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a b s t r a c t

We consider the efficient solution of sequences of linear systems arising in the numerical
solution of a branched transport model whose long time solution for specific parameter
settings is equivalent to the solution of theMonge–Kantorovich equations of optimal trans-
port. Galerkin Finite Element discretization combined with explicit Euler time stepping
yield a linear system to be solved at each time step, characterized by a large sparse very
ill conditioned symmetric positive definite (SPD) matrix A. Extreme cases even prevent the
convergence of Preconditioned Conjugate Gradient (PCG) with standard preconditioners
such as an Incomplete Cholesky (IC) factorization of A, which cannot always be computed.
We investigate several preconditioning strategies that incorporate partial approximated
spectral information. We present numerical evidence that the proposed techniques are
efficient in reducing the condition number of the preconditioned systems, thus decreasing
the number of PCG iterations and the overall CPU time.

1. Introduction

We are interested in the numerical solution of the Partial Differential Equation (PDE) based dynamic Optimal Transport
(OT)model proposed in [1,2]. Themodel couples an elliptic equation enforcingmass conservationwith an ordinary differen-
tial equation governing the dynamics of the transport density. The resulting system possesses a long-time equilibrium point
that is conjectured to be the solution of theMonge–Kantorovich PDEs as formulated in [3]. Natural extensions of this dynamic
model present long-time evolutions that approach fractal structures reminiscent of the solutions of Branched (or ramified)
optimal Transport Problems (BTP) as defined in [4,5]. In BTP, optimality favors aggregate mass movement, spontaneously
developing branching structures typically found in communication networks and natural systems [6]. These problems find
origins from discrete formulations, typically defined on graphs, as pioneered in the field of communication networks by [7].
More recently, continuous formulations have been proposed [4,8] as limits of discrete counterparts. Not secondarily, these
formulations have been proposed as relaxed frameworks for the determination of optimal networks, a typically NP hard
problem [8].

The congenital irregularity of the structures resulting from these formulations, typically tree-shaped, poses important nu-
merical challenges. Obvious difficulty arises in the numerical approximation of almost-everywhere discontinuous functions,
commonly solved via regularization [8]. In our case, the discontinuous transport density is the diffusion coefficient of the
elliptic equation, and determines its coercivity. Numerical discretization by finite elements in space and explicit Euler in time
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leads to a sequence of sparse linear systemswith conditioning influenced by the variability of the transport density. Extreme
cases even prevent the convergence of PCG with standard preconditioners such as an IC (with partial fill-in) factorization of
A, which cannot always be computed.

In this paper, we are interested in developing efficient preconditioners that explicitly take into consideration the spatial
and temporal variability of the transport density by calculated spectral information of the involved stiffness matrices.
The idea of using partial spectral knowledge to accelerate linear system solvers has been described in several papers
such as [9–11] and, more recently in [12]. In all these papers the authors start with an initial preconditioner P0 and
use an approximation of a few eigenvectors of the preconditioned matrix to update P0 with a low-rank matrix. Another
characteristic shared by all these previous papers is that the coefficient matrix of the linear systems to be solved Axk = bk
remains unchanged throughout the whole sequence. This allows the incremental refinement of the set of eigenvectors used
to update the low-rank correctionmatrix. In this workwe consider instead sequences of sparse linear systemswith changing
coefficient matrices dynamically depending on the transport density. We present numerical evidence that the proposed
techniques are efficient in reducing the condition number of the preconditioned systems, thus decreasing the number of
PCG iterations and the CPU time.

The remaining of the paper is organized as follows: Section 2 describes the BTP model. Section 3 introduces the spectral
preconditioner and two different strategies to obtain an approximated set of eigenvectors needed to form the low rank
updating matrix. Section 4 describes the implementation details regarding the construction of the preconditioner. We also
include in this section detailed algorithms of the iterative solution phase by the PCG method for the two different spectral
information recovering techniques. Numerical results are shown in Section 5. Section 6 summarizes the main conclusions.

2. The branched transport model

We consider the extension of the dynamic L1 Monge–Kantorovich OT problem formulated by [1]: find (µ, u) such that:

− ∇ · (µ(t, x)∇u(t, x)) = f (x) = f +(x) − f −(x) (1)

µ′(t, x) = (µ(t, x)|∇u(t, x)|)β − µ(t, x) (2)
µ(0, x) = µ0(x) > 0 (3)

where µ is the transport density, u is the transport potential, f is the zero-average forcing function (f + and f − being the
initial and final mass configurations), and β > 0 is related to the branching exponent. Here we assume that x ∈ Ω ⊂ Rd

(d = 2 in our case), with the spatial domain Ω characterized by a sufficiently regular boundary Γ = ∂Ω , and t ∈ [0, T ].
Zero Neumann conditions are imposed on the entire boundary Γ , and the gradient and divergence operators are computed
with respect to the spatial coordinate x, while µ′ indicates time differentiation. For β = 1, [1] conjecture that the large time
solution (T → ∞) of the above problem is equivalent to the solution of the PDE-based Monge–Kantorovich equations of
optimal transport [3]. For β > 1, experimental evidence suggests that the above formulation reaches and equilibrium state
that resembles BTP solutions. Fig. 1 reports some spatial configurations of the numerical approximationµ∗

h of the equilibrium
transport density µ∗ for different values of β ≥ 1 when displacing a given mass from the left (f +) to the right (f −) rectangle
(left column), or from 30 Dirac Delta points randomly distributed on the unit square towards one single point located on
the lower left portion of the domain (right column). In all these tests, the numerical approximation of the transport density
displays a tree-like structure, approaching a pre-imposed lower bound of 10−10 in most part of Ω and showing a drastically
increasing upper bound at higher values of the exponent β .

Numerical discretization is achieved by means of Galerkin FEM in space and explicit Euler in time, and is a straight-
forward extension of the procedure described for β = 1 in [2]. Two different triangulations, Th and Th/2, the second
one obtained from the first by uniform refinement, are used to approximate the unknowns. The transport density µ is
approximated by µh on Th with piecewise constant polynomials (P0(Th)), while the transport potential u is approximated
by uh on Th/2 by means of piecewise linear polynomials (P1(Th/2)). Hence, the first equation is projected on the FEM space
V1 ⊂ P1(Th/2) and the second equation onV0 ⊂ P0(Th). An explicit backward Eulermethod is used for the time discretization,
thus introducing a stability limitation on the time-step that is controlled empirically.

The complete numerical solution algorithm proceeds as follows. Given µ
(0)
h = Πhµ0, Πh being the L2 projector on Th,

solve for k = 0, 1, . . . until equilibrium:

A[µ(k)
]u(k)

= b (4)

µ(k+1)
= µ(k)

+ ∆tk
[
B[u(k)

]
(
µ(k))β

− µ(k)
]

(5)

where A[µ(k)
] is theP1-stiffnessmatrix evaluated atµ(k), vectorµ collects the elemental values ofµh, u is the vector of nodal

values of uh, and B is the matrix defining the norm of the gradient of uh raised to the power β . Equilibrium is considered
achieved by repeating the above algorithm until

∥µ
(k+1)
h − µ

(k)
h ∥L2(Ω)

∆tk∥µ(k)
h ∥L2(Ω)

< τ.
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Fig. 1. Spatial distribution of µ∗

h obtained with two different forcing terms. The left column shows a piecewise unitary forcing function, where the
black rectangles indicate the supports of f + (left) and f − (right). In right column f + is the sum of 30 Dirac sources randomly distributed in the square
[0.1, 0.9] × [0.1, 0.9], while f − is concentrated in P = (0.05, 0.05) and is the sum of the 30 Dirac sources. Different β are represented by rows, with values
ranging from top to bottom from β = 1.0, corresponding to the L1 case, β = 1.5 and β = 5.0. Note that in the last two panels on the left column we used
a color scale that starts from the minimum value of µ∗

h = 10−10 , in order to highlight the different values on the branches. The white areas indicate where
the minimal value is achieved. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We generally use τ = 10−4, value that ensures no further changes in the topological structure of the results and very
small variations in the system matrix A[µ(k)

]. The above algorithm requires the solution of the large, sparse, symmetric,
and positive definite linear system (4). Because of typically large dimensions, we use a preconditioned conjugate gradient

3
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(PCG) solver. PCG convergence becomes increasingly difficult as time progresses since the condition number of the system
matrix grows with β . In fact, the dynamics of the model is such that µh tends to zero in large portions of Ω . To avoid non-
coerciveness of the elliptic partial differential equation, we impose a minimum threshold for µh equal to 10−10. However,
the maximum value of µh increases as its support concentrates along thinner paths appearing for increasing values of β .
Since λmin(A) ≤ C1h2µmin and λmax(A) ≥ C2µmax [13], with the constants depending on the domainΩ and the triangulations
Th and Th/2, the condition number of A[µk

h] increases with time, possibly leading to non-convergence of the PCG iteration
with a standard preconditioner such as an Incomplete Cholesky (IC) factorization with partial fill-in.

We observe experimentally that the sequence of system matrices varies relatively slowly in time as a function ∆t (k).
Hence, we would like to exploit our knowledge on the system matrix sequence to devise efficient preconditioners for PCG.
In the paper we investigate several strategies that incorporate incomplete spectral information [14] on previous matrices to
update the preconditioner for the current and future system.

3. The spectral preconditioner

In this paper we consider sequences of linear systems of the form

Akxk = b, (6)

where Ak ∈ Rn×n is an SPD matrix, xk, b ∈ Rn. For a given linear system Akxk = b we study the acceleration of the PCG
solver provided by the following spectral preconditioner:

P = P0 + VpΛ
−1
p V T

p , (7)

where Vp = [v1, . . . , vp] and vj, j = 1, . . . , p are approximate leftmost eigenvectors either of P0Ak or of Ak; Λp =

diag(λ1, . . . , λp), and λj, j = 1, . . . , p are the corresponding eigenvalues. When Vp contains eigenvectors of P0Ak, the effect
of the low-rank correction is easily shown to be:

PAkvj = (λj + 1)vj, j = 1, . . . ,m,

so that some of the eigenvalues of the new preconditioned matrix are incremented by 1 with an obvious reduction of the
condition number.

We propose two differentways to obtain the approximated eigenvectors needed to construct the spectral preconditioner:
evaluating the sought eigenpairs with an external eigensolver (Deflation-Accelerated Conjugate Gradient, DACG) or approx-
imating them directly from the PCG iterations at previous time-steps. For simplicity, from now on we will write A for Ak
when no confusion arises.

3.1. Approximating the smallest eigenpairs by DAGC

Algorithm 1 DACG method

• Input: tolerance τDACG, P0, p. Set Vp = 0.

• for j = 1 to p

1. Choose a unit 2−norm x0 such that V T
p x0 = 0;

2. Find the minimum of the RQ over all x such that V T
p x = 0 by a nonlinear PCG procedure, with starting point x0 and

preconditioner P0. Stop whenever the following test is satisfied:

∥AxDACG − q(xDACG)xDACG∥
q(xDACG)∥xDACG∥

≤ τDACG (8)

3. Set λj = q(xDACG), vj =
xDACG

∥xDACG∥
, Vp = [Vp, vj].

• end for

Following [14], we propose to approximate some of the leftmost eigenvectors of a given coefficient matrix Ak by
performing some preliminary iterations of an eigenvalue solver. We chose the DACG eigensolver [15,16], which is based
on the preconditioned conjugate gradient (nonlinear) minimization of the Rayleigh Quotient (RQ) q(x) = xTAx/xTx.
The leftmost eigenpairs are computed sequentially, by minimizing RQ over a subspace orthogonal to the previously
computed eigenvectors. This method, which applies only to SPD matrices, has been proven very efficient in the solution
of eigenproblems arising from discretization of PDEs in [16]. DACG also proved very suited to parallel implementation as
documented in [17] where an efficient parallel matrix–vector product has been employed. Our implementation of DACG is
shown in Algorithm 1. The main computational cost of one DACG iteration is given by:

4
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1. One matrix–vector product.
2. One application of the preconditioner.
3. Orthogonalization of the search direction against the previously computed eigenpairs (columns ofmatrix Vp). The cost

of this step is increasing with the number of eigenpairs begin sought.

Convergence of DACG is strictly related to the relative separation between consecutive eigenvalues, namely

ξj =
λj

λj+1 − λj
. (9)

When two eigenvalues are relatively close, DACG convergence may be very slow. Also DACG takes advantage of precondi-
tioning, which in our case is chosen to be the IC factorization of matrix A.

Once a small number of leftmost eigenvectors has been computed and stored as columns of Vp, different low-rank
corrections of a given preconditioner P0 can be defined as e.g. described in [18]. For example a BFGS-style preconditioner
can be written as

P = Vp(V T
p AVp)−1V T

p +
(
I − Vp(V T

p AVp)−1V T
p A

)
P0

(
I − AVp(V T

p AVp)−1V T
p

)
(10)

≈ VpΛ
−1
p V T

p +
(
I − VpV T

p

)
P0

(
I − VpV T

p

)
.

A simplified version of this BFGS preconditioner neglects the left and right projectors on P0, and thus takes the same form
as in (7):

P = VpΛ
−1
p V T

p + P0.

It can be shown [18] that the preconditioned matrix PA has a better spectral distribution than P0A.

3.2. Recovering spectral information by the Lanczos process

Another strategy we are going to use is to recover the partial eigenspectrum of A from the Krylov subspace built by the
linear solver, using the Lanzcos process embedded within the PCG algorithm. Denoting again by P0 an initial preconditioner
for matrix A, during the PCG method we save the firstm preconditioned residuals as columns of a matrixWm:

Wm =

[ P0r0√
rT0 P0r0

,
P0r1√
rT1 P0r1

, . . . ,
P0rm−1√

rTm−1P0rm−1

]
.

Matrix Wm is such that W T
mP

−1
0 Wm = Im, in view of the P0-orthogonality of the residuals generated by the PCG method.

Moreover, we can form the Lanczos tridiagonal matrix using the PCG coefficients αk, βk as follows:

Tm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α0

−

√
β1

α0

−

√
β1

α0

1
α1

+
β1

α0
−

√
β2

α1

. . .

−

√
βm−1

αm−2

−

√
βm−1

αm−2

1
αm−1

+
βm−1

αm−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

MatricesWm and Tm obey to the classical Lanczos relation i.e.:

W T
mAWm = Tm.

After eigensolving Tm we obtain Tm = QΛmQ T , where the coefficients of the diagonal matrix Λm approximate the
eigenvalues of P0A while the columns of Vp = WmQp (where Qp contains the first p columns of Q ) are approximations of
the p leftmost eigenvectors of P0A. In fact, first note that V T

p AVp = Q T
p W

T
mAWmQp = Q T

p TmQp = Λp ≡ diag(λ1, . . . , λp). Then,
let U = P−1/2

0 Vp we obtain:

UTU = V T
p P

−1
0 Vp = Im (11)

Λp = V T
p AVp = UTP1/2

0 AP1/2
0 U (12)

5



264 L. Bergamaschi, E. Facca, Á. Martínez et al. / Journal of Computational and Applied Mathematics 354 (2019) 259–270

corresponding to the Lanczos process applied to matrix P1/2
0 AP1/2

0 . Hence the columns of U approximate the eigenvectors of
P1/2
0 AP1/2

0 and the columns of Vp approximate the eigenvectors of P0A, as can be seen from the following relationships:

P1/2
0 AP1/2

0 U ≈ UΛp ⇐⇒ P0AP
1/2
0 U ≈ P1/2

0 UΛp

⇐⇒ P0AVp ≈ VpΛp.

4. Implementation

Approximation of a number of leftmost eigenpairs is a costly task and cannot be performed at each linear system solution.
To reduce the impact of this cost on the overall process we devise different strategies depending on how we obtain the
spectral information.

4.1. Initial preconditioner P0

For all the experiments the initial preconditioner is an IC preconditioner obtained by setting the maximum number of
nonzero elements per row lfil= 30 and a drop tolerance τIC = 10−4. The use of a smaller lfil and/or a larger τIC does
not guarantee the existence of the IC factorization for all systems leading to a breakdown of the simulations. This choice
of parameters produced a rather dense Cholesky factor with a number of nonzero elements roughly 8 times that of the
triangular part of A. For this reason, the computation of this preconditioner for each linear system of the sequence was not
effective. We decided to compute the IC preconditioner for a given matrix Ak if k = 1 or the number of PCG iterations in the
previous linear system was above a fixed value, itchol. We used the previously computed IC preconditioner, otherwise.

4.2. Eigenpairs of A obtained by DACG

The computation of a number of the leftmost eigenpairs by DACG is a preprocessing stage that in principle should be
executed prior to every system solution. However, in view of the slow variability of the system matrices Ak at increasing k,
we propose to evaluate selectively the eigenpairs, whenever the PCG solution of a generic linear system Akxk = b takesmore
than a fixed number of iterations (itk ≥ itprec). In this case, except for k = 1, it is effective to use as initial DACG guess the
previously computed eigenvectors. The final algorithm is reported in Algorithm 2.

Algorithm 2 PCG with spectral DACG preconditioner

• input: itprec, itchol, p, τDACG.

• Set chol_switch = true; switch = true;

• for k = 1 to n_sys

– if chol_switch then
compute P0 = IC(Ak); set chol_switch = false;

– if switch then

1. Compute the p leftmost eigenpairs by the DACG procedure with preconditioner P0 and accuracy τDACG.
2. Form matrices Vp, Λp.
3. Solve the k-th linear system by PCG preconditioned by P0 + VpΛ

−1
p V T

p .
4. switch = false.

– if itk > itprec switch = true

– if itk > itchol chol_switch = true

end for

4.3. Eigenpairs of P0A obtained by Lanczos–PCG

Computation of matrices Tm and Wm is carried out during the PCG process and adds negligible computational costs due
to the saving of the PCG residual vectors. The main computational burden in this strategy is given by the matrix–matrix
product Vm = WmQp implemented via BLAS-3 subroutines, with a consequent optimal use of memory accesses. Due to

6
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the slow convergence of the Lanczos process to the smallest eigenvalues, and also for memory reasons, it is convenient
to recover a relatively small number of eigenpairs (independently of the size m of Vm, which nonetheless should be taken
sufficiently large to ensure the completeness of the calculated leftmost eigenspectrum). In the Lanczos process we use only
the p = {10, 20} smallest eigenvalues and corresponding eigenvectors thus obtaining a n× pmatrix Vp and a p× p diagonal
matrix Λp. The final algorithm is reported in Algorithm 3.

Algorithm 3 PCG with spectral Lanczos preconditioner

• input: itprec, itchol,mmax, p.

• Set chol_switch = true; switch = true;

• for k = 1 to n_sys

– if chol_switch then
compute P0 = IC(Ak); set chol_switch = false;

– if switch then

1. Solve the k-th linear system by the PCG method preconditioned by P0.
2. Construct the tridiagonal Lanczos matrix Tm, withm = min{mmax, itk}.
3. Extract from Tm andWm the p smallest eigenpairs and form matrices Vp, Λp.
4. switch = false.

– else

1. Solve the k-th linear system by PCG preconditioned by P0 + VpΛ
−1
p V T

p .

– if itk > itprec switch = true

– if itk > itchol chol_switch = true

end for

5. Numerical results

In this section we illustrate the behavior of the spectral preconditioner on a sequence of linear systems arising in the
discretization of (1). The code is written in Fortran 90. All the experiments were run on a 2 x Intel Xeon CPU E5645 at
2.40 GHz (six core) and with 4GB RAM for each core. Times are expressed in seconds. The stopping criterion for the linear
solver is independent of the preconditioner used and it is based on the relative residual:

∥Akxk − b∥
∥b∥

< ε = 10−11.

We solve the piecewise-constant source test case (shown in the left column of Fig. 1) for β = 5 because it is the case that
presents the strongest time-variability of the transport density among the considered test cases. All the simulations employ
amesh Th of 412417 nodes and nnz = 1647617 nonzero elements. Efficient simulations that ensure stability of explicit Euler
are obtained using an initial time step size ∆t (0) = 10−3 and then increasing ∆t (k) by a factor 1.05 at each time step up to a
maximum value of ∆t (k) = 10−1. This leads to a sequence of almost 4000 linear systems of type (6) to reach equilibrium at
the chosen tolerance τ .

For this type of problems, homogeneous Neumann boundary conditions are natural but lead to a singular systemmatrix,
with a non trivial kernel containing the constant vectors c . However, the use of unnatural Dirichlet conditions often yielded
linear solver failures, due most probably to extreme matrix ill-conditioning. Hence, we employ homogeneous Neumann
condition and guarantee the well-posedness of the resulting linear systems (and of the PCG process) by projecting the right
hand side onto the range of Ak, R(Ak), as follows:

b̃ = b −
cTb
∥c∥2 c

(see [19]). Note that such projection simply corrects quadrature errors in the construction of b, since f is assumed to have
zero-mean.

Denoting with λ1 = 0 < λ2 < · · · λn the eigenvalues of Ak in this case, the effective spectral condition number of
matrix Ak is κ(Ak) = λn/λ2 since the zero eigenvalue does not affect convergence of the PCG iteration after the projection
of b on R(Ak). On the other hand, in the case of Dirichlet boundary conditions, all the eigenvalues of AD

k change and the zero
eigenvalue occurring in the Neumann case is shifted to a positive value close to zero (near 10−6 for the example shown in
Fig. 2), yielding a spectral condition number much greater than in the Neumann case: κ(AD

k ) = λD
n/λ

D
1 ≫ κ(Ak).

7
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Fig. 2. Effect of imposing Dirichlet boundary conditions on the smallest eigenvalues of PkAk , for system k = 200 in the sequence (no spectral acceleration).

Table 1
Influence of the DACG tolerance on the performance of the PCG with spectral
preconditioner.

τDACG ITER Teig Tprec TPCG Ttot
– 20646 0.00 187.9 1687.8 1875.7

0.1 9 907 326.9 117.9 1002.1 1446.2
0.3 10006 198.5 117.2 1011.5 1327.8
0.5 10055 150.0 117.2 1017.7 1284.9

All the linear systems have been symmetrically scaled with the diagonal of Ak in order to reduce their initial condition
number, namely, defining D = diag(a11, . . . , ann):

solve D−1/2AkD−1/2yk = D−1/2b̃,
compute xk = D1/2yk.

The efficacy of the proposed algorithms is verified by looking at the overall iteration count of the PCG solver and the CPU
times for solving the entire linear system sequence. We test different numbers of eigenvectors p used to build the low rank
correction to the initial preconditioner for both the Lanczos (LAN(p)) and DACG (DACG(p)) eigensolution algorithms. We
report CPU timings accounting for the computation of the preconditioner (Tprec), of the approximated eigenvectors (Teig ), the
PCG solver (TPCG), and the total CPU time (Ttot).

5.1. Influence of eigenvector accuracy in DACG preprocessing

We first perform a preliminary study on the influence of accuracy of eigenvector computation in the PCG acceleration
provided by the resulting spectral preconditioner. To this end we considered the first 200 linear systems and use three
different tolerances for the relative eigenresidual test (8): τDACG ∈ {0.1, 0.3, 0.5}. Other parameters were: iteig = 60, itchol =

60, p = 20. The results are shown in Table 1. As a benchmark, we also solved the first 200 systems by the PCG method
preconditioned by an IC factorization computed selectively (with itchol = 100), with no spectral update (see first row of
Table 1). The results show that high accuracy in eigenpair computation is not needed to reduce the number of PCG iterations.
With a very low accuracy (τDACG = 0.5) (last row of Table 1) the number of iterations is halved and the CPU time reduced of
a factor 1.5 with respect to the IC preconditioner without spectral correction (first row of Table 1).

5.2. Smallest eigenvalues of P0Ak

In Fig. 3 we plot the computed eigenvalues of P0Ak, where P0 is the IC preconditioner of Ak, by the spectral Lanczos–PCG
procedure. In particular we plot the 10 smallest eigenpairs of preconditioned systems #1, 21, 40, . . . , 181. From the figure
we notice that the ‘‘stars’’ are vertically clustered, showing that the smallest eigenvalues of the preconditionedmatrices only
slightly change among systems at close simulation times.

8
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Fig. 3. 10 smallest eigenvalues of PkAk for k = 20j + 1, j = 0, . . . , 9.

Table 2
Timings and iterations related to the whole sequence of linear systems corresponding to two different values of β using PCGwith different preconditioners
and parameters.

Prec. (p) itchol iteig ITER Tprec Teig TPCG Ttot
β = 1.5

DACG(10) 25 25 170111 6262.3 1869.0 14276.7 22758.7
LAN(10) 25 25 219515 11753.4 2077.5 17604.6 31800.1
IC 25 – 261964 16909.1 0.0 19348.9 36644.2

DACG(10) 30 30 190075 3453.1 1228.5 15949.9 20977.9
LAN(10) 30 30 230242 8080.1 1437.3 18699.8 28572.5
IC(10) 30 – 272779 13043.8 0.0 19981.0 33392.3

DACG(10) 40 40 232004 1660.2 811.1 19329.4 22146.1
LAN(10) 40 40 259569 3591.5 688.1 21420.5 26049.4
IC(10) 40 – 299100 9040.8 0.0 21858.1 31254.6

β = 5

DACG(10) 60 60 220110 1305.8 446.3 18853.5 20785.3
LAN(10) 60 60 208481 910.2 166.2 17834.9 19092.0
IC 60 – 263477 9532.6 0.0 19900.5 29632.0
IC – – 257219 13041.1 0.0 19415.9 32666.6

5.3. Results of the simulations

We report in Table 2 the results of the complete simulation corresponding to different values of the parameter β i.e. the
cumulative number of PCG iterations and CPU times in solving the sequence of almost 4000 linear systems needed to reach
the steady-state. In addition to the previously described parameters we used as the maximum size of the Lanczos subspace
mmax = 80, which experimentally revealed the optimal value.

Inspection of Table 2 reveals that both DACG and Lanczos acceleration provide an improvement in the number of
iterations and total CPU time. For the easier β = 1.5 case we tried various values for parameters itchol and iteig . For the
challenging case β = 5, the optimal spectral preconditioner turns out to be the one based on the Lanczos approach, which
provides a gain of more than 40% CPU time with respect to using the Cholesky preconditioner computed at each time step.

5.4. Further analysis on a portion of the simulation

To better inspect the optimal choice of the parameters we analyzed the first 800 time steps, after which the solution
is near its steady-state. From Table 3 we notice that the proposed low-rank update of preconditioners is effective in both
variants, providing an important reduction of the number of iterations as well of the CPU time. On the average, our spectral
preconditioners provide a halving of the total CPU time and a 30%−40% reduction in the number of iterations. Using p = 10
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Fig. 4. Maximum and minimum value of µh during the simulation.

Table 3
Timings and iterations related to the first 800 systems in the sequence corresponding to β = 5. PCG with different preconditioners and parameters.

Prec. (p) itchol iteig ITER Teig Tprec TPCG Ttot
IC – – 64248 0.0 2841.2 5432.5 8273.7
IC 100 – 74511 0.0 447.4 6062.9 6510.3

LAN(10) – 60 41148 29.6 2814.2 3372.1 6215.9
LAN(10) 50 70 44765 30.9 1767.2 3746.4 5544.5
LAN(10) 60 60 44041 196.0 572.7 3606.9 4375.6
LAN(20) 60 60 41738 190.4 459.2 3775.8 4425.4
DACG(10) 60 60 45502 185.4 516.0 3811.6 4512.9
DACG(20) 60 60 42050 263.5 272.2 3922.0 4457.7

or p = 20 eigenvectors produces only slight variations in the number of iterations/CPU time. Hence, the choice p = 10 seems
to be preferred in terms of memory storage.

Surprisingly, the DACG variant, although affected by a CPU-intensive offline (outside the PCG algorithm) phase for
the eigenvector approximation, reveals as effective as the Lanczos variant. This is mainly due to the fact that after the
initial assessment of the leftmost eigenpairs, the subsequent computations are very cheap since the previously computed
eigenvectors are very good initial guesses for the next systems. However, we may expect a different behavior of the two
techniques in cases of higher variations of the matrices involved. In this case, the DACG preprocessing time will increase as
opposite to the Lanczos technique. Moreover, the Lanczos approach can be accelerated by employing a method similar to
that described in [20]. This is a topic for a future work.

5.5. Handling high density variations

As clear from Fig. 4 there is a portion of the simulation in which the largest value of the density vector abruptly increases
and rapidly reaches its maximum value.

Since, as anticipated in Section 2, λmin(A) ≤ C1h2µmin and λmax(A) ≥ C2µmax, the sudden increase of µmax produces a
high variation in the condition number of the matrices in the sequence. Hence, in this time interval, the spectral properties
of the system matrices change significantly and PCG is not able to take advantage of the spectral information provided by
the previous systems.

To this aim we forced the code to recompute the Cholesky preconditioner whenever the following test on µh is satisfied:

∥µ
(k+1)
h − µ

(k)
h ∥L2(Ω)

∆tk∥µ(k)
h ∥L2(Ω)

> δ (13)

with δ = 100 in the experiments. Also the time step is dynamically reduced in this portion of the simulation to correctly
capture the dynamics.
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Fig. 5. PCG iterations in solving systems #40 to #80 with various spectral and switching strategies.

To appreciate the benefit of this modification we report in Fig. 5 the number of iterations (averaged over the last 5 linear
systems) needed by the PCG solver for systems #40 to #80 (corresponding to time interval: [4, 5.43] where the µh variation
is more pronounced). We display in the figure results with the Cholesky preconditioner only and Lanczos(10) and DACG(10)
spectral acceleration with and without test (13).

The new switching strategy is clearly effective and particularly so in combination with the DACG spectral acceleration.

6. Conclusions

We have proposed a class of spectral preconditioners with the aim to accelerate the PCG solution of a sequence of very
ill-conditioned linear systems arising from the discretization of a continuous branched transport model. Using the fact that
thematrices involved vary onlymildly as simulation time progresses, we use eigeninformation obtained at a given time step
to accelerate subsequent linear system solutions. Numerical results on a realistic test case reveal that the CPU time required
by the eigenanalysis is almost negligible, being in our experiments less than 5% of the overall CPU time when p = 10.
Moreover, the proposed spectral preconditioners are able to consistently reduce the number of iterations and almost halve
the CPU time of the total simulation time with respect to the case in which the IC preconditioner is used at each time step.
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