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Abstract A fictitious domain approach for the solution of second-order linear differential
problems is proposed; spectral/hp elements have been used for the discretization of the
domain. The peculiarity of our approach is that the Lagrange multipliers are particular dis-
tributed functions, instead of classical δDirac (impulsive)multipliers. In this paperwe present
the formulation and the application of this approach to 1D and 2D Poisson problems and 2D
Stokes flow (biharmonic equation).
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1 Introduction

A fictitious domain approach to solve a differential problem consists in an extension of the
domain of the problem to a larger and simple shaped one. This choice brings some advan-
tages: a specific geometry dependent mesh is no longer needed because a simple uniform
structured mesh can be used, allowing the employment of efficient solvers. Several works
with application to engineering relevant problems have been proposed [1–4], higlighting
the potentialitites of the fictitious domain approach when coupled with finite element/finite
difference methods.
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Alongside the previous approach, the development of the spectral/hp element method
(SEM) [5–8], a discretization technique which uses high order expansions for the solution
of differential problems, have suggested the coupling of the SEM with a fictitious domain
approach. Different types of specific schemes have been proposed [9]; in this paper we focus
our attention on the use of Lagrange multipliers [10–13] where steady state problems are
successfully solved.

Classical approaches use impulsive Dirac multipliers displaced over the original boundary
to satisfy the boundary conditions (BCs); this choice leads to some problems when dealing
with high order methods, which require a certain degree of regularity of domains and data [7],
and some stability problems in time dependent simulations. In this paper we will investigate
the case of distributed Lagrange multiplier functions which we expect to remove or reduce
the troubles observed in the concentrated Lagrange multipliers approach when coupled to
high order methods.

The use of distributed Lagrange multipliers with a fictitious domain approach has already
been investigated [14–16]; an exhaustive study of this approach can be found in [17] within
a finite element framework. Dong et al. [18] employed a distributed Lagrange multiplier
approach within a spectral/hp element framework to simulate flows past obstacles by forcing
Gaussian multipoles distributed over the obstacles volume, while [19] investigated the use
of distributed Lagrange multipliers functions with a specific spectral method where a single
global expansion was used.

In this paper the coupling of the spectral/hp element method with a fictitious domain
approach, in the case of distributed Lagrange multiplier functions, will be investigated in
terms of convergence rates of computed solutions for a certain number of 1D and 2D test
cases, for which reasonable convergence rates are possible when using particular distributed
functions.

2 Second-Order Differential Problem

Let ω be a closed bounded region of R (1D case) or R2 (2D case), and γ = ∂ω its boundary.
In a general form, a second-order differential problem can be expressed as follows: find u(x),
x ∈ ω, such that

D(u) = b in ω (1)

u = ū on γD (2)

A∇u · n = q̄ on γN (3)

where D is a second-order linear differential operator, b is the source term, γD is the portion
of γ where u assumes the prescribed value ū (Dirichlet BC), γN is the portion of γ where
the outward fluxA∇u ·n assumes the prescribed value q̄ (Neumann BC),A is the flux tensor
and n is the outward unit normal on γ .

3 Spectral/hp Element Method

The spectral/hp element method (see [7]) for the approximation of the previous problem
(1)–(3) uses a high order finite expansion of the solution, defined locally on each portion of
the domain (elements). In this paper the elements, denoted by e, are uniform segments in 1D
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and uniform squares in 2D, thanks to the fictitious domain approach which allows the use of
simple uniform structured meshes.

The main advantage of this method over traditional finite volume/finite element methods
is the exponential convergence as the expansion order increases.

In 1D cases, assumed ξ ∈ [−1, 1] the non-dimensional coordinate over the element, the
chosen local modal basis is

φi (ξ) =

⎧
⎪⎨

⎪⎩

(1 − ξ)/2 i = 0

(1 + ξ)/2 i = 1

J 1,1i−2(ξ)(1 − ξ)(1 + ξ)/4 2 ≤ i ≤ P

(4)

which is a polynomial basis of order P , where J 1,1i−2 is the Jacobi polynomial of order i − 2
and parameters are α = 1, β = 1 (see [7]).

The solution is then approximated by the following local expansion on each element e

u∗
e(ξ) =

P∑

i=0

û(e)
i φi (ξ) (5)

where û(e)
i are the unknown coefficients of the local 1D expansion.

For 2D cases the local basis is the tensor product of 1D basis functions; assumed (ξ, η) ∈
[−1, 1] × [−1, 1] the non-dimensional coordinates over the element e, the local expansion
is therefore

u∗
e(ξ, η) =

P∑

i, j=0

û(e)
i j φi (ξ)φ j (η) (6)

where û(e)
i j are the unknown coefficients of the local 2D expansion.

The final set of discrete equations is then obtained by the application of the Galerkin
method, which orthogonalizes the global error of (1) for the approximation u∗ locally defined
by (5) or (6)with respect to each free global basis functionΦk (which is the global composition
of local free modes over each element) on the domain ω

∫

ω

[D(u∗) − b]Φk dω = 0 (7)

for k = 1, . . . , N where N is the total number of unknown coefficients.
Using compact matrix notation, (7) writes

Dû = b̂ (8)

whereD is the N × N coefficient matrix, û is the N ×1 unknown global vector of expansion
coefficients and b̂ is the N × 1 source term vector; the BCs are included in this formulation
(see [7] for details).
The relation between local and global vectors of expansion coefficients is given by

û(e) = Ceû (9)

where Ce is the connettivity matrix of element e.
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Fig. 1 Original domain ω,
fictitious domain ΩF , external
fictitious boundary ΓE , immersed
boundary γI and external
boundary γE

4 Fictitious Domain Approach

4.1 Analytical Formulation

The fictitious domain approach extends the original differential problem, defined on an irreg-
ular shaped domain ω, to a larger and simply shaped extended domain Ω; the fictitious
domain is therefore ΩF = Ω\ω, that is the portion of Ω outside ω (see Fig. 1).

The extended domain boundary is Γ = ∂Ω , the external boundary of the original domain
is γE = γ ∩ Γ , the external boundary of the fictitious domain is ΓE = Γ \γE and the
immersed boundary of the original domain is γI = γ \γE .

The original boundary conditions prescripted on γI have to be enforced as constraints in
the new extended problem, since this portion of the original boundary is now immersed in
the extended domain.

Since the fictitious domain has its own external boundary ΓE , new boundary conditions
have to be prescribed therein; therefore these fictitious BCs can virtually assume arbitrary
values.

Under this assumptions the original problem (1)–(3) can be expressed as follows: find
u(x) and bF (x), x ∈ Ω , such that

D(u) = b + bF in Ω (10)

u = ũ on ΓE,D (11)

A∇u · n = q̃ on ΓE,N (12)

u = ū on γD (13)

A∇u · n = q̄ on γN (14)

where bF is the unknown fictitious source term satisfying bF = 0 in ω to guarantee the
equivalence between the original problem and the new problem; ΓE,D is the portion of ΓE

where the arbitrary value ũ is imposed and ΓE,N is the portion of ΓE where the arbitrary flux
q̃ is imposed.

It is important to notice that conditions (13)–(14) referring to γI ⊆ (γD ∪ γN ) are to be
intended as constraints for the new problem: the role of the unknown fictitious source term
bF is therefore to satisfy the constrained part of these boundary conditions referring to the
immersed boundary γI .

We define γI,D as the portion of γI where Dirichlet BCs are imposed and γI,N as the
portion of γI where Neumann BCs are imposed.

123

4



J Sci Comput (2018) 74:805–825 809

4.2 Discrete Formulation

At a discrete level the fictitious term bF is chosen to be a linear combination of a finite number
M of generic functions gi distributed over the fictitious domain

bF =
M∑

j=1

λ j g j (15)

where λ j are the M unknown multipliers and g j = 0 on ω for each j = 1, . . . , M . The
application of the Galerkin spectral discretization (7) on global error of (10) yields the
following linear system

Dû = b̂ + Q̂λλλ (16)

where the components of N × M matrix Q̂ are given by

Q̂k j =
∫

ω

Φkg j dω (17)

while λλλ is the M × 1 unknown multipliers vector {λ1, . . . , λM }T and the j th column of Q̂
will be denoted by q̂ j ; let us notice the distributed functions gi can assume the most generic
form.

The global system is then closed writing the discretized version of constrained part of
original BCs expressed by (13)–(14) as follows.

4.2.1 1D Cases

The immersed boundary γI is composed by M single points x̄i , each one requiring one single
BC and thus requiring one single multiplier. Therefore the constrained part of (13) and (14)
can be written explicitly as follows

Bû = ū (18)

where ū is the (P + 1) × 1 vector of the prescribed boundary values, i.e., the right hand side
of (13) or (14) depending upon the type of BC prescribed in each x̄i , while B is the M × N
matrix whose rows Bi are

Bi = φφφiCe(i) (19)

and e(i) is the element on which x̄i lies.
The components of the 1 × (P + 1) vector φφφi are given by the values of the local basis

functions or their spatial derivatives times the outward unit normal (±1 in 1D) in x = x̄i ,
depending upon the type of BC prescribed in x̄i .

The final system is then formed combining (16) and (18)
[
D −Q̂
B 0

]{
û
λλλ

}

=
{
b̂
ū

}

(20)

An efficient way to solve the final system (20) requires the Schur complement of D, i.e.,
the orthogonalization of the global system in order to obtain a reduced system whose only
unknown is the multipliers vector λλλ

BD−1Q̂λλλ = ū − BD−1b̂ (21)

Once (21) has been solved in λλλ, the final solution û can be computed solving (16).
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4.2.2 2D Cases

The immersed boundary γI is a curve and it is not possible to satisfy exactly the constrained
BCs on it, because of the finite number M of available multipliers. The possible solutions are
two: to choose M points on γI and write one BC constraint for each point in a collocation
fashion, or to impose a minimum condition between the prescribed BC and the effective
values/fluxes of the solution along γI .

We chose the latter solution because collocation on fixed points can exhibit problems
when dealing with high order polynomials (Runge’s phenomenon); the minimum condition
writes

min
λλλ∈ RM

[∫

γI,D

(u∗ − ū)2dγ +
∫

γI,N

(A∇u∗ · n − q̄)2dγ

]

(22)

Let e1, . . . , eR be the elements which intersect the immersed boundary γI , and consequently
γD,i = γI,D ∩ ei and γN ,i = γI,N ∩ ei are, respectively, the portions of γI,D and γI,N lying
on ei for i = 1, . . . , R; obviously we have γI,D = ∪γD,i and γI,N = ∪γN ,i .

Since the solution is expressed by an analytical expansion as in (6), it is possible to impose
null partial derivatives of the previous BC error given by (22) respect to each multiplier λk

fk(λλλ) := ∂

∂λk

[∫

γI,D

(u∗ − ū)2dγ +
∫

γI,N

(A∇u∗ · n − q̄)2dγ

]

= 2
R∑

i=1

[∫

γD,i

(u∗
ei − ū)

∂u∗
ei

∂λk
dγ +

∫

γN ,i

(A∇u∗
ei · n − q̄)

∂

∂λk

(
A∇u∗

ei · n)
dγ

]

= 0

(23)

for k = 1, . . . , M . From (9) and (16) we have

û(ei ) = CeD−1[b̂ + Q̂λλλ
] = Ce

[
û0 + Ûλλλ

]
(24)

where û0 = D−1b̂ and Û = D−1Q̂; (24) states that the expansion coefficients û(ei ) of u∗
ei in

(23) has linear dependence on λλλ and therefore (23) can be written in the following compact
form

f(λλλ) = Lλλλ + f0 = 0 (25)

where f(λλλ) = { f1(λλλ), . . . , fM (λλλ)}T is the M × 1 vector of derivatives defined by (23), L is
a M × M coefficient matrix (whose columns will be denoted by L j ) and f0 = f(0).

û0, L and f0 can be computed through Algorithm 1 using the partial derivatives of (24)
as follows

∂û(ei )

∂λk
= Ceûk (26)

where ûk is the kth column of Û for k = 1, . . . , M .
The evaluation of path integrals in (23), requested by Algorithm 1 at lines 6 and 14, is

accomplished through a standard numerical quadrature algorithm; it is worth noting that the
linear systems to be solved at lines 1 and 3 have the same coefficient matrix D.

Once L and f0 have been computed, (25) can be solved in λλλ and, finally, the global vector
of expansion coefficients can be directly computed from the global equivalent of (24).

û = û0 + Ûλλλ. (27)
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Algorithm 1 Evaluation of û0, L and f0
1: Solve û0 from Dû0 = b̂
2: for k = 1, . . . , M do
3: Solve ûk from Dûk = q̂k
4: end for 	 Û has been evaluated
5: for k = 1, . . . , M do
6: Evaluate fk (0) from (23) using Cei û0 for u∗

ei and (26) for ∂u∗
ei /∂λk

7: end for 	 f(0) has been evaluated
8: f0 ← f(0)
9: for j = 1, . . . , M do
10: λλλ ← 0
11: λ j ← 1
12: û ← û0 + û j
13: for k = 1, . . . , M do
14: Evaluate fk (λλλ) from (23) using Cei û for u∗

ei and (26) for ∂u∗
ei /∂λk

15: end for 	 f(λλλ) has been evaluated
16: L j ← f(λλλ) − f0
17: end for 	 L has been evaluated

4.3 Computational Costs

The proposed procedure requires the solution of M + 1 linear systems (Algorithm 1 at lines
1 and 3), and the numerical quadrature of M2 path integrals (Algorithm 1 at lines 6 and
14)where M is the number of multipliers.

This additional costs may seem high, compared to the standard approach with geometry
dependent mesh, but it is important to notice the coefficient matrix D is independent by the
geometry of immersed boundary and by the value of the immersed BC, so it can be factored
once. MoreoverD has particular properties because of the uniform structured mesh that have
been used, allowing the use of efficient solvers.

The cost of the numerical quadratures is also negligible as long as the number ofmultipliers
M is not too high (e.g., ≈250 in 2D); this value is also the limit beyond which the matrix L
becomes too ill-conditioned and therefore the constrained BCs (13)–(14) are not accurately
satisfied.

5 Results

Some simple test cases have been carried out to validate the proposed approach, comparing
the accuracy of computed solutions with analytical solutions available for these cases. First
we consider one-dimensional and two-dimensional Poisson equations, then we consider a
two-dimensional biharmonic equation (Stokes flow) which has practical applications.

5.1 One-Dimensional Poisson Equation

The topology of the domains ω, ΩF and Ω is reported in Fig. 2, where 4 spectral elements
with same length h = 0.25 are used. The original domain is ω = (a, 1), the fictitious domain
is ΩF = (0, a) and the immersed boundary is thus the single point x = a = 1.5h.

The reference analytical solution u is a harmonic (sinusoidal) function whose spatial
period is the length of the original domain 1 − a
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Fig. 2 Domains and discretization for the one-dimensional test case

u(x) = sin

(

2π
x − a

1 − a

)

(28)

Let us consider a one-dimensional Poisson problem with zero-valued Dirichlet BCs, i.e.,
D(u) = d2u/dx2 and ū = 0, problem (1)–(2); under the previous assumptions the extended
problem (10)–(13) is therefore

d2u

dx2
= −

(
2π

1 − a

)2

sin

(

2π
x − a

1 − a

)

+ λg in Ω = (0, 1) (29)

u = 0 in x = 0 (30)

u = 0 in x = {a, 1} (31)

where (30) represents the arbitrary BC on the external boundary ΓE = {0} of fictitious
domain, chosen to be a simple zero-valued Dirichlet BC; (31) represents the BCs of the
original problem: this BC referred to x = a is the constrained BC. A fundamental assumption
is that the harmonic source term is considered valid over the entire extended domain Ω .

Assumed ε = u∗ − u as the error between the computed solution and the analytical
solution, the relative energy norm (see [7]) is defined as

‖ε‖E =
√

∫

ω

(
dε

dx

)2

dx (32)

We chose a distributed function g = (a− x)i for i ≥ 0 and x < a, for which the convergence
curves are shown in Fig. 3. The influence of the exponent i is clear: as i increases, the
discontinuity in x = a of the derivatives till order i − 1 of the global source term, i.e., right
hand side of (29), vanishes, and therefore a higher convergence rate can be achieved.As a limit
case, we can assume a distributed function g which vanishes on the entire element containing
the immersed boundary x = a and having arbitrary distribution on the first element [0, h]:
in this ideal case a perfectly exponential convergence is achievable.

When the original source term b of (1) is defined only on the original domain ω, it is
possible to use a truncated Taylor expansion of b around the immersed boundary x = a to
avoid discontinuous derivatives therein

b(x) =
n∑

k=0

1

k!
dkb

dxk

∣
∣
∣
∣
x=a

(x − a)k x < a (33)

Figure 4 shows the convergence curves in the case of Taylor expansion of b for the same
problem (29)–(31) for various expansion orders n and g = 1 for x < h, i.e., the fictitious
function g is non-zero only on the first elementwhich doesn’t contain the immersed boundary.
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Fig. 3 Case g = (a − x)i :
convergence curves versus
polynomial order P

ε

Fig. 4 Series extension of order
n of source term b: convergence
curves versus polynomial order P

ε

Again, as the order n increases, so the convergence rate does because the global source
term has continuous deivatives in x = a till order n. As predictable, these one-dimensional
test cases confirm that our approach can provide increasing convergence rates with increasing
regularity of the global source term.

5.2 Two-Dimensional Poisson Equation

The topology of the domains is reported in Fig. 5 where 16 uniform spectral elements of
side length h are used, 4 for each direction. The original domain ω is the circle of radius R
centered in (0.5, 0.5), the extended domain Ω = (0, 1) × (0, 1) is the unit square and the
fictitious domain ΩF = Ω\ω is therefore the portion of the unit square outside the circle.

The immersed boundary γI = γ is then the circumference of radius R and the adopted
radius/elements side length ratio is R/h = 0.9 (Fig. 6).

The reference analytical solution is chosen to be a paraboloid centered in the origin of the
circle and vanishing on it

u(x, y) = R2 − [
(x − 0.5)2 + (y − 0.5)2

]
(34)
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Fig. 5 Discretization for the
two-dimensional test case, bF is
defined only on dashed elements

Fig. 6 Discretization for the
two-dimensional test case, bF is
defined on the whole ΩF

Let us consider a two-dimensional Poisson problem with zero-valued Dirichlet BCs, i.e.,
D(u) = ∇2u and ū = 0, problem (1)-(2); under the previous assumptions the extended
problem (10)-(13) is therefore

∇2u = −4 + bF in Ω = (0, 1) × (0, 1) (35)

u = 0 on Γ = ∂Ω (36)

u = 0 on γ = ∂ω (37)

where (36) represents the arbitrary (zero-valuedDirichlet)BCon the external fictitious bound-
ary ΓE = Γ and (37) represents the BCs of the original problem; again, the constant source
term is considered valid over the entire extended domain Ω .

Assumed ε as the previously defined error between computed and analytical solution, the
relative energy norm (see [7]) is defined as

‖ε‖E =
√∫

ω

‖∇ε‖22 dω (38)
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Fig. 7 Immersed boundary error
with M = 8Pσ multipliers

ε

In this two-dimensional case where a constrained Dirichlet BC is prescribed on γI , the
boundary error εBND between the computed solution u∗ and the prescribed value ū = 0
along γI is defined as

εBND =
√∫

γI

u∗2 dγ . (39)

5.2.1 Fictitious Source Term bF Defined on External Elements

The fictitious functions gi which define the fictitious source term bF in (15) are chosen
to be vanishing on the elements containing the immersed boundary γI , as proposed in the
one-dimensional test case.

In particular we choose to use Me fictitious functions on each of the 8 dashed elements
shown in Fig. 5, where each fictitious function assumes a unit constant value on one of each
parallel strip. Assumed σ = Me/P , with P order of the spectral expansion, the total number
of gi fictitious functions is M = 8Me = 8Pσ , and thus the total number of multipliers λ j is
also M .

Figure 7 shows the influence of the σ parameter on the εBND boundary error along γI for
two expansion orders P = 8 and P = 16. It is evident that σ values greater than 0.5 have
a little influence on εBND, which possesses an asymptotical behaviour. This is an important
characteristic of this case: for a fixed value of P (polynomial expansion order) it’s impossible
to satisfy the original BC (37) on the immersed boundary with arbitrary accuracy even using
a very high number M of multipliers.

A reasonable choice in this case is therefore σ = 0.5, for which convergence curves
are shown in Fig. 8: the exponential convergence is lost, but a reasonable convergence rate
is achieved. This loss of exponential convergence is due to the unsatisfied BC along the
immersed boundary.

Graphical representations of the global solution for P = 22 are given in Fig. 9 where the
particular behaviour of the solution on the fictitious domain can be observed.

5.2.2 Fictitious Source Term bF Defined on ΩF

We now propose another possible choice for gi fictitious functions which allows a better
resolution of the BC along the immersed boundary; using the polar coordinates (r, ϑ) shown

123

11



816 J Sci Comput (2018) 74:805–825

Fig. 8 Case σ = 0.5:
convergence curves versus
polynomial order P

ε
ε

Fig. 9 Global solution with P = 22

in Fig. 6, gi functions are defined as

gi (r, ϑ) =

⎧
⎪⎨

⎪⎩

(r − R)d sin(iϑ) i = 1, . . . , Mϑ

(r − R)d cos[(i − Mϑ − 1)ϑ] i = Mϑ + 1, . . . , 2Mϑ + 1

0 if r < R

(40)

This is a trigonometric expansion of order Mϑ in ϑ and power-type of order d in r ; the total
number of multipliers is then M = 2Mϑ + 1 = 2Pσ + 1, assuming σ = Mϑ/P .

Figure 10 shows the influence of the σ parameter on εBND error for two expansion orders
P = 8 and P = 22, and two exponents d = 1 and d = 3. The asymptotical behaviour is
no longer present, with a decreasing error when increasing σ , i.e., increasing the number of
multipliers.

This is a positive characteristic of this approach because it allows better convergence rates,
as visible in Fig. 11; moreover the convergence rate increases, for both errors ‖ε‖E and εBND,
when increasing the d exponent, in a similar way to the one-dimensional case. However, we
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Fig. 10 Immersed boundary
error with M = 2Pσ + 1
multipliers

Fig. 11 Case σ = 3:
convergence curves versus
polynomial order P

ε
ε

noticed that higher d exponents have a negative influence on the condition number of the
multipliers matrix L.

Graphical representations of the global solution for P = 18 and d = 3 are given in
Fig. 12 where a smoother behaviour of the solution on the fictitious domain can be observed,
compared to the previous case.

5.3 Two-Dimensional Biharmonic Equation (Stokes Flow)

5.3.1 Field Equations

The fourth-order biharmonic equation

∇4ψ = 0 (41)

arises in many area of physics including continuum mechanics and fluid flow; in fact it
can be shown (see [7]) that incompressible two-dimensional Navier–Stokes equations with
neglected advective term, i.e., Stokes flow, lead to the following differential system

∇2ψ + � = 0 (42)

∇2� = 0 (43)

whereψ is the stream function and� = ∇ ×u is the vorticity of fluid velocity u; combining
∇2 of (42) with (43) yields (41).
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Fig. 12 Global solution with P = 18 and d = 3

System (42)–(43) is a set of two coupled second-order differential equations that can be
solved with the fictitious approach (10)-(14) with D1(ψ,�) = ∇2ψ + � and D2(ψ,�) =
∇2� , source terms b1 = b2 = 0 and different fictitious source terms bF,1 and bF,2

D1(ψ,�) = bF,1 (44)

D2(ψ,�) = bF,2. (45)

5.3.2 Geometry and Spectral Discretization

The topology of the domains is reported in Fig. 13: the original domain ω is the portion of
the unit square outside the circle, the fictitious domain ΩF is the circle C of radius R = 0.25
centered in (0.5, 0.5) and the extended domain Ω = ω ∪ ΩF is therefore the unit square.

The immersed boundary γI = ∂C is the portion of γ = ∂ω onwhich constrained BCswill
be enforced through distributed multipliers, while regularly enforced BCs will be applied on

Fig. 13 Geometry and domains
for the biharmonic equation

γ
I

γ
E
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Fig. 14 Domain and
discretization for the biharmonic
equation

the external boundary γE = ∂Ω of the original domain, made by the sides of the unit square
(see Fig. 13).

For the spectral/hp approach we chose 36 elements, 6 for each direction, in order to have
at least 4 central elements which are entirely inside the fictitious domain; this arrangement
is reported in Fig. 14.

5.3.3 Boundary Conditions

An x-periodic flow is considered, confined by horizontal walls y = 0, y = 1 and the cylinder
C . As a known fact in the stream function-vorticity formulation, double boundary conditions
have to be imposed only on ψ at solid walls.

Using the Cartesian coordinate system shown in Fig. 13, the complete set of boundary
conditions is

• Periodicity along x : ψ(0, y) = ψ(1, y) ,�(0, y) = �(1, y) (46)

• Bottom wall y = 0 : u = ∂ψ/∂y = 0 ,v = −∂ψ/∂x = 0 (47)

• Top wall y = 1 : u = ∂ψ/∂y = 0 ,v = −∂ψ/∂x = 0 (48)

• Cylinder wall γI : ut = ∂ψ/∂n = 0 ,un = −∂ψ/∂t = 0 (49)

where n and t indicate respectively the normal and the tangential directions along γI .
From second equation of (47) we have a constantψ = c1 along the bottomwall; similarly

we have ψ = c2 along the top wall and ψ = c3 along cylinder wall γI .
The volume flow rate V between the top and bottom walls is given by

V =
∫ 1

0
u(0, y) dy =

∫ 1

0

∂ψ

∂y
dy = ψ(0, 1) − ψ(0, 0) = c2 − c1 (50)

We chose a unit volume flow rate V = 1 and a symmetric solution along y = 0.5, therefore
c1 = −0.5, c2 = 0.5 and c3 = 0.

Boundary conditions given by (46)–(48) have been imposed in the classical way while
(49) is the constrained BC along the immersed boundary and has to be enforced through
the distributed multipliers technique: (22) and (23) are still valid with u∗ = ψ∗, ū = 0 and
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q̄ = 0, but the adjustment γI,D = γI,N = γI is needed to minimize the boundary error along
γI .

The boundary error εBND,ψ between the computed stream function ψ∗ and the prescribed
value c3 = 0 along γI is defined as

εBND,ψ =
√∫

γI

ψ∗2 dγ (51)

while the boundary error εBND,ψn between the derivative of the computed stream function
∂ψ∗/∂n and the prescribed null value along γI , first BC of (49), is defined as

εBND,ψn =
√∫

γI

(∂ψ∗
∂n

)2
dγ (52)

The total boundary error along γI is then εBND,tot = εBND,ψ + εBND,ψn .

5.3.4 Analytical Solution

The semi-analytical solution for this problem can be found in [20] where the infinite series
solution for stream function ψ has been truncated to the first N P terms and the expansion
coefficients have been determined numerically with a least squares approach in order to
satisfy the boundary conditions.

Assumed ε = ψ∗−ψ as the error between computed and semi-analytical stream function,
the relative energy norm is again defined as

‖ε‖E =
√∫

ω

‖∇ε‖22 dω. (53)

5.3.5 Fictitious Source Terms bF

As introduced by (44)–(45), two different source terms bF,1 and bF,2 are needed

bF,1 =
M/2∑

j=1

λ
(1)
j g j bF,2 =

M/2∑

j=1

λ
(2)
j g j (54)

where M is even and the functions g j are the same for both expansions and satisfy g j = 0

on ω; therefore the total number of unknown multipliers λ
(1)
j and λ

(2)
j is still M .

Fictitious functions gi defined on internal elements The gi functions defining the fictitious
source terms bF,1 and bF,2 in (54) are non-zero only on the four central elements A, B, C and
D of Fig. 15, which are the elements entirely inside the fictitious domain ΩF , and therefore
these elements don’t intersect the immersed boundary.

More precisely, on each of these 4 elements we define 2Me functions g j : Me assuming a
unit constant value on each parallel horizontal strip and Me assuming a unit constant value
on each parallel vertical strip, covering the whole element as reported in Fig. 15; therefore
we have M/2 = 8Me and we define σ = M/(16P) = Me/P .

Figure 16 shows the influence of the σ parameter on both the εBND boundary errors (for
ψ and ψn) along the immersed boundary for two expansion orders P = 8 and P = 16.
σ values greater than 1 have a little influence on the boundary error, which possesses an
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Fig. 15 Graphical representation
of g j functions for fictitious
source terms

A

B C

D

Fig. 16 Immersed boundary
error with M = 2Pσ multipliers

ψ ∗

∂ψ ∗
∂ n

ε

asymptotical behaviour. As in the analogous Poisson 2D problem, for a fixed value of P
(polynomial expansion order) it’s impossible to satisfy the constrained BC on the immersed
boundary with arbitrary accuracy even using a very high number M of multipliers.

Graphical representations of the stream function for P = 16 are given in Fig. 17 where
the particular maximum and minimum peaks of the solution on the fictitious domain can be
observed.

Fictitious functions gi defined on ΩF Similarly to the Poisson 2D problem, we now propose
another possible choice for gi fictitious functions which allows a better resolution of the
BCs along the immersed boundary; using the polar coordinates (r, ϑ) shown in Fig. 14, gi
functions are defined as

gi (r, ϑ) =

⎧
⎪⎨

⎪⎩

r(r − R)d sin(iϑ) i = 1, . . . , Mϑ

r(r − R)d cos[(i − Mϑ − 1)ϑ] i = Mϑ + 1, . . . , 2Mϑ + 1

0 if r > R

(55)

This is again a trigonometric expansion of order Mϑ in ϑ and power-type of order d + 1 in
r ; the initial r factor is necessary to get rid of the singularity of trigonometric functions in
r = 0.
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Fig. 17 Global stream function ψ with P = 16

Fig. 18 Immersed boundary
error for stream function ψ with
M = 2(2Mϑ + 1) multipliers

ε B
N
D
, ψ

We have 2Mϑ + 1 fictitious functions and therefore the total number of multipliers is
M = 2(2Mϑ + 1); again, we define σ = Mϑ/P .

Figures 18 and 19 shows the influence of the σ parameter on both εBND,ψ and εBND,ψn

boundary errors along γI for two expansion orders P = 8 and P = 12 and two exponents
d = 1 and d = 3.

The behaviour of these errors is similar to those of the analogous bi-dimensional Pois-
son problem: there is an almost-continuously decreasing behaviour for both errors when
increasing σ and d parameters.

Figure 20 shows the convergence curves of the εBND,tot immersed boundary total error
and ‖ε‖E global error for σ = 3: it is possible to see the positive influence of the d exponent
on the convergence rates.

However, analogously to the bi-dimensional Poisson problem, we report a negative influ-
ence of the d exponent on the condition number of the multipliers matrix L, which heavily
affects the accuracy of the computed solution with this formulation.

A graphical representation of the stream function for P = 18 and d = 3 is given in Fig. 21
where, again, the particular maximum and minimum peaks of the solution on the fictitious
domain can be observed.
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Fig. 19 Immersed boundary
error for stream function
derivative ψn with
M = 2(2Mϑ + 1) multipliers

ε B
N
D

n
, ψ

Fig. 20 Case σ = 3:
convergence curves versus
polynomial order P ,totε

ε

Fig. 21 Global stream function
ψ with P = 18 and d = 3
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6 Conclusions

An approach for solving linear second-order differential problems over irregularly-shaped
domains is proposed; this approach, based on fictitious domain method and spectral/hp
element discretization, employs distributed Lagrange multipliers (fictitious functions) to
enforce boundary conditions on the immersed boundary.We presented the formulation of this
approach and its application to specific test cases; we considered a one-dimensional Poisson
problem, a two-dimensional Poisson problem and a Stokes flow problem (biharmonic equa-
tion). For each case specific distributed Lagrange multipliers were introduced, analyzing the
convergence properties of each choice.

In each test good results have been obtained in terms of convergence rate of the com-
puted solution to the exact (analytical) one; in several cases it has been possible to obtain a
convergence rate comparable to the ideal spectral rate that is lost when impulsive Lagrange
multipliers are employed within classical high order fictitious domain approaches [9].

Alongside this favorable feature there is the disadvantage of an appropriate definition of
the distributed Lagrange multiplier functions, defined over the fictitious domain. However,
further analysis have to be carried out in order to ensure that the proposed approach can
be an innovative and effective tool for the accurate solution of complex problems defined
over general shaped domains with irregularities (corners, holes, etc.); its application could
bring great advantages to the solution of problems with moving bodies and both shape and
topology optimization problems.
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