − γ(2)

1 )(x̄)|

× |∇(G1(x,w) − c̃(1)Γ(Jx, Jw))|c̃(2)|∇Γ(Jx, Jw)|dx

− Ā
∫

Bρ0 (P1)∩D1

|(γ(1)
1 − γ(2)

1 )(x̄)| c̃(1) |∇Γ(Jx, Jw)‖∇ (G2(x,w)

− c̃(2)Γ(Jx, Jw)
)
|| dx −

∫
Bρ0 (P1)∩D1

|β1 · (x − x̄)| |A(x)∇Γ(Jx, Jw)|

· ∇Γ(Jx, Jw)| dx. (3.27)

Now, up to a change of coordinate we can suppose that P1 is the origin O. Let us apply the
asymptotic estimate (3.4) to (3.27) for J =

√
A−1(0), it follows that

|I1(w)| � ‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 )Cλ
−1
∫

Bρ0∩D1

|∇xΓ(Jx, Jw)|2 dx

− C E
∫

Bρ0∩D1

|∇xΓ(Jx, Jw)| |x − w|θ1+1−n dx

− C E
∫

Bρ0∩D1

|x − w|2θ1+2−2n dx

− C E
∫

Bρ0∩D1

|x − x| |x − w|2−2n dx,

where the C > 0 depends on the a priori data only. By definition (3.1), we can express explicitly
the fundamental solution Γ inside the integrals and obtain:

|I1(w)| � ‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 )Cλ
−1
∫

Bρ0∩D1

|J2(x − w)|
|J(x − w)|n

2

dx

− C E
∫

Bρ0∩D1

|J2(x − w)|
|J(x − w)|n |x − w|θ1+1−n dx

− C E
∫

Bρ0∩D1

|x − w|2θ1+2−n dx

− C
∫

Bρ0∩D1

|β1||x − x||x − w|2−2n dx. (3.28)
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By estimating the integrals in (3.28) with respect to the parameter τ , we can bound |I1(w)|
from below as follows:

|I1(w)| � ‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 )Cτ
2−n − C E τ 2−n+θ1 − C E τ 2−n+2θ1 − C E τ 3−n. (3.29)

By (3.23) and (3.24), it follows that

|I1(w)| � |SU0 (w,w)|+ |I2(w)| � C ε0τ
−n + C E ρ2−n

0 ,

which leads to the following estimate for the conductivity:

‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 (P1))τ
(2−n) � C ε0τ

−n + C E ρ2−n
0 + C E τ 2−n+θ1

+ C E τ 2−n+2θ1 + C E τ 3−n.

Dividing by τ 2−n both sides and by minimising with respect to τ we obtain

‖γ(1)
1 − γ(2)

1 ‖L∞(Σ1∩Br1 (P1)) � C(ε0 + E)

(
ε0

ε0 + E

) θ1
θ1+2

, (3.30)

where C is a positive constant which depends on the a priori data only.
Let us estimate |∂ν(γ(1)

1 − γ(2)
1 )(P1)|. From (3.22), for y = z = w as above, we split again

the nth partial derivative of the singular solution as follows:

∂yn∂znSU0 (w,w) = Ī1(w) + Ī2(w), (3.31)

where

Ī1(w) =
∫

Bρ0 (P1)∩D1

(γ(1)
1 − γ(2)

1 )(·)A(·)∇∂ynG1(·,w) · ∇∂znG2(·,w),

Ī2(w) =
∫
Ω\(Bρ0 (P1)∩D1)

(σ(1) − σ(2))(·)∇∂ynG1(·,w) · ∇∂zn G2(·,w).

With a similar argument as in (3.24) one can determine an upper bound for Ī2 of the form

|̄I2(w)| � CEρ−n
0 , (3.32)

where C depends on the a priori data. Notice that for any point x ∈ Bρ0 (P1) ∩ D1, the following
equality holds

(γ(1)
1 − γ(2)

1 )(x) = (γ(1)
1 − γ(2)

1 )(P1) + (DT(γ(1)
1 − γ(2)

1 )(P1)) · (x − P1)′

+ (∂ν(γ(1)
1 − γ(2)

1 )(P1))(x − P1)n.
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Proceeding as in (3.25) and (3.26),

|̄I1(w)| �
∣∣∣∣∣
∫

Bρ0 (P1)∩D1

(∂ν(γ(1)
1 − γ(2)

1 )(P1))(x − P1)nA(·)∇∂yn G1(·,w) · ∇∂znG2(·,w)|

−
∫

Bρ0 (P1)∩D1

|(DT(γ(1)
1 − γ(2)

1 )(P1)) · (x − P1)′| |A(·)∇∂ynG1(·,w) · ∇∂zn G2(·,w)|

−
∫

Bρ0 (P1)∩D1

|(γ(1)
1 − γ(2)

1 )(P1)| |A(·)∇∂ynG1(·,w) · ∇∂zn G2(·,w)|.

Up to a rigid transformation, we can assume that P1 coincides with the origin O of the coor-
dinate system. Using a similar technique as in (3.27) and by proposition 3.1, this leads to

|̄I1(w)| � |∂ν(γ(1)
1 − γ(2)

1 )(O)|C
∫

Bρ0∩D1

|∇x∂ynΓ(Jx, Jw)|2|xn|

− C

{
E
∫

Bρ0∩D1

|∂yn∇xΓ(Jx, Jw)| |x − w|θ2−n|xn|

+ E
∫

Bρ0∩D1

|x − w|θ2−2n|xn|
}

−
∫

Bρ0∩D1

|DT(γ(1)
1 − γ(2)

1 )| |x′| |∇∂yn G1(·,w)| |∇∂zn G2(·,w)|

−
∫

Bρ0∩D1

|(γ(1)
1 − γ(2)

1 )(O)| |∇∂yn G1(·,w)| |∇∂zn G2(·,w)|. (3.33)

By (3.30), we derive the following lower bound:

|̄I1(w)| � |∂ν(γ(1)
1 − γ(2)

1 )(O)|C
∫

Bρ0 (P1)∩D1

|x − w|1−2n

− C

{
E
∫

Bρ0∩D1

|x − w|1−2n+θ2 −
∫

Bρ0∩D1

|x − w|2−2n+θ2

− ε0

∫
Bρ0∩D1

|x − w|1−2n − ε0

∫
Bρ0∩D1

|x − w|−2n

}
,

which leads to

|∂ν(γ(1)
1 − γ(2)

1 )(O)|τ 1−n � |I1(w)|+ C
(
ε0τ

−n + Eτ 1−n+θ2
)
. (3.34)

By the quantitative estimate (3.15),

|̄I1(w)| � |∂yn∂zn SU0(w,w)|+ |I2(w)|

� C ε0τ
−(2+n) + C E ρ−n

0 .
(3.35)
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Thus, by combining together (3.34) and (3.35), it follows that

|∂ν(γ(1)
1 − γ(2)

1 )(O)|τ 1−n � C
(
ε0τ

−(2+n) + Eρ−n
0 + ε0τ

−n + Eτ 1−n+θ2
)

,

which leads to

|∂ν(γ(1)
1 − γ(2)

1 )(O)| � C
(
ε0τ

−3 + Eτθ2
)
.

Finally, optimizing the right-hand side with respect to τ , the estimate is given by the following
inequality

|∂ν(γ(1)
1 − γ(2)

1 )(O)| � Cε
θ2

θ2+3

0 (E + ε0)
3

3+θ2 ,

so that (3.20) is proved.

3.2.2. Interior estimates. We show that from the case k = 1 we obtain the following estimate
for the case k = 2:

‖σ(1)
2 − σ(2)

2 ‖L∞(Σ2∩Br1 (P2)) �C(ε0 + E)

(
ω(3)

1/C

(
ε0

ε0 + E

)) 1
C

, (3.36)

∣∣∣∂ν(σ(1)
2 − σ(2)

2 )(P2)
∣∣∣ � C(ε0 + E)

(
ω(4)

1/C

(
ε0

ε0 + E

)) 1
C

. (3.37)

Since the proofs of (3.36) and (3.37) are similar, we prove (3.37), assuming that (3.36)
holds.∫

Σ

[
∂zn G2(·, z)σ(1)(·)∇∂ynG1(·, y) · ν − ∂yn G1(·, y)σ(2)(·)∇∂znG2(·, z) · ν

]
dS

= ∂yn∂zn SU1(y, z) +
∫
W1

(σ(1) − σ(2))(·)∂yn∇G1(·, y) · ∂zn∇G2(·, z). (3.38)

Let ρ0 = r0/C4, where C4 is the constant introduced in proposition 3.1. Pick r ∈ (0, r0/6).
Fix the point w = w(P2) = P2 − τν(P2) where τ = ah̄−1λ1. We split the integral solution into
two parts:

∂yn∂znSU1 (w,w) = I1(w) + I2(w), (3.39)

where

I1(w) =
∫

Bρ0 (P2)∩D2

(γ(1)
2 − γ(2)

2 )(·) A(·) ∂yn∇G1(·,w) · ∂zn∇G2(·,w),

I2(w) =
∫
U2\(Bρ0 (P2)∩D2)

(σ(1) − σ(2))(·) ∂yn∇G1(·,w) · ∂zn∇G2(·,w).

As in the boundary estimates, we can bound from above I2(w) as follows:

|I2(w)| � CEρ−n
0 . (3.40)
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Now, let us estimate from below the integral I1(w) in terms of the quantity |∂ν(σ(1)
2 − σ(2)

2 )(P2)|.
First, notice that for any x ∈ Bρ0 (P2) ∩ Σ2 we can rewrite γ(i)

2 as

γ(i)
2 (x) = γ(i)

2 (P2) + DTγ
(i)
2 (P2) · (x − P2)′ + ∂ν (γ(i)

2 (P2))(x − P2)n. (3.41)

By (3.41),

|I1(w)| �
∣∣∣∣∣
∫

Bρ0 (P1)∩D2

(∂ν(γ(1)
2 − γ(2)

2 )(P2))(x − P2)n A(x) ∂yn∇G1(·,w) · ∂zn∇G2(·,w)|

−
∫

Bρ0 (P2)∩D2

|(DT(γ(1)
2 − γ(2)

2 )(P2)) · (x − P2)′| |A(x) ∂yn∇G1(·,w) · ∂zn∇G2(·,w)|

−
∫

Bρ0 (P2)∩D2

|(γ(1)
2 − γ(2)

2 )(P2)| |A(x) ∂yn∇G1(·,w) · ∂zn∇G2(·,w)|.

Up to a rigid transformation of coordinates, we can assume that P2 coincides with the origin
O of the coordinate system. By proposition 3.1,

|I1(w)| � |∂ν (γ(1)
2 − γ(2)

2 )(O)|C
∫

Bρ0∩D2

|∂yn∇xΓ(Jx, Jw)|2 |xn|

− CE
∫

Bρ0∩D2

|∂yn∇xΓ(Jx, Jw)| |x − w|θ2−n|xn|

− CE
∫

Bρ0∩D2

|x − w|2θ2−2n|xn|

−
∫

Bρ0∩D2

|DT(γ(1)
2 − γ(2)

2 )(O)| |x′| |A(x) ∂yn∇G1(·,w) · ∂zn∇G2(·,w)|

−
∫

Bρ0∩D2

|(γ(1)
2 − γ(2)

2 )(0)| |A(x) ∂yn∇G1(·,w) · ∂zn∇G2(·,w)|. (3.42)

We can estimate the two last terms of the right-hand side by (3.36). Then

|I1(w)| � |∂ν (γ(1)
2 − γ(2)

2 )(O)|C
∫

Bρ0∩D2

|x − w|1−2n

− CE
∫

Bρ0∩D2

|x − w|θ2+1−2n

− CE
∫

Bρ0∩D2

|x − w|2θ2+1−2n

− (ε0 + E)

(
ω(3)

1/C

(
ε0

ε0 + E

))1/C∫
Bρ0∩D2

|x − w|1−2n

− (ε0 + E)

(
ω(3)

1/C

(
ε0

ε0 + E

))1/C∫
Bρ0∩D2

|x − w|−2n,
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where the constant C > 0 depends on the a priori data and on J. This leads to

∣∣∣∂ν (γ(1)
2 − γ(2)

2 )(O)
∣∣∣ r(1−n) � |I1(w)|+ C

{
(ε0 + E)

(
ω(3)

1/C

(
ε0

ε0 + E

))1/C

τ−n + E
τ 1−n+θ2

ρθ2
0

}
.

Secondly, by (3.39) and (3.40),

|I1(w)| � |∂yn∂zn SU1(w,w)|+ CEρ−n
0 .

Combining the last two inequalities, it follows that

∣∣∣∂ν(γ(1)
2 − γ(2)

2 )
∣∣∣ τ (1−n) � |∂yn∂zn SU1 (w,w)|+ C

{
Eρ−n

0

+ (ε0 + E)

(
ω(3)

1/C

(
ε0

ε0 + E

))1/C

τ−n ++E
τ 1−n+θ2

ρθ2
0

}
.

By quantitative estimates of propagation of smallness (proposition 3.2), we can estimate the
integral solution as

∣∣∂y j∂zi SU1(w,w)
∣∣ � r−n

0 Ch̄(ε0 + δ1 + E)

(
ω(2)

1/C

(
ε0 + δ1

E + δ1 + ε0

))(1/C)h̄

,

so that

∣∣∣∂ν(γ(1)
2 − γ(2)

2 )(O)
∣∣∣ � Ch̄(ε0 + δ1 + E)

(
ω(2)

1/C

(
ε0 + δ1

E + δ1 + ε0

))(1/C)h̄

τ (n−1)

+ Cτ (−1)(ε0 + E)

(
ω(3)

1/C

(
ε0

ε0 + E

))1/C

+ CE
τθ2

ρθ2
0

. (3.43)

Since h̄ is a function of r, we have to estimate Ch̄ and
(

1
C

)h̄
in terms of r. Recalling (3.12), it

turns out that

(
d1

r

)C1

� Ch̄ � C2

(
d1

r

)C1

.

Since τ � λ1 · r
d1

,

|∂ν(γ(1)
2 − γ(2)

2 )(O)| � C(ε0 + E)

⎧⎨
⎩
(

r
d1

)n−1−C(
ω(2)

1/C

(
ε0 + δ1

E + δ1 + ε0

))(
r

d1

)C

+

(
r
d1

)−1(
ω(3)

1/C

(
ε0

ε0 + E

))1/C

+

(
r

d1

)θ2
}
. (3.44)
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One can show that the following inequality holds:

ε0 + δ1

E + δ1 + ε0
� Cω(0)

1/C

(
ε0

ε0 + E

)
. (3.45)

Then, combining (3.45) together with (3.44),

∣∣∣∂ν (γ(1)
2 − γ(2)

2 )(O)
∣∣∣ � C(ε0 + E)

⎧⎨
⎩
(

r
d1

)n−1−C(
ω(3)

1/C

(
ε0

E + ε0

))(
r

d1

)C

+

(
r
d1

)θ2

⎫⎬
⎭ .

Finally, optimizing with respect to r, (3.37) follows.
Proceeding as above, for k = 3, . . . , K, one can show that the following inequalities hold:

‖γ(1)
k − γ(2)

k ‖L∞(Σk∩Br1 (Pk)) � C(ε0 + E)

(
ω(2k−1)

1/C

(
ε0

ε0 + E

)) 1
C

, (3.46)

∣∣∣∂ν (γ(1)
k − γ(2)

k )(Pk)
∣∣∣ � C(ε0 + E)

(
ω(2k)

1/C

(
ε0

ε0 + E

)) 1
C

. (3.47)

By reformulating (3.21) and (3.22) as

∫
Σ

[
G2(·, z)σ(1)(·)∇G1(·, y) · ν − G1(·, y)σ(2)(·)∇G2(·, z) · ν

]
dS

= SUk−1(y, z) +
∫
Wk−1

(σ(1) − σ(2))(·)∇G1(·, y) · ∇G2(·, z) (3.48)

and ∫
Σ

[
∂zn G2(·, z) σ(1)(·)∇∂ynG1(·, y) · ν − ∂ynG1(·, y)σ(2)(·)∇∂znG2(·, z) · ν

]
dS

= ∂yn∂zn SUk−1 (y, z) +
∫
Wk−1

(σ(1) − σ(2))(·)∇∂ynG1(·, y) · ∇∂zn G2(·, z), (3.49)

respectively, the procedure is similar to the one seen above. We just point out that, for (y, z) ∈
Wk ×Wk,

|SUk−1 (y, z)| � Cr2−n
0 (ε0 + δk−1),

then we can bound from above the integral solution by unique continuation (3.14) and (3.15).
Notice that

δk � δk−1 + ‖γ(1)
k − γ(2)

k ‖L∞(Dk).

From the property (3.5) it follows that

ω(2k)
1/C(1) � ε0 + δk−1 + E

ε0 + δk−1
ω(2k)

1/C

(
ε0 + δk−1

ε0 + δk−1 + E

)
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and

δk−1 + ε0 � (ω(2k)
1/C(1))−1(ε0 + δk−1 + E)

(
ω(2k)

1/C

(
ε0 + δk−1

ε0 + δk−1 + E

))
.

By the estimates (3.46) and (3.47) it follows that

δk + ε0 � C(ε0 + E)

(
ω(2k)

1/C

(
ε0

ε0 + E

))1/C

.

This leads to the following estimate for E = δK

E � C(ε0 + E)

(
ω(2K)

1/C

(
ε0

ε0 + E

)) 1
C

.

Since the function ω1/C is invertible for ε0 < e−2E (otherwise the statement is proven), it
follows that

E �
C −

(
ω(2K)

1/C

(
1
C

))−1

(
ω(2K)

1/C

(
1
C

))−1 ε0.

Hence, (3.50) is proven. �

Proof of corollary 2.2. Assume that the hypothesis of theorem 2.1 hold, then there exists
a constant C > 1 such that

‖σ(1) − σ(2)‖L∞(Ω) � C
(
J (σ(1), σ(2))

)1/2
.

First, by the Alessandrini’s identity,

SU0 (y, z) = 〈(Λ1 − Λ2)G1(·, y), G2(·, z)〉,

where G1(·, y), G2(·, z) ∈ H1/2
00 (Σ) for y, z ∈ D0 since they are weak solutions to the problem

(2.10). Then, it follows that

|SU0 (y, z)| � C‖Λ1 − Λ2‖∗,

where

‖Λ1 − Λ2‖∗ = sup
f ,g∈H1/2

00 (Σ), ‖g‖=‖ϕ‖=1

|〈(Λ1 − Λ2)g,ϕ〉|.

Then (
J (σ(1), σ(2))

)1/2 � C‖Λ1 − Λ2‖∗, (3.50)

where C > 0 depends on the a priori data only. Then the inequality (2.16) trivially follows.�

4. Proof of technical propositions

In this section we give the proof of the propositions needed for the proof of the main result
(theorem 2.1).
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4.1. Asymptotic estimates

Let 0 < μ < 1 and B+ ∈ Cμ(Q+
r ), B− ∈ Cμ(Q−

r ) be symmetric, positive definite, matrix
valued functions and define

B(x) =

{
B+(x), x ∈ Q+

r ,

B−(x), x ∈ Q−
r ,

such that B satisfies the uniform ellipticity condition

λ−1
0 |ξ|2 � B(x)ξ · ξ � λ0|ξ|2, for a.e. x ∈ Qr, for everyξ ∈ R

n,

where λ0 > 0 is a constant. Let b̄ > 0 and define

b(x) =

{
b+ + B+ · x, x ∈ Q+

r ,

b− + B− · x, x ∈ Q−
r ,

where b+, b− ∈ R, B+, B− ∈ R
n and 0 < b̄−1 � b(x) � b̄.

Theorem 4.1. Let r > 0 be a fixed number. Let b(x) and B(x) be as above. Let U ∈ H1(Qr)
be a solution to

div(b(x) B(x)∇U) = 0, in Qr.

Then, there exist positive constants 0 < α′ � 1, C > 0 depending on b̄, r,λ0 and n only, such
that for any ρ � r

2 and for any x ∈ Qr−2ρ, the following estimate holds

‖∇U‖L∞(Qρ(x)) + ρα
′ |∇U|

α′,Qρ(x)∩Q+
r
+ ρα

′ |∇U|α′,Qρ(x)∩Q−
r
� C

ρ1+n/2
‖U‖L2(Q2ρ(x)). (4.1)

Proof. For the proof we refer to Li–Vogelius [52], where piecewise C1,α′
estimates for solu-

tions to elliptic equations in divergence form with piecewise Hölder continuous coefficients
have been demonstrated. �

Proof of theorem 3.1. Let us consider a conductivity σ of the form

σ(x) =
N∑

k=1

γk(x)χDk (x) A(x).

First, fix k = 1, . . . , K. Up to a rigid transformation, we the point Pk+1 can be identified
with the origin and γk(0) = γ− and γk+1(0) = γ+ for k ∈ R. For any x = (x′, xn), denote x∗ =
(x′,−xn).

Let us introduce a linear change of coordinates

L : Rn → R
n

ξ �→ Lξ :=R Jξ,
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where J =
√

A−1(0) and the matrix R is orthogonal and represents the planar rotation in R
n

that rotates the unit vector v
‖v‖ , where v =

√
A(0)en to the nth standard unit vector en and such

that

R|(π)⊥ = Id|(π)⊥ ,

where π is the plane generated by en and v and (π)⊥ is the orthogonal complement of π (see
[37]). Moreover, the following relations hold

• A(0) = L−1 · (L−1)T ,
• (Lξ) · en = 1

‖v‖ξ · en,

• σA(0)(ξ) = L−1σI(Lξ)(L−1)T , where σI(Lξ) = σI(x) = (γ− + (γ+ − γ−)χ+(x))I.

A fundamental solution of the operator divξ((γ− + (γ+ − γ−)χ+(·))A(0)∇ξ·) has the
following explicit form

HA(0)(ξ, η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|J|
(

1
γ+

Γ(Lξ, Lη) +
γ+ − γ−

γ+(γ+ + γ−)
Γ(Lξ, L∗η)

)
, if ξn, ηn > 0,

|J|
(

2
γ+ + γ−Γ(Lξ, Lη)

)
, if ξnηn < 0,

|J|
(

1
γ−Γ(Lξ, Lη) +

γ− − γ+

γ−(γ+ + γ−)
Γ(Lξ, L∗η)

)
, if ξn, ηn < 0,

(4.2)

where |J| denotes the determinant of the matrix J and L∗ is the matrix whose coefficients follow
the rule

l∗i j = li j, for i = 1, . . . , n − 1, j = 1, . . . , n, l∗n j = −ln j for j = 1, . . . , n.

Set H(ξ, η) = HA(0)(ξ, η). Denote with Ω̃ the augmented domain obtained after having per-
formed the change of coordinates L. Define the distribution

R(ξ, η) = G(ξ, η) − H(ξ, η), (4.3)

where G(·, η) is the weak solution to (2.10), then R(ξ, η) is a weak solution to the following
boundary value problem⎧⎨

⎩
divξ (σ(·)∇R(·, η)) = −divξ

(
(σ(·) − σ0(·))∇ξH(·, η)

)
, in Ω̃,

R(·, η) = −H(·, η), on ∂Ω̃,

where σ0(·) = (γ− + (γ+ − γ−)χ+(·))A(0). By the representation formula over Ω̃, it follows
that R satisfies the following integral identity

R(ξ, η) = −
∫
Ω̃

(σ(ζ) − σ0(ζ))∇ζH(ζ, η) · ∇ζG(ζ, ξ)dζ +
∫
∂Ω̃

σ(ζ)∇G(ζ, ξ) · ν H(ζ, η)dS(ζ).

(4.4)

The integral over ∂Ω̃ at the right-hand side of (4.4) can be easily bounded from above as in
[7, equation (4.10)] by a constant C > which depends on the a priori data only.
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Set γ0(·) = γ− + (γ+ − γ−)χ+(·). Locally, in a neighbourhood of the origin, the following
estimate holds

|σ(ζ) − σ0(ζ)| � |γ(ζ)A(ζ) − γ0(ζ)A(0)| � |γ(ζ)| |A(ζ) − A(0)|

+ |γ(ζ) − γ0(ζ)| |A(0)| � C |ζ|, (4.5)

where C > 0 depends on γ̄, Ā only. Moreover by (2.11) we find the following two pointwise
bounds:

|∇ζG(ζ, ξ)| � C|ζ − ξ|1−n for every ζ, ξ ∈ Qr0 ,

|∇ζH(ζ, η)| � C|ζ − η|1−n for every ζ, η ∈ Qr0 ,

which together with (4.5) leads to∣∣∣∣
∫
Ω̃

(σ(ζ) − σ0(ζ))∇ζH(ζ, η) · ∇ζG(ζ, ξ)dζ

∣∣∣∣ � C1|ξ − η|3−n−α, (4.6)

for any 0 < α < 1. In conclusion, for ξ ∈ B+
r0

, η = ηnen with ηn ∈ (−r0, 0),

|R(ξ, η)| � C|ξ − η|3−n−α. (4.7)

We focus on the estimate for ∇ξR(ξ, enηn). Fix ξ ∈ B+
r0/4 and ηn ∈ (−r0/4, 0), consider the

cylinder Q = B′
h/4(ξ′) ×

(
ξn, ξn +

h
4

)
where h = |ξ − η|. Notice that Q ⊂ Q+

r0
2

, Q ⊂ Q h
2
(ξ) and

ξ ∈ ∂Q.
By theorem 4.1 it follows that

|∇ξG(·, enηn)|α′,Q, |∇ξH(·, enηn)|α′,Q � Ch−α′+1−n. (4.8)

Hence by (4.3) and (4.8) we

|∇ξR(·, enηn)|α′,Q � Ch−α′+1−n. (4.9)

From the following interpolation inequality

‖∇ξR(·, enηn)‖L∞(Q) � C

(
‖R(·, enηn)‖α

′/1+α′

L∞(Q) |∇ξR(·, enηn)|1/1+α′

α′,Q +
1
h
‖R(·, ηnen)‖L∞(Q)

)
,

together with (4.7) we obtain

|∇ξR(·, ηnen)| � Chθ1+1−n,

where θ1 = α′(1−α)
1+α .

Now, we look for a pointwise bound for ∇η∇ξR(ξ, η). Define the cylinder Q̂ = B′
h
8
(0) ×(

ηn − h
8 , ηn

)
. As before, we have that Q̂ ⊂ Q− r0

4
, Q̂ ⊂ Q h

4
(η) and ξ /∈ Q h

4
(η).

Let k be an integer such that k ∈ {1, . . . , n}. Notice that ∂ξkΓ(ξ, ·) is a weak solution to the
Laplace equation

Δη(∂ξkΓ(ξ, ·)) = 0 in Q h
4
(η),
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and ∂ξk G(ξ, ·) is a weak solutions to the problem

{
div(σ(·)∇∂ξk Gi(ξ, ·)) = −δ(ξ − ·) in Q h

4
(η),

Gi(ξ, ·) = 0 on ∂Ω.

By theorem 4.1, it follows that

|∇η∂ξk G(ξ, ·)|α′,Q̂ � Ch−α′−1− n
2 ‖∂ξk G(ξ, ·)‖

L2
(

Q h
4

(η)

). (4.10)

Fix η̄ ∈ Q h
4
(η), then η̄ /∈ Q h

16
(ξ). By theorem 4.1, it follows that

‖∇ξG(·, η̄)‖
L∞

(
Q h

32
(ξ)

) � Ch−1− n
2 ‖G(·, η̄)‖

L∞
(

Q h
16

(ξ)

) � Ch1−n. (4.11)

From (4.10) and (4.11) it follows that

|∇η∂ξk G(ξ, ·)|α′,Q̂ � Ch−α′−n . (4.12)

By the representation formula for Γ,

|∇η∂ξkΓ(ξ, ·)|α′,Q̂ � Ch−α′−n, (4.13)

and by (4.12) and (4.13),

|∇η∂ξk R(ξ, ·)|α′,Q̂ � Ch−α′−n. (4.14)

Arguing as above, the following estimate holds:

‖∂ξk R(ξ, ·)‖L∞(Q̂) � Chθ1+1−n. (4.15)

By the following interpolation inequality

‖∇η∂ξk R(ξ, ·)‖L∞(Q̂) � C‖∂ξk R(ξ, ·)‖
α′

α′+1

L∞(Q̂)
|∇y∂ξk R(ξ, ·)|

1
α′+1

α′,Q̂
(4.16)

and by (4.15) and (4.14), we conclude that

|∇η∂ξk R(ξ, η)| � Chθ2−n, (4.17)

where θ2 = θ1α
′

1+α′ . �

4.2. Propagation of smallness

In order to prove proposition 3.2, we state and prove a preliminary proposition 4.2, where we
determine a pointwise bound for the weak solution to the conductivity equation in the interior
of Ω̃.

Proposition 4.2. Let v ∈ H1(Ω̃) be a weak solution to

div(σ∇v) = 0 in Wk, (4.18)
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where k ∈ {0, . . . , K − 1}. Suppose there exist E, ε > 0 such that

|v(x)| � r2−n
0 ε ∀x ∈ D0, (4.19)

|v(x)| � E(r0d(x))1−(n/2) ∀x ∈ Wk. (4.20)

Then, for every r ∈ (0, d1],

|v(wh̄(Pk+1))| � r2−n
0 Ch̄(E + ε)

(
ω(K)

1/C

(
ε

ε+ E

))(1/C)h̄

, (4.21)

where C > 1 depends only on a priori data.

Proof of proposition 4.2. We adapt the proof in [11, proposition 4.4] to the case of the
anisotropic conductivity.

To begin with, we introduce some parameters. Recall from (3.7) that Wk =
⋃k

m=0Dm, then
for the domain index m ∈ {0, . . . , K − 1},

rl =
r0

l
, ρ =

rl

32l
√

1 + L2
, (4.22)

ym+1 = Pm+1 −
rl

32
ν(Pm+1), ỹm+1 = Pm+1 +

rl

32
ν(Pm+1), (4.23)

vm = v|Dm , (4.24)

where Pm+1 and ν(Pm+1) have been defined in subsection 3.1.1. We claim that for every
m ∈ {0, . . . , K − 1},

‖v‖L∞(Bρ (̃ym+1)) � r2−n
0 Cm+1(E + ε)

(
ω(m+1)

1/C

(
ε

ε+ E

))
(4.25)

and prove (4.25) by induction as follows.
Case m = 0.
Up to a rigid transformation of coordinate, we can suppose that y1 = − rl

32 en. From (4.20),

‖v‖L∞(D0) � E

(
r sup

x∈D0

d(x)

)1−n/2

. (4.26)

Choose an arbitrary point ȳ ∈ Σ1, possibly different from P1. Let φ be a Jordan curve joining
y1 to w1(ȳ) such that φ ⊂ (D0)d̄, where d̄ = min{dist(y1,Σ1), dist(w1(ȳ),Σ1)}, and (D0)d̄ is
connected. Notice that w1(ȳ) ∈ (D0)d̄. Let us define a set of points {φi}, i = 1, . . . , s through
the following process:

• φ1 = φ(0) = y1;
• For i > 1, set

φi+1 =

{
φ(ti), if |φi − w1(ȳ)| > 2rlwhere ti = max{ti : |φ(t) − φi| = 2rl},

w1(ȳ), if |φi − w1(ȳ)| < 2rl and set s = i + 1.
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Apply the three sphere inequality in the case of pure principal part (see [10, theorem 2.1])
on spheres centred at φ1 = y1 for which estimates (4.26) and (4.19) hold, with suitable rays
r, 3r, 4r:

‖v‖L2(B3r(y1)) � Q‖v‖δL2(Br(y1))‖v‖
1−δ
L2(B4r(y1))

� Qr2−n
0 εδE1−δ,

where δ =
log

(
4λ
3

)
log

(
4λ
3

)
+C log

(
3
λ

) and Q > 1 is a constant which depends on λ, L, max
{

4r
r0

, 1
}

.

Notice that Br(φ2) ⊂ B3r(φ1) = B3r(y1) so that the L2-norm of v on Br(φ2) can be easily
estimated applying the three sphere inequality for the spheres of rays r, 3r, 4r centred at φ2.
Moreover, by [38, theorem 8.17], since v is a weak solution to (4.18), it follows that

‖v‖L∞(BR/2(y)) � Cρn/2‖v‖L2(BR(y)),

where C depends on n, λ and |Ω|. By iterating this process, we can estimate the L∞-norm of v
along the chain of spheres centred at points φi of the curve φ. In conclusion,

‖v‖L∞(Br(w1(̄y))) � ‖v‖L∞(B3r(φs−1)) � Cr2−nεδ
s
E1−δs

. (4.27)

Fix r ∈ (0, d1]. Recalling the parameters introduced in (3.9), the following inclusions hold:

Bρk+1(wk+1(ȳ)) ⊂ B3ρk(wk(ȳ)) ⊂ B4ρk (wk(ȳ)) ⊂ C
(
ȳ, ν(ȳ), β1, r0/3

)
,

for any k = 1, 2, . . . . Notice that ρ1 < rl for a suitable l, then Bρ1 (w1(ȳ)) ⊂ Brl (w1(ȳ)). We
proceed by moving from one centre to the successive one along the axis of the cone
C
(
ȳ, ν(ȳ), β1, r0/3

)
allowing to get closer and closer to the vertex ȳ and stop this process when

we reach the sphere of radius ρh̄. Then, from (4.27),

‖v‖L∞(Bρh̄
(wh̄ (̄y))) � Cεδ

s+h̄−1
E1−δs+h̄−1

. (4.28)

By the triangular inequality,

|v(ȳ)| � |v(ȳ) − v(ȳ − rν(ȳ))|+ |v(ȳ − rν(ȳ))|. (4.29)

First, we estimate the second term on the right-hand side of (4.29). Since ȳ − ren ∈ Bρh̄
(wh̄(ȳ)),

|v(ȳ − rν(ȳ))| � Cr2−n
0 εδ

s+h̄−1
E1−δs+h̄−1 � Cr2−n(ε+ E)

(
ε

E + ε

)1−δs+h̄−1

.

Secondly, we estimate the first term on the right-hand side of (4.29). Since ȳ ∈ Wk, by (4.20),

|v(ȳ)| � CE

(
r0 sup

x∈ D0

d(x)

)1−(n/2)

� Cr2−n
0 E.

Hence, by theorem 4.1,

|v(ȳ) − v(ȳ − rν(ȳ))| � ‖∇v‖L∞(Qr0/3)r �
c

r1+n/2
0

‖v‖L2(Q2r0/3)r � Cr2−n
0 (E + ε)

(
r
r0

)
.

Therefore,

|v(ȳ)| � Cr2−n
0 (E + ε)

(
r
r0

+

(
ε

E + ε

)δs+h̄−1)
.
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Minimizing the right-hand side of the last inequality with respect to r, the following inequality
holds:

|v(ȳ)| � Cr2−n
0 (E + ε1)

∣∣∣∣∣log

(
ε

E + ε

)δs
∣∣∣∣∣
− C

2| log δ|

,

for a suitable constant C > 0. Set Σ̃1 = Σ1 ∩ Qrl (P1). By the arbitrarity of ȳ, we obtain

‖v‖L∞(Σ̃1) � Cr2−n
0 (E + ε)ω1/C

(
ε

ε+ E

)
. (4.30)

In order to prove our claim, we need to estimate the gradient of v. Recalling that v0 = v|D0 and
v1 = v|D1 and v0 is harmonic in D0, from the three sphere inequality applied to ∇v0 and the
results of [52], one can recover the following estimates:

‖∇v0‖L∞(Σ̃1) � Cr2−n
0 (E + ε)ω1/C

(
ε

ε+ E

)
, (4.31)

and

‖∇Tv1‖L∞(Σ̃1) = ‖∇Tv0‖L∞(Σ̃1) � ‖∇v0‖L∞(Σ̃1) � Cr2−n
0 (E + ε)ω1/C

(
ε

ε + E

)
. (4.32)

Now we can apply the following estimate due to Trytten [62]:

∫
D1∩B3rl/8(P1)

|∇v1|2 � c
r0

(∫
Σ̃1

v2
1 + r2

0

∫
Σ̃1

|∇v1|2
)δ1

×
(∫

Σ̃1

v2
1 + r2

0

∫
Σ̃1

|∇v1|2 + r0

∫
D1∩Brl/4(P1)

A|∇v1|2
)1−δ1

. (4.33)

In order to bound the left-hand side of (4.33), we have to estimate the following quantities:

(a)
∫
Σ̃1

v2
1;

(b)
∫
Σ̃1

|∇v1|2;
(c)

∫
D1∩Brl/4(P1) A|∇v1|2.

For (a), we can just use (4.30). For (b), since ∇v1 = ∇Tv1 + (∇v1 · ν)ν,∫
Σ̃1

|∇v1|2 �
∫
Σ̃1

|∇vT |2 +
∫
Σ̃1

|(∇v1 · ν)ν|2.

The first integral on the right-hand side can be estimated using (4.32). For the other term, one
uses the transmission conditions

A(x)∇v0 · ν = A(x)∇v1 · ν, on Σ1. (4.34)

Then,

‖∇v1‖L∞(Σ̃1) � Cr1−n
0 (E + ε)ω1/C

(
ε

ε+ E

)
. (4.35)

Finally, (c) follows from standard energy estimates.
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From the following trace estimate

∫
D1∩B3rl/16(P1)

v2
1 � C

(
r0

∫
Σ̃1

v2
1 + r2

0

∫
D1∩B3rl/8(P1)

|∇v1|2
)

, (4.36)

(4.30), (4.33), (4.35) and (4.36) it follows that

‖v1‖L∞(Bρ (̃y1)) � Cr1−n
0 (E + ε)ω1/C

(
ε

ε + E

)
. (4.37)

Case m =⇒ m + 1. Set

εm = Cm+1r2−n
0 (E + ε)

(
ω(m+1)

1/C

(
ε

ε + E

))
.

By proceeding as above, we end up with the following inequality

‖v1‖L∞(Bρ (̃ym+1)) � Cr1−n
0 (E + εm)ω1/C

(
εm

εm + E

)
. (4.38)

By the properties (3.5) and (3.6) of ω1/C, the claim follows. To summarise it, we have proved
that for any point close enough to the interface, the L∞-norm of v on a small ball can be bound
in terms of the quantities the right-hand side of (4.19) and (4.20).

For m < K − 1 the thesis follows by the inequality (4.28), choosing ȳ = Pm+1.
For m = K − 1, by condition (4.20), arguing as in the inequality (4.28) and applying the

claim, it follows that

|v
(
wh̄(PK)

)
| � C

(
r2−n

0 εK

)δs+h̄−1

(r0d1ah̄−1E)1−δs+h̄−1 � Ch̄r2−n
0 (εK + E)ω1/C

(
εK

εK + E

)

� Ch̄r2−n
0 (ε+ E)ω(K)

1/C

(
ε

ε + E

)(
1/Ch̄

)
.

Proof of proposition 3.2. To begin with, recall that for any (y, z) ∈ (D0)r × (D0)r, for r ∈
(0, d1], the following bound holds:

|SUk (y, z)| � ‖σ(1) − σ(2)‖L∞(Ω)(dist(y,Uk) dist(z,Uk))1−n/2.

For any y, z ∈ Bρh̄(r)
(wh̄(r)(Qk+1)), we apply proposition 4.2 once to v = SUk (·, z) and then to

v = SUk (y, ·) to obtain

|SUk (y, z)| � r2−n
0 Ch̄(r)(E + ε0)

(
ω(2k)

1/C

(
ε0

E + ε0

))(1/C)h̄(r)

. (4.39)

Hence (3.14) follows from (4.39).
Since SUk(y1, . . . , yn, z1, . . . , zn) is a weak solution in Dk × Dk of the elliptic equation

divy(σ(1)(y)∇ySUk(y, z)) + divz(σ
(2)(z)∇zSUk (y, z)) = 0, (4.40)
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for any i, j = 1, . . . , n it follows that

‖∂xi∂x jSUk (x1, . . . , xn, xn+1, . . . , x2n)‖
L∞

(
B ρh̄(r)

2

(wh̄(r)(Qk+1))×B ρh̄(r)
2

(wh̄(r)(Qk+1))

)

� C
ρ2

h̄(r)−1

‖SUk(x1, . . . , xn, xn+1, . . . , x2n)‖L∞(Bρh̄(r)
(wh̄(r)(Qk+1))×Bρh̄(r)

(wh̄(r)(Qk+1))),

(4.41)

where xi = yi, xi+n = zi for i = 1, . . . , n.
Moreover, since dh̄(r)−1 > r, it follows that r < d0

aρ0
ρh̄(r), which in turn leads to

‖∂xi∂x jSUk (x1, . . . , x2n)‖L∞(Q̃ ρh̄(r)
2

(wh̄(r)(Qk+1))) �
C
r2
‖SUk(x1, . . . , x2n)‖L∞(Q̃ρh̄(r)

(wh̄(r)(Qk+1))).

(4.42)

By (3.12), it follows that r−2 �
(

a
r0

)2(
1
a2

)h̄(r)
, and by combining (4.42) and the above

inequality we get the desired estimate. �
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