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a b s t r a c t

In this work, we study the influence of the population size on the learning ability of G
Genetic Programming for the task of symbolic regression. A large set of experimen
ts, considering dif-
ferent population size values on different regression problems, has been performed. Results show that,
on real-life problems, having small populations results in a better training fitness with respect to the use
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1. Introduction
dent on the value of a set of par
of large populations after the same number of fitness evaluations. However, performance on the test
instances varies among the different problems: in datasets with a high number of features, models
obtained with large populations present a better performance on unseen data, while in datasets char-
acterized by a relative small number of variables a better generalization ability is achieved by using small
population size values. When synthetic problems are taken into account, large population size values
represent the best option for achieving good quality solutions on both training and test instances.

stance [8,4,5,16,37,39])

important hot topic, in particular when geometric semantic op-
erators, defined by Moraglio and coauthors in 2013 [28], are used
to explore the search space [44]. The definition of these operators,
As reported in several studies (see for in

the performance of Genetic Programming (GP) [25] is strongly in fact, has opened a new research line in the GP community, and a

ameters. Among those lot of theoretical studies have appeared [29,31]. Besides being
parameters, one that has a deep impact on GP's functioning is the
size of the population, i.e. the number of candidate solutions that
are evolved. In particular, the size of the population is involved in
several phenomena that characterize GP. For instance, population
size and population diversity are related to premature con-
vergence [45,7] and it was also hypothesized that the population
size is related to the occurrence of bloat [34]. Furthermore, while
existing studies suggest that bloat and overfitting are unrelated
phenomena [43], other studies hint the existence of a relation
between these phenomena [32]. Under this perspective, an in-
correct choice of the population size may be one of the reasons for
the overfitting of training data. For all these reasons, an accurate
choice of the value of this parameter is often crucial. For instance,
a small population may result in premature convergence or in poor
performance of GP. On the other hand, a large population may
cause a slowdown of the algorithm due to the high number of
fitness evaluations that are needed.

The study of the parameters that characterize GP is an
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grounded in a strong body of theory, the use of these genetic
operators has produced substantially better results, compared to
standard GP, on a number of problems, both benchmarks [42] and
real-world applications [12,13].

The objective of this paper is to study the role of population
size on the learning process of GP when geometric semantic op-
erators are used. In particular, we want to investigate the role of
the population size in achieving good quality models, both on
training and unseen data. This study has been performed con-
sidering several test problems and different population size values,
including GP with only one candidate solution in the population.

The paper is organized as follows: Section 2 presents previous
works related to the importance of population size in evolutionary
computation, pointing out some interesting findings; Section 3
reports the definition of the geometric semantic operators pre-
sented in [28]; Section 4 presents the experimental settings and
the obtained results, discussing the effect of different population
size values on the learning process. In particular, an analysis of the
quality of the obtained models and their ability to generalize on
unseen data is proposed. Finally, Section 5 concludes the paper
and provides hints for future research directions.
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2. Population size: previous and related work

The study of the effect of the population size in evolutionary

the algorithm's performance is significant.
Regarding GP, some of the most relevant results are due to the

work of Poli and collaborators. Based on their previous theoretical

Even though the term semantics can have several different
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algorithms has been investigated in several works so far. In this
section a brief literature review is presented, in order to frame our
work in the context of the existing studies. The first studies that
have appeared concern Genetic Algorithms (GAs): in [18] the no-
tion of genetic drift was introduced and a study on the relation
between genetic drift and population size has been reported. Ge-
netic drift was defined as an effect based on stochastic property of
the algorithm. Consider having population of single digit binary
strings, the first half of them is “l”, and the second one is “0”. If we
will choose strings by chance for the creation of the new genera-
tion, we can expect getting equal quantity of different strings. In
real, as generations passed, we will observe increase of hetero-
geneity, which can finally lead to the disappearance of the definite
type strings from population. This phenomenon of loss of strings
and their parts was called allele loss. In [18], the author observed
that increasing the population size we can reduce not only allele
loss, but also genetic drift significantly. In the same work, the
author also showed that, in large populations, fitness improves
more slowly in the initial phase of the evolution but the overall
result is better than the one achieved with a small population. In
[22], the results of experiments to determine the optimum po-
pulation size and mutation rate were presented for a simple real
genetic algorithm defined to solve problems in the electro-
magnetic domain. A general domain-independent theoretical
analysis of the optimal population size is provided in [20]. In [41] a
deeper look on the problem of the population size and limit of
generations was taken. The research involved investigation of GA's
behavior on different types of functions (i.e., functions with many
optima, functions with limits in search space and NP-hard func-
tions). Results have shown that a population size increase im-
proves the performance of GAs and affects the results more than
changing the number of generations.

Other studies have investigated the relation between popula-
tion size and selection or crossover. For instance, the authors of
[15] investigated the relation between the population size and the
selection strategy. They showed that the number of individuals
needed to find a solution is much larger for proportionate selec-
tion strategy then for the truncation selection. The GA algorithm
they used did not take into consideration mutation rate and it used
only one-point crossover. In the same way, the authors of [17]
investigated joint influence of crossover type and population size
on the performance of GAs. They used an analysis of strings dis-
ruption by crossover and its interaction with population sizing.
The authors have shown that in small populations more disruptive
crossover (uniform and n-point crossover operators) is more ef-
fective, and the use of less disruptive crossover (1- and 2-point
crossover) in large populations leads to better performance. The
possibility of using a GA to control the parameters of another GA
has also been investigated. In [21] a meta-GA is applied with in-
teresting results to control the parameters of another GA, includ-
ing the population size. Several studies have tried to adapt the size
of the population during the search process. In [1], the authors
pointed out how the size of the population can be critical in many
GA applications. They proposed an adaptive method for main-
taining variable population size, which grows and shrinks together
according to some characteristics of the search. Experimental re-
sults indicated some advantages of the proposed method. In the
same vein, the work reported in [38] presents an algorithm which
adjusts the population size with respect to the probability of se-
lection error. More recently, the authors of [36] performed an
experimental study about the importance of population size for
the algorithm's performance. Results have shown that tuning the
population size is not an easy task and the impact of that choice on
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results obtained on GAs [33], they have been able to establish a
schema theory that is able to bind the population size of GP to the
code growth and the convergence rate. Using this theory, as better
specified in [35], they discovered that, in standard GP, there is a
direct relationship between the growth in the size of the in-
dividuals in the population and number of individuals in the po-
pulation itself. In synthetic terms, in large populations individuals
tend to grow more rapidly than in small populations. As a direct
consequence, if we plot the evolution of fitness against the num-
ber of fitness evaluations (as we will do also in the experimental
part of this paper), populations of large size are generally pena-
lized. More in particular, adding individuals to a population is
beneficial for the effectiveness of GP until a certain threshold,
which depends on the particular problem that GP is trying to
solve. When this threshold is reached, further increasing the po-
pulation size produces a large computational effort, that is not
anymore compensated by the obtained gain in terms of fitness.
Interestingly, this theoretical study (strongly corroborated by ex-
perimental evidence in [35]) was only done for fitness on the
training set. To the best of our knowledge, no studies have ap-
peared so far aiming at studying the relationship between the
population size and the generalization ability of GP. We speculate
that the reason for this lack of study is due to an idea, widely
diffused among researchers in machine learning, including GP,
according to which larger individuals are likely to overfit. As such,
given that large populations tend to generate large individuals,
large populations have implicitly been considered as being af-
fected by overfitting. Our work is very different from the work of
Poli and collaborators. In fact, we do not consider standard GP, but
geometric semantic GP (GSGP). The theoretical results of Poli and
collaborators cannot for sure be applied to GSGP for the simple
reason that, as it will be clear later in this paper, in GSGP the
growth rate of the individuals in the population is fixed and in-
dependent from the population size. This is the first, and possibly
most important, motivation for our work: for the first time, we
want to understand the impact of population size on the perfor-
mance of GSGP. Furthermore, we think that such a study cannot
overlook the generalization ability of the studied system. For this
reason, great attention is dedicated in this work to results obtained
by GSGP on testing data, unseen at training time.

A contribution of a slightly different nature has been proposed
in [45], where the authors studied a GP variable population size for
dynamic optimization problems. Another contribution is described
in [19], where the authors proposed a method for reducing the
size of populations at a linear rate. This was achieved by removing
a fixed number of individuals at each generation. This technique
was called plague and it has been shown to have some positive
effects on GP performance. A refinement of this work has been
proposed in [40], where an extension of the plague technique,
aimed at varying the population size in an intelligent way during
the execution of each GP run, was presented. In that model, add
and suppression of individuals are operated dynamically on the
basis of the behavior of the GP system: population size is de-
creased while the algorithm is progressing (i.e. fitness is improv-
ing) and it is increased when the algorithm reaches the stagnation
phase.

3. Geometric semantic operators
interpretations, it is a common trend in the GP community (and
this is what we do also here) to identify the semantics of a solution



with the vector of its output values on the training data [44].
Under this perspective, a GP individual can be identified with a
point (its semantics) in a multidimensional space that we call

4. Experimental study

4.1. Test problems and experimental settings

number of instances of the dataset and a bibliographic reference where it is pos-
sible to find a description of the problem.

Problem Type # Variables # Instances Reference

Airfoil Self-Noise (ASN) Real world 5 1502 [6]
Bioavailability (%F) Real world 241 359 [2]
Concrete Compressive

Strength (CCS)
Real world 8 1029 [12]

Protein Plasma Binding Le-
vel (PPB)

Real world 626 131 [3]

Concrete Slump Test (CST) Real world 9 102 [23]
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semantic space. The term Geometric Semantic Genetic Program-
ming (GSGP) indicates a recently introduced variant of GP in which
traditional crossover and mutation operators are replaced by the
so-called geometric semantic operators, which exploit semantic
awareness and induce precise geometric properties on the se-
mantic space.

Geometric semantic operators, introduced by Moraglio et al.
[28], are becoming more and more popular in the GP community
[44] because of their property of inducing a unimodal fitness
landscape on any problem consisting in matching sets of input
data onto known targets (like for instance supervised learning
problems such as regression and classification). To have an intui-
tion of this property (whose proof can be found in [28]), let us first
consider a GA problem in which the unique global optimum is
known and the fitness of each individual (to be minimized)
corresponds to its distance to the global optimum (our reasoning
holds for any employed distance). In this problem, if we use, for
instance, ball mutation1 [26] (i.e. a variation operator that slightly
perturbs some of the coordinates of a solution), then any possible
individual different from the global optimum has at least one fitter
neighbor (individual resulting from its mutation). So, there are no
local optima. In other words, the fitness landscape is unimodal,
and consequently the problem is characterized by a good
evolvability.

Now, let us consider the typical GP problem of finding a func-
tion that maps sets of input data into known target values (as we
said, regression and classification are particular cases). The fitness
of an individual for this problem is typically a distance between its
predicted output values and the target ones (error measure).
Geometric semantic operators simply define transformations on
the syntax of the individuals that correspond to geometric cross-
over and ball mutation in the semantic space, thus allowing us to
map the considered GP problem into the previously discussed GA
problem. In particular,2 geometric semantic crossover generates the
expression = ( · ) + (( − )· )T T T T T1XO R R1 2 as the unique offspring of
parents → T T, : n

1 2 , where TR is a random real function whose
output values range in the interval [ ]0, 1 . Analogously, geometric
semantic mutation returns the expression = + ·( − )T T ms T TM R R1 2 as
the result of the mutation of an individual → T: n , where TR1
and TR2 are random real functions with codomain in [ ]0, 1 and ms
is a parameter called mutation step.

As Moraglio et al. point out, these operators create much larger
offspring than their parents and the fast growth of the individuals
in the population rapidly makes fitness evaluation unbearably
slow, making the system unusable. In [42,10], a possible work-
around to this problem was proposed, consisting in an im-
plementation of Moraglio's operators that makes them not only
usable in practice, but also very efficient. Basically, this im-
plementation is based on the idea that, besides storing the initial
trees, at every generation it is enough to maintain in memory, for
each individual, its semantics and a reference to its parents. As
shown in [42], the computational cost of evolving a population of
n individuals for g generations is O(ng), while the cost of evalu-
ating a new, unseen, instance is O(g).

1 Similar considerations hold for many types of crossover, including various
kinds of geometric crossover [26].

2 Here we report the definition of the geometric semantic operators as given by

Moraglio et al. for real functions’ domains, since these are the operators we will use
in the experimental phase. For applications that consider other types of data, the
reader is referred to [28].
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For the experimental study presented in this section, we have
decided to consider eight different test problems: six of them are
complex real-life problems, while two of them are well-known
theoretical synthetic functions. All these problems have been
widely used as benchmarks for GP and a discussion of all of them
can be found in [27]. The objective of three of the real-life pro-
blems taken into account is the prediction of different pharma-
cokinetic parameters of potentially new drugs: human oral bioa-
vailability (%F), median lethal dose (LD50) and protein plasma
binding level (PPB). For a discussion of these problems the reader
is referred to [27,46]. We have also employed three other real-life
problems related to the prediction of more “physical” properties:
the airfoil self-noise (ASN), the concrete compressive strength
(CCS), and the concrete slump test (CST). The remaining bench-
marks are two synthetic functions. The first one, called Keijzer-6,
has been defined and used for the first time in [24], the second
one, called Vladislavleva-14, has been introduced in [47] and
successively both have been used in several other studies on GP.

A short description of the employed datasets is reported in
Table 1, where, for each test problem, we reported the number of
variables (features) and the number of instances.

Regarding the experimental settings, we performed 100 runs of
GSGP using the implementation described in [10], for each con-
sidered population size value. In particular, the population sizes
that we have tested were 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000
individuals. For the six studied real-life problems, in each in-
dependent run we used a different random partition of the data
into training and test set: 70% of the data, chosen at random with
uniform distribution, has been used as training set, while the re-
maining 30% has been used as test set. This random split of the
dataset has not been used for the considered synthetic bench-
marks, where the training and test sets specified in [27] have in-
stead been considered. The experimental study we present con-
sists in two different parts: in the first part, geometric semantic
mutation was the only genetic operator used, while in the second
part a combination of crossover and mutation has been con-
sidered. For the latter part, crossover probability was fixed to
0.9 and the mutation probability to 0.5. The analysis of geometric
semantic mutation as the only genetic operator used to evolve the
population has been taken into account considering that previous
studies [30,9] have demonstrated that, in GSGP, mutation plays a
major role for achieving good quality solutions. When a population
consisting of a single individual has been considered, it is im-
portant to distinguish two cases: when mutation was the only
genetic operator used in the search process, it was applied with

Table 1
Characteristics of the test problems considered in this work. For each problem, we
report the type (real world or synthetic problem), the number of features and the
Drug Toxicity (TOX) Real world 626 234 [3]
Keijzer-6 Synthetic 1 170 [24]
Vladislavleva-14 Synthetic 6 6024 [47]



probability 1; when both crossover and mutation have been con-
sidered, the crossover has been replaced by the reproduction of
the single individual in the population. This produces the same

individuals produce comparable results, while bigger populations
with 200, 500 and 1000 individuals result in worse quality solu-
tions. In particular, the worsening in terms of fitness follows the
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result, on the semantics of the individuals, as performing a geo-
metric semantic crossover between two copies of the same in-
dividual T. Regarding the geometric semantic mutation, a muta-
tion step ms equal to 1 has been used. The effect of crossover and
mutation operators in GSGP has been investigated in [9,11]. In
particular, the former work shows that mutation is used by GSGP
for exploring the search space, while crossover is used for ex-
ploiting and further improving good quality solutions. The latter
work provides guidelines to set crossover and mutation rates and,
following those guidelines as well as considering previous work
[46] where the same test problems have been used, we came out
with the crossover and mutation rates previously outlined. Com-
pared to the usual mutation rates in traditional evolutionary al-
gorithms, it may be observed that in GSGP mutation rate is an
unconventionally high value. This is coherent with respect to
previous studies that have experimentally demonstrated the im-
portance of mutation in GSGP [30,9]. The selection phase was
performed using tournament selection with a tournament size
equal to 4. The maximum initial depth and the depth of the ran-
dom trees used by the geometric semantic operators were fixed to
6, while the initialization was done using a ramped-half-and-half
method. The functional symbols used were the binary arithmetic
operators, including division, protected as in [25]. Besides a
number of variables equal to the number of features in the dataset,
random constants between �100 and 100 were also allowed in
the terminal symbols set. In order to perform a fair comparison
between the different GSGP configurations (i.e., configurations
with different population sizes), we considered as termination
criterion the number of fitness evaluations performed by the
system. More in particular, the search process terminates after 105

fitness evaluations. Elitism (i.e. unchanged copy of the best in-
dividual in the next population) was used, and fitness has been
calculated as the root mean square error (RMSE) between calcu-
lated and target values. In all the plots shown in the continuation,
we consider the median calculated over the 100 independent runs.
We preferred the median with respect to the average because it is
known to be more robust to outliers. All the used parameters are
summarized in Table 2.

4.2. Experimental results

As reported in Section 1, the objective of this study is to un-
derstand whether the population size influences the performance
of GSGP, considering both the quality of the final model and its
ability to generalize on unseen data. We begin the analysis of the
obtained results by discussing the quality of the model produced
at the end of the GP evolution on the training set when only
mutation has been used. The results are reported in Fig. 1. For the
ASN dataset (Fig. 1(a)), populations from 1 and up to 100

Table 2
Values of the parameters used in the experimental study. When the value of the
population size was equal to 1, only mutation was used.
Parameter Value

Population size 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000
Fitness evaluations 105

Tournament size 4
Crossover rate 0.9
Mutation rate 0.5
Functional symbols þ , � , n, //
Terminal symbols Number of features of the dataset and random constants

in [ − ]100; 100

4

increase of the population size. The best performer on this pro-
blem is the population with only 1 individual.

Considering the %F problem (Fig. 1(b)), it is possible to see that
the best performance is achieved considering the population with
only one individual. Also, it is interesting to remark that, with the
other considered population size values, GSGP results are better as
the population size decreases. In other words, for the %F dataset, in
order to achieve the best model on the training set, the best option
is to use a small population.

When the CCS problem (Fig. 1(c)) is taken into account, it is
possible to notice a similar behavior with respect to the previous
test problems. In detail, populations that consist of 1, 2, 5, 10 and
20 individuals produce comparable good quality solutions at the
end of the search. Then, increasing the population size from 50
and up to 1000 individuals will result in an increasing (i.e., wor-
sening) of the quality of the individuals returned at the end of the
evolutionary process. Finally, also for this problem, the best nu-
merical fitness values have been achieved with a population size
equal to 1.

For the PPB dataset (Fig. 1(d)), with population size values up to
50, we have obtained comparable results at the end of the search
process. Nonetheless, also in this case, a GP practitioner would
probably prefer small populations: in fact, small populations
converge to a good quality solution in a smaller number of fitness
evaluations compared to the ones needed by larger populations.
Considering population size values from 100 and up to 1000, it is
possible to see a serious degradation in terms of fitness, with the
largest population that produces, also in this test problem, the
worst performance.

Taking into account the CST dataset (Fig. 1(e)), it is possible to
draw similar considerations with respect to the previous datasets:
better training fitness values are achieved with smaller popula-
tions and, while population size values up to 100 produce com-
parable results, it is important to underline that smaller popula-
tions (with 1, 2, 5 and 10 individuals) are able to converge towards
good quality solutions in a smaller number of fitness evaluations
with respect to bigger population size values.

Considering the LD50 dataset (Fig. 1(f)), a behavior similar to
the one already observed for the %F dataset is visible: GSGP pro-
duces better results as the population size decreases. Nevertheless,
analyzing the performance achieved by GSGP on the LD50 dataset,
it is possible to see a different characteristic: when large popula-
tions are considered (from 50 and up to 1000 individuals), the
search process begins with lower fitness values with respect to the
ones observable with the other population size values. This fact
can be explained considering the difficulty of the problem: GSGP
requires a large number of fitness evaluations to obtain good
quality solutions on this problem (this fact was already well-
known, as it was discussed in [46]). The fact that there is a low
fitness value at the beginning of the run is simply related to the
large number of individuals in the population: considering the
random initialization process, there is a high probability of pro-
ducing a better quality solution than the one generated, for in-
stance, with a population of 5 or 10 individuals. Anyway, con-
sidering the fitness values at the end of the search process, the
same considerations as for the %F dataset still hold. The fitness
values related to the two synthetic problems (Keijzer-6 and Vla-
dislavleva-14) are reported in Fig. 1(g) and (h) respectively. When
the Keijzer-6 problem is taken into account, the behavior that can
be observed is different from the one obtained with the other
benchmark problems. In particular, the performance of GSGP in-
creases as the population size increases. The same behavior can be
observed for Vladislavleva-14 (Fig. 1(h)), where better results are



achieved by using larger population size values. The behavior of
the two benchmark problems can be explained by focusing on
their characteristics: these are benchmark problems that have

fitness values simply by randomly generating a large number of
individuals. A further corroboration of this analysis is given by the
fitness of the best solutions produced by GP during the considered

Fig. 1. Training fitness for the considered benchmark problems. Only geometric semantic mutation has been used in these experiments. (a) ASN, (b) %F, (c) CCS, (d) PPB,
(e) CST, (f) LD50, (g) Keijzer-6, and (h) Vladislavleva-14. Medians over 100 independent runs are reported.
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been designed to be unlikely solvable by GP (as the reader can see
from the original papers where they have been introduced).
Hence, for this kind of benchmarks, recombination operators are
basically useless, while it is much more easy to achieve better
amount of fitness evaluations: basically, solutions returned by GP
have the same quality as the ones (randomly) produced at the
beginning of the search.

To conclude the analysis of the performance achieved on the



training instances, we now present the results obtained con-
sidering both the geometric semantic operators. These results are
reported in Fig. 2. We observe that on all the considered test

larger (i.e., worse) than the ones obtained using only mutation.
This result corroborates previous findings and confirms that, in
several cases, GSGP finds the best solutions when only geometric

Fig. 2. Training fitness for the considered benchmark problems. Contrarily to Fig. 1, both geometric semantic crossover and mutation have been used here. (a) ASN, (b) %F,
(c) CCS, (d) PPB, (e) CST, (f) LD50, (g) Keijzer-6, and (h) Vladislavleva-14. Medians over 100 independent runs are reported.
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problems and for all the considered population size values, the
same qualitative results obtained considering only the mutation
operator have been obtained again. However, an important dif-
ference emerges: in two of the considered problems, the numer-
ical fitness values obtained at the end of the search process are

6

semantic mutation is used [46]. Interestingly, the relation between
the population size and the quality of the solutions found by GSGP
on the training set does not seem to depend on the genetic op-
erators that are considered. In other terms, using only mutation or
considering both the genetic operators results in a comparable



behavior of the training fitness achieved with the different studied
population size values.

To summarize the results we have obtained on the training set,

characteristics of these problems.
The result obtained on the six real-life problems is interesting

because it allows GP practitioners to save a lot of computational

Fig. 3. Test fitness for the considered benchmark problems. Only geometric semantic mutation has been used in these experiments. (a) ASN, (b) %F, (c) CCS, (d) PPB, (e) CST,
(f) LD50, (g) Keijzer-6, and (h) Vladislavleva-14. Medians over 100 independent runs are reported.
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for the studied real-life applications small populations always
outperform large ones. On the other hand, for the two synthetic
problems, better results have been found using larger populations.
As previously explained, this is mainly related to the
effort by relying on a small number of individuals. Anyway, it is
fundamental to also study the generalization ability of the ob-
tained models, in order to understand whether a relation between
the performance on unseen data and the population size exists. To



accomplish this objective, we perform an analysis like the one
considered for the training instances, but this time we report the
results obtained on the test set. Again, we first present the results

unseen data is evaluated considering an extrapolation task.
To conclude the analysis of the performance achieved on the

test set, we now present the results obtained using both the
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we have obtained using only mutation. These results are reported
in Fig. 3. Considering the ASN dataset (Fig. 3(a)) and the CCS
problems (Fig. 3(c)), it is possible to see that they present the same
behavior observed on the training instances. In detail, also on
unseen instances, better results are achieved by using small po-
pulation size values. Moreover, while population size values from
1 and up to 100 produce comparable fitness values at the end of
the search, the speed of convergence is greater for the smallest
populations.

Different results can be observed taking into account the %F
(Fig. 3(b)) and the PPB (Fig. 3(d)) problems. In this case, better
results are obtained as the population size increases. Hence, on
unseen instances, GSGP produces results that are completely dif-
ferent from the ones achieved on the training instances on the
same datasets: while better training fitness values can be obtained
with small populations, in order to have a better generalization
ability large populations should be considered.

For the CST problem (Fig. 3(e)), better results are obtained by
considering values of population size greater than or equal to 50.
The exception is represented by populations that consists of 1000
individuals. In this case, the test fitness is worse than the ones
achieved with other population size values (greater than 2). This
fact is understandable by taking a closer look at the training fitness
(Fig. 1(e)): for this problem a population size of 1000 returns so-
lutions with a poorer quality with respect to the other population
size values taken into account. A possible improvement of the
fitness (both on training and test instances) can be achieved for
this dataset by incrementing the number of fitness evaluations. To
conclude the analysis of this dataset, it is important to underline
that, while better results have been achieved with larger popula-
tions, populations with only 1 or 2 individuals only present a
negligible amount of overfitting compared to the one observed in
Fig. 3(b) and (d).

When the LD50 dataset (Fig. 3(f)) is taken into account, GSGP
shows a behavior that is similar to the one that we have observed
on the training instances: the best results are achieved with a
population that consists of just one individual. Then, except for
population size values of 500 and 1000, the generalization ability
decreases as the population size increases. While this result seems
to contradict the results obtained on the previous datasets, there is
an explanation for this behavior: the LD50 is a particularly hard
problem and GSGP needs a lot of fitness evaluations for finding
good quality solutions for it [46]. This can also be seen considering
that, at the end of the evolution, the training fitness achieved with
populations of 500 and 1000 individuals is comparable to the one
obtained after the initialization of the population. Hence, for this
problem, it is difficult to draw a conclusion about the relation
between generalization ability and population size. A larger
number of fitness evaluations is needed for getting a more clear
view on this benchmark problem. Anyway, given the number of
variables and the number of instances that characterize the data-
set, performing a larger number of fitness evaluations would result
in an unbearable slowness of the search process.

To conclude the analysis, let us discuss the results obtained on
the test set considering the Keijzer-6 (Fig. 3(g)) and the Vla-
dislavleva-14 benchmarks (Fig. 3(g)). For these datasets, better
results are achieved as the population size increases. This confirms
the trend observed on the same problem when training fitness has
been studied (Fig. 1(g) and (h)). Anyway, it is worth pointing out
that the learning task for these datasets is different from the other
considered benchmarks: while for the six real-life datasets the
performance on the test instances is assessed considering an in-
terpolation problem, in the synthetic problems performance on
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geometric semantic operators. Results are reported in Fig. 4. Also
in this case, on all the considered problems and for all the con-
sidered population size values, GSGP produces results that are
qualitatively analogous to the ones obtained using only mutation.
Also on test data, the relationship between population size and
performance of GSGP does not seem to be influenced by the fact of
using both genetic operators or mutation only.

After concluding the discussion of the obtained experimental
results, it is possible to draw some general considerations: the
analysis we have performed seems to suggest that, in real-life
datasets, small populations are able to produce fitter models but,
on the other hand, the behavior on unseen instances is different. In
detail, while for some problems these models do not show the
same (good) generalization ability obtained considering large po-
pulations, on other problems they still outperform solutions pro-
duced by using large population size values. This finding seems to
be related to the number of independent variables that char-
acterizes each problem. In particular, datasets characterized by a
“small” number of variables seem to be able to produce good re-
sults on both training and test instances by considering a limited
number of individuals in the population. On the other hand, da-
tasets characterized by the presence of a larger number of in-
dependent variables are not able to produce on the test instances
the same good performance achieved on the training set by using
small populations. In this last case, solutions obtained by taking
into account small population size values overfit the training data
and they are not able to generalize over unseen instances. Differ-
ently, larger values of population size are able to produce solutions
with a better generalization ability on datasets characterized by a
large number of variables.

The role of the number of variables on the observed perfor-
mance can be interpreted as follows: in a dataset with a large
number of variables, the target model will generally contain a
large number of the independent variables. Anyway, there exist
several models that can be learned by GSGP that are able to pro-
duce good performance on the training instances by using just a
small number of independent features [14]. Hence, a population
with a larger number of individuals has a greater chance to pro-
duce, during the initialization process, candidate solutions char-
acterized by different features that, when combined by means of
semantic operators, will better approximate the ideal target (with
respect to both training and fitness instances). These individuals
may have a worse fitness on the training set with respect to the
ones obtained with smaller populations (given to the number of
different generations they are allowed to evolve) but, contrary to
the latter, they are able to avoid to overfit the training instances
and they represent a better choice when generalization ability is
taken into account.

Regarding the synthetic benchmarks, it is clear that larger po-
pulations represent a better choice. Anyway, as previously ex-
plained, this is mainly due to the characteristics of the datasets
that are created to make useless the use of the genetic operators.
Moreover, training and test instances are drawn differently with
respect to the real-life benchmark problems.

To conclude this section, we discuss the statistical significance
of the results presented so far. A set of tests has been performed on
the median errors. As a first step, the Kolmogorov–Smirnov test
has shown that the data are not normally distributed and hence a
rank-based statistic has been used. Successively, the Wilcoxon
rank-sum test has been used under the alternative hypothesis that
the second set of samples have a lower median (i.e., better fitness)
than the first set using a significance level of α = 0.05. Results of
the statistical analysis are not reported in the paper (a lot of tables



would have been necessary), but it is possible to summarize them.
The p-values returned by the statistical test confirm the qualitative
analysis previously discussed. In particular, on the first five data-

datasets, statistically better fitness values can be obtained by using
small populations (up to 50 individuals), while on the CST dataset
the optimal population size value is 100. %F and PPB produce

Fig. 4. Test fitness for the considered benchmark problems. Contrarily to Fig. 3, both geometric semantic crossover and mutation have been used here. (a) ASN, (b) %F,
(c) CCS, (d) PPB, (e) CST, (f) LD50, (g) Keijzer-6, and (h) Vladislavleva-14. Medians over 100 independent runs are reported.
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sets (ASN, %F, CCS, PPB and CST) small populations produce
training fitness values that are statistically better than the ones
achieved with large populations (both considering only mutation
or crossover and mutation). On the test set, for the ASN and CCS
statistically better results (among the considered population size
values) on the test instances when large population size values are
considered. For %F the ideal population size value is 500, while for
the PPB dataset a population with 1000 individuals produces



statistically better test fitness values. On the LD50 dataset, smaller
populations produce the best fitness values on both training and
test instances. For this dataset populations with 1 and 2 in-

extremely promising results it has allowed to obtain so far, it is
possible to expect it to become a standard method in the future. As
such, a solid body of theory is needed, to justify and strengthen the

[1] J. Arabas, Z. Michalewicz, J. Mulawka, Gavaps—a genetic algorithm with
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dividuals perform statistically better than the other considered
population sizes. Finally, on synthetic datasets large populations
(500 and 1000 individuals) produce results that are statistically
better on both training and test instances with respect to the ones
achieved with the other considered population size values.

Generally speaking, the statistical tests suggest that also very
small variations of the population size have an impact on the
search process. For instance, in the considered problems, passing
from a population of 2 individuals to a population of 5 individuals
or from a population of size 5 to a population of size 10 causes a
difference in terms of fitness values that is statistically significant.
This fact highlights the importance of correctly determining the
population size before executing GSGP for solving a given problem.

5. Conclusions
Several studies have discussed the importance of a correct

0

choice of the parameters that characterize evolutionary algorithms
and, more in particular, genetic programming (GP). These studies
have shown that the performance of GP is strongly dependent on
the values of some parameters. Hence, considering the difficulty
that characterize the parameter tuning phase, a plethora of con-
tributions has appeared trying to analyze the impact of the dif-
ferent parameters. With the recent definition of geometric se-
mantic genetic programming (GSGP), it is necessary to reconsider
previous findings. In fact, GSGP uses genetic operators that have
different characteristics with respect to the traditional syntax-
based operators used by standard GP. Under this perspective, in
this study we have investigated the role of population size on the
performance of GSGP. A set of experiments has been performed,
comparing the performance achieved by GSGP with different po-
pulation sizes, including populations consisting of only one in-
dividual. The results we have presented should allow GSGP users
to better understand the role of population size: in synthesis, on
real-life problems, small populations result in better performance
on the training set, but performance on the test instances varies
among the different problems: in datasets with a high number of
features, models obtained with large populations present a better
performance on unseen data, while in datasets characterized by a
relative small number of variables a better generalization ability is
achieved by using small population size values. When synthetic
problems are taken into account, large population size values re-
present the best option for achieving good quality solutions on
both training and test instances. Interestingly, these results hold,
and are qualitatively identical, both in case geometric semantic
crossover and mutation, or only mutation, are used.

Several activities in this research track are planned for the fu-
ture. First of all, we are trying to deeply investigate how the
number of features impacts on the generalization ability of the
models returned by GSGP. Secondly, the development of a GSGP
system with variable size population, inspired by the few ones
proposed for standard GP so far, is planned. According to our ex-
pectations, this system should be able to choose, in accordance
with the characteristics of the problem at hand, the ideal popu-
lation size to guarantee both a good optimization performance and
a good generalization ability. Last but not least, we feel that there
is a big gap between the amount of theory that has studied the
influence of the population size on standard GP and the sub-
stantial lack of analogous theoretical results for GSGP. If, on the
one hand, this deficit of theoretical results is justified by the ex-
tremely young age of GSGP, on the other hand, it is also true that
GSGP is becoming more and more popular, and, given the

1

approach. A theoretical study of the influence of the population
size on the GSGP performance is one of the most ambitious and
stimulating tracks of our planned future research.
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