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SUMMARY

Real equilibrium solutions of electronic circuits are affected by deviation of real characteristics of de-
vices from their nominal values, producing the displacement of solution points from their nominal po-
sition. In this paper, a method to determine all the equilibrium regions in which real equilibrium points
may fall is presented. The analysis is based on the introduction of the so-called strip characteristics that
represent the characteristics of devices affected by tolerances. They are modeled by polyhedral charac-
teristics. Different situations may occur as tolerances grow. A nominal solution point may disappear, or
on the other end, some solution point not present with nominal characteristics may appear. These
possible events call for a classification of the equilibrium regions in either certain or uncertain, depend-
ing on the existence or not of an equilibrium point for any choice of real characteristics. The algorithm
adopts linear programming techniques and a clustering algorithm. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In general, real characteristics of electronic devices are not known exactly because of their
dispersions due to aging, environmental effects (temperature), and constructive techniques.
Because of production parameter spreads, design verification has to check that both silicon
meets the given specifications (at a functional and at a device level), and the whole circuit
works within the given tolerances. On the other hand, the aim of fabrication test is to
distinguish a faulty circuit from a fault-free one, and this must be done in the shortest time.
Therefore, tolerance analysis is an important task faced widely in literature [1–18]. The cited
papers consider worst-case analysis of tolerances and are based on deterministic or statistic
sensitivity evaluations. Among them, Ref. [2] shows how to find rigorous lower bounds on
worst case parameter tolerances in nonlinear resistive circuits. Instead, Refs. [4] and [5]
represent the tolerance-dependent parameters by substituting single values by intervals. Ref.
[6] analyzes worst case tolerances by means of vertex analysis, while [10] adopts genetic
algorithms. Ref. [13] deals with the diagnosis of multiple catastrophic faults, taking into
account the deviations of the circuit parameters within their tolerance ranges. Refs. [15–17]
are base on the use of set-valued functions, while Ref. [18] adopts integer programming
techniques.

The purpose of this paper is to search for the real DC solutions of resistive electronic circuits with
tolerances obtained, for example, short-circuiting the inductors and removing the capacitors. A new
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approach based on the use of strip characteristics is presented [19]. The real resistive characteristic of a
device is assumed to vary in a region around the nominal one: This region, the so-called strip
characteristic, is delimited by two boundary characteristics, located above and below the nominal
one, in the characteristic plane. In principle, strip characteristics may be introduced for both linear
and nonlinear resistors (for example, diodes), as well as for trans-characteristics of controlled
sources embedded in bipolar junction transistors and metal-oxide semiconductor field-effect
transistors models. As the real characteristics move inside the strip characteristics, the corresponding
real equilibrium points move in the so-called equilibrium regions. If, for any choice of real
characteristics in the strip characteristics, there is always an equilibrium point in the corresponding
equilibrium region, then the equilibrium region is said to be certain. Otherwise, if for some choice
of the real characteristics there is no equilibrium point, the equilibrium region is said to be
uncertain. Furthermore, there may be uncertain equilibrium regions that are related to more
equilibrium points or to none. In this case, equilibrium points may disappear or be multiple for
specific real characteristics.

For example, let us consider the simple circuit in Figure 1a. Equilibrium points are given by the
intersection between the load line of the real current generator (Is,Rs) and the tunnel diode DT

characteristic. Current generator Is is certain without tolerances, while both tunnel diode DT and
resistor Rs are affected by uncertainty in their parameters. So, their ‘nominal’ characteristics
(Figure 1b, dashed lines) cannot describe completely the circuit. Therefore, it is convenient to
consider, for each uncertain element, a strip around the nominal characteristic delimited by two
boundary characteristics (solid lines), denoted as upper and lower characteristics. The terms ‘upper’
and ‘lower’ are conventional; they can be used also if the segments are vertical. Boundary
characteristics represent the limit conditions of the uncertain device. These strips representing the
characteristics intersect in two distinct ‘admissible’ equilibrium regions ζ 1A and ζ 2A , the sets
containing all the possible equilibrium points obtained under variation of parameters. Equilibrium
region ζ 2A gives an equilibrium point for any real couple of characteristics belonging to the strips. It
is so called ‘certain’. Instead equilibrium region ζ 1A is called ‘uncertain’, because a solution point
does not exist for all possible choices of characteristics. For example, nominal characteristics
intersect in ζ 2A, but not in ζ 1A.

In general, the designer wants that only certain equilibrium regions appear in the circuit, because the
uncertain regions may generate undesired dynamic behaviors. Clearly, a deeper investigation of the
equilibrium points portrait is important for a correct design and working of an electronic (in general
nonlinear) circuit. If a classical analysis method (i.e., simulation program SPICE) is used to find all
the possible locations of real equilibrium points, each strip characteristic must be substituted by a
real characteristic lying inside it. Then, many classical analyses must be repeated, one for each
choice of the real characteristics replacing the corresponding strip characteristics. Note that it is not
sufficient to analyze all the circuits obtained substituting the upper and lower characteristics of each
Figure 1. (a) A simple circuit with a tunnel diode; (b) Characteristics with tolerances and equilibrium
regions. 2
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strip characteristic to its nominal characteristic, because the results are not resolutive, as it will be
pointed out later.

In this paper, strip characteristics are approximated with a method equivalent to piecewise linear
(PWL) approximation for nominal nonlinear characteristics. Then, as performed in [20], an
algorithm structured as a binary tree and adopting linear programming (LP) techniques is used to
find all the admissible unit-rank circuits. An admissible unit-rank circuit has a convex solution
domain, and it is the generalization of an equilibrium point in usual PWL circuits. Equilibrium
points of real circuits obtained substituting strip characteristics with real characteristics are
located inside this convex solution domain. The traditional methods to find all the solutions of a
PWL circuit finish their work with the list of the equilibrium points. In this case, the list of
admissible unit-rank circuits does not exhaust the work. Indeed, as tolerances grow, equilibrium
points can move from one unit-rank circuit to an adjacent one. So, a novel problem has to be
faced. The next step of the algorithm consists in clustering suitably adjacent unit-rank circuits
with solutions in order to find the so-called equilibrium regions, in which equilibrium points can
move. Finally, equilibrium regions have to be classified in certain, therefore robust, or uncertain.
An equilibrium region is said to be certain if it gives an equilibrium point whichever is the
choice of the real characteristics inside the strip-characteristics. Otherwise, it is said to be
uncertain. Moreover, as shown in the examples, more complicated situations may occur as
tolerances grow, because equilibrium regions may disappear or new equilibrium regions may
appear, or join together to form larger equilibrium regions. These are aspects that can be very
important for a designer.
3

2. PRELIMINARIES

In this paper, the problem of finding all the direct current (DC) solutions of a resistive
nonlinear electric circuit with tolerances is tackled. It corresponds to solve a DC-solution
problem [19–21] where some elements have tolerances in their characteristics. The circuits
considered are assumed to contain, besides linear elements, two-terminal nonlinear resistors
and nonlinear controlled sources. The characteristics of resistors with tolerances are said
uncertain, the other ones certain.

Let vectors xL and yL denote the branch voltages and currents involved in linear certain (trans-)
characteristics, as linear resistors and ideal transformers, for example. Each of these vectors may
contain both voltages and currents, because each linear (trans-) characteristic may link a voltage to a
current, link two voltages, or link two currents. The space spanned by xL and yL is denoted by  .
Analogously to xL and yL, vectors x and y group the voltages and currents involved in nonlinear,
certain, and uncertain, (trans-) characteristics, and in linear uncertain elements. They span space P .
The cartesian product of spaces  and P constitutes the global space of branch variables Z . The
following domains within the previous spaces are defined. Domain  denotes the set of vectors xL

and yL satisfying the linear constitutive relations. This domain is an affine subspace of  when
independent voltage and/or current sources are present, otherwise it is a linear subspace. DomaineP⊂P denotes the set of vectors x and y satisfying the nonlinear (trans-) characteristics. Domain K
denotes the set of vectors xL, yL, Z, and y satisfying Kirchhoff’s voltage and current laws. It is a
linear subspace of space Z. The configuration domain ⊂Z of the resistive circuit, that is, the solution
domain of the circuit, can be expressed as

eZ ≡eK∩ ̃�ePh i
: (1)

Note that eZ is in general non-convex and non-connected.
For the sake of clearness, a list with a description of the main symbols used throughout the paper is

presented in Section 9 at the end of the paper.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta
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3. PIECEWISE LINEAR AND STRIP PIECEWISE LINEAR CHARACTERISTICS

Nonlinear elements are modeled by a nonlinear function f(x, y) = 0, involving only two branch
variables. This function defines the corresponding domain, that is, the set of values x and y known
as the characteristic of the element. Usually, this characteristic is constituted by one or more one-
dimensional continuous curves, called branches. For the sake of simplicity, only one-branch
continuous infinite characteristics will be considered hereafter. In this paper, usual one-dimensional
branch characteristics represent the nominal characteristics of the devices under examination.

A nominal (one-dimensional) characteristic can be approximated [20] by a PWL curve. The number
and position of breakpoints may be determined by minimizing the mean square error. Denoted as ξ(1,H),
it is composed ofH segments ξ hð Þ andH+1 breakpoints B(hB). The extreme segments can be bounded or
unbounded. In the last case, the extreme breakpoints supply their direction. In Figure 2, it has shown a
PWL characteristic with seven segments and eight breakpoints. Segments ξ 1ð Þ and ξ 7ð Þ are infinite.
The number H of segments is said to be the rank of the PWL characteristic.

If there is an uncertainty in the parameters of the model, different characteristics where the device
may work have to be considered [19]. These characteristics, placed around the nominal
characteristic, design a strip on the related characteristic plane K, whose width is determined by the
considered amount of tolerance. This strip, delimited by two extreme characteristics called boundary
(upper and lower) characteristics, will be denoted as strip (two-dimensional) characteristic. An
example is shown in Figure 3. The two boundary characteristics are drawn with a continuous line,
while the nominal characteristic in the center of the strip is highlighted with a dashed line. Note that
also linear elements can be affected by uncertainty in the model, so suitable strip characteristics can
be used to model them, as shown in the succeeding text.

Strip characteristics can be approximated adopting the same approach used for PWL characteristics.
The first operation consists of slicing transversally the strip characteristic by means of suitable
segments, denoted as one-dimensional (1D-) breakpoints. Their intersections with the lower and
upper boundary characteristics are the breakpoints of the induced PWL approximation of the
boundary characteristics. They are so-called boundary breakpoints. The second step consists of
decomposing and approximating the strip characteristic with a set of convex quadrilaterals, called
strip segments, joined in the 1D-breakpoints. Each of them are formed by two 1D-breakpoints and
by the segments of the PWL boundary characteristics connecting the breakpoints.

In analogy with usual PWL approximation, the whole approximating strip characteristic is called
strip PWL (SPWL) characteristic. An example is shown in Figure 4. If we have chosen K+1 1D-
breakpoints, the SPWL characteristic is divided in K strip segments. It is so denoted as σ(1,K). It is
delimited by two boundary PWL (B-PWL) characteristics denoted as σ(u)(1,K) and σ(ℓ)(1,K). The
kth strip segment is denoted as σ kð Þ , and it is delimited, beside 1D-breakpoints B kBð Þ , by two

boundary segments, denoted as σ uð Þ kð Þ and σ ℓð Þ kð Þ. Their four boundary breakpoints are denoted as
B(ℓ)(kB), B

(ℓ)(kB+1), B
(u)(kB), and B(u)(kB+1).
Figure 2. An example of piecewise linear characteristic.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta
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Figure 3. An example of a strip characteristic around the nominal one (dashed line).

Figure 4. Strip piecewise linear characteristic σ(1, 4) approximating strip characteristic in Figure 3.
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Strip segments will play in the algorithm the same role that linear segments play in the corresponding
PWL analysis, that is, they are the fundamental units of a SPWL characteristic. Indeed, the set
theoretical union of strip segments σ kð Þ supplies the whole SPWL characteristic σ(1,K), where K is
said to be the rank of the SPWL characteristic.

If a strip characteristic extends to infinite at one side, then an infinite strip segment is introduced. It is
delimited by one (finite) 1D-breakpoint and by two parallel or non convergent half-lines;
conventionally, their directions are supplied by an infinite 1D-breakpoint (added to the finite 1D-
breakpoints). As in PWL approximation, the number and position of 1D-breakpoints may be
determined, for example, by minimizing the mean square error between the area of SPWL
characteristic and the corresponding original one.

In case of linear resistors with tolerances, the related strip characteristic is shown in Figure 5. It is
formed by two triangular strip segments joined in the origin of axis. The nominal characteristic
corresponding to value R is drawn with a dashed line.
5

4. TRUNCATED PIECEWISE LINEAR AND STRIP PIECEWISE LINEAR CIRCUITS

A circuit containing PWL and SPWL resistors is called an SPWL circuit. SPWL circuits contain,
besides linear certain elements, M nonlinear certain elements, modeled by PWL ((1)D)
characteristics, and N linear and nonlinear uncertain elements, modeled by SPWL ((2)D) characteristics.

Let us introduce the truncated PWL (T-PWL) characteristics associated to PWL characteristic ξm(1,Hm).
A T-PWL characteristic contains one or more adjacent segments of the original PWL
characteristic, and it is denoted as ξm h1m � h2m

� �
, where h1m and h2m are the first and the last segments.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta



Figure 5. An example of the characteristic of a linear resistor with tolerance.
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The number of segments h2m � h1m þ 1 defines its rank. In Figure 6, the PWL characteristic in Figure 2 is
divided in 3T-PWL characteristics. Analogously, it is possible to define a truncated SPWL (T-SPWL)
characteristic associated to a SPWL characteristic σn(1,Kn). A T-SPWL characteristic σn k1n � k2n

� �
contains all the strip segments from k1n to k2n . The number of segments k2n � k1n þ 1 defines its rank.
Extreme cases are a T-SPWL characteristic coinciding with the original SPWL one and a T-SPWL
characteristic composed of one strip segment. An example is shown in Figure 7.

Substituting each ξm(1,Hm) and each σn(1,Kn) with one of their segments ξm hmð Þ and, respectively,
strip segments σn knð Þ, a unit-rank circuit is obtained, a generalization of the linear circuit in a PWL
circuit. According to Eq. (1), the configuration domain of a unit-rank circuit is

ζ h1 ;…; hM ; k1;…; kNð Þ ≡K∩ eL�λ h1 ;…; hM ; k1;…; kNð Þ
h i

⊂ eZ; (2)

where

λ h1 ;…; hM ; k1;…; kNð Þ ≡ξ1 h1ð Þ�⋯�ξM hMð Þ�
�σ1 k1ð Þ�⋯�σN kNð Þ⊂P

is the corresponding unit-rank region.
If ζ �ð Þ is non-empty, the unit-rank region (and circuit) is said to be admissible; otherwise, it is said to

be non-admissible. Unlike PWL circuits, where one admissible linear region supplies only one
equilibrium point, in SPWL circuits, one admissible unit-rank region supplies a convex set, because
strip segments are 2D convex sets.
Figure 6. A complete set of three truncated piecewise linear (PWL) characteristics ξ(1, 2), ξ(3, 5), and ξ(6, 7)
associated to PWL characteristic ξ(1, 7) in Figure 2.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta
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Figure 7. A complete set of two truncated strip piecewise linear (SPWL) characteristics σ(1, 2) and σ(3, 4)
associated to SPWL characteristic σ(1, 4) in Figure 4.
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7

The rank L of a SPWL circuit corresponds to the number of unit-rank regions, both admissible and
non-admissible, associated to the original circuit, that is,

L ¼ ∏
M

m¼1
Hm

� �
∏
N

n¼1
Kn

� �
: (3)

The configuration domain of the whole SPWL circuit is given by

eZ ≡ ∪
1≤ hm≤Hm

∪
1 ≤ kn ≤Kn

ζ h1 ;…; hM ; k1;…; kNð Þ: (4)

Generalizing this concept, a T-SPWL circuit is obtained substituting each ξm(1,Hm) and each σn
(1,Kn) with one of the possible ξm h1m � h2m

� �
and, respectively, σn k1n � k2n

� �
. A T-SPWL region is

defined as

τ h11 � h21;…; h1M � h2M ; k
1
1 � k21;…; k1N � k2N

� �
≡

ξ1 h11 � h21
� �

�⋯�ξM h1M � h2M
� �

�σ1 k11 � k21
� �

�⋯�σN k1N � k2N
� �

≡

∪
h1m ≤ hm ≤ h2m

∪
k1n ≤ kn ≤ k2n

λ h1 ;…; hM ; k1;…; kNð Þ⊂P:
(5)

It is formed by the union of all unit-rank regions contained in it, whose number constitutes its rank
Lτ. The configuration domain of the related T-SPWL circuit is

ζ h11 � h21;…; h1M � h2M ; k
1
1 � k21;…; k1N � k2N

� �
≡K∩ f��τ h11 � h21;…; h1M � h2M ; k

1
1 � k21;…; k1N � k2N

� �h i
≡ ∪
h1m ≤ hm ≤ h2m

∪
k1n ≤ kn ≤ k2n

ζ h1;…; hM ; k1;…; kNð Þ⊂eZ:

(6)

It corresponds to the union of all the configuration domains of unit-rank regions included in it. Note
that, generally, both T-SPWL regions and the related configuration domains are not convex, even if
they are formed by the union of convex sets.

A set of T-PWL or T-SPWL characteristics, associated to the same PWL or SPWL characteristic of
origin, is said to be complete if each segment or strip segment of the whole characteristic belongs to
one and only one T-PWL or T-SPWL characteristic of the set. So, the sum of the ranks of a
complete set is equal to the rank of the original characteristic. Examples of complete sets of T-PWL
and T-SPWL characteristics are drawn, respectively, in Figures 6 and 7.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta
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Let us partition each PWL and SPWL characteristic of a circuit in a complete set of T-PWL and T-
SPWL, respectively, characteristics. The cartesian product of these complete sets yields a set T of T-
SPWL regions that contains all the unit-rank regions of the original SPWL circuit; each one contained
in one and only one T-SPWL region of the set. Considering the related T-SPWL circuits and their
configuration domains (Eq. (6)), we can state the following ‘conservation property’:

eZ ≡ ∪
τ h11�h21;…;k1N�k2Nð Þ∈T

ζ h11 � h21;…; h1M � h2M ; k
1
1 � k21;…; k1N � k2N

� �
(7)

SetT is said complete because all the unit-rank regions of the original SPWL circuit are contained in
one element of T . This property is a generalization of Eq. (4): The original circuit is decomposed in
macro-regions, that is, the T-SPWL regions belonging to a complete set. They are, in turn, formed
by a union of unit-rank regions.
8

5. POLYHEDRAL CHARACTERISTICS AND CIRCUITS

Polyhedral characteristics were defined in [20] as convex hulls of T-PWL characteristics. They were
generalized in [22]. In the present paper, the original definition of polyhedral characteristic given in
[20] is adopted.

A polyhedral characteristic is a convex set of points [x y]T in ℜ2. It is defined as the linear
combination of Q vertices x̂q ŷq½ �T by parameters aq∈ℜ. In vectorial notation, it is

x

y

" #
¼ a1

x̂1

ŷ1

" #
þ a2

x̂2

ŷ2

" #
þ…þ aQ

x̂Q

ŷQ

" #
XQ
q¼1

aqcq ¼ 1 with :
cq ¼ 1 for finite vertices

cq ¼ 0 for vertices at infinity

(
aq ≥ 0 ∀ q:

(8)

The vertices may be finite or at infinity. In the latter case, their coordinates (x̂q; ŷqÞ represent the
corresponding directions. Parameters aq corresponding to infinite vertices are not limited to 1 (ch=0),
because the polyhedron is not bounded. The finite vertices located inside the polyhedron or on a
segment of the boundary are called pseudo-vertices: Their only effect is to increase the number of
parameters aq. In any case, a set defined using (8) is always convex, because its boundary is formed
only by the external vertices linked by segments.

In [20], a polyhedral characteristic associated to a T-PWL characteristic has been defined as the hull
of the T-PWL characteristic, that is, the most restricted convex set containing the T-PWL
characteristic. An example of three polyhedral characteristics associated to T-PWL characteristics of
Figure 6 is shown in Figure 8. Similarly, a polyhedral characteristic associated to a T-SPWL
characteristic is defined as the hull of the T-SPWL characteristic

ψn k1n � k2n
� �

≡ hull σn k1n � k2n
� �� �

; (9)

where the boundary breakpoints of T-SPWL characteristics become the vertices of the polyhedral
characteristic. In Figure 9, there are three examples of polyhedral characteristics associated to as
many T-SPWL characteristics.

The polyhedral characteristic associated to a unit-rank T-SPWL characteristic, that is a strip-
segment, coincides with the strip segment itself:
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta



Figure 8. Polyhedral characteristics associated to ξ(1, 2), ξ(3, 5), and ξ(6, 7) in Figure 6.

Figure 9. Polyhedral characteristics associated to σ(1, 2), σ(2, 3), and σ(3, 4) of σ(1, 4) in Figure 4.
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9

ψn knð Þ ≡σn knð Þ: (10)

It is important to note that polyhedra are a powerful tool that allows one to handle both T-PWL and
T-SPWL characteristics with the same approach.

Substituting each T-PWL and each T-SPWL characteristic of a T-SPWL circuit by the
corresponding associate polyhedral characteristic, the associate polyhedral circuit is obtained. The
related polyhedral region is the hull of the corresponding T-SPWL region. It is defined as
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta
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π h11 � h21;…; h1M � h2M ; k
1
n � k2n;…; k1N � k2N

� �
≡

≡ψ1 h11 � h21
� �

�⋯�ψM h1M � h2M
� �

�ψMþ1 k11 � k21
� �

�⋯�ψMþN k1N � k2N
� �

≡

≡hullτ h11 � h21;…; h1M � h2M ; k
1
1 � k21;…; k1N � k2N

� �
:

(11)

So, the configuration domain of a polyhedral circuit is

θ h11 � h21;…; h1M � h2M ; k
1
1 � k21;…; k1N � k2N

� �
≡K∩ ̃��π h11 � h21;…; h1M � h2M ; k

1
1 � k21;…; k1N � k2N

� �h i
⊂eZ:

(12)

The fundamental property of an associate polyhedral circuit is that configuration domain ζ of a T-
SPWL circuit is contained in configuration domain θ of the associate polyhedral circuit. The so-
called ‘inclusion property’ states that

ζ h11 � h21;…; h1M � h2M ; k
1
1 � k21;…; k1N � k2N

� �
⊂ θ h11 � h21;…; h1M � h2M ; k

1
1 � k21;…; k1N � k2N

� �
: (13)

This property, already valid for T-PWL circuits, retains for T-SPWL circuits, because a polyhedral
characteristic is a convex hull for both T-PWL and T-SPWL characteristics.

The configuration domain of a polyhedral circuit may be empty or a convex multidimensional
polyhedron. If the configuration domain is empty, the corresponding T-SPWL circuit has an empty
configuration domain, because of the inclusion property (13) stated previously. Otherwise, if the
configuration domain is non-empty, the T-SPWL circuit may have a non-empty configuration
domain. Moreover, the configuration domain of a unit-rank T-SPWL circuit coincides with the
configuration domain of the associate polyhedral circuit, because segments and strip-segments are
convex sets that coincide with the associate polyhedra.

In Figure 10, an SPWL approximation of strip characteristics in Figure 1b are considered. SPWL
characteristic σ1(1�1) is composed of one strip segment σ1 1ð Þ, while SPWL characteristic σ2(1� 8)
is composed of 8 strip-segments σ2 1ð Þ;…; σ2 8ð Þ . As it results from figure, there are two T-SPWL
regions with solutions, τ 1; 2� 5ð Þ ≡σ1 1ð Þ�σ2 2� 5ð Þ and τ 1; 7ð Þ ≡σ1 1ð Þ�σ2 7ð Þ . They give origin
to polyhedral regions π(1, 2� 5)≡ψ1(1) ×ψ2(2� 5) and π(1, 7)≡ψ1(1) ×ψ2(7), respectively. Their
configurations domains θ(1, 2�5) and θ(1, 7) are both non-empty and contain (for inclusion
property (13)) the related equilibrium regions, that is, configuration domains ζ A(1, 2�5) and ζ A
(1, 7), respectively. Configuration domain ζ A(1, 2�5) is formed by the union of four unit-rank
regions ζ A 1; 2ð Þ, ζ A 1; 3ð Þ, ζ A 1; 4ð Þ, and ζ A 1; 5ð Þ (6). Instead ζA(1, 7) coincides with ζ A 1; 7ð Þ.
Figure 10. Configuration domains for a strip piecewise linear approximation of strip characteristics in
Figure 1b.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
DOI: 10.1002/cta
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5.1. Solution of a polyhedral circuit

To test the configuration domain of a polyhedral circuit, that is, to find if it is empty or not, a suitable
LP problem [23] is solved whose feasible domain just coincides with the configuration domain of the
related polyhedral region. The related decision variables are all the parameters of polyhedral
characteristics, subject to non-negativity constraints. So, with (12) in mind, considering the
Kirchhoff’s laws, the linear elements equations and the constitutive relations, expressed with (8), of
the M+N associate polyhedra, the system of equations/inequalities for describing the configuration
domain θ h11 � h21;…; h1M � h2M

�
, k11 � k21;…; k1N � k2NÞ of a polyhedral circuit results to be

U x þ V y ¼ r (14a)

x ¼ a1ð ÞT x̂1… aMþNð ÞT x̂MþN

� �T
(14b)

y ¼ a1ð ÞT ŷ1… aMþNð ÞT ŷMþN

� �T
(14c)

awð ÞTcw ¼ 1; for w ¼ 1; 2;…;M þ N (14d)

aw ≥ 0; for w ¼ 1; 2;…;M þ N: (14e)

Equation (14a) is the implicit representation of the linear (M+N) multi-port obtained by removing
theM+N nonlinear elements. It defines setsK and . U and V are (M+N) × (M+N) matrices and r is
a (M+N)-vector. Equations (14b–d), together with inequalities (14e), describe the polyhedral region π

adopting the parametrical notations of (8). Vectors x̂w ¼ x̂1w…x̂Qw
w

� �T
and ŷw ¼ ŷ1w…ŷQw

w

� �T
group the

cartesian coordinates of vertices of the (M+N) polyhedral characteristics, while aw ¼ a1w…aQw
w

� �T
,

cw ¼ c1w…cQw
w

� �T
are Qw-vectors (w=1, 2,…,M+N) grouping the parameters of polyhedral

characteristics.
By eliminating vectors x and y, system (14) is rearranged into the compact form

XMþN

w¼1

XQw

q¼1

x̂qwujw þ ŷqwvjw
� �

aqw ¼ rj;

where j ¼ 1; 2;…;M þ N

(15a)

XQw

q¼1

cqwa
q
w ¼ 1 for w ¼ 1; 2;…;M þ N (15b)

aqw ≥ 0 for q ¼ 1; 2;…;Qw; w ¼ 1; 2;…;M þ N: (15c)

aqw, q=1,…,Qw, w=1,…,M+N, subject to non-negativity constraints (15c).

The tableau of the LP problem has dimensions 2 M þ Nð Þ� ∑MþN
w¼1 Qw þ 1

� 	
. The number of rows

depends only on the number M+N of PWL and SPWL characteristics, while the number of columns is

equal to the total number ∑MþN
w¼1 Qw of breakpoints appearing in the (M+N) T-PWL and T-SPWL

characteristics. The emptiness of the configuration domain θ, coincident with the feasible domain of
the LP problem in (14), can be tested by means of Phase I, that is the procedure, well known in LP,
used for finding if the LP problem has a feasible domain [23].
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
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6. THE ALGORITHM

The algorithm is composed of three steps in cascade. The first step is structured according to a binary
tree. It stops when admissible unit-rank regions (AURs) are found [21]. The second step consists in
grouping adjacent AURs to form the equilibrium regions, and the third step consists of classifying
the equilibrium regions in certain or uncertain.

6.1. Genealogical tree

The first step starts with the main node of the binary tree, corresponding to the original SPWL circuit
with rank L, containing all the unit-rank regions and, so, all the possible solution regions. The associate
polyhedral circuit is built and tested: If its configuration domain θ is non-admissible, that is, it is empty,

domain eZ of the original SPWL circuit is in turn empty for the inclusion property (13), and so the
algorithm stops. The original SPWL circuit has no solutions.

Otherwise, if it is admissible, either one of the M PWL characteristics or one of the N SPWL
characteristics is partitioned into a complete set of two T-PWL (T-SPWL) characteristics. The
choice of the characteristic to be partitioned and that one of the breakpoint partitioning it has been
performed in a heuristic way. Many realistic examples have suggested to choose, during the
execution of the algorithm, the characteristic subject to the minimum number of partitions in the
previous generations and the breakpoint separating this characteristic in two portions with equal (for
even rank) or quasi-equal (for odd rank) number of segments.

By replacing the original PWL (SPWL) characteristic with one of the T-PWL (T-SPWL)
characteristics, two new T-SPWL circuits are originated. They represent a complete set of T-SPWL
circuits, denoted as the first-generation nodes. In their turn, these first-generation nodes are tested by
means of their associate polyhedral circuits to ascertain if they are admissible or non-admissible. A
non-admissible node contains only non-admissible unit-rank regions, so it does not generate any
other node and can be deleted. Instead, an admissible one generates, in turn, two second-generation
nodes with the same rule described previously, and so on. The nodes of the tree are tested one by
one in sequence. For increasing level of generation, the rank of the generated T-SPWL regions
decreases until unit-rank regions are reached. The first step of the algorithm stops when the tree has
been completed, that is, all its branches have arrived at either a non-admissible node or at an AUR.
In the sequel, an AUR will be denoted as λA(h1,…, hM, k1,…, kN), while its configuration domain as
ζ A h1;…; hMð , k1,…, kN). Because there is a direct correspondence between λA and ζ A , the term
AUR will be used indifferently for both, without possibility of confusion.

The simple rule of generating a complete set of two T-SPWL regions at every node implies, for the
conservation property (7), that the overall rank, that is, the overall number of unit-rank regions, is
conserved during the execution of the algorithm. So, at the end of the tree, the sum of the ranks of
all non-admissible T-SPWL regions and of all AURs equals the rank L of the original SPWL circuit.
This property guarantees that the AURs found with this algorithm coincide with the AURs of the
original SPWL circuit.

In principle, at each generation, the number of nodes increases exponentially, in the worst case by
factor 2, but, in circuits of practical interest, many non-admissible T-SPWL regions appear at low
generation levels, that is, with high ranks, making so efficient this algorithm. Indeed, T-SPWL
circuits with high ranks include inside many unit-rank regions that are deleted all together with only
one LP analysis.

6.2. Clustering algorithm

If tolerances are very small, equilibrium regions are expected to be limited to one AUR. But, as
tolerances grow, equilibrium regions can become more extended, including more adjacent AURs.
The second step of the algorithm consists of grouping together the AURs forming the same
equilibrium regions. Let us suppose to have found at the end of the first step of the algorithm AURs

λ j
A h j

1;…; h j
M ; k

j
1;…; k j

N

� �
, j=1, 2,…, J. In general, the γth admissible T-SPWL region τγA Jγ

� �
can be

formed by the union of several AURs, so it is defined as
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
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τ γA Jγ
� �

≡∪
j∈ Jγ

λ j
A h j

1;…; h j
M ; k

j
1;…; k j

N

� �
; (16)

where set Jγ contains the indices j of the AURs constituting it. Correspondingly, its configuration
domain, that is, the equilibrium region ζ γA Jγ

� �
, is a connected, generally non-convex, set obtained by

ζ γA Jγ
� �

≡∪
j∈Jγ

ζ
j
A h j

1;…; h j
M ; k

j
1;…; k j

N

� �
: (17)

The AURs forming the same equilibrium region must be adjacent. So, to evaluate their respective
distances and state if two unit-rank regions are adjacent or not, and so belong to the same
equilibrium region, a metric in the space of unit-rank regions has to be introduced.

Two segments of a PWL or two strip segments of a SPWL characteristic are adjacent if the
difference in absolute value of their respective indices is 1. This simple concept can be extended to

linear regions. In Figure 10, four adjacent AURs ζ
1
A 1; 2ð Þ , ζ

2
A 1; 3ð Þ , ζ

3
A 1; 4ð Þ , and ζ

4
A 1; 5ð Þ form

equilibrium region ζ 1A 1; 2; 3; 4ð Þ (according to the last notation introduced). In this case, J1 =

{1, 2, 3, 4}. Instead, equilibrium region ζ 2A 5ð Þ is formed by one AUR ζ
5
A 1; 7ð Þ , with J2 = {5}.

Analyzing the strip segments involved in AURs of ζ 1A 1; 2; 3; 4ð Þ , the first characteristic σ1 is
represented always by the same strip segment σ1 1ð Þ , while σ2 contributes with the adjacent strip
segments σ2 2ð Þ, σ2 3ð Þ, σ2 4ð Þ, and σ2 5ð Þ. So, indices of ζ As due to σ1 are equal, while indices due to
σ2 differ of one between each AUR and the adjacent one. Generalizing this example, two unit-rank
regions are adjacent if one or more PWL or SPWL characteristics have adjacent segments, that is,
one or more indices of PWL and SPWL strip segments have a difference in absolute value not
greater than 1. This definition of adjacency of two unit-rank regions implies naturally the choice of
the metric to be adopted, that is, the infinite-norm distance or Chebyshev distance. This is not the
only possible metric, also the 1-norm distance can be considered, but the infinite-norm is the most

effective. Therefore, the distance between two AURs λj1A and λj2A is calculated with

d λ j1
A h j1

1 ;…; h j1
M ; k

j1
1 ;…; k j1

N

� 	
; λ j2

A h j2
1 ;…; h j2

M ; k
j2
1 ;…; k j2

N

� 	� 	
¼

¼ max h j1
1 � h j2

1 ;…;j jh j1
M � h j2

M j; jk
j1
1 � k j2

1 j;…; jk j1
N � k j2

N




 


� 	
:

(18)

They are adjacent if the distance is equal to 1. If it is equal or greater to 2, then AURS are non-
adjacent.

Basing on this metric, an algorithm of clustering [24], that is, an unsupervised learning algorithm
that establishes a classification of points in a given space according to their relative distances, has
been adopted. The clustering algorithm implemented in this paper is inspired to density based spatial
clustering of applications with noise algorithm [25]. It is a density-based clustering algorithm, that
is, clusters are formed starting from the estimated density distribution of corresponding points. In
our case, equilibrium regions are sets with a density of 1, with members all adjacent. The algorithm
presented here finds the AURs members of each equilibrium region as follows. The first AUR in the
list is assigned to the first equilibrium region. Then, all remaining AURs are examined measuring
their distances from the first one. Those AURs that result to be adjacent are assigned to the first
equilibrium region. The scanning of the list of AURs is repeated, comparing the distances of free
AURs with those belonging to the first equilibrium region, until no other adjacent AURs are found.
Completed the first equilibrium region, the next free AUR is taken as first element of the second
equilibrium region. The scanning of the list of free AURs is repeated in the same way and so on.
The clustering algorithm stops when all AURs have been assigned to an equilibrium region.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
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6.3. Certain and uncertain equilibrium regions

After equilibrium regions are formed, they have to be analyzed to determine if they are certain or
uncertain. An equilibrium region is said to be certain if it can produce surely an equilibrium point,
whichever is the choice of the parameters for each SPWL characteristic. Otherwise, it is said uncertain.

This purpose can be accomplished by the evaluation of the B-PWL circuits of the SPWL circuit.
They are obtained substituting each SPWL characteristic σn(1,Kn) with one of the two B-PWL
characteristics σ uð Þ

n 1;Knð Þ and σ ℓð Þ
n 1;Knð Þ . Because there are N SPWL characteristics, there are 2N

B-PWL circuits. Each of them can be identified by a label composed of N binary digits, one for
SPWL characteristic. The nth digit is ‘0’ if σ ℓð Þ

n 1;Knð Þ has been chosen, ‘1’ if σ uð Þ
n 1;Knð Þ . The

solutions of the B-PWL circuits are denoted as ‘effective vertices’. Each effective vertex is a vertex
of configuration domains ζ γA Jγ

� �
.

The effective vertices can be easily found solving the boundary unit-rank linear circuits associated to

each AUR λjA hj1;…; hjM ; k
j
1;…; kjN

� �
. They are obtained substituting each strip segment σjn kjm

� �
with one

of the two boundary segments σ uð Þj
n kjm

� �
and σ ℓð Þj

n kjm
� �

. The effective vertices can so be grouped together

in according to the AUR they belong and, as second step, to the related equilibrium region ζ γA Jγ
� �

, seen

as union of AURs. In general, the effective vertices associated to an equilibrium region ζ γA Jγ
� �

coincide

with a subset of vertices of configuration domain ζ γA Jγ
� �

. If each one of the 2NB-PWL circuits associated

to τγA Jγ
� �

admits an effective vertex, then ζ γA Jγ
� �

can be declared certain. This means that it contains at
least one certain solution whichever is the choice of the real PWL characteristics. This is because all
nonlinear characteristics, both certain and uncertain, have been supposed to be continuous and
infinite. But far more complicated situations may occur, as shown in the following example.

In Figure 11a and b, two SPWL characteristics σ1(1,K1) and σ2(1,K2) are drawn in the same plane v–i.
In both cases, equilibrium region ζ A (marked with a shadowed area) is formed by the union of AURs

ζ
1
A k1; ; k2ð Þ and ζ

2
A k1 þ 1; k2ð Þ. The first AUR ζ

1
A k1; ; k2ð Þ is given by the intersection of strip-segments

σ1 k1ð Þ and σ2 k2ð Þ, the second AUR ζ
2
A k1 þ 1; k2ð Þ of σ1 k1 þ 1ð Þ and σ2 k2ð Þ. The effective vertices

(marked with dots), for both AURs and equilibrium region, are found as solutions of the B-PWL
circuits obtained substituting SPWL characteristics σ1(1,K1) and σ2(1,K2) with their respective B-PWL
characteristics. There are 4 B-PWL circuits, denoted as (00), (01), (10), and (1, 1). For example, B-

PWL circuit (0, 1) is obtained substituting σ1(1,K1) with σ ℓð Þ
1 1;K1ð Þ and σ2(1,K2) with σ uð Þ

2 1;K2ð Þ. The
number of effective vertices related to each B-PWL circuit for AURs ζ

1
A k1; ; k2ð Þ and ζ

2
A k1 þ 1; k2ð Þ is

shown in Table I, columns 2 and 3. The number of effective vertices for equilibrium region ζ A (column
4) is obtained summing up the effective vertices of the corresponding AURs.

In case of Figure 11a, it is easy to argue from Figure 11 that there is one certain solution, because
any choice of the real characteristics yields surely an equilibrium point in ζA. Of course, depending

on the real characteristics, the solution may fall either in ζ
1
A k1; k2ð Þ or ζ

2
A k1 þ 1; k2ð Þ. This situation

can be deduced easily from column 4 in Table I. Indeed, there is one effective vertex for each B-
PWL circuit. On the contrary, in case of Figure 11b, B-PWL circuit (0, 1) have two effective
vertices, while the other ones have 0 effective vertices. This means that there is not a certain
solution for any choice of real characteristics, but there may be either two solutions, one for AUR,
or no solution at all. Equilibrium region ζ A is uncertain, and it gives two uncertain solutions.

From this example, we can deduce that both the minimum and maximum number of effective vertices
for an equilibrium region are meaningful. Let us define asmEV

γ andMEV
γ , respectively, the minimum and

the maximum value of effective vertices of the γth equilibrium region ζ γA Jγ
� �

. Because nonlinear
characteristics are continuous and infinite, we can easily state that

1: mEV
γ is the number of certain solutions;

2. MEV
γ � mEV

γ

� 	
is the minimum number of uncertain solutions (besides certain solutions)

Unlike certain solutions, the actual number of uncertain solutions cannot be determined surely for
every circuit. The first of the examples shown in the next section, containing two tunnel diodes, is
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
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Table I. Effective vertices of AURS and equilibrium region in Figure 11.

B-PWL
circuit

Effective vertices
ζ
1
A k1; ; k2ð Þ

Effective vertices
ζ
2
A k1 þ 1; k2ð Þ

Effective vertices
ζA

Case (a) 00 0 1 1
01 1 0 1
10 0 1 1
11 1 0 1

Case (b) 00 0 0 0
01 1 1 2
10 0 0 0
11 0 0 0

AURS= admissible unit-rank region; B-PWL= boundary piecewise linear.

Figure 11. Examples of a certain equilibrium region (a) and an uncertain equilibrium region (b) with their
effective vertices.
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explanatory. Only in some particular cases, the number of uncertain solutions can be determined for
sure. This is the case of transistors circuits, as those ones presented in the second and third examples
in the next section. The reason is that transistors are modeled with Ebers–Moll that adopts
exponential diodes. These resistors have a monotone and convex characteristic, without flexes,
unlike tunnel diodes. As example, a simple circuit is shown in Figure 12. In case (a), with Vs,
Rs>0, there is one certain solution, because any couple of real characteristics cut each other
transversally. Instead in case (b), with Vs> 0 and Rs<0, there are either two solutions or no
solution at all, depending on the choice of real characteristics. Indeed, an SPWL analysis of this
circuit, whichever is the number of strip segments used to approximate the strip characteristics,
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
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Figure 12. An exponential diode circuit.

654 S. PASTORE
would give an equilibrium region with mEV=0 and MEV=2. So, (MEV�mEV) represents actually the
exact number of uncertain solutions. Furthermore, when the exact number of solutions is known, it
is possible to apply another clustering algorithm, a hierarchical one, to identify the AURs where the
single solutions, either certain or uncertain, may appear.

Note that it is not possible to reconstruct an equilibrium region from its effective vertices, because
not all AURs belonging to an equilibrium region have effective vertices. So the overall algorithm
presented here cannot be substituted just by the solution of the 2N B-PWL circuits.
7. EXAMPLES

The proposed algorithm has been implemented using C++ language on a PC with Intel(R) Core(TM) i5
CPU 2.27GHz (Santa Clara, CA, USA). The first simple example shows the effects of an expansion of
tolerances on equilibrium regions for a tunnel diodes circuit. The second and third examples present
two multi-state circuits already analyzed in other papers.

7.1. First example

As first example, let us consider the circuit in Figure 13. Tunnel diodes D1 and D2 have the following
characteristics [26, 27]:

D1 : i ¼ 0:43v31 � 2:69v21 þ 4:56v1

D2 : i ¼ 2:5v32 � 10:5v22 þ 11:8v2:
(19)

Each of them has been approximated with a 10 segments PWL characteristic equispaced in the range
[0,4] V. The ideal current source Is with value 10 A is certain, while linear resistor in parallel may vary
in three different ranges by increasing tolerances, delimited by values Ra=0.2Ω, Rb=0.32Ω,
Figure 13. A tunnel diodes circuit.
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Rc=0.38Ω, and Rd=0.8Ω. Because it is linear but uncertain, it is denoted with symbol Rs. The three
ranges are (1) [Rb,Rc], (2) [Ra,Rc], and (3) [Ra,Rd]. It is modeled with an SPWL resistor formed by two
strip-segments, as shown in Figure 5. The characteristic of the diodes series and the load lines
corresponding to boundary resistances Ra, Rb, Rc, and Rd are shown in Figure 14. This circuit has
rank 200, that is, it contains 200=10×10×2 linear regions, because each diode has 10 segments
and the resistor Rs has two strip segments. Because N=1, there are two B-PWL circuits per
equilibrium region. The number of effective vertices for each possible equilibrium region is shown
in Table II. Note that ζ 3A J3ð Þ exists only for the first range [Rb,Rc].

Case [Rb,Rc], the one with the minimum tolerance, yields totally seven AURs divided in three
equilibrium regions. One equilibrium region is formed by one AUR, the other two by three AURs
each. All B-PWL circuits have one effective vertex, that is, MEV=mEV=1 for all equilibrium
regions. This means that the three equilibrium regions are certain and supply one certain solution
per each. Case [Ra,Rc], the one with the middle tolerance, yields 11 AURs divided in two
equilibrium regions. ζ 1A J1ð Þ (five AURs), related to the butterfly of diodes series, is uncertain,
having MEV=2 and mEV=0. So it supplies two uncertain solutions. Instead, ζ 2A J2ð Þ (six AURs),
related to the main branch of the diodes series, is certain, because MEV=mEV=1. It supplies one
certain solution. At last, case [Ra,Rd], the one with the maximum tolerance, yields 27 AURs divided
in two equilibrium regions. Equilibrium region ζ 1A J1ð Þ (12 AURs) is related to the butterfly. It is
uncertain, because MEV=mEV=0, but the number of uncertain solutions, that is, equal to 2 as can be
deduced easily from Figure 14, is not determined by MEV�mEV. Instead, ζ 2A J2ð Þ (15 AURs), related
to the main branch of diodes series, gives one certain solution (MEV=mEV=1).
Figure 14. Boundary load lines and characteristic of diodes series for circuit in Figure 13.

Table II. Effective vertices in the first example.

B-PWL circuit
Effective vertices

ζ 1A J1ð Þ
Effective vertices

ζ 2A J2ð Þ
Effective vertices

ζ 3A J3ð Þ

Case [Rb,Rc] 0 1 1 1
1 1 1 1

Case [Ra,Rc] 0 2 1 -
1 0 1 -

Case [Ra,Rd] 0 0 1 -
1 0 1 -

B-PWL= boundary piecewise linear.
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This example is meaningful, because it shows with a very simple circuit the ‘structural’ effects of
increasing tolerances on equilibrium regions. Indeed, the number and properties of equilibrium
regions changes when tolerances assume certain values. We pass from three certain equilibrium
regions in the first case to two equilibrium regions in the third case. Furthermore, in this third case,
the number of uncertain solutions cannot be determined for sure by the analysis of the effective
vertices.
7.2. Second example

The four-transistor multi-state circuit shown in Figure 7 of [20] is examined. The same Ebers–Moll
model with two diodes and two current-controlled current sources has been adopted for all
transistors. Coefficients are αF=0.98 and αI=0.2. The exponential nominal characteristic of diodes
is i(t) = 10� 9(e40v(t)� 1) A, each one approximated with 10 segments, so that the rank of the
nominal PWL circuit is 108. The nominal circuit has nine exact equilibrium points. Four different
cases will be examined. In the first one, only the eight diodes have a tolerance of ±10% in current
in comparison with their nominal characteristics. The number of B-PWL circuits is 28 = 256. In the
other three cases, a tolerance has been added to the four resistors Rk of nominal value 4kΩ. The
tolerance is, respectively, of 2%, 5%, and 10%. The rank of these circuits becomes so 1.6109,
because each strip resistance is modeled with two triangular strip segments, as seen in the previous
example. The number of B-PWL circuits is 212 = 4096.

The results for the four cases are shown in Table III. The total number of nodes of the tree
(polyhedral circuits) examined during the execution of the algorithm is shown in the second row. It
is worth noting that this number is much less that the rank of the circuit. In the third row, it is
written that the elapsed time for the complete algorithm included the determination of the certain
and uncertain equilibrium regions. Note that the CPU time related to the only genealogical tree plus
clustering algorithm takes about 2 s for the 10% case, that is comparable to the time needed for the
PWL nominal circuit. The remaining time is due to the classification of equilibrium regions in
certain and uncertain, that reveals to be a heavy task. Then, it has shown the number of AURs and
equilibrium regions. The equilibrium regions with MEV=mEV=1 supply one certain solution per
each. The equilibrium regions with MEV=2 and =mEV=0 supply two uncertain solutions per each.
In the case with tolerance of resistors equal to 10%, there is also one equilibrium region with
MEV=3 and =mEV=1. This equilibrium region supplies one certain solution and two uncertain
solutions. Note that the total number of solutions, both certain and uncertain, is always nine in all
cases. If a hierarchical clustering algorithm is applied to the equilibrium regions with more
solutions, it is possible to identify suitable clusters of AURs in which only one solution, certain or
uncertain, may appear. It is possible to verify that each of them contains one solution of the PWL
nominal circuit.

It is remarkable that, as tolerances grow, equilibrium regions expand in number of AURs, until they
merge together. Moreover, some certain solutions may become uncertain. Any case, as discussed in
Section 3, the examination of effective vertices gives, in this case, the exact number of certain and
uncertain solutions.
Table III. Equilibrium regions in the second example.

Case (tolerance of Rk) 0% 2% 5% 10%

Total polyhedral circuits 819 1021 1367 1951
Elapsed time (s) 1.2 12.3 33.6 75.3
Total AURs 16 16 47 107
Equilibrium regions (MEV =mEV= 1) 9 9 5 2
Equilibrium regions (MEV = 2,mEV = 0) - - 2 2
Equilibrium regions (MEV = 3,mEV = 1) - - - 1
Total equilibrium regions 9 9 7 5
Total possible solutions 9 9 9 9

AURs = admissible unit-rank regions.
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Table IV. Equilibrium regions in the third example.

Case (tolerance of Rk) 0% 2% 5%

Total polyhedral circuits 1277 1881 1955
Tree elapsed time (s) 1.8 4.9 5.1
Total elapsed time (s) 72.3 869.6 1238.9
Total AURs 11 27 39
Equilibrium regions (MEV =mEV = 1) 11 11 11
Equilibrium regions (MEV = 2,mEV= 0) — — 2
Total equilibrium regions 11 11 13
Total possible solutions 11 11 15

AURs = admissible unit-rank regions.
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7.3. Third example

The third example is the multi-state circuit shown in Figure 10 of [28]. As in the second example, the
same Ebers–Moll model has been adopted, but each exponential nominal characteristic of diodes has
been approximated with five segments. The rank of the nominal PWL circuit is 515≈ 31010. This
circuit, with nominal characteristics for all diodes, has 11 equilibrium points. Three different cases
will be examined. In the first one, the 15 diodes have tolerances of ± 10% in current respect to their
nominal characteristics. The rank is 1015≈ 3.05176515, and the number of B-PWL circuits is
215 = 32768. As for the nominal circuit, 11 AURs have been found coinciding with 11 convex and
certain equilibrium regions. In the second and third cases, it has added a tolerance to the two
resistors of nominal value 2700Ω. Two values of tolerance have been taken into account, 2% and
5%. The rank of the circuit becomes about 1.221011, and the number of B-PWL circuits is
217 = 131072. The results are summarized in Table IV.

The total number of nodes of the tree (polyhedral circuits) examined during the execution of the
algorithm is shown in the second row. It is worth noting that, in this case too, this number is much
less than the rank of the circuit. In the third row, it has written the elapsed time for the tree plus
clustering algorithm, while in the fourth row, the elapsed time for the complete algorithm included
the determination of the certain and uncertain equilibrium regions. In the 2% case, there are 27
AURs grouped in 11 certain equilibrium regions, of which nine are composed of one AURs, one of
five AURs, and 1 of 13 AURs. In the 5% case, there are 39 AURs, but besides the same certain
equilibrium regions of the previous case, two uncertain equilibrium regions formed by six AURs
each appear, both with MEV=2 and mEV=0. So they bear two further uncertain solutions per each,
besides the nominal 11 certain solutions. This example shows clearly how the presence of tolerances
in elements may cause the appearance of solutions not present with the nominal values.

The certain–uncertain analysis is very heavy from a computational point of view, because of the
high number of B-PWL circuits to be examined, especially when the number of SPWL
characteristics grow. If one is interested in only one of the possible equilibrium regions, then the
certain–uncertain analysis can be limited only to that equilibrium region, limiting the CPU time.
However, even if the aim of this work is to present a method to determine the equilibrium regions
of a resistive circuit with tolerances, including their certainty, it is important to note that the
efficiency of the program can be surely improved.
19
8. CONCLUSIONS

The here proposed algorithm investigates the robustness of the equilibrium points of a nonlinear
circuit with respect to device tolerances. It is based on the introduction of strip characteristics and
polyhedral characteristics. It is so possible to find equilibrium regions in which the equilibrium
points may fall as characteristics varies. The distinction between certain and uncertain equilibrium
regions allows the designer to check possible undesired behaviors of the circuit because of
deviation of real characteristics from nominal ones. By repeating these analyses, the designer can
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2016; 44:639–659
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determine the maximum acceptable tolerances for assuring a correct behavior of the circuit. The
algorithm adopts LP techniques and a clustering algorithm. The possible improvements of this
algorithm regards the optimization of the routines used to classify the equilibrium regions in
certain and uncertain. Not only, but also, a new approach can be searched for. Instead, a real
challenge can be the extension of this approach to the analysis of dynamic circuits, at least of
their steady state.
20
9. LIST OF MAIN SYMBOLS

• L: Space spanned by variables of linear elements;
• P: Space spanned by variables of nonlinear elements;
• Z: Space spanned by all branch variables;

• eL: Affine subspace of  satisfying linear certain relations;

• eP: Subset of P satisfying nonlinear and linear uncertain relations;
• K: Subspace of Z satisfying Kirchhoff’s equations;

• eZ: Configuration domain of circuit (subset of Z);
• ξm: piecewise linear (PWL) or truncated PWL (T-PWL) certain characteristic;
• ξ: Segment of a PWL certain characteristic;
• σn: Strip PWL (SPWL) or truncated SPWL (T-SPWL) characteristic;
• σ: Strip segment of an SPWL characteristic;
• σ uð Þ

n , σ ℓð Þ
n : boundary (upper and lower) PWL or T-PWL characteristics;

• ψ: Polyhedral characteristic;
• λ: Unit-rank region;
• τ: T-SPWL region;
• π: Polyhedral region;
• ζ : Configuration domain of a unit-rank region;
• ζ : Configuration domain of a T-SPWL region;
• Θ: Configuration domain of a polyhedral region;
• λA: Admissible unit-rank region (AUR);
• τA: Admissible T-SPWL region;
• ζ A: Configuration domain of an AUR;
• ζ A: Configuration domain of an admissible T-SPWL region or equilibrium region.
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