
Vol.:(0123456789)

Natural Hazards (2021) 108:1763–1780
https://doi.org/10.1007/s11069-021-04755-0

1 3

ORIGINAL PAPER

Determination of near‑fault impulsive signals 
with multivariate naïve Bayes method

Deniz Ertuncay1   · Giovanni Costa1

Received: 29 September 2020 / Accepted: 15 April 2021 / Published online: 29 April 2021 
© The Author(s) 2021

Abstract
Near-fault ground motions may contain impulse behavior on velocity records. To calculate 
the probability of occurrence of the impulsive signals, a large dataset is collected from var-
ious national data providers and strong motion databases. The dataset has a large number 
of parameters which carry information on the earthquake physics, ruptured faults, ground 
motion parameters, distance between the station and several parts of the ruptured fault. 
Relation between the parameters and impulsive signals is calculated. It is found that fault 
type, moment magnitude, distance and azimuth between a site of interest and the surface 
projection of the ruptured fault are correlated with the impulsiveness of the signals. Sepa-
rate models are created for strike-slip faults and non-strike-slip faults by using multivari-
ate naïve Bayes classifier method. Naïve Bayes classifier allows us to have the probability 
of observing impulsive signals. The models have comparable accuracy rates, and they are 
more consistent on different fault types with respect to previous studies.

Keywords  Near-fault ground motion · Velocity pulse · Impulsive signal · Probability of 
pulse occurrence

1  Introduction

Areas where the distance between the site of interest and the fault line that ruptures during 
an earthquake are less than the length of the ruptured fault are called near-fault areas or 
near-fault regions (Lay and Wallace 1995). The velocity-time history of the seismic sta-
tions in near-fault regions may have large, pulse-shaped motions. These velocity wave-
forms have large, long period signals. A pulse-shaped signal is the representation of the 
effect of almost all seismic energy from the fault arriving within a short period of time. In 
this case, ground motion prediction equations (GMPEs) may under-determine the ampli-
tudes of these signals. It is due to unexpectedly high amplitudes caused by directivity and 
fling step effects. In such cases, structures may have to deal with loads higher than pre-
dicted in building codes (Li et al. 2020).
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A velocity waveform, which contains the effect of this natural phenomena, is called an 
impulsive signal, a velocity pulse or a pulse shaped signal. Thanks to the denser installa-
tion of seismic stations around near-fault regions in recent years, waveforms with impul-
sive features are now being recorded. These signals mostly result from large magnitude 
earthquakes. Data centers around the world are now monitoring near-fault regions and have 
started to collect broadband and strong motion data.

Starting from the late 1990s, several different indicators of impulsive signals have been 
identified (Grimaz and Malisan 2014). Impulsive signals may have long periods depending 
on the magnitude of the earthquake. Such signals also have large amplitudes in velocity 
time history (Somerville et  al. 1997). It means that energy of the earthquake is concen-
trated into one or few pulses. In impulsive signals, PGV/PGA ratio is higher with respect 
to non-impulsive signal’s (Bray and Rodriguez-Marek 2004; Loh et al. 2002). They create 
unexpectedly high amplitudes on long periods ( > 3 s ) in velocity response spectra (Yang 
and Wang 2012).

In order to identify the impulsive signals, various methods are developed (Baker 2007; 
Chang et al. 2016; Ertuncay and Costa 2019; Kardoutsou et al. 2017; Mena and Mai 2011; 
Shahi and Baker 2014; Zhai et  al. 2018). These methods are focused to analyze seismic 
signals by using the indicators mentioned above. Signals are analyzed both in time and 
frequency domain as acceleration, velocity and/or displacement signals. Shahi and Baker 
(2014) is one of the most used algorithms for identification of impulsive signals. The algo-
rithm can differentiate early and late arrival pulses by analyzing the arrival of PGV. Early 
arrivals of PGV generally indicate directivity effects. To detect the impulsive signal, it 
requires horizontal components of a seismic station.

Impulsive signals can create high seismic demand on high buildings (Li et  al. 2020). 
Spectral ratios can be locally amplified in the region where structural fundamental period 
is closer to the pulse period (Shahi and Baker 2011). Structure will be loaded with con-
siderable seismic energy in few pulses in the higher modes (Kalkan and Kunnath 2006). 
They also create different inelastic seismic demands with respect to ordinary strong motion 
signal (Alavi and Krawinkler 2004; Hall et al. 1995; Iervolino et al. 2012, 2017). Impulsive 
signals can be destructive to various types of infrastructure, such as buildings having a 
behavior describable as single or multi degree of freedom systems (Guo et al. 2018), seis-
mically isolated structures (Mazza 2018), and bridges (Antonellis and Panagiotou 2013).

The spatial distributions of impulsive signals are generalized by analyzing the physical 
features of the earthquakes that have created impulsive signals, spatial information, and 
local soil conditions of the stations which have recorded impulsive waveforms. It has been 
observed that impulsive signals are more likely to occur when any of the following condi-
tions are satisfied: 

1.	 Forward directivity (Somerville et al. 1997; Somerville 2003, 2005; Spudich and Chiou 
2008),

2.	 Fling step effect,
3.	 Similar rupture velocity and shear-wave velocity of the bedrock of the site of interest.

Previous models are developed to assess the probability of pulse occurrence. Parameters are 
identified to explain the relation between the fault plane and site of interest and impulsiveness 
(Chioccarelli and Iervolino 2013; Iervolino and Cornell 2008; Shahi and Baker 2014). Prob-
ability of occurrence of impulsive signals may be implemented to probabilistic seismic hazard 
studies (Tothong et al. 2007). Previous methods require intensive information about the fault 
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and the earthquake. Precise information such as dip angle, initiation point of the fault rupture, 
hypocentral depth of the earthquake, and the depth of the shallowest part of the ruptured fault 
have to be given to the model in order to calculate the probability distributions of occurrence. 
However, it is impossible to provide some of them before an earthquake such as the initiation 
point. Furthermore, it is hard to determine these information even after an earthquake, due to 
scarcity of the stations or it is hard to make a site investigation after an event.

We investigate various parameters that carry information about the site of interest, earth-
quake and the position between the fault and the site of interest and select the most meaningful 
parameters by calculating the correlation coefficient. To create the model, multivariate naïve 
Bayes classifier method is used. Bayesian approach provides us probabilities of observing 
impulsive signals with given input parameters. Models are developed for strike-slip and non-
strike-slip faults. We investigate the probability of occurrence for non-strike-slip faults for two 
different regions which are hanging wall and footwall. Application of the models for Imperial 
Valley and Chi–Chi earthquakes are presented.

2 � Data

To create a generalized model a large dataset is collected. Crustal earthquakes are collected 
from various data centers. Strong-motion and broad-band stations are collected. Earthquakes 
with moment magnitude ( Mw ) bigger than 5.5 with hypocentral depth smaller than 55 km are 
chosen. Stations with epicentral distance less than 150 km are used. Data are collected from 
NGA-West 2 (Bozorgnia et  al. 2014) database and data centers of National Seismological 
Center of Chile (Universidad De Chile 2013), The Italian Accelerometric Archive (Luzi et al. 
2016; Pacor et al. 2011), Kyoshin Net and Kiban-Kyoshin Net, National Autonomous Univer-
sity of Mexico (SSN 2017), GeoNet (Van Houtte et al. 2017), Broadband Array in Taiwan for 
Seismology (Institute of Earth Sciences 1996), Disaster and Emergency Management Presi-
dency of Turkey (AFAD 2019) and Incorporated Research Institutions for Seismology (IRIS).

We created a database with 25,376 stations. Signals that are recorded at the earthquakes 
that do not produce any impulsive signals are excluded. Algorithm of Shahi and Baker (2014) 
is used for the determination of the pulse-shaped signals. East–West and North–South compo-
nent signals are required to identify impulsive signals. Among the impulsive signal-produced 
earthquakes, 206 of them are identified as impulsive and 5175 are identified as non-impulsive.

3 � Method

To calculate the probability of occurrence of impulsive signals, the parameters that are corre-
lated with the impulsive signals are determined, and then, they are analyzed with multivariate 
naïve Bayes approach (Sect. 3.1).

3.1 � Multivariate naïve Bayes classifier

Bayes’ theorem describes the probability of an event with a given prior information, which 
is the information about the event without having the data of that event. It can be formu-
lated as in Eq. 1.
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A and B are events, and P states the probability. P(B) should be bigger than zero. P(A|B) 
and P(B|A) are the conditional probabilities, which are the likelihood of events A and B 
occurring for a given true B and A, respectively. P(A) and P(B) are independent from each 
other. It means that event A has no effect of event B.

In Bayes classifier A will be the classes, which are impulsive and non-impulsive. B is the 
feature that is going to be used to determine the impulsive and non-impulsive signals. A and 
B will get indices and become Aj , and Bi . Binary classification will be applied on the data and 
A0 and A1 will be the probabilities of non-impulsive and impulsive signals, respectively. Bi 
will have the dataset input parameters. They are also called predictor features. P(B|A) can be 
rewritten in vector form, P(Bi|Aj) , as:

The probability of class Aj with the set of values at Bi , is explained as in Eq. 2. Equation 1 
can be modified with the information in Eq. 2 and rewritten as in Eq. 3.

Equation 3 can be put into words as, the probability of the class ( Aj ), for a given predic-
tor feature combination ( B1,…,n ), is as a function of the probability of the predictor feature 
combination ( P(B1,…,n|Aj) ) with the given class ( Aj ). It is the likelihood term times the 
probability of the class P(Aj) . The prior (numerator part of Eq. 3) all divided by the evi-
dence term (denominator part of Eq. 3), which is the combination of the predictor features 
( P(B1,…,n)).

Sum of the prior would be 1 which is the summation of the probability of impulsive and 
non-impulsive probabilities. A naïve prior would use 50–50% probability of each class. In 
such a case, conditional probability, P(Bn|A) can be written as in Eq. 4. � and � are the average 
and standard deviation of each indices of Bn.

In classes, which are impulsive and non-impulsive, the � and � for each feature are 
calculated.

Since B has higher dimensions, multivariate Gaussian distribution is applied to it. Multi-
variate Gaussian distribution is a vector with multiple Gaussian distribution variables. Any 
linear combination of the variables is also Gaussian distribution. One should modify the 
Eq. 4, since it is actually valid for the normal distribution in 1 variable.

In normal distribution with 1 variable, −(Bn − �A)
2∕2�2

A
 is a parabola. In the multivariate 

case, Eq. 4 should be modified with a quadratic version of Bn . Modified multivariate Gaussian 
distribution formula can be seen in Eq. 5.

(1)P(A|B) = P(B|A)P(A)
P(B)
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Denominator of Eq. 3 is constant with the all values in the dataset. One can remove the 
denominator and introduce the proportionality as in Eq. 6.

Since there are two different classes, A with the maximum probability is the answer that 
needs to be found. One can obtain the class by using Eq. 7.

Conditional probabilities and priors are assigned accordingly. After that, the model is 
used for making predictions for the impulsive and non-impulsive signals by giving input 
parameters.

4 � Parameter selection

The Pearson correlation coefficient, r, measures the linear correlation between two vari-
ables (Eq. 8), x and y. The correlation coefficient is bounded between -1 and 1. A cor-
relation coefficient of ±1 implies that x and y have perfect correlation (depending on the 
sign). 0 means no correlation. r has been calculated for each variable.

In order to select the input parameters for the model of probability of occurrence of impul-
sive signal, r is calculated for several parameters that provide information about the fault 
plane, at the site of interest and between the fault and the site of interest. Signals and/or 
earthquakes without variables are excluded from the analysis. r are calculated for all the 
parameters that can be seen in Fig. 1.

Parameters that are chosen for the first stage are: 

	 1.	 Epicentral distance ( Rep),
	 2.	 Hypocentral distance ( Rhyp),
	 3.	 Distance to the surface projection of the rupture ( Rjb),
	 4.	 Distance from the ruptured fault ( Rrup),
	 5.	 The horizontal distance to the surface projection of the top edge of the rupture meas-

ured perpendicular to the fault strike ( Rx),
	 6.	 Depth to top of rupture ( Ztor),
	 7.	 PGA,
	 8.	 PGV,
	 9.	 PGV/PGA,
	10.	 Mw,
	11.	 Stress drop,
	12.	 Rupture area.

(6)P(A|B1,… ,Bn)�P(Aj)Π
n
i=1

P(Bn|A)

(7)A = argmaxAP(A)Π
n
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In Fig.  1, positive values indicate variables which are directly correlated. Conversely, 
negative values indicate variables which are inversely correlated. Impulsive signals are 
labeled as 1 and non-impulsive signals are labeled as 0. Correlation between the variables 
and impulsive signals are done accordingly. PGV is by far the most relevant parameter 
for the impulsive signals. However, GMPEs have failed to predict the amplitudes in near-
fault regions. In ground motion parameters, largest amplitude of the station is selected. 
Difference between the actual and predicted amplitudes of PGV can be seen in Fig.  2. 
Soil classes are taken into account on the amplitude prediction of GMPE. Amplitudes are 
underestimated in most cases. Due to the unrealistic prediction of GMPE, PGV is excluded 
from further analysis. PGV/PGA and PGA are also excluded due to the same reason.

Rhyp has the second highest correlation coefficient. However, it requires the location of 
the hypocentral depth of the earthquake. Determination of hypocentral depth can change 
depending on the station distribution and the velocity structure of the subsurface that is 
used for the modeling. Uncertainties in hypocentral depth are relatively large. Because of 
that, it is also eliminated. Rjb and Rrup have the third highest correlation coefficients. We 
prefer Rjb over Rrup , since Rjb provides deeper information about the fault plane, such as 
its limits. Rrup on the other hand, does not provide vital information on the fault plane for 
non-strike-slip faults. Rjb is chosen as an input for further analysis. Other distance-related 
parameters are eliminated due to their relatively lower r.

Moment magnitude, Mw , is also chosen for the next step, since it is one of the most 
vital information in earthquake hazard studies. It is also proportional to parameters such as 
ground motion parameters on the site of interest.

Stress drop and ruptured fault are excluded because of their lower correlation coeffi-
cients. Stress drop is calculated with the same method that is used in NGA-West 2 data-
base. When the fault dimensions are not available, they are estimated by using the method 
of Wells and Coppersmith (1994).

Chosen parameters may have very low value of r. Occurrence of an impulsive signals is 
scarce. To observe an impulsive signal, there are other parameters that are playing big roles 
such as directivity effect and rupture velocity. However, these parameters are earthquake 

Fig. 1   Correlation coefficient between the parameters that have been used in the preliminary analysis



1769Natural Hazards (2021) 108:1763–1780	

1 3

dependent, and it is not convenient to use them as variables. There are several reasons 
for that. First of all, not all the earthquakes are well studied in terms of their kinematics. 
Secondly, parameters such as rupture velocity and slip-time history may differ even when 
using different type of observations for the same earthquake. It is not feasible to use any 
of these parameters when trying to create a generalized model. Because of that, we limit 
our parameter space with distance-related, amplitude-related and basic earthquake infor-
mation-related parameters.

We also add source-to-site azimuth into our parameter space. It is used to give the 
azimuthal information between the fault plane and the site of interest (Kaklamanos 
et  al. 2011). Source-to-site changes between −180◦ and 180◦ depending on the position 
of the site of interest. Hanging wall and footwall separation can be done by calculating 
source-to-site azimuth. Site of interest in hanging wall always has positive source-to-site 
azimuth. Graphical explanation of source-to-site azimuth can be seen in the Electronic 
Supplementary.

5 � Results

Multivariate naïve Bayes classifier is used to model the probability of observing impulsive 
signals for a given fault type, Mw , Rjb and source-to-site azimuth. Dataset is divided into 2 
types of faults, which are strike-slip and non-strike-slip.

Both models have limits in terms of Rjb and Mw . Distance limitation has been done for 
computational point of view. Far-field regions are considered to have 0% probability of 
observing impulsive signals regardless of the source-to-site azimuth and Mw . Probabil-
ity of occurrences are calculated for maximum and minimum Mw of the dataset for each 
fault type. In strike-slip faults, minimum Mw that resulted with an impulsive signal is 5.7, 
whereas maximum magnitude is 7.9. For non-strike-slip faults, minimum and maximum 
Mw s are 5.4 and 7.9, respectively. There is only one single impulsive signal in Mw = 5.4 
earthquake in non-strike-slip faults. Impulsive signals become more frequent starting from 
Mw = 5.9. Contour maps are created for Mw s with 0.1 bins. Upper and lower Mw limits 

Fig. 2   Amplitude difference between measured PGV and predicted PGV of impulsive signals. GMPE of 
Boore et al. (2014) is used for the prediction of PGVs
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of the models are the magnitudes of the earthquakes that produced at least one impul-
sive signal for each fault type. Probability distribution maps can be seen in the Electronic 
Supplementary.

In both strike-slip and non-strike-slip faults, surface rupture may not be observed. In 
such cases (dip angle ≤ 90◦ ), upper line of the ruptured fault is not located on the surface. 
Thus, the part over the upper line of the buried rupture is still on the hanging wall. How-
ever, on NGA-West2 dataset some of the earthquakes do not have surface rupture infor-
mation. Furthermore, national data providers have not investigated it. Hence, we assume 
that all earthquakes have surface rupture. Upper line of the rupture is always located on 
the surface, and hanging wall - footwall separation has been carried out accordingly. It 
may create problems, especially when the deriving force of the impulsive signals is directly 
related with the motion of the hanging wall (e.g., fling step effect during Norcia earthquake 
studied by D’Amico et al. 2019). Dimensions of the ruptured fault are calculated by using 
the methodology of Wells and Coppersmith (1994). Epicenter of an earthquake is used as a 
centroid point of the fault plane.

Number of impulsive and non-impulsive signals with fault types and source-to-site 
azimuths can be seen in Table  1. In strike-slip faults, source-to-site azimuth values are 
reduced to binary format, 90◦ and ≠90◦ . In strike-slip faults, there is no footwall and hang-
ing wall. Thus source-to-site azimuths can be used in absolute sense. Furthermore, in point 
source assumption, wave propagation of strike-slip faults can be explained in 4 quadrants. 
However, we explained faults as planes. Sites that are located at the normal direction of the 
ruptured fault have source-to-site azimuth of 90°.

Non-strike-slip faults, on the other hand, require the hanging wall and footwall infor-
mation, since amplitudes vary on both sides of the fault plane. Positive source-to-site azi-
muth indicates the hanging wall, whereas negative indicates the footwall. Previous studies 
show that in non-strike-slip faults probability of observing impulsive signals may change 
on hanging wall and footwall for the same distance and azimuth angle (Chioccarelli and 
Iervolino 2013; Iervolino and Cornell 2008; Scala et  al. 2018; Shabestari and Yamazaki 
2003; Shahi and Baker 2014).

Distribution of the data points on each class is heterogeneous (Fig. 3). The heterogene-
ity is not only present in variable space but also in class space. Due to the heterogene-
ous distribution of the stations, they are not able to fully cover all source-to-site azimuth 
angles. Furthermore, we do not have equal number of data for Mw s. For some earthquakes, 
stations are sparse in terms of Rjb distance, whereas others have dense seismic network in 
all distances. To top it all, the ratio between impulsive and non-impulsive signal is low.

The heterogeneity in all parameter spaces led us to have incoherent models (see the 
Electronic Supplementary). To overcome the problem, we smoothed the models. Two 
different manipulations have been done to smooth the models. The first one is merging 

Table 1   Number of impulsive and non-impulsive stations at different fault types and source-to-site azimuth 
bins

Type of observation Strike-slip Non-strike-slip

Source-to-site Azimuth (°)

[0 90) 90 (90 180) [− 180 − 90) − 90 (− 90 0) [0 90) 90 (90 180)

Impulsive 27 50 10 6 36 27 14 29 7
Non-impulsive 751 286 745 676 166 656 811 220 864
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Fig. 3   Distribution of data points in parameter space. Black and red dots represent non-impulsive and 
impulsive signals, respectively
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different source-to-site azimuths (as explained above) which is applied to the data regard-
less of the fault type. The second smoothing process is done for having a decreasing prob-
ability of occurrence with increasing Rjb distance. Multivariate Gaussian distribution 
assures that relation between all parameters are Gaussian distributions. Depending on the 
data points, Gaussian distribution may have its maximum point in not at the Rjb ≈ 0 but 
somewhere in the far away distance. It is due to station distribution around the fault planes. 
When there are lack of stations in and around the Rjb area, impulsive behavior around the 
rupture area may not be captured. In this case, stations are located, relatively, away from 
the Rjb area and the model tends to focus in the detected impulses. This creates Gaussian 
distributions with a maximum probabilities away from the Rjb area (Fig. 4). We would like 
to avoid the unrealistic models and to do that we have extended to maximum probability 
value to the Rjb = 0.

We developed two different models for hanging wall and footwall of non-strike-slip 
faults. Smoothing is applied separately to these models. In hanging wall, there is a decreas-
ing probability of occurrence with increasing Mw between 5.4 and 6.8. We have calculated 
the trend of increase magnitudes from 7.1 to 7.4. We have calculated the maximum prob-
ability of occurrence for Mw between 5.4 and 6.8 and adjusted the curves accordingly. We 
have done the same procedure for strike-slip faults by using the Mw from 6.1 to 6.3 to cal-
culate trend, and applied it to Mw between 5.7 and 6.0.

We calculate the accuracy of strike-slip and non-strike-slip models by using the 
smoothed models. Impulsive and non-impulsive signals are labeled as 1 and 0, respec-
tively. Methodology for the accuracy rates can be seen below:

Accuracy rates are calculated for strike-slip and non-strike-slip models by using Eq.  9. 
Results can be seen in Table 2. As one can notice, accuracy rates of impulsive signals are 
lower than the non-impulsive signals for all fault types. There are several reasons for the 
relatively lower accuracy rates. First of all, impulsive signal(s) may be suppressed by non-
impulsive signals in some regions. In such cases, probabilities are less than 50%, in which 

(9)x̃ =

⎧⎪⎨⎪⎩

1, if pred(Mw,Rjb, source-to-site azimuth) ≥ 50 when impulsive

0, otherwise when impulsive

1, if pred(Mw,Rjb, source-to-site azimuth) < 50 when non-impulsive

0, otherwise when non-impulsive

Fig. 4   Probability of observing impulsive signal curves for source-to-site azimuths of 0 ◦ , 15◦ , 30◦ , 45◦ , 
60◦ , 75◦ and 90◦ for M

w
= 7.1 in a strike-slip fault. Figure on the left is the original distribution and figure 

on the right is the smoothed distribution
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output of our accuracy calculation is always 0. There are also impulsive signals which are 
observed due to weak soil conditions (Bradley 2012; Kobayashi et al. 2019). Rare occur-
rence of impulsive signals and rough estimation process of accuracy rates lead us to have 
relatively lower rates.

Iervolino and Cornell (2008) and Shahi and Baker (2014) have also calculated the prob-
ability of occurrence for the impulsive signals. Both of these studies have analyzed the 
NGA-West 2 database, in which other parameters, apart from the ones that we used in 
parameter selection, are calculated. It is due to the fact that, well-studied earthquakes are 
collected in NGA-West 2 database. Both of these studies have used the parameters of R, s 
and � for strike-slip, and R, d and � for non-strike-slip faults. Visual explanation of these 
parameters can be seen in the Electronic Supplementary. Since none of these are calculated 
for the earthquakes provided by other data centers, we are not able to calculate the accu-
racy rates for our dataset. To overcome this problem, we calculated the accuracy rates by 
using NGA-West 2 database data and Eq. 9. Results can be seen in Table 3.

Iervolino and Cornell (2008) has slightly higher accuracy rates in strike-slip faults, 
whereas it has very low accuracy rates on non-strike-slip faults. In fact, unreliability of 
the model for non-strike-slip faults is explicitly stated in the study. Shahi and Baker (2014) 
has relatively higher accuracy rate for strike-slip faults, whereas our model has noticeably 
higher accuracy rates for non-strike-slip faults.

We build our model by calculating the probabilities in evenly distributed sites near the 
fault planes. Contour maps are created by using the probability of observing impulsive 
signals. We choose 2 earthquakes that produced impulsive signals at least in one station. 
Imperial Valley (Sect. 5.1) and Chi–Chi (Sect. 5.2) earthquakes are used as example cases.

5.1 � Imperial Valley earthquake

Impreial Valley earthquake ( Mw = 6.5 ) has occurred on 15th of October 1979 in Califor-
nia, USA. It has occurred on a strike-slip fault with 80◦ of dip angle. Dimensions of the 
ruptured fault are 50 km of length and 13 km of width. Thirty-five stations have recorded 
the earthquake of which 12 have impulsive signals.

Table 2   Accuracy rates of strike-
slip and non-strike-slip faults for 
impulsive, non-impulsive and 
general cases

Accuracy rates (%) Strike-slip Non-strike-slip

Impulsive 36.84 41.35
Non-impulsive 98.59 97.77
General 92.94 96.10

Table 3   Accuracy rates for previous studies of Shahi and Baker (2014) and Iervolino and Cornell (2008) 
strike-slip and non-strike-slip faults for impulsive, non-impulsive and general cases

Accuracy rates (%) Iervolino and Cornell (2008) Shahi and Baker (2014)

Strike-slip Non-strike-slip Strike-slip Non-strike-slip

Impulsive 49.25 2.47 25.37 51.82
Non-impulsive 98.19 99.92 99.33 99.05
General 96.08 96.90 96.14 97.59
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In Fig. 5, nine stations with impulsive signals lie on the area with more than 50% prob-
ability of occurrence. There are non-impulsive signals in the same region where impulsive 
signals are detected. Three non-impulsive signals where the model predicts the probability 
of observing impulsive signals to be between 50 and 60%. For this particular earthquake, 
75% of the signals are impulsive in the region where model predicts the probability of 
occurrence is between 50 and 60%. 50% of the signals are impulsive in the region where 
model predicts the probability of occurrence is between 40% and 50%. For this particu-
lar earthquake, model underestimates in the probabilities Rjb distances between 0 km and 
15 km and overestimates between 15 km and probability of occurrence ≈ 0%. It is worth 
considering that the model is created by using various earthquakes that produced impulsive 
signals.

5.2 � Chi–Chi earthquake

Chi–Chi earthquake ( Mw = 7.6 ) has occurred on 20 of September 1999 in Taiwan. Fea-
tures of the fault plane are well studied for the earthquake. We use the fault plane informa-
tion that is determined by Chi et al. (2001). It has occurred on a reverse fault with 30◦ of 
dip angle. Dimensions of the ruptured fault are 112 km of length and 45.5 km of width. 
Four hundred and twenty stations have recorded the earthquake in which 39 of them have 
impulsive signals.

The probability distribution map of observing impulsive signals for the Chi–Chi, Tai-
wan earthquake can be seen in Fig. 6. Aagaard et al. (2004) states that there is an up-dip 

Fig. 5   Probability of observing impulsive signals for the ruptured fault in Imperial Valley earthquake with 
the same fault type. Green and black triangles are the impulsive and non-impulsive stations for the earth-
quake, respectively. Navy rectangle represents the surface projection ruptured fault
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directivity effect that created impulsive signals that are located in the footwall part of the 
Rjb area. A fling step effect is also recorded (Ji et al. 2003; Kalkan and Kunnath 2006).

Most of the impulsive signals are located in the footwall part and they are located in 
the region with high probabilities ( ≥70%). Largest slip is occurred in the fault plane is 
around north west of the rupture area and most of the rupture is occurred on the shallow 
part that is the west edge of the fault rupture area in Figs. 6 and 7 (Chi et al. 2001). As 
before-mentioned, up-dip directivity effect may create impulsive signals in footwall regions 
(Scala et  al. 2018). Furthermore, Aagaard et  al. (2004) states that the ruptured directed 
most of its energy toward the north to northwest part in the Chi–Chi Taiwan earthquake. 
The forces that described by Aagaard et al. (2004) and Scala et al. (2018) may be the driv-
ing forces to the large amount of impulsive signals around the western and north western 
part of the fault plane. Twelve impulsive signals lie in the hanging wall part with source-to-
site azimuth close to zero. The impulsive signals are located in the area where probability 
of occurrence is less than 50%. Only 5 of the impulsive signals are located in the top part 
of the hanging wall. It can be explained by the spreading of the radiation on longer time 
scale for the stations placed on hanging wall (Scala et al. 2018).

53.33% of the signals are impulsive in the region with probability of occurrence 
between 90 and 100%. In total 40.91% of the signals are impulsive in the area with 
probability of occurrence bigger than 50%. Hence, model overestimates the probabili-
ties of that area. However, one can see that there are many impulsive and non-impulsive 
signals located within close distances to each other. High nonlinearity of the process 

Fig. 6   Probability of observing impulsive signals for the ruptured fault in Chi–Chi Earthquake with same 
fault type. Colors have same meaning as in Fig. 5
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makes it harder to create a model out of it. Furthermore, determination of an impulsive 
signal depends on the decision making procedure of studies. Ratio of impulsive to non-
impulsive signals in the Rjb area is between 40 and 50% which is in agreement with the 
prediction of the model. Heterogeneous placement of the stations also affect the model. 
In the end, neither our model nor previous models have high accuracy rates (Tables 2, 
3).

Moreover, we analyze the impulsive signals in vertical components (Fig.  7). Shahi 
and Baker (2014) uses the horizontal components to detect the impulsive behavior of a 
given station. We use the method of Ertuncay and Costa (2019) to detect the impulsive 
signals since the method can analyze the components individually.

It is found that some of the impulsive signals detected on horizontal motions have 
also vertical impulses. Moreover, there are 6 stations located in the region, where prob-
ability of observing impulsive signals are larger than 50%, with impulsive behavior only 
in vertical components.

Another aspect of this earthquake is the ruptured fault area defined by Chi et  al. 
(2001). According to the study, upper part of the rupture is ended in 0.9 km depth. Due 
to our assumption of having surface rupture in all earthquakes, stations with Rjb distance 
less than 1.56 km in footwall are actually located at the region where the effect of the 
upward movement of the fault is present. There are three impulsive signals lying in that 
part. We did not closely investigate these signals since the aim of this study is to create 
a generalized method instead of developing event-based finely tuned models.

Fig. 7   Impulsive and non-impulsive signals detected by Ertuncay and Costa (2019); Shahi and Baker 
(2014). Green, yellow and purple triangles indicate the impulsive signals detected by Shahi and Baker 
(2014), Ertuncay and Costa (2019) and both of the studies, respectively. Black triangles indicates non-
impulsive signals. Probability values have the same meaning as in Fig. 6
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6 � Conclusions

In this study, we would like to develop a new model to predict the probability of observ-
ing impulsive signals. To do that, a vast amount of signals are collected from various data 
providers. Earthquakes that produced these signals are also investigated. Information about 
the earthquakes and the signals are collected. Earthquakes that produced impulsive signals 
are chosen for further analysis.

Relation between the impulsive signals and the earthquakes, ruptured faults and the sta-
tions are analyzed. We find that, it is necessary to know Mw , Rjb , fault type and source-
to-site azimuth information to predict the probability of observing impulsive signals. To 
create a model for predicting the probability, multivariate naïve Bayes classifier approach 
is implemented to the data. The dataset is divided into two categories by using the informa-
tion of the fault type. Models are developed for strike-slip and non-strike-slip faults with 
an assumption of surface rupture. (Hanging wall and foot walls are always separated by the 
upper edge of the rupture).

Comparison between our study and previous studies focusing on the generalization of 
the probability of observing impulsive signals are compared. We find that, even though 
previous models can have better accuracy rates in one of the two fault types, our model 
is the most consistent in terms of general accuracy. However, our model can underesti-
mate and overestimate the probabilities depending on the given earthquake. It is due to sev-
eral factors which are, i.e., (i) heterogeneous distribution of stations, (ii) strong directivity 
effect in several non-strike-slip earthquakes, (iii) local soil conditions, (iv) uncertainties in 
fault plane (e.g., assumption of the presence of the surface rupture in every non-strike-slip 
earthquakes) and (v) neglecting vertical impulsive signals in the model.

We applied our model in Imperial Valley (strike-slip) and Chi–Chi (non-strike-slip) 
earthquakes. In both cases, impulsive signals were founded in areas close to the fault. In 
Chi–Chi earthquake, large number of impulsive signals are located on the footwall due to 
rupture features of the event. On the other hand, 30th of October 2016 Norcia earthquake 
create many impulsive signals in the hanging wall (D’Amico et al. 2019). Spatial features 
of the impulsive signals may change depending on multiple parameters such as the fault 
mechanism and rupture feature. Correlation between impulsive signal and characteristics 
of the fault and rupture features may be obtained in future using our model for investigating 
a larger number of cases of near-field signals recorded in occasion of major earthquakes 
with different characteristics. Finally, it may also change in the future when new near-field 
signals are recorded in major earthquakes.

It is also found that vertical impulsive signals are recorded in non-strike-slip faults. It 
can be linked to the top part of the ruptured fault and its vertical displacement during an 
earthquake. Vertical impulsive signals should also be investigated in the upcoming studies 
by using the pulse identification methods that are capable of analyzing vertical motions.
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