
Acoustic impedance estimation from combined harmonic reconstruction
and interval velocity

Luca Bianchin1, Emanuele Forte1, and Michele Pipan1

ABSTRACT

Low-frequency components of reflection seismic data are
of paramount importance for acoustic impedance (AI) inver-
sion, but they typically suffer from a poor signal-to-noise ra-
tio. The estimation of the low frequencies of AI can benefit
from the combination of a harmonic reconstruction method
(based on autoregressive [AR] models) and a seismic-derived
interval velocity field. We have developed the construction of
a convex cost function that accounts for the velocity field,
together with geologic a priori information on AI and its
uncertainty, during the AR reconstruction of the low frequen-
cies. The minimization of this function allows one to recon-
struct sensible estimates of low-frequency components of the
subsurface reflectivity, which lead to an estimation of AI
model via a recursive formulation. In particular, the method
is suited for an initial and computationally inexpensive assess-
ment of the absolute value of AI even when no well-log data
are available. We first tested the method on layered synthetic
models, then we analyzed its applicability and limitations on a
real marine seismic data set that included tomographic veloc-
ity information. Despite a strong trace-to-trace variability in
the results, which could partially be mitigated by multitrace
inversion, the method demonstrates its capability to highlight
lateral variations of AI that cannot be detected when the low
frequencies only come from well-log information.

INTRODUCTION

This paper describes a 1D poststack methodology that aims at
inferring the acoustic impedance (AI) of the subsurface from am-
plitudes of seismic records and ancillary information that may be
available in the aftermath of a seismic survey. The trace-by-trace

approach discussed here is a simplification of the general problem
of seismic waveform inversion. Our approach implies a computa-
tionally inexpensive algorithm that can be useful for an initial
assessment of the subsurface acoustic properties. The subsurface AI
model is reconstructed by assuming an acoustic isotropic propaga-
tion medium. Low frequencies of this model are ill-conditioned
components of the solution because of the poor S/N that active-
source seismic data exhibit at low frequencies. Typically, when deal-
ing with seismic data for oil and gas exploration, frequencies below
5–10 Hz are strongly affected by acquisition and environmental noise
(e.g., Lesage et al., 2015). Broadband seismic data acquired in recent
years show a good S/N starting from frequencies as low as 2.5 Hz
(Soubaras and Lafet, 2011). Regardless, our method remains useful
for conventional as well as higher resolution seismic data.
Veeken and Da Silva (2004) provide an overview of several inver-

sion methods for the recovery of noisy low frequencies.We propose a
modification of the autoregressive (AR) method (Walker and Ulrych,
1983) in which we constrain the AR inversion using a seismic-based
velocity field. We call this approach combined AR-velocity (CARV)
method. The AR reconstruction of reflectivity allows one to recur-
sively compute a full-bandwidth AI estimate (Russell, 1988). The AR
low-frequency reconstruction method was originally proposed to-
gether with the minimum L1-norm solution (Oldenburg et al., 1983)
in the 1980s. The latter solution found larger success with the advent
of fast algorithms (i.e., iterative reweighted least squares) in the field
of linear programming. Minimum L1 or L1/L2-norm solutions do not
require a spectral estimation with its associate sources of error.
Rather, these solutions make a different a priori assumption: They
assume a sparse time-domain representation of reflectivity (Walden
and Hosken, 1985). In this respect, they produce different AI models
than the ones identified by the AR reconstruction. More recently,
Gholami and Sacchi (2013) achieve a sparse solution by minimizing
the total variation of AI, rather than performing the reconstruction in
the reflectivity domain. Many other methods for bandwidth extension
have been proposed to date but we limit our analysis to the harmonic
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extrapolation methods for a physically valid quantitative reconstruc-
tion of the acoustic properties. A careful analysis on the validity of the
AR and sparse spike reconstruction compared with other methods is
detailed by Liang et al. (2017).
The ARmethod for impedance inversion is a model-basedmethod.

This method predicts the low-frequency components of each seismic
trace by fitting an AR model to the frequency components that show
an adequate S/N. The AR model assumes the signal to be composed
of a limited number of events in the time domain. A few events in the
time domain correspond to a few complex sinusoids in the Fourier
domain and in turn to a blocky AI. By assuming that the trace is made
up of a limited number of reflections, ill-conditioned low-frequency
components of reflectivity are univocally reconstructed to be consis-
tent to the components measured in the band-pass region. The
reconstruction is based on the extension of few sinusoids estimated
from the data, hence the term harmonic. The reconstruction makes
use of the conjugate symmetry of real signals in the Fourier domain.
The reconstruction is deterministic because the inverted output
consists of only a single model among many that fit the data. The
deterministic nature of the estimate proposed does not prevent the
undertaking of a sensitivity analysis on the parameterization adopted.
The most relevant parameters to consider are the relevance of the
interval velocity field in the estimate, the number of reflection events
to be modeled, and the frequency band in which the AR model is
estimated.

THEORY

To obtain a sensible absolute AI inversion, the input seismic trace
must be properly processed to include only primary energy. The
effects of the source and receiver signatures must be accounted for
and must be removed during processing. Accurate imaging is re-
quired to place seismic events at their true subsurface locations be-
fore inversion. The inversion algorithm proposed here does not

account for nonzero incidence angles; therefore, the input poststack
data should ideally be a near-angle partial stack. The choice of an-
gles has to be a trade-off between data quality, which is related to
stacking fold, and the offset required to achieve such a fold. Alter-
natively, the amplitude variation with offset (AVO) intercept section
could be used as input for the reconstruction. This approach implies
that the AVO behavior of the data is properly modeled, which could
be problematic when strong anisotropic or higher order effects are
present in the records. The relative amplitudes of the events must be
preserved throughout processing. Because often the relative ampli-
tude is preserved but the processing is not actually “true amplitude,”
we invoked a global scalar for the whole seismic section. In the
absence of accurate well-log ties, the scalar can be approximately
determined from the a priori knowledge of AI at two different
depths and applied to the data before inversion.
The convolutional model (Robinson, 1954) is at the root of the

impedance inversion method proposed in this paper. This model
assumes that the processed seismic trace dðtÞ can be expressed as

dðtÞ ¼ wðtÞ � rðtÞ þ nðtÞ; (1)

where wðtÞ is a time-invariant seismic wavelet, rðtÞ is the reflectiv-
ity series providing information on the subsurface features of inter-
est, and nðtÞ is the additive noise that includes all the features of the
data that cannot be ascribed to the previous two terms.
Dispersion and attenuation are not taken into account by the con-

volutional model as well as by the proposed algorithm. To uniquely
single out the interfaces between layers of contrasting AI, we make
three assumptions: weak dispersion, sparsity of reflectivity (Olden-
burg et al., 1983; Hargreaves et al., 2013), and high frequency (i.e.,
Bleinstein et al., 2000 pp. 5–6). The high-frequency approximation
assumes that the rock property variations have a much longer wave-
length than the longest wavelength of the seismic source. In the
presence of thin layers, the AR method is expected to fail, and the
absolute value of the predicted AI to be biased below the layers
whose thickness is similar to that of the seismic wavelength (see
Figure 1 at about traces two to 10 for reference). This behavior is
well-known (Ulrych and Walker, 1984), and additional information
(interval velocity field and a priori geologic constraints) is required to
increase the accuracy of the inversion in the real-case scenarios that
may not meet the three assumptions. Figure 1 exemplifies the effects
of the bias that may be introduced when thin layers are inverted for
the AI with an unconstrained AR approach.
The seismic traces that meet the assumptions described above,

having been band-pass filtered to reject the noisier spectral compo-
nents (including the low frequencies), can be modeled as

d 0ðtÞ ¼ sr 0ðtÞ þ n 0ðtÞ; (2)

where d 0ðtÞ is the band-limited seismogram, s is a scalar, r 0ðtÞ is a
band-limited version of reflectivity, and n 0ðtÞ represents the band-
limited component of noise. After such processing, the seismic
traces represent a scaled and noisy band-limited reflectivity series.
Data must be processed to zero phase to place the interfaces be-
tween adjacent layers at their correct temporal position. Approxi-
mate results can also be obtained without properly removing the
wavelet effects. However, the results depart from the theoretic
reconstruction in such a way that the resulting very low frequencies
are completely unreliable if no accurate constraints at depth are im-
posed in the inversion (see Appendix A). A time variant AR process

Figure 1. Synthetic wedge model that shows the effects of thin beds
in the reconstruction of AI. The reconstructed AI is displayed in
colors (rayl) on top of the synthetic seismic input (wiggles). Input
data are bandlimited by a Butterworth zero-phase filter with
7–80 Hz cut-off frequency, whereas the frequency band 12–50 Hz
has been used for the AR modeling.
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(Rao, 1970) may model the complex-value nonstationary series in
this case. Tary et al. (2014) provide a detailed description on the
topic of fitting time-variant AR models on a seismic time series,
but such models have not been considered in this paper. Provided
that equation 2 is valid and as long as the scalar s is properly esti-
mated and noise taken into account, the input data for the inversion
may be d 0ðtÞ or r 0ðtÞ. The reconstruction performed in the zero-off-
set data domain is a scaled version of the reconstruction performed
in the reflectivity domain. In what follows, the data in the band-pass
window will be modeled in equation 2, which provide a means to
estimate r 0ðtÞ from the data. Thus, the reflectivity obtained becomes
the input to the inversion process. We follow the weak contrast
approximation introduced by Peterson et al. (1955) to relate the
AI to the interface property of reflectivity ðriÞ for a continuous earth
model and normal incidence:

AIðtÞ ¼ AIðt0Þe2
P

t
i¼1

ri : (3)

If the reference impedance is known or estimated at a certain depth
AIðtrefÞ rather than near the surface (AIðt0Þ), the AI reconstruction
above the reference level is obtained by rewriting equation 3 as

AIðtÞ ¼ AIðtrefÞ
e
2
P

t
i¼t0

ri
: (4)

In case the absolute value of reflectivity is smaller than 0.4, the dif-
ference between the results of equation 3 and the formulation of
impedance for a discrete layered earth,

AIðtÞ ¼ AIðt0Þ
Xt

i¼t0

1þ ri
1 − ri

; (5)

is negligible for a single interface (Bertheussen and Ursin, 1993),
but the difference accumulates for increasing depths proportionally
to the sum of the cubic power of the amplitudes of each event. All
the frequency components of the reflectivity must be available to
invert for the absolute value of AI by using equation 3 or 4. In par-
ticular, the low-frequency components of reflectivity play the most
relevant role in describing the features of AI because of the low-
frequency boosting due to the summation operator in equation 3
or 4.

METHOD

The proposed method estimates the absolute AI by considering
the spectrum of each poststack seismic trace as a gapped complex
signal. The gap refers to the low-frequency part of the recorded
data that is bounded by the negative and positive signal spectral
components. The idea of filling the gap was initially proposed by
Fahlman and Ulrych (1982) in the context of power spectral esti-
mation and developed by Walker and Ulrych (1983) for the case of
seismic inversion. The novelty of the proposed approach consists of
including, during the gap filling process, information from interval
velocity together with geologic knowledge on impedance and its
uncertainty. The inclusion of ancillary information is performed
by modifying the original formulation proposed by Walker and
Ulrych (1983).

Harmonic representation of times series

The harmonic AR modeling is fully detailed by Walker and Ul-
rych (1983), and we will only outline here the salient points that
may be useful for the new aspects of the proposed CARV inversion.
A limited number (M) of events in a recorded time series is repre-
sented in the Fourier domain ðRfÞ by a sum of a limited number of
complex sinusoids in a noise-free case

Rf ¼
XM
k¼1

rke−i2πfτk ; (6)

where τk represents the traveltime of the events rk. A limited num-
ber of sinusoids is fully described by a linear combination of M
Fourier components

Rf ¼
XM
k¼1

Rf−ke−i2πkτk : (7)

Equation 7 can be interpreted as a perfectly predictable AR process
of coefficients gk and innovation equal to zero:

Rf ¼
XM
k¼1

gkRf−k: (8)

Innovation, in the context of AR modeling, describes the unpredict-
able part of the process as the difference between the recorded value
and the value predicted by the harmonic model (Kay and Mar-
ple, 1981).

AR moving average models for noisy data

In the presence of noise ðNfÞ that is uncorrelated to signal ðRfÞ in
the recorded data ðXfÞ, an autoregressive moving average (ARMA)
process with the same coefficients for the AR and the moving aver-
age process is the correct representation of the signal (Ulrych and
Clayton, 1976):

Rf ¼ Xf − Nf ¼
XM
k¼1

gkXf−k −
XM
k¼1

gkNf−k: (9)

The spectral estimator of Pisarenko (1972) can be used to fit an
ARMA model to the data. However, this method is very sensitive
to the model order (Kay and Marple, 1981), which must be chosen
to be equal to the number of the reflections plus one: This piece of
information is not available a priori in real-case scenarios. A modi-
fication of the Pisarenko method that makes use of projection filters
(Soubaras, 1994) has been proposed by Sacchi and Kuehl (2000).
This approach provides an estimate of all the Rf in equation 9 as

R ¼ ðId − ðGHGþ ψIdÞ−1GHGÞX; (10)

where G is the convolution matrix of the coefficients of the predic-
tion error operator ðgHgÞ and ψ is a regularization parameter to ac-
count for the magnitude of the noise variance when its distribution is
assumed to be Gaussian (Chen and Sacchi, 2014). The vector R
estimated from equation 10 is in theory the noise-free spectral rep-
resentation of a limited number of events in the time representation
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of the seismic trace (Sacchi and Ulrych, 1997). The noise-free es-
timate can be used as input for the AR reconstruction of low
frequencies.

AR low-frequency reconstruction

AR models of order much longer than the number of complex
sinusoids in the data mimic the ARMA behavior and can be adopted
to reduce the sensitivity of the results to the model order in the pres-
ence of noise (Walker and Ulrych, 1983). Figure 2 (which is de-
scribed more fully in the “Results” section) compares the AR
reconstruction with the ARMA reconstruction of the full bandwidth
of a synthetic sparse time series. To fill the low-frequency gap with
an AR model, Walker and Ulrych (1983) minimize the AR forward
and backward prediction error in the following cost function:

min
RLf

k
XM
k¼0

gkRf−kk22þk
XM
k¼0

gHk Rfþkk22¼min
R

kCR−bk22: (11)

The vector R contains the low-frequency components of the reflec-
tivity spectrum, the matrix C contains the convolution of the AR
coefficients, and the vector b describes the known terms resulting
from the multiplication of the AR coefficients and the known Fou-
rier components of the spectrum at higher frequencies. An explicit
solution is found by imposing the first derivative of equation 11
with respect to R equal to zero:

0
B@

2jPM
k¼−M gkgHk Rfþkj

: : :
2jPM

k¼−M gkgHk R−fþkj

1
CA ¼

0
@ 0

: : :
0

1
A: (12)

The minimization of equation 11 is a two-stage process: The AR
filter coefficients ðgkÞ are initially estimated from a spectral window
in which the wavelet effects are properly removed and, after the gap
of low frequencies is filled, a new AR model is fitted to the original
spectral window plus the low-frequency band to return an updated
version of the low-frequency reconstruction. This procedure re-
duces the prediction error (Fahlman and Ulrych, 1982). The com-
putation of the autocorrelation function on a longer complex-value
series is one of the factors to account for the reduction in the pre-
diction error when the second AR model is fitted to the gap-filled
spectrum. This approach helps to stabilize the estimation of the later
lags of the autocorrelation that are particularly relevant for the es-
timation of the AR coefficients when the order of the AR model is
close to the length of the spectral passband.
Different spectral estimators lead to different reconstructions of

the AR coefficients. This behavior is particularly relevant in the
presence of a large number of reflectors and interference features.
In this paper, the Yule-Walker (Kay and Marple, 1981) method has
been applied providing more stable results when applied to complex
synthetic scenarios and to real data.
The spectral components that show a poor S/N are not suitable for

quantitative inversion in the framework of AR models (Kay and
Marple, 1981). Following the work of Walker and Ulrych (1983),
we define a frequency band in which S/N is adequate for inversion.
The average amplitude spectrum of the input seismic section can be
used to estimate reasonable cut-off frequencies. The choice is a
trade-off between neglecting part of the information present in the
data and estimating the model on a flat part of the spectrum, in
which the signal prevails over the noise. The choice of low- and
high-cut frequency (pass-band length) also influences the order of
the AR model that best describes the data. Walker and Ulrych (1983)
recommend an ARmodel order that is 0.7 times the pass-band length

(in units of sampled frequencies) on the real data
tested. Our tests confirm this empiric rule. Such a
recommendation implies that as the pass-band
length shortens, the AR model also shortens;
therefore, fewer features of impedance variation
can be accurately obtained by the model (Hen-
drick and Hearn, 1993). To overcome the incorrect
predictions due to the AR reconstruction only, we
introduce in the CARV algorithm the information
coming from the interval velocity field.

Interval velocity field

We do not discuss here all the various methods
to obtain an accurate seismic-based interval veloc-
ity field, and we only consider the velocity field as
an input for our algorithm. To tie the reconstruc-
tion of AI to the velocity field, a rock-physics ex-
pression for the density term has to be assumed.
Gardner et al. (1974) or other empirical relation-
ships can be adopted. With the first choice, and
following the notation of Oldenburg et al. (1983),

ρðtÞ ¼ CVPðtÞα; (13)

where ρðtÞ is the bulk density, VPðtÞ is the P-wave
velocity, and C and α are the two scalars. The AI
can consequently be estimated by the following
expression:

Figure 2. Results of the low-frequency reconstruction with the AR and ARMA models.
(a) The input AI model 1 (red) and the derived synthetic trace (cyan) (S/N = 34 dB).
(b) Reconstruction via the unconstrained ARMA modeling. (c) The reconstruction via
the unconstrained ARmodeling. (d) Comparison of the results for the two more accurate
solutions of (b and c).
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AIðtÞ ¼ CVPðtÞ1þα: (14)

The coefficient α is typically much smaller than 1 leading to a quasi-
linear propagation of the error from the interval velocity field to the AI
obtained from equation 14.
Many prospects of interest for oil and gas exploration show

anomalous deviations from Gardner’s trend. Loseth et al. (2011) de-
scribe this issue with particular emphasis on the amount of organic
content in source rocks. In our method, the velocity field information
is not incorporated as a series of constraints (Oldenburg et al., 1984),
but rather as a weight in the inverse problem. The use of the weight
provides flexibility to the solution and the possibility to emphasize
anomalies on Gardner’s trend due to the seismic reflection informa-
tion. The interval velocities that we consider contain very low-
frequency information. Most of the velocity fields derived from con-
ventional seismic tomography show significant spectral content until
2 Hz (ten Kroode et al., 2013), but factors related to target depth,
offset length, and velocity variations may imply a higher resolution.
We chose to sample the velocity field at the sampling rate correspond-
ing to the low-frequency cut-off chosen for the seismic passband.
This choice is generally safe with respect to the spectral content of
the velocity field, and, providing there is no aliased energy, larger
sampling intervals can be chosen to improve the algorithm perfor-
mance. Each of the resampled values of the velocity field is trans-
formed into AI by using equation 14. Ulrych and Walker (1984)
provide a relationship to tie the low-frequency components of the
reflectivity (Rf

L) to the values of impedance at depth in the form of

log
AIðtÞ
AIð0Þ − 2

Z
tk

t0

rHðuÞdu ¼ 2

Z
tk

t0

rLðuÞdu

¼ 2

Z
tk

t0

XFmax

f¼−Fmin

Rf
Le

−i2πfudu

¼
XFmax

f¼−Fmin

Rf
L2

Z
tk

t0

e−i2πfudu; (15)

where rHðuÞ is a known term that describes the time-domain reflec-
tivity components within the passband and tk is the time correspond-
ing to the kth velocity-derived recommendation for the AI. The
continuous approximation of the reflectivity integral for a discrete
time series allows the analytical solution of equation 15 as

log
AIðtÞ
AIð0Þ − 2

Z
tk

t0

rHðuÞdu

¼
XFmax

f¼−Fmin

Rf
L

�
2
ei2πftk

i2πf
− 2

ei2πft0

i2πf

�
: (16)

The unknowns for equations 15 and 16 are RL
f . All the equations

described in system 16 are linear with respect to the unknowns
RL
f and can be rewritten in matrix notation as

γ ¼ LR; (17)

where γ describes the known terms, L represents the inverse Fourier
transform combined with the integration operator, and R is the vector
of low-frequency reflectivity. The smaller the Euclidean norm of the

residual kLR − γk22, the closer the estimated reflectivity is to the in-
formation provided by the velocity field.

A priori geologic constraints

Seismic data acquisition normally follows a preliminary geologic
assessment of the region of interest. For this reason, constraints on AI
at different depths are generally available on a geologic basis. The
accuracy of such constraints depends on the degree of knowledge
of the surveyed area. Equation 15 describes a way to introduce equal-
ity constraints (“hard constraints”) on impedance into the AR solu-
tion. To account not only for the value of impedance at depth but also
for its uncertainty, “soft constraints” are proposed for application to
each trace of a 2D section or a 3D seismic volume. By soft con-
straints, we refer to constraints that provide an upper and a lower
bound to the AI inversion at selected depths. When the unconstrained
AR reconstruction produces an AI inversion that does not fit within
the impedance constraint limits, the AR method is modified such as
the vectorR from equation 11 is no longer the one that minimizes the
AR prediction error, but it is the one that minimizes the AR prediction
error among those that fit the impedance constraint limits. In a prob-
abilistic framework, the approach taken here imposes a uniform a
priori probability distribution for the AI at selected depths within
two bounds. This condition was not extensively explained in the
original Ulrych and Walker (1984) publication. The uncertainty can
be in time and in the value of the AI. Small errors in defining the time
of the constraints (of the order of tenths of temporal samples) can be
tackled by evaluating the cost function proposed in equation 20 for
the different combinations of the traveltimes admitted by the timing
uncertainty. The timings of the constraints that produce the minimum
value of the cost function are then adopted. The use of large time
uncertainties makes the constraints ineffective. On the other hand,
to account for the uncertainty on the values of impedance constraints,
equation 16 can be modified as follows:

log
AIðtÞ − ΔAIðtÞ

AIð0Þ − 2

Z
t

0

rHðuÞdu

≤
XFmax

f¼−Fmin

Rf
L

�
2
ei2πftk

i2πf
− 2

ei2πft0

i2πf

�

XFmax

f¼−Fmin

Rf
L

�
2
ei2πftk

i2πf
− 2

ei2πft0

i2πf

�

≤ log
AIðtÞ þ ΔAIðtÞ

AIð0Þ − 2

Z
t

0

rHðuÞdu; (18)

where ΔAIðtÞ represents the uncertainty on the AI. In a more com-
pact form, equation 18 can be written as

�
HR ≤ βþ Δβ
−HR ≤ −βþ Δβ: (19)

Equation 19, introduced by the background geologic knowledge, is a
condition that can be included in a constrained optimization problem.

Inversion formulation

The CARV inversion proposed in its general form can be de-
scribed by the minimization of the convex cost function:
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J ¼ kCR − bk22 þ λkLR − γk22
s:t:

�
HR ≤ βþ Δβ

−HR ≤ −βþ Δβ
(20)

with respect to the vector R of the low-frequency components of
reflectivity. The conditionminR kCR − bjj22 comes from equation 11
and aims at minimizing the AR forward and backward prediction
errors. The cost function includes the regularization term
ðkLR − γk22Þ to make the resulting low frequencies adhere to the
AI estimated from the interval velocity field. The degree of adher-
ence is controlled by the parameter λ ≥ 0.
Sensible values for λ may come from the ratio between the maxi-

mum eigenvalues of the matrixCHC ¼ G (original notation inWalker
and Ulrych, 1983) and LHL, but the final choice depends on the rel-
ative confidence on the velocity field with respect to the confidence on
the seismic amplitudes. The velocity field is the regularization term,
and the soft constraints on impedance can be implemented by a con-
strained least-squares algorithm (i.e., via a subspace trust-region
method). Minimizing equation 20 is equivalent to a multiobjective
optimization problem:

min
R

∇J ¼ GR − Bþ λðLHLR − LHγÞ

s:t:

�
HR ≤ βþ Δβ

−HR ≤ −βþ Δβ
; (21)

where B ¼ CHb. The regularization term pertaining to the velocity
field (LHL) concentrates its information at the very low frequencies
(around its main diagonal). This fact underlines the relevance of the
velocity field term to weight the solution trend, whereas the AR term
influence is stronger at higher frequencies within the low-frequency
gap. There is no mathematical guarantee that the matrix to be inverted
Gþ λLHL is well-conditioned, although no issue has been found dur-
ing testing on synthetic and real data. This experimental statement can
be explained by the decaying nature of the autocorrelation function of
seismograms that leads to the Toeplitz matrix G with the largest val-
ues around its main diagonal. In case of instability during the inver-
sion, additive white noise can be possibly introduced into equation 21
by summing a weighted identity matrix. We obtained stable low-fre-
quency reconstructions for all the results presented in this paper with-
out such regularization.

Inversion with lateral continuity

An unwanted feature in the inversion of real data is the trace-
to-trace variability of the results. Many seismic amplitudes may be
related to causes other than rock property-based reflectivity changes
such as interference, noise, residual wavelet effects, and other in-
accuracies in the processing flow. The integral operator that trans-
forms reflectivities into AI magnifies the issue at the low-frequency
end, leading to vertical stripes that are obviously not related to
the actual properties of the subsurface materials. Ideally, we expect
to find solutions that show some level of reasonable trace-to-trace
stratigraphic continuity. This expectation is especially true for low-
frequency components of AI, which should directly be related to
smooth spatial changes in geology. To reduce the instability in the
inverted AI, the data may be smoothed before inversion with a tar-
geted processing that removes the incoherent noise. Alternatively,
the cost function may be modified to promote the continuity of the

solution, or a spatial low-pass filter can be applied after inversion. We
focus here on modifying the cost function, with an additional penalty
term related to the trace-to-trace variability of the reflectivity
reconstruction. This penalty term only influences the low-frequency
part of the spectrum that we aim at reconstructing. Provided that the
impedance of the first layer is constant for all the traces in the section,
we obtain a laterally continuous AI by solving for the lateral variation
of the low-frequency components of the reflectivity (ΔR) rather than
for R in equation 20. The cost function of equation 20 can be rewrit-
ten with an additive term μIdΔR (where Id represents the identity
matrix):

J ¼ kCΔRþ CR0 − bk22 þ λkLΔRþ LR0 − γk22
þ μkIdΔRk22 s:t:

�
HR ≤ βþ Δβ

−HR ≤ −βþ Δβ
: (22)

We call R0 the known term pertaining to the low-frequency
reconstruction at the previous adjacent-trace location. The additive
term μIdΔR controls the amount of trace-to-trace variability (μ ≥ 0).
Once R0 is arbitrarily chosen at both ends of the line, the low-fre-
quency components of reflectivity R can be iteratively obtained as
R ¼ R0 þ ΔR at each trace location. We perform the summation
from one end of a seismic line to the other and in the opposite direc-
tion, and we adopt the average of the two results as our smoothed AI
estimate. In case a seismic cube is available, the summation operation
could be performed in the inline and crossline directions separately,
and then the results could be merged. Alternatively, slightly different
penalty terms that weight the ΔR term over many traces may be con-
sidered in equation 22 to produce a smooth inversion in one step only.

Reflectivity extension to high frequency

The high-frequency components of the data are as unreliable as
the very low frequencies, but note that the high-frequency content of
the reflectivity tends to be suppressed when recursively summed
into AI (see equation 3 or 4). Walker and Ulrych (1983) propose to
minimize an entropy norm (Ooe and Ulrych, 1979) after the
low-frequency completion to reconstruct the full bandwidth of re-
flectivity from its low-mid-frequency content. Instead, we adopt a
logarithmic entropy function with frequency-domain constraints
(Sacchi et al., 1994). Both norms aim at obtaining a sparse solution
compatible with the input time series. This approach agrees with the
initial assumption that the algorithm recovers the full bandwidth of
reflectivity given a limited number of events in the recorded traces.
Minimizing an entropy norm as a final step of a constrained har-
monic reconstruction process might lead to instabilities. Factors that
may contribute to instability are the presence of noise and the pres-
ence of conflicting information between the velocity field and the
geologic constraints. A further element that may contribute to in-
stability is the parameterization of the minimum entropy deconvo-
lution algorithm. The tolerance on the entropy norm increment at
each algorithm iteration plays the most important role in determin-
ing the energy of the reconstructed high frequencies. A threshold
ratio equal to one between the energy of the high-frequency com-
ponents and the energy of the low mid frequencies is adopted here
to terminate the iterative high-frequency reconstruction process.
Our threshold choice has the purpose of limiting the high-frequency
reconstruction impact on the inversion result. This approach is taken
because we do not trust the quantitative outcome of the deconvo-
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lution process, and we use the outcome of the deconvolution only as
a mean to enhance the sharpness of the stronger reflectors for the
purpose of obtaining a blocky AI inverted model. The application of
this reconstruction step does not influence the validity of the low-
and mid-frequency estimates of the AI.

RESULTS

In this section we illustrate the novel aspects and the performance
of the proposed inversion method, with an emphasis on describing
general results rather than a data- or site-dependent behavior. For the
sake of clarity, we summarize the various approaches to AI inversion
that we will discuss on synthetic examples and real data in Table 1.
All the AI inversion results are expressed in rayl, corresponding
to kg∕m2∕s.

Synthetic examples

We generated 1D time series that simulate seismic traces to assess
the effectiveness of the four reconstruction methods described in
Table 1. The fifth method, the model-based approach, is introduced
in the inversion of a real seismic data set for comparison with the
harmonic reconstruction methods. We assumed two input models,
both characterized by a blocky impedance corresponding to a sparse
time-domain reflectivity. Model 1 contains 10 vertically stacked AI
blocks, whereas model 2 contains 100 AI blocks. Both models are
discretized into 1000 temporal samples. The input synthetic data in
Figure 2 are a band-limited (8–70 Hz) version of the model reflec-
tivity function with additional white noise (S∕N ¼ 34 dB in terms
of maximum amplitude). Figure 2 highlights the sensitivity of the
unconstrained AR and ARMA reconstructions to the model order
choice on the model 1 synthetic example. No constraint at depth or
velocity field regularization is required for obtaining reliable results
on such a sparse and controlled synthetic example when the appro-
priate model order is chosen. The ARMA process that correctly
models the data is of order 10, whereas we assume that the best AR
approximation is obtained for a model order of 105 (in line with the
recommendation of selecting the model order 0.7 times the pass-band
length in units of sampled frequencies). Given a Nyquist frequency of
125 Hz, and a 12–50 Hz signal bandwidth choice, the number of
sampled frequencies available for fitting the AR model is 152. When
the ARMAmodel order is smaller than the actual number of events in
the data (Figure 2b, model order 7), the reconstruction becomes un-
reliable because the low frequencies are incorrectly modeled. The
instability of the ARMA model appears hard to overcome because
one needs to know exactly the number of reflectors that are contained
in the model before inverting the seismic section. Figure 2b and 2c

shows that the sensitivity of the impedance profile results is much
lower for the AR than for the ARMA approach, despite the range
of relative normalized order values being comparable between the
two types of reconstruction. The comparison in Figure 2d between
the two more accurate AR and ARMA solutions shows the good
approximation, in the presence of noise, of a long AR model to the
appropriate ARMA model.
Synthetic model 1 and model 2 are compared in Figures 3, 4, and

5 to show the effectiveness of the CARV reconstruction with respect
to the classic AR approach on a controlled input. Figures 3a, 3b, 4a,
4b, 5a, and 5b show the input synthetic data (7–80 Hz zero-phase
Butterworth filter) on the model 1 and model 2 reflectivity with
additional white noise (S/N = 34 dB in terms of maximum ampli-
tudes). Figures 3c, 3d, 4c, 4d, 5c, and 5d are obtained after the low-
frequency reconstruction and the subsequent AI inversion on the
input trace of Figures 3a, 3b, 4a, 4b, 5a, and 5b, modified by the
absence of additional white noise. Figures 3e, 3f, 4e, 4f, 5e, and 5f
are obtained from the reconstruction of the traces of Figures 3a, 3b,
4a, 4b, 5a, and 5b, respectively. We present in Figures 3g, 3h, 4g,
4h, 5g, and 5h the reconstruction results that can be obtained when
the input trace is the convolution between the model reflectivity
and a 30 Hz Ricker wavelet that bandlimits the data (no additive
noise). Figure 3 shows the quality of the reconstruction that can be
achieved with the unconstrained AR models, in comparison to the
bias introduced by the weak contrast approximation. The weak con-
trast approximation is not a relevant limitation for the Model 1 and
Model 2 reconstructions: All panels of Figure 3 evidence the reduced
bias of the unconstrained AR solution that can be imputed to this
approximation. A bias in the reconstruction of the DC component
of the AI is also clearly visible in Figure 3c–3h. In fact, frequencies
close to the DC component are generally the hardest to successfully
reconstruct by the AR model, as has been reported since the work of
Oldenburg et al. (1983). This behavior can be clearly seen as the AI
drift, in particular, for the more complex Model 2 (Figure 3d, 3f, and
3h). We propose the two reconstructions of Figure 3g and 3h to high-
light the effects of not correcting for the wavelet shape before per-
forming the reconstruction. The wavelet effects on the reconstruction
are visible in terms of high-frequency undesired features and low-fre-
quency drift in Figure 3g and 3h.
Figure 4 shows the effects of the soft constraints on impedance

at selected times (the blue brackets) that aim at limiting the bias
introduced by incorrect AR predictions. As reported in Table 2, the
rms error between the input models (the red curves) and the con-
strained AR reconstructions (the black curves) is smaller than or
equal to the rms error between the input models and the uncon-
strained AR reconstructions (the gray curves). The reconstructions
in Figures 3h and 4h represent no exception, but the absence of

Table 1. Naming convention with short description of the AI inversion methods presented.

Method Description and reference

Classic ARMA approach Method adopted when the exact number of events is known a priori (Pisarenko, 1972)

Unconstrained AR approach Method described by Walker and Ulrych (1983)

Classic AR approach Method described by Ulrych and Walker (1984)

Model-based inversion Method that adds the a priori low frequencies to the band-limited inversion (Russell, 1988)

CARV approach Method described in this paper
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constraints in the shallow layers has the side effect of producing a
less accurate reconstruction in the shallow part of the constrained
solution (Figure 4h) than in the shallow part of the unconstrained
solution (Figure 3h). An explanation for this behavior can be sought
in the artifacts that are introduced when the wavelet shape is not
removed before the low-frequency reconstruction. On the contrary,
the drift from the input model is strongly reduced in Figure 4d and
4f with respect to Figure 3d and 3f. Figures 2–4 do not make use of
the velocity field information. The effects and artifacts of incorpo-
rating an interval velocity field that does not have the AI blocky
structure are shown in Figure 5. The AI curve that plays the role
of the velocity-derived AI field in Figure 5c, 5e, and 5g is obtained
by fitting, in a least-squares sense, a polynomial of order 5 to Model
1. The best fit polynomial of order 8 is used in Figure 5d, 5f, and 5h
to derive the green AI curve for Model 2. The trade-off parameter λ
that governs the amount of velocity-field-derived AI in the inversion
has been chosen as 0.5 times the ratio between the maximum
eigenvalues of matrix G and LHL for all panels of Figure 5. In
addition to the information coming from the velocity field, the con-
straints on impedance indicated by the blue brackets in Figure 5 have
been enforced. The CARV reconstruction of Model 2 still shows a
relevant mistie with respect to the reference AI model in the shallow-

est part (Figure 5d, 5f, and 5h). Weighting in the solution the low-
frequency AI model that mimics an AI model derived from a velocity
field reduces the reconstruction error with respect to the results of
Figure 4d, 4f, and 4h. Note that the CARV reconstruction of Figure 5c
appears less blocky than the reconstruction of Figure 4c that does not
account for the velocity field: This is an unrealistic case in which the
extreme sparseness of the layer interfaces and the absence of noise
lead to a CARV inversion that is less blocky than the classic AR
inversion.
Figure 6 shows the amplitude spectrum of the reconstructed re-

flectivity whose derived AI is shown in Figure 5f, in comparison to
the amplitude spectrum of the Model 2 reflectivity. The match in
the 12–50 Hz bandwidth in which we fit the AR model is good.
The relative error in this band is approximately −34 dB, which can
be attributed to the additive noise level that is present in the input
data and not in Model 2. The relative error in the low- and high-
frequency reconstructions is much higher, approximately −20 dB.
Although the spectral peaks of the input and the reconstructed re-
flectivity appear to be correlated, the two amplitude spectra assume
very different values outside the signal bandwidth.

Figure 3. Effectiveness of the bandwidth extension via the AR
method only. (a and b) Input data (S/N = 34 dB). (c and d)
Reconstruction from the band-limited input reflectivity (no noise).
(e and f) Reconstruction from the input data of (a and b). (g and
h) Reconstruction from the input reflectivity convolved with a Ricker
wavelet.

Figure 4. Effectiveness of the bandwidth extension in the presence
of impedance constraints at depth with a given uncertainty (in blue).
(a and b) Input data (S/N 34 dB). The unconstrained results from
Figure 3 are reported in gray. (c and d) Constrained recon-
struction from the band-limited input reflectivity (no noise). (e and
f) Constrained reconstruction from the input data of (a and b). (g and
h) Constrained reconstruction from the input reflectivity convolved
with a Ricker wavelet.
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Real data

We tested the AI reconstruction method on part of a line from
a 2015 towed-streamer seismic survey in the Rockall Trough area
across the UK Atlantic margin. The prestack time migration full-
angle stack (6°–35°) is shown in Figure 7a together with the location
of the wells and the interpreted horizons available. Ancillary data in-
clude a tomographic interval velocity field and a model-based AI in-
version within the interval of 1–5 s. All of the data have been
obtained from the UK Oil and Gas Authority under the Open Gov-
ernment license v.3.0. High-amplitude events that are probably re-
lated to igneous lenses stand out in the section below the Top
Paleocene horizon. As far as the authors are aware, no specific res-
ervoir targets are present on this 2D line because the line was selected
only to demonstrate the advantages and the drawbacks of the CARV
method with respect to a standard AI inversion approach in the early
stages of prospect identification. Figure 7b displays, for reference, the
AI field that was obtained by applying Gardner’s relationship
(α ¼ 0.25, C ¼ 310 kg∕m3) to the tomographic velocity field.
Different parameterizations of the CARV low-frequency recon-

struction have been applied to a scaled version of the data. Calibrat-
ing seismic amplitudes to well-log amplitudes through synthetic tie
analysis is the more accurate way to scale seismic data to the subsur-
face reflectivity (Veeken and Da Silva, 2004). However, we decided
to estimate a global scalar for the whole section directly from the
data to show the potential of the inversion even in the absence of
well-log control. We estimated that the AI is 1.5 × 106 rayl above
the water bottom and 8.5 × 106 rayl 100 ms below the Top
Cretaceous event. The latter figure has been chosen in accordance
to the values of well 132/06 below the Top Cretaceous event, but a
reasonable assumption is that the same degree of information may
be available from background knowledge of the area of interest. We
ran a first pass of the classic AR inversion algorithm directly on the
seismic data with no constraints imposed at depth. After integration
of the reconstructed (full-bandwidth) trace, we obtain an AI value
100 ms below the Top Cretaceous event that is, in general, different
from our assumption of 8.5 × 106 rayl. The ratio between the

Table 2. The rms error of the synthetic reconstructions.

Figure Reconstruction type rms error (rayl) Figure Reconstruction type rms error (rayl)

2b ARMA order 7 47.4 × 104 2c ARMA order 7 6.9 × 104

2b ARMA order 10 4.8 × 104 2c ARMA order 10 7.5 × 104

2b ARMA order 14 18.3 × 104 2c ARMA order 14 13.2 × 104

3c Unconstrained AR 10.1 × 104 3d Unconstrained AR 67.6 × 104

4c Classic AR 10.1 × 104 4d Classic AR 35.7 × 104

5c CARV 5.3 × 104 5d CARV 17.0 × 104

3e Unconstrained AR 7.9 × 104 3f Unconstrained AR 58.7 × 104

4e Classic AR 7.9 × 104 4f Classic AR 31.1 × 104

5e CARV 5.0 × 104 5f CARV 14.7 × 104

3g Unconstrained AR 30.9 × 104 3h Unconstrained AR 54.4 × 104

4g Classic AR 14.3 × 104 4h Classic AR 53.3 × 104

5g CARV 10.3 × 104 5h CARV 23.1 × 104

Figure 5. Results of the CARV reconstruction (the black curves)
and comparison with the constrained classic AR reconstruction
reported in Figure 4 (the gray curves). (a and b) Input data
(S/N = 34 dB). (c and d) CARV reconstruction from the band-lim-
ited input reflectivity. (e and f) CARV reconstruction from the input
data of (a and b). (g and h) CARV reconstruction from the input
reflectivity convolved with a Ricker wavelet.
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section average of the AI values thus obtained and the expected
8.5 × 106 rayl value provides a mean to estimate the scalar s (see
equation 3). Once the data amplitudes are calibrated to amplitudes
pertaining to the reflectivity, the AR reconstruction is recomputed
with the impedance constraints at depth, with the AI derived from
the tomographic interval velocity field, and with the lateral continu-
ity constraint (μ). The CARV reconstructed reflectivity is then in-
tegrated into AI from a starting value of 1.5 × 106 rayl in the water

layer. We obtained our preferred inversion result on the Rockall
Through line when the signal bandwidth is in the range of 5–40 Hz.
The inspection of the amplitude spectrum of the input data
(Figure 8) was used for defining the signal bandwidth. The high-
cut choice is not obvious from Figure 8, but we decided to be
conservative and to avoid the attenuation and dispersion effects
that are more pronounced at higher frequencies and in the deepest
part of the section. The amplitude spectrum is flat in the above-
mentioned frequency range, at least until 2000 ms below the water
bottom.
Figure 9 shows a comparison between the CARV inversion (Fig-

ure 9a) and a model-based inversion available from the UK Oil and
Gas Authority (Figure 9b). We name the latter solution “legacy in-
version.” Figure 9a is obtained by fixing the AR model order to 250
and by setting the parameter μ that governs the degree of spatial
continuity in equation 22 to 0.2. The AI derived from the tomo-
graphic velocity field (Figure 7b) has been weighted in the inversion
of Figure 9a by tuning the parameter λ from equation 22 to 0.3 times
the ratio of maximum eigenvalues of G and LHL. The presence
of two soft constraints on AI reduces the uncertainty and enhances
the lateral continuity of the estimation at about the Top Paleocene
(6 × 106 � 1 × 106 rayl) and the Top Cretaceous horizons
(8 × 106 � 1.5 × 106 rayl). The lateral continuity is enhanced at
about the timing of such horizons because, at those timings, similar
values of AI are imposed to all the traces of the section. The imped-
ance constraints are applied 100 ms after the picked horizons to avoid
trace-to-trace artifacts that may arise after the CARV reconstruction

sharpens the seismic events. If soft constraints
were applied at the timings of the picked horizons,
each constraint might be enforced right before the
reconstructed reflector in one trace and right after
the reconstructed reflector in the adjacent trace,
thus leading to an unreasonably different AI inter-
val property between the two traces at about the
timing of the constraint. The legacy inversion
of Figure 9b was obtained by merging the low-
frequency AI model, derived from well logs
and interpolated in a stratigraphically conformable
manner across the seismic line, to the relative
AI recursively derived from the seismograms.
Thewell AI logs were smoothed using thewavelet
provided in the legacy inversion project and over-
lain to the inversion results within the rectangular
boxes. Figure 9c shows the difference between the
inversion of Figure 9a and the inversion of Fig-
ure 9b. Within the water column and in the few
hundred ms below the seabed, the differences
are due to the incorrect extrapolation of the well
information in the shallowest portion of the legacy
model-based solution. Shallow areas around trace
500 show significant anomalies in the CARV
reconstruction (the black arrows). A pinch out,
which is a feature of potential interest, is apparent
in the difference section (Figure 9c) at about trace
700 and at approximately 3500 ms two-way-trav-
eltime (the black arrows). This feature is present in
the CARV result, but not in the legacy AI inver-
sion, probably because of the limits of the model-
based approach when the well population and the

Figure 6. Amplitude spectra of the relative error in the reconstruction
of the reflectivity of the CARV reconstruction of Figure 5f. The rel-
ative error has been obtained by dividing the reconstruction misfit by
the spectrum of the input reflectivity.

Figure 7. Poststack seismic line 78 from the Rockall Trough survey (traces 1400–6000).
Crown copyright. Well positions and horizons overlay the seismic section in (a). The AI
(rayl) derived from tomographic velocity field and Gardner’s relationship is displayed in
(b), together with AI derived from sonic and density logs.
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number of horizons used for extrapolating the log information are
limited. On the contrary, the CARV inversion is not affected by these
issues and it highlights an increase of AI underneath the pinch out
(Figure 9a) that is not evident in the tomographic velocity field (Fig-
ure 7b). Even though the pinch out is also evident in the seismic data
(Figure 7a), the additional piece of information contained in the
CARV inversion is the estimate of the AI within the different layers.
Figure 9b shows a hard layer (in yellow) at the depth corresponding
to the pinch out. This layer extends across the section, and we inter-
pret it as being probably due to inaccurate extrapolation of the log
information from a further well in the legacy model-based solution.
Figure 10 shows the effects of not accounting for the continuity

term in the CARV reconstruction (Figure 10a), the effects of not
incorporating the velocity-derived AI in the
AR reconstruction (Figure 10b), and the effects
of changing the AI derived from the velocity field
in the CARV reconstruction (Figure 10c). Solv-
ing the inverse problem of equation 22, which is
the case in which lateral continuity is imposed,
provides a more realistic estimate than solving
the problem of equation 20, which is the case in
which lateral continuity is not imposed (μ ¼ 0).
The unsmoothed solution in Figure 10a shows
more high-frequency spatial noise (vertical
stripes) with respect to the smoothed solution in
Figure 9a. The solution, which did not use the
smoothing term in the cost function, shows few
traces with unreliable AI, for instance, those with
AI larger than 2 × 106 rayl in the water column.
These features are indicated by the red arrows in
Figure 10a. Figure 10b represents the classic AR
inversion with two soft constraints at depth and
with an additional lateral continuity weight. The
weight (μ ¼ 0.2) has the same smoothing effect
as the one adopted in Figure 9a. The incorpora-
tion of the interval velocity field is important to
guide the solution toward accurate results: In the
absence of the velocity field information, as in
Figure 10b, some deep parts of the section (at
more than 4000 ms for common depth points
[CDPs] 1–1500) show lower AI values in com-
parison with those of Figure 9a. These lower AI
values are comparable with much shallower
formations and thus hard to justify on a geologic
basis. To demonstrate the sensitivity of the
CARV method to the variation of the interval
velocity field, we show in Figure 10c the inver-
sion result obtained if the tomographic-derived
AI field is 5% higher than the AI field used
for the inversion shown in Figure 9a. The color
scale in Figure 10c does not directly represent the
AI values, but it is normalized by the AI values of
the inversion shown in Figure 9a. This color
scale choice enhances the effects of weighting in
the solution the AI derived from an overall faster
velocity field. Only a subtle generalized increase
of the low-frequency content of the AI is notice-
able with respect to the solution of Figure 9a. The
two soft constraints on impedance further attenu-

Figure 8. Average amplitude spectrum of the Rockall Trough seis-
mic section within three time windows. Values are normalized to the
peak amplitude.

Figure 9. (a) The AI inversion (rayl) combining the AR reconstruction and the velocity
field regularization term with lateral continuity. (b) Model-based legacy AI estimate (rayl).
(c) Difference between the CARV inversion (a) and the model-based legacy inversion
(b) (rayl).
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ate the background AI variation at about the time of their respective
horizons.
Figure 11 highlights the role played by the low frequencies on the

AI inversion. Figure 11a shows the 0–5 Hz components of the
CARV inversion in Figure 9a, whereas Figure 11b shows the
low-frequency model used as input for the model-based inversion
shown in Figure 9b. The CARV reconstruction and the model-based
inversion incorporate seismic data components higher than 5 Hz as
recorded to characterize the higher frequencies of the AI. The
CARV reconstruction of Figure 11a represents the AI information
that we deem to be reliably reconstructed from the seismic data and
the tomographic velocity field. Figure 11a shows a relatively high

AI layer (indicated by the red arrows) at approximately 500 ms be-
low the water bottom and a change in impedance in the bottom left
corner of the section that is related neither to the velocity field
(Figure 7b) nor to the AI constraints at the two selected horizons
(the black arrows). Figure 11a shows vertical stripes due to the in-
corporation of the information from the seismic events, particularly
evident in the deepest part of the section. Those stripes are not
present in Figure 11b, which is directly derived by a spatial extrapo-
lation of well-log data. The yellow region in the bottom of the low-
frequency model of Figure 11b is probably due to the incorporation,
in the legacy model, of a third well that lays outside of the 2D sec-
tion that we discuss. The comparison between Figure 11a and 11b

highlights the different low-frequency character
that is responsible for the different mismatch of
the two inversions at the well locations.
Although the CARV reconstruction method

appears to be a sensible solution for the low
frequencies of AI at the scale of the entire section,
the comparison of the results of Figure 9a and 9b
at the two available wells shows that the log
matching is not as good as in the case of the legacy
inversion. This result could be better appreciated
in Figure 12, in which the AI derived from well-
log measurements (the red line) is compared with
the model-based legacy inversion (the blue line)
and the CARV inversion around the well location
(the gray lines). The poorer match of the CARV
inversion to the log-derived AI is presumably
due to the well-log constraints used in the legacy
AI inversion that the CARV method tries to incor-
porate with ancillary indirect information and in-
ferences. Table 3 shows the rms error of the two
types of inversion with respect to the well-log
data. The error for the CARV inversion is com-
puted on the average of the 25 traces around the
well location. At well 132/15, the modified AR
solution is comparable to the legacy AI along
much of the well, although a relatively large mis-
match exists between approximately 3250 and
3400 ms. At well 132/06, a significant mismatch
exists at approximately 4100–4350 ms, with a
dominant frequency between 2 and 5 Hz (see Fig-
ure 12). The mismatch in this frequency range is
possibly due to an incorrect AR low-frequency ex-
tension along part of the well log. A further mea-
sure to assess the quality of the AI inversion could
be the fraction of log data that is matched by the
AI estimate within a given confidence level. If we
set a threshold of 15% on the relative error of the
estimation (with respect to the log-derived AI), we
observe that the legacy model-based inversion ex-
ceeds this value for 6% of the length of the well
132/06 log and for 16% of the length of well
132/15. The CARV inversion exceeds the same
threshold for 28% of the length of well 132/06
and for 22% of the length of well 132/15. All of
the misfit measures we approached agree on the
fact that the CARV inversion has a poorer match
than the legacy model-based inversion to log data.

Figure 10. Effects of lateral continuity and ancillary information on the CARV inver-
sion. (a) (rayl) shows the result in the absence of lateral smoothing and (b) (rayl) shows
the results of a classic AR inversion in the absence of the AI derived from the velocity
field. (c) The ratio between the AI inversion when the AI derived from the tomographic
velocity field is arbitrarily increased by 5%, and the AI inversion of Figure 9a.
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DISCUSSION

The CARV algorithm reconstructs the main features of AI of the
synthetic examples proposed. The introduction of an accurate interval
velocity field is useful to direct the low frequencies of the inverted AI
to more accurate values. For example, the CARV results (the black
lines of Figure 5d–5h) reconstruct the AI of the most complex Model
2 (red) better than the classic AR results (the gray lines). This state-
ment is supported by the rms errors of the reconstruction proposed in
Table 2. Synthetic cases show the effects of not considering the wave-
let shape in the inversion. In particular, Figure 5g and 5h shows spu-
rious peaks and incorrect values in the AI estimate that are more
pronounced than in Figure 5c and 5d in which the wavelet is properly
removed before inversion. This behavior is also analytically dis-
cussed in Appendix A with reference to an AR model of order 1.
The presence of wavelet effects in the data may invalidate the AR
reconstruction: Care must be taken during prepro-
cessing steps to minimize this issue within the
signal bandwidth. Spectral analysis on long time
windows (see Figure 8) may help to identify a fre-
quency band where the energy of the single com-
ponents is balanced. The CARV approach also
results in features of interest in the inverted test
field-data set that are not observed in the legacy
inversion, which incorporates log data. The com-
parison between Figures 7b and 11a shows that
the low-frequency reconstruction of the CARV
AI appears to contain more temporally and later-
ally varying characters of possible geologic origin
than the AI derived from the velocity field alone.
The shallow areas that are characterized by a flat
spectrum in the signal bandwidth show an inter-
esting contribution of the AR reconstruction in
revealing the higher impedance anomalies at ap-
proximately 500 ms below the water bottom, at
about CDPs 500–2000 (Figure 11a). The lateral
variation of the low-frequency components of
the CARV inversion in Figure 11a is more realistic
(despite the vertical stripes) than the lateral varia-
tion of the low-frequency components of the leg-
acy model-based inversion in Figure 11b because
it includes spatially varying information in com-
pliance with the seismic data. The very low-fre-
quency differences between the two panels of
Figure 11 are mainly due to the differences be-
tween the AI derived from the velocity field of
Figure 7b and the very low frequencies of the
legacy model-based inversion (Figure 11b), with
a role played also by the AI constraints at about
the two horizons where they are enforced. The
spatially smooth very low-frequency difference may account to a
large extent for the differences that can be seen in Figure 9c. There
is a tendency of the legacy model-based inversion to be more accurate
at well locations because it was constructed to match the wells at low
frequencies, whereas the CARV method does not incorporate the log
data. Table 3 illustrates this bias, but the tie at much of the well depths
is not dramatically different between the two inversion methods, as
reported in the “Results” section. Sources of error in the CARV in-
version are also related to the uncertainty of the choice of the AI for
the reference layer. This issue may not be solved once an interval

velocity field is available for the poor accuracy of the velocity field
in the shallow layers and for the uncertainty on the reference density.
For instance, Figure 7b shows some unrealistic velocities within the
water column. The estimation of AI in the reference layer should be
even more problematic for land data in which there is no water col-
umn characterized by a very narrow range of AI. Furthermore, am-
plitudes of seismic data “are more reliable for marine than for land
data” (Simm and Bacon, 2014). Even if we consider a lateral con-
tinuity term in the CARV reconstruction, the inversion shows a trace-
to-trace variability that is still not completely mitigated. The trace-to-
trace variability does not prevent the interpretation from being made
at the global scale of the inverted 2D section: The signature of the
vertical stripes is different from the signature of the geologic features
in the CARV reconstruction. Weighting a smooth interval velocity
field in the AR reconstruction also favors a laterally smooth solution.

Figure 11. Comparison between the low-frequency content of AI reconstructed (a) via
the CARV method (rayl) and (b) via the low-frequency model for the legacy inversion
(rayl).

Table 3. The rms error of the legacy model-based inversion
and CARV inversion with respect to the AI measured by
well logs.

Well Method
Rms

error (rayl) Method
Rms

error (rayl)

132/15 Legacy model-based 57.5 × 104 CARV 73.4 × 104

132/06 Legacy model-based 41.1 × 104 CARV 83.0 × 104
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The interval velocity field weighting factor λ should be tuned by per-
forming a sensitivity analysis of its effects on the result.
Figure 13 provides a measure of the sensitivity of the AI inver-

sion depending on the CARV parameterization. Each of the four
panels of Figure 13 shows the sample standard deviation among

the AI models that can be obtained by sampling the most impacting
parameters of the CARV reconstruction one at a time. The standard
deviation is computed sample by sample for each trace among four
Rockall Trough AI inversions. Figure 13a shows the sample stan-
dard deviation section that is obtained by varying the AR model
order from 200 to 275, in increments of 25. The choice of the
AR model order requires the knowledge that there are fewer reflec-
tors in the section than the number of frequency components that
can be resolved by the spectral estimation within the optimal band-
width. In the real subsurface, this condition is not always met. How-
ever, given that the AR models are less sensitive to model order than
the ARMA models, and once ancillary information is available, the
variability of the AI reconstruction that depends on this parameter is
less than 2 × 106 rayl. Figure 13b shows that the sensitivity of the
inversion to the scalar that transforms the relative amplitude of the
seismogram into the reflectivity amplitude is also relatively small.
In Figure 13b, we let the scalar vary from 50,000 to 65,000 in incre-
ments of 5000. The limited impact of the scalar can be attributed to
the use of ancillary information such as soft constraints at depth and
the interval velocity field that make the reconstruction less sensitive
to the input data amplitude variation. Figure 13c shows a measure of
the variability that can be related to a change in the low-frequency
cut-off for fitting the AR model. The cut-off varies from 5 to 8 Hz in
1 Hz increments. The bandwidth choice appears to have a larger
effect with respect to the other parameters, but a spectral analysis
of the data set to be inverted could greatly reduce this kind of un-
certainty. Figure 13d shows the sample standard deviation among
four AI inversions that have been obtained by letting the trade-off
parameter λ vary in the range of 0.1–0.4 times the ratio between
the maximum eigenvalues of matrix G and LHL. The parameter λ
weights in the CARV solution the interval velocity field, and its in-
fluence is more pronounced in the deepest part of the section in which
the recursion of equation 3 tends to provide less stable results if a
classic AR approach is attempted. The variability in all panels in
Figure 13 is about one order of magnitude less than the estimated
values of AI themselves. From a visual inspection of Figure 7a,

the seismic events seem sparse enough for a cor-
rect AR modeling, but interference (see Figure 1)
and attenuation (see Figure 8) tend to degrade the
AR reconstruction. A comparison between our
method and a similar formulation of the sparse-
spike inversion that accounts for constraints at
depth and velocity information might be benefi-
cial to better understand the relevance of the
AR approach with respect to the well-established
sparse-spike low-frequency extension of seismic
data. The comparison should consider the sensi-
tivity of the results to the parameterization choice.

CONCLUSION

The CARV method proposed here for the
reconstruction of the full band of AI provides a
more accurate solution than the classic AR algo-
rithm on which it was based, at the expense of
the larger amount of information required, some
additional preconditioning work and parameter
tuning. A reduced sensitivity to the parameteriza-
tion choice is demonstrated on synthetic examples
characterized by sparsity in the time-domain rep-

Figure 12. The AI reconstruction around the two well locations
referring to the inversions presented in Figure 9a and 9b. The CARV
inversion is proposed every five traces for 25 traces around the two
well locations.

Figure 13. Sample standard deviation of the AI results among four different outputs
when: (a) the AR model order changes from 200 to 275, (b) the scalar that maps the
seismic data into reflectivity changes from 55,000 to 65,000, (c) the low-cut frequency
changes from 5 to 8 Hz, and (d) the scalar that weights the velocity field changes from
0.1 to 0.4.
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resentation of the reflectivity and on a seismic section from the Rock-
all Trough area. Due to the hypotheses that the number of events is
limited and that the AI variation is only related to jumps at specific
interfaces, and due to the necessity of a spectral estimation, the origi-
nal AR reconstruction method is prone to inaccuracies. For this rea-
son, our CARV reconstruction method benefits from the introduction
of the seismic-based interval velocity field combined with a targeted
rock-physics relationship for the density, resulting in a more accurate
evaluation of the low-frequency components of the AI with respect to
the classic AR approach. Results appear encouraging on the test data
set, and an insight on lateral variations of AI can be obtained even
where no well log is available. The match between the proposed in-
version results and log information is comparable with the legacy
model-based inversion for one of the twowells of the Rockall Trough
test line. The misfit of our inversion at the other well is significantly
higher in a limited time window. Not all of the inversion results can
be considered as realistic representations of the subsurface imped-
ance, especially due to proximity of the layer interfaces, interference,
noise, residual wavelet effects, and sensitivity to the parameterization
choice. Trace-to-trace vertical artifacts were unavoidable in the cur-
rent implementation of our method, but further work on data precon-
ditioning and the incorporation of a larger number of constraints
when available, could reduce this issue. Regardless, the performance
of the inversion procedure should be considered on the global scale
of the test data set in which the signature of the geologic features of
possible interest is different from the signature of the artifacts. Further
research on field seismic data could be addressed to confirm the val-
idity of the method in different geologic settings using data with dif-
ferent acquisition styles.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous reviewers and asso-
ciated editor for their helpful edits. The authors thank G. Busanello
for suggesting the test data set and the UKOil and Gas Authority for
granting access to it. Part of the research was performed in the
framework of the Ph.D. program in “Earth Science and Fluid
Mechanics” at University of Trieste.

DATA AND MATERIALS AVAILABILITY

Data associated with this research are available and can be
obtained by contacting the corresponding author.

APPENDIX A

RESIDUAL WAVELET EFFECTS

One of the hypotheses at the basis of the AR modeling for low-
frequency reconstruction is that the seismic data represent a band-
limited version of reflectivity before fitting the ARmodel. However,
on real seismic data, it is not possible to completely remove all of
the wavelet effects. This leads us to incorrectly assume that equa-
tion 2 actually describes the recorded data. The consequences of
fitting an order 1 AR model to a nonstationary complex series are
presented for the particular case in which wðtÞ is described by a
Ricker wavelet with a given dominant frequency fd. This wavelet
has the following time-domain analytic formulation:

wðtÞ ¼ ð1 − πf2dt
2Þei2π2f2dt2 ; (A-1)

which leads to an amplitude spectrum:

WðfÞ ¼ 2f2ffiffiffi
π

p
f3d

e
−f2

f3
d : (A-2)

In the absence of noise and for a single event r1, equation A-1 can
be rewritten as

dðtÞ ¼ ½ð1 − πf2dt
2Þei2π2f2dt2 � � ½r1δðt − τ1Þ�: (A-3)

Equation A-3 has the following representation in the Fourier
domain:

DðfÞ ¼ 2f2ffiffiffi
π

p
f3d

e
−f2

f2
d r1e−i2πfτ1 : (A-4)

In case we model equation A-4 as an AR process of order 1, the
resulting AR coefficients depend on a frequency term:

DðfÞ ¼ 2ðf − 1Þ2ffiffiffi
π

p
f3d

e
−ðf−1Þ2

f2
d r1e−i2πðf−1Þτ1

f2

ðf − 1Þ2 e
− f2

ðf−1Þ2e−i2πτ1 :

(A-5)

If we name r1e−i2πτ1 as α1

DðfÞ ¼ Dðf − 1Þα1
f2

ðf − 1Þ2 e
− f2

ðf−1Þ2 : (A-6)

Recursively,

DðfÞ ¼ Dðf − kÞαk1
f2

ðf − kÞ2 e
−
P

k
j¼1

ðf−jþ1Þ2
ðf−jÞ2 : (A-7)

The extension to longer ARmodels depends on the spectral estimator
used, and it is not analytically derived here. In any case, modeling the
complex time series as a stationary AR process neglects the presence
of the wavelet: If the signal shows a decaying amplitude with fre-
quency in the passband, the stationary AR model accounts for that
decay and the subsequent frequency content interpolated outside the
band-pass region is biased. The bias is higher when the spectral dis-
tance between the known frequencies adopted to fit the AR model to
the data and the frequency to be predicted increases. For AR models
of order 1, this is due to the term

f2

ðf − kÞ2 e
P

k
j¼1

−ðf−jþ1Þ2
ðf−1Þ2 ; (A-8)

which increases as the distance between the frequency to be predicted
ðfÞ and the known spectral component ðf − kÞ increases. The issue
may find a solution by modeling the trace spectrum as a time-variant
AR process (Rao, 1970), but a larger number of parameters is
required.
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