
Very Weak, Essentially Undecidabile
Set Theories? ??

Domenico Cantone1[0000−0002−1306−1166],
Eugenio G. Omodeo2[0000−0003−3917−1942], and

Mattia Panettiere1[0000−0002−9218−5449]

1 Dept. of Mathematics and Computer Science, University of Catania, Italy
domenico.cantone@unict.it, mattia.panettiere@gmail.com

2 Dept. of Mathematics and Earth Sciences, University of Trieste, Italy
eomodeo@units.it

Abstract. In a first-order theory Θ, the decision problem for a class
of formulae Φ is solvable if there is an algorithmic procedure that can
assess whether or not the existential closure ϕ∃ of ϕ belongs to Θ, for
any ϕ ∈ Φ. In 1988, Parlamento and Policriti already showed how to
apply Gödel-like arguments to a very weak axiomatic set theory, with
respect to the class of Σ1-formulae with (∀∃∀)0-matrix, i.e., existential
closures of formulae that contain just restricted quantifiers of the kind
(∀x ∈ y) and (∃x ∈ y) and are writeable in prenex form with at most two
alternations of restricted quantifiers (the outermost quantifier being a
‘∀’). While revisiting their work, we show slightly stronger theories under
which incompleteness for recursively axiomatizable extensions holds with
respect to existential closures of (∀∃)0-matrices, namely formulae with
at most one alternation of restricted quantifiers.

Keywords: Decidability · Set Theory · Gödel Incompleteness.

Introduction

One often resorts to meta-level reasoning within a formal system, in order to
support meta-mathematical investigations (e.g., concerning syntactic boundaries
beyond which the decision problem for an axiomatic theory becomes algorith-
mically unsolvable), meta-programming in declarative languages [4], or agent-
based explainable AI applications (if the agents are to exhibit self-awareness of
any form [2]).

The resources that a first-order theory must provide to make meta-level rea-
soning doable at all are surprisingly simple. In the realm of number theory, a

? Copyright c© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

?? We gratefully acknowledge partial support from project “STORAGE—Università
degli Studi di Catania, Piano della Ricerca 2020/2022, Linea di intervento 2”, and
from INdAM-GNCS 2019 and 2020 research funds.

minimal arithmetic (extremely weak relative to Peano’s arithmetic) was pro-
posed by Raphael M. Robinson in [11]; in the realm of set theory, an even
simpler axiomatic endowment (only consisting of the null-set axiom along with
an axiom enabling the adjunction of a single element to a set) was proposed
by Robert L. Vaught in [13]. In either case, the proposed axiom system consti-
tutes an essentially undecidable theory, i.e., a theory none of whose consistent
axiomatic extensions has an algorithmically solvable derivability problem—as
can be proved à la Gödel.

Vaught’s result can be improved in at least two ways: (1) by making all
steps needed for the so-called ‘arithmetization of syntax’ task more transparent;
(2) by basing such a task on formulae of an extremely low syntactic structure.
Franco Parlamento and Alberto Policriti contributed to these two amelioration
goals [10,9], referring as a yardstick for measuring syntactical complexity to the
number of quantifier alternations in the lowest level of Azriel Lévy’s hierarchy of
set-theoretic formulae [6]. The axiom system that they exploited was still finite
but slightly broader than the one by Vaught.

This paper further develops the techniques by Parlamento and Policriti, by
broadening the axiomatic system even further in order to achieve greater trans-
parency and to reduce by one the number of quantifier alternations.

The decision problem for a class of formulae Φ of the language of a given
theory Θ—a consistent axiomatic set theory in the ongoing—is said to be solvable
when there is an algorithmic procedure that, taken in input any ϕ ∈ Φ with n free
variables x1, x2, . . . , xn, establishes whether or not Θ ` ∃x1∃x2 · · · ∃xn ϕ holds,
and outputs: true if things are so, false if Θ 6` ∃x1∃x2 · · · ∃xn ϕ (in particular
if Θ ` ¬∃x1∃x2 · · · ∃xn ϕ). While studying (un)decidability in fragments of set
theory, it is worth considering restricted quantifiers, i.e., quantifiers of the form:

(∀x ∈ y)ϕ
Def←→ ∀x(x ∈ y → ϕ) ,

(∃x ∈ y)ϕ
Def←→ ∃x(x ∈ y ∧ ϕ) .

(1)

When a formula contains only restricted quantifiers, it is called a ∆0-formula
(see [6]). Furthermore, if it is logically equivalent to some prenex formula with n
alternating sequences of unbounded quantifiers in the prefix starting with uni-
versal quantifiers, then it is called (∀∃∀ · · ·Qn)0 (where Qi is ∀ when i is odd,
and ∃ otherwise). Clearly, a complete theory is decidable; but the converse also
holds when we restrict ourselves to consistent classes of existential closures of
∆0-formulae. In [10], it has been investigated how, taking the very weak set
theory T0 comprising extensionality, null-set axiom, single-element addition and
removal axioms, an argument akin to the ones leading to Gödel incompleteness
theorems can be applied to the class of (∀∃∀)0-formulae. Thanks to those argu-
ments, it is possible to show that every recursively axiomatizable extension Θ
of T0 is incomplete with respect to the class of (∀∃∀)0-formulae, and therefore
the decision problem for that class is undecidable in every extension Θ of T0.
Since the base theory T0 is extremely elementary, the argument applies to every
reasonable set theory. The limit found in [10] on the ∆0-complexity of the class

of formulae seems to be rather tight, with no room for improvement in that di-
rection. Nevertheless, by slightly expanding the axiomatic core, we have found a
way to lower that limit under suitable conditions. Indeed, we consider extensions
of T0 that include the axiom of foundation and prove that if the concept of “be-
ing a natural number” is expressible by a (∀∃)0-formula, then the incompleteness
arguments can be generalized with respect to the whole class of (∀∃)0-formulae.
At the end we will cite two examples that allow for such arguments, expanding
the core theory with either the separation axiom schema or an axiom stating
that every set is (hereditarily) finite.

1 A succinct axiomatic endowment for Set Theory

We will consider the first-order language L∈ endowed with:

– an infinite supply ν0, ν1, ν2, . . . of set variables;
– two dyadic relators ∈,=, designating membership and equality, respectively,

as the only predicate symbols of the language;
– the propositional connectives ¬ (monadic) and → (dyadic), designating re-

spectively: negation and material implication;
– the existential quantifier ∃ νi and the universal quantifier ∀ νi, associated

with each set variable νi .

The combinatorial core, dubbed T , of the axiomatic set theories we will consider
consists of the following five postulates:

Extensionality (E) ∀x ∀ y ∃ v
(

(v ∈ x↔ v ∈ y)→ x = y
)
,

Null set (N) ∃ z ∀ v
(
¬v ∈ z

)
,

Adjunction (W) ∀x ∀ y ∃w ∀ v
(
v ∈ w ↔ (v ∈ x ∨ v = y)

)
,

Removal (L) ∀x ∀ y ∃ ` ∀ v
(
v ∈ `↔ (v ∈ x ∧ ¬v = y)

)
,

Regularity (R) ∀x ∃ v ∀ y
(
y ∈ x→ (v ∈ x ∧ ¬y ∈ v)

)
.

In the light of axiom (E), stating that distinct sets cannot have the same ele-
ments, axiom (N) ensures that exactly one empty set exist. Axiom (W) and ax-

iom (L) induce the two natural operations (x, y)
with7→ x∪{y} and (x, y)

less7→ x\{y}.
Axiom (R) states that every non-empty set x has an element v that does not
intersect x; in synergy with (N) and (W), it ensures that ‘∈’ forms no cycles.
On occasions we will consider extending T with further axioms: a theory we will
consider is Tf , whose intended universe encompasses no infinite sets (cf. [12]);
another one is Ts, enhancing T with the separation axiom schema (cf. [5]).

2 Ordered pairs, functions, and natural numbers

At the core of our definitional machinery lie the definitions of (un)ordered pair
and (un)ordered functions. Indeed, most of the definitions hinge on an extensive
use of these set-theoretic structures to lower their ∆0-complexity. Consider, e.g.,

the variant 〈x, y〉 := {x, {x, y}} of Kuratowski’s classical ordered pair definition,
which one can adopt under (N), (W), and (R). This is problematic since, while
the extraction of the first component π1(p) of such a pair p is specifiable by
means of an (∃)0-formula, the extraction of the second projection π2(p) calls for
a formula with at least one quantifier alternation:

y = π2(p)
Def←→ (∃x ∈ p)(∃q ∈ p)

(
x ∈ q ∧ y ∈ q ∧ (∀z ∈ q)(z = x ∨ z = y)

)
.

We rely on a definition that works under (E), (N), (W), and (L)—foundation
is not required—introduced in [3]. We use the binary operator @ to construct
quasi-pairs. These will be used in the formation of ordered pairs:

x@ y :=
{
x less y , x with y

}
,

〈x, y〉 := (x@y)@x .

Definition 1. Quasi-pairs and ordered pairs are characterized by the following
(∀∃)0-conjunctions:

QPair(q)
Def←→ (∃u ∈ q)(∃ v ∈ q) ¬u = v ∧

(∀u, v ∈ q)(∀ t ∈ u)(∀x ∈ v) (x ∈ u ∨ t ∈ v) ∧
(∀u, v ∈ q)(∀x, z ∈ v) (x ∈ u ∨ z ∈ u ∨ x = z) ,

OPair(p)
Def←→ QPair(p) ∧ (∃ d ∈ p)(∃u, v ∈ d)¬u = v ∧

(∀ d ∈ p)(∀u, v ∈ d)(∀ t ∈ u)(∀ y ∈ v)(y ∈ u ∨ t ∈ v) ∧
(∀ d ∈ p)(∀u, v ∈ d)(∀ y, z ∈ v)(y ∈ u ∨ z ∈ u ∨ y = z) .

We use the first projection extraction on quasi-pairs to obtain the components
of ordered pairs, aka 2-tuples, through these (∃)0-specifications:3

x = π2
1(p)

Def←→ (∃u ∈ p)(∃ v ∈ p)(x ∈ v ∧ ¬x ∈ u) ,

y = π2
2(p)

Def←→ (∃ d ∈ p) y = π2
1(d).

n-tuples and their projections πn
i (0 < i ≤ n), specified as usual in terms of

2-tuples for any n, can thus be captured by (∀∃)0- and (∃)0-formulae, resp.; e.g.:

Triple(t)
Def←→ OPair(t) ∧ (∀v1 ∈ t)(∀v2 ∈ v1)(∀s ∈ v2)(s = π2

2(t)→ OPair(s)),

x = π3
1(t)

Def←→ x = π2
1(t),

y = π3
2(t)

Def←→ (∃v1 ∈ t)(∃v2 ∈ v1)(∃s ∈ v2)(s = π2
2(t) ∧ y = π2

1(s)),

z = π3
3(t)

Def←→ (∃v1 ∈ t)(∃v2 ∈ v1)(∃s ∈ v2)(s = π2
2(t) ∧ z = π2

2(s)).

Functions. Letting ∈1 ≡ ∈, it will be handy to make use of the following
recursive definition of ∈n, for n ≥ 1 and for every variable y and formula ϕ:

(∀x ∈n+1 y)ϕ
Def←→ (∀z ∈ y)(∀x ∈n z)ϕ .

3 In specifying projections, it would be pointless to insist that the argument must be
an OPair.

We can define functions in the classical way, namely as suitable sets of ordered
pairs; their specification is straightforward:

Fun(f)
Def←→ (∀p ∈ f)OPair(p) ∧

(∀p1, p2 ∈ f)(∀x ∈3 f)(x = π2
1(p1) = π2

1(p2) → p1 = p2).

Often we will write (∀x ∈ dom f)ϕ in place of (∀x ∈3 f)(x ∈ dom f → ϕ) and
(∀y ∈ π2

1 [dom f])ϕ in place of (∀p ∈ f)(∀y ∈5 f)(∀x ∈3 f)
(
(y = π2

1(x) ∧ x ∈
dom f) → ϕ

)
, when f is a function and we want to quantify over the first

projection of the elements of its domain. In general, to increase clarity, these
compact versions of restricted quantifiers will be used, with their meanings being
explicit, even though not specified. When s is a set of n-tuples, we will write
πn
i [s] to intend the set of the i-th projections of all elements of s, namely

x ∈ πn
i [s]

Def←→ (∃t ∈ s) x = πn
i (t) .

We will also make use of the following function related notions, which work only
under the assumption that f is a function:

x ∈ dom f
Def←→ (∃p ∈ f)x = π1(p) , (∃)0

d = dom f
Def←→ (∀x ∈ d)(x ∈ dom f) ∧ (∀x ∈ dom f)(x ∈ d) , (∀∃)0

x ∈ ran f
Def←→ (∃p ∈ f)x = π2

2(p) , (∃)0
y = f(x)

Def←→ (∃p ∈ f)(x = π2
1(p) ∧ y = π2

2(p)) , (∃)0
v ∈ f(x)

Def←→ (∃y ∈ ran f)(y = f(x) ∧ v ∈ y) , (∃)0
Fun(f(x))

Def←→ (∀y ∈ ran f)(y = f(x)→ Fun(y)) , (∀∃)0
v ∈ dom f(x)

Def←→ (∃y ∈ ran f)(y = f(x) ∧ v ∈ dom y) , (∃)0
f(x) = g(y)

Def←→ (∀v ∈ ran f)(∀w ∈ ran f)(v = f(x) ∧ w = g(y) → v = w). (∀)0

Similar predicates, not listed here, will be used throughout.

Natural numbers are classically represented as finite ordinals. Whilst the defi-
nition of ordinals is (∀)0, hence it has a very low syntactic complexity (in the
sense explained in the Introduction), expressing their finitude in weak theories
requires more effort. We put:

s = ∅ Def←→ (∀x ∈ s)x 6= x, (∀)0
t = s+

Def←→ (∀x ∈ t)(x = s ∨ x ∈ s), (∀)0
t = s−

Def←→ (s = t+) ∨ (t = ∅ ∧ s = ∅), (∀)0

where s+ := s ∪ {s} and s− are, resp., the successor and the predecessor of s.
Under (E), (N), (W), (L), and (R), naturals are expressed by the following
(∀∃∀)0-specifications:

Trans(X)
Def←→ (∀ v ∈ X) (∀u ∈ v) u ∈ X ,

Ord(X)
Def←→ Trans(X) ∧ (∀u, v ∈ X)

(
u ∈ v ∨ v ∈ u ∨ v = u

)
,

Num(X)
Def←→ (∀ t ∈ X) (∃ y ∈ X) (∀u ∈ X) (u = y ∨ u ∈ y) ∧

(∀ y ∈ X) (∀ t ∈ y) (∃ z ∈ y) (∀u ∈ y) (u = z ∨ u ∈ z) ∧ Ord(X).

In Ts, namely under the separation axiom schema (Sep), the latter can be sim-
plified into the following simpler (∀∃∀)0-formula:

Num(X)
Def←→ (∀ y ∈ X+)

(
y = ∅ ∨ (∃ z ∈ X) z+ = y

)
∧

(∀u, v ∈ X less ∅) (u ∈ v ∨ v ∈ u ∨ v = u) .

Note that in Tf , Num coincides with Ord, and therefore belongs to the class (∀)0.
In other extensions of T , in order to lower the complexity of the ∆0-specification
of natural numbers, we must overload the structure of this property. We can think
of natural numbers as specially constrained quadruples; specifically, we endow
the classical finite ordinal with information on its predecessors and successors,
allowing us to use existential formulae instead of universal ones to express them:

Num(Q)
Def←→ Quadruple(Q) ∧ Fun(π4(Q)) ∧ π1(Q) = π2(Q)− ∧ π3(Q) = π2(Q)+ ∧

(∀n ∈ π2(Q))(Triple(π4(Q)(n)) ∧ dom π4(Q) = π2(Q) ∧
(∀t ∈ ran π4(Q))(π1(t) = π2(t)− ∧ π3(t) = π2(t)+) ∧
(∀y ∈ π3(Q))

(
y = ∅ ∨ (∃z ∈ π2(Q))π3(π4(Q)(z)) = y

)
∧

(∀u, v ∈ π2(Q))(u ∈ v ∨ v ∈ u ∨ u = v).

Here the definiendum requires that: (i) the second projection of a natural num-
ber is a (finite) ordinal, (ii) its first and third projections are respectively the
predecessor and successor of the second projection, (iii) its fourth projection is
a function whose domain is the second projection mapping (finite) ordinals n
to triples t such that π2(t) = n, and (iv) the first and third projections of t are
the predecessor and the successor of n respectively. Thanks to these conditions,
statable with a single quantifier alternation, infinite ordinals are ruled out.

All of the following definitions can be straightforwardly re-adapted to use this
last (∀∃)0-formula; however, to enhance readability we will continue to refer to
our preceding characterizations of natural numbers in the definitions that follow.
Given a numeral n, we can easily express the predicate x = n by means of a
Σ1-formula having a (∀)0 matrix:

x = n
Def←→ (∃x0) · · · (∃xn−1) (x0 = ∅ ∧

∧n−1
i=1 xi = x+i−1 ∧ x = x+n−1).

The following claims are plain (cf. [10]):

Lemma 1. In T , the following are provable:

1. (n)+ = n+ 1, x = n ∧ y = x+ → y = n+ 1,
2. x+ = n+ 1→ x = n, Num(x)→ x 6< x,
3. Num(x) ∧ y ∈ x → Num(y), Num(x) ∧ Num(y) ∧ x 6= y → x+ 6= y+,
4. Num(x) ∧ Num(y) ∧ y ≤ x → x = y ∨ x < y,
5. Num(0), Num(n), Num(x)→ Num(x+), ∀x(Num(x)→ x 6< 0),
6. ∀x(Num(x)→ x < n ∨ x = n ∨ n < x),
7. ∀x

(
Num(x)→ (x < n+ 1↔ x = 0 ∨ · · · ∨ x = n)

)
;

8. if n < m, then T ` n < m; if n 6= m, then T ` n 6= m.∥∥∥∥∥∥
Hereafter, we place ourselves in a generic extension T ′ of T , such as Ts, where
a formal counterpart of the concept of natural number has been cast as a
(∀∃)0-formula.

Provided that T ′ preserves the previous lemma (under retouched definitions),
the following holds.

Theorem 1 ([10]). Every total recursive n-ary function f on N := {0, 1, 2, . . . }
is strongly representable in T ′, in the sense that there is a formula ϕ such that
for k1, . . . , kn, k ∈ N:

- f(k1, . . . , kn) = k implies T ′ ` ϕ(k1, . . . , kn, k), and
- T ′ ` ∃x ∀ y

(
ϕ(k1, . . . , kn, y) ↔ y = x

)
.

3 Codes

We will revamp the original definition of code in [10] in order to give it a more
explicit structure. Our codes are finite-length sequences that represent the syntax
trees of formulae by means of a linear structure. As such, the first element is a
natural number, whose presence allows us to use restricted quantifiers, while the
remaining ones are triples that encode the nodes of the tree. Each triple contains
the node type in the first component and either two leaves (variable nodes) or
pointers to nodes previously appearing in the sequence. The last triple in the
node is considered to be the root of the tree. Clearly, for each formula ϕ, there
is a countable infinity of code sequences encoding ϕ.
In addition, in order to be able to further simplify the definition, we will make
use of unordered functions in our definitions.

Definition 2 (Code sequence).

SeqC(f)
Def←→ Num(f(0)) ∧ dom(f) ∈ f(0) ∧

(∀p ∈ f)
(
|p| ≤ 2 ∧ (∃x, y ∈ p)(x 6= y)

)
∧

(∀p ∈ f)(∀x, y ∈ p)
[
x 6= y ∧ x 6= 0 ∧ y 6= 0 →

y /∈ x ∧ x /∈ y ∧
(
Num(x) ∨ Num(y)

)]
.

The third condition forces f to be a sequence of doubletons proper, whilst the
fourth one establishes that each pair, each element of f , save 0 paired with its
image, is made of a number and a non-number. The first two conjuncts state
that the first element (height of the sequence) is a natural number and that the
domain (length) of the sequence is bounded by it. The literal |p| ≤ 2 can plainly
be expressed by (∀x, y, z ∈ p)(x = y ∨ y = z ∨ x = z). A natural specification
for y = f

↼

x is:

x ∈ domC f
Def←→ (∃p ∈ f)(∃u ∈ p)[x ∈ p ∧ x 6= u ∧ (x ∈ u ∨ 0 ∈ x)],

y = f

↼

x
Def←→ x ∈ domC f ∧ (∃p ∈ f) x, y ∈ p ∧ y 6= x ∧ (x ∈ y → x = 0),

where x ∈ domC f means “x is in the unordered domain of the code sequence
f”. These two definitions have the desired meanings; in fact, as the length of any
code is at least 2, its height must exceed 2. Hence 0 ∈ f

↼

0 whenever SeqC(f)
holds. The basic principle that makes them work is that, thanks to regularity,
it is always possible to prove that two naturals are comparable by membership
under any definition we have considered. Combining this result with the fact that
no ordered pair, and hence no triple, satisfies the predicate Num, it is always
possible to distinguish the element in the range from the one in the domain.

Thence, the complexity of the formula entirely depends on the complexity of
Num: the formula is (∀∃)0 whenever Num is (∀∃)0 and (∀∃∀)0 when it is (∀∃∀)0.
We will often write fx instead of f

↼

x, and we will also make use of the following
specification in the coming sections:

y ∈ ranC f
Def←→ (∃p ∈ f)(∃x ∈ p)(x ∈ y ∨ 0 /∈ y).

Definition 3 (Code).

Cod(f)
Def←→ SeqC(f) ∧ (∃p ∈ f)(∃q ∈ f)(p 6= q) ∧

(∀i ∈ domC f)[i 6= 0 → Triple(fi) ∧ Symbol(π1(fi)) ∧
(π2(fi) ∈ f

↼

0 ∨ π2(fi) ∈ i) ∧ (π3(fi) ∈ f
↼

0 ∨ π3(fi) ∈ i)].

We already noted that Triple is (∀∃)0, and the last two conjuncts in the succedent
of the implication are (∃)0, hence it has the same ∆0-complexity of SeqC . The
first projection of a triple is a Symbol set, i.e., a set that represents a connective
or a relator in L∈. In practice, Symbol can be thought as Num, as we require
just a countable amount of them. The second and third projections of the triples
are either indices of variables (relative to their standard ordering ν0, ν1, ν2, . . .)
or pointers to previous nodes. Pointers of previous nodes precede i, whilst we
impose that the index of a variable shall be less than the height of the code.
Note that this restriction does not reduce the power of codes, as it is sufficient
to increase the height in order to be able to encode any variable.

A total order on codes. The given definition, Cod(f), of code implies a nat-
ural total order on the class of codes. We put:

f ≤C g
Def←→ [f

↼

0 < g

↼

0] ∨ [f

↼

0 = g

↼

0 ∧ domC f < domC g] ∨[
f

↼

0 = g

↼

0 ∧ domC f = domC g ∧
(∀m ∈ domC f)([(∀i ∈ domC f)(m ∈ i→ fi = gi) ∧

f

↼

m 6= g

↼

m] → ϕless(f, g,m))
]
,

where ϕless(f, g,m) stands for:[
π3(fm) <S π3(gm)

]
∨

[
π3(fm) = π3(gm) ∧ π2(fm) < π2(gm)

]
∨[

π3(fm) = π3(gm) ∧ π2(fm) = π2(gm) ∧ π1(fm) < π1(gm)
]
.

By <S , we denote a strict total order on the class of symbols. Since the projec-
tions of f can be extracted with (∃)0-formulae, and domC f = domC g can be
checked with a (∀∃)0-formula, the complexity is mostly dependent on <S . Under
suitable definitions of Symbol and <S (e.g., if we identify symbols with natural
numbers up to some finite bound n), the formula is (∀∃)0.
The following proposition is trivially proved by contradiction:

Lemma 2. In T , if <S is linear, then so is ≤C .

We can also explicitly define the strict variant of ≤C with a (∀∃)0-formula:

f <C g
Def←→ f ≤C g ∧ (∃p ∈ g)(p /∈ f).

We will now specify a successor function which allows us to enumerate the class
of all the code sequences. To achieve simpler specifications, we will consider
natural numbers below f

↼

0 as symbols. We have three cases:

1. There is some triple in which one of the values is not f

↼

0− 1: in this case,
we interpret the sequence of all triples as a base f

↼

0 –number and take its
successor.

2. None of the triples can be increased, but the domain of the code is smaller
than its height: in this case, the successor is the code which has the same
height, one more triple, and whose triples are made up of zeroes.

3. Neither of the previous cases holds: in this case the successor has the height
increased by one, and has just one triple of zeroes.

This informal definition can be written as: g = NextC(f)
Def←→ (C1) ∨(C2) ∨ (C3).

Condition (C1): We define two utility predicates. The first one, y = NextT (x, c, v),
is true when y is the successor triple of x, thinking of x as a number in base
c. The variable v is conveniently used in the antecedent of the implications in
order to be able to write a (∃)0-formula.

y = NextT (x, c, v)
Def←→ (π1(x) 6= c ∧ v = π1(x)+ → π1(y) = v) ∧

(π1(x) = c ∧ π2(x) 6= c ∧ v = π2(x)+ → π2(y) = v)∧
(π1(x) = c ∧ π2(x) = c ∧ π3(x) 6= c ∧ v = π3(x)+ → π3(y) = v).

The second formula, CarryT (f, c, i), is true when the i-th triple of the sequence
is the last one that takes the carry in the successor operation considering the
sequence as a number in base c. This is a (∀)0-formula. We have:

CarryT (f, c, i)
Def←→ (∀j ∈ i)(∀v1 ∈ π1(ranC f))(∀v2 ∈ π2(ranC f))(∀v3 ∈ π3(ranC f))

(∀u1 ∈ π1(ranC f))(∀u2 ∈ π2(ranC f))(∀u3 ∈ π3(ranC f))
[j 6= 0 ∧ v1 = π1(fj) ∧ v2 = π2(fj) ∧ v3 = π3(fj) ∧

u1 = π1(fi) ∧ u2 = π2(fi) ∧ u3 = π3(fi) →
v1 = c ∧ v2 = c ∧ v3 = c ∧ (u1 6= c ∨ u2 6= c ∨ u3 6= c)].

Now we are ready to produce a compact (∀∃)0-specification of Condition (C1).
(∃m ∈ domC f)(∃y ∈ f

↼

0)[m 6= 0 ∧ (π1(fm) ∈ y ∨ π2(fm) ∈ y ∨ π3(fm) ∈ y)] ∧
(∀m ∈ domC f)(∀c ∈ f

↼

0)(∀i ∈ m)[f

↼

0 = c+ ∧ CarryT (f, c,m) ∧
(∀j ∈ m)CarryT (f, c, j)→ fi = (0, 0, 0)] ∧

(∀m ∈ domC f)(∀c ∈ f

↼

0)(∀v1 ∈ π1(ranC g))(∀v2 ∈ π2(ranC g))(∀v3 ∈ π3(ranC g)))
[f

↼

0 = c+ ∧ CarryT (f, c,m)→ gm = NextT (fm, c, v1) ∨ gm = NextT (fm, c, v2) ∨
gm = NextT (fm, c, v3)],

where fi = (0, 0, 0) is syntactic sugar for π1(fi) = 0 ∧ π2(fi) = 0 ∧ π3(fi) = 0.

Condition (C2): (C2) is a (∀∃)0-formula:
(∀x ∈ domC f)(∀y ∈ f

↼

0)(f

↼

0 = y+ ∧ x 6= 0→ fx = (y, y, y)) ∧
domC f < f

↼

0 ∧ g

↼

0 = f

↼

0 ∧ (domC f)+ = domC g ∧
(∀i ∈ domC g)(i 6= 0→ gi = (0, 0, 0)).

Condition (C3): With this last (∀∃)0-condition, we cover every possible case:
(∀x ∈ domC f)(∀y ∈ f

↼

0)(f

↼

0 = y+ ∧ x 6= 0→ fx = (y, y, y)) ∧
domC f = f

↼

0 ∧ g

↼

0 = f

↼

0
+ ∧ domC g = 2 ∧ g(1) = (0, 0, 0).

The previous discussion readily yields

Lemma 3. NextC(f) is a (∀∃)0-formula.

It is clear that starting from the code {{0, 3}, {1, 〈0, 0, 0〉}}, through succes-
sive application of NextC , we can enumerate all the codes, as, given a length
and a height, there is a finite amount of codes with that length and height. The
bottom code, 0C , is characterized by the (∀∃)0-formula

f = 0C
Def←→ Cod(f) ∧ f0 = 2 ∧ Triple(f1) ∧

π1(f1) = 0 ∧ π2(f1) = 0 ∧ π3(f1) = 0.

Throughout the rest of the section, we will state some useful facts about codes
that will be essential in developing an argument à la Gödel within the weak set
theories we are considering. As most of these facts admit proofs very similar to
the ones available in [10], we will not provide details.

Lemma 4. In T :
(a) ∀x∀y

(
Cod(x) ∧ NextC(x) = y → Cod(y)

)
;

(b) ∀x∀y∀z
(
Cod(x) ∧ Cod(y) ∧ Cod(z) ∧ x ≤C z ∧ z ≤C y ∧
y = NextC(x) → z = x ∨ z = y

)
;

(c) ∀x∀y
(
Cod(x) ∧ Cod(y) ∧ NextC(x) = y → x <C y

)
;

(d) ∀x∀y∀z
(
Cod(y) ∧ NextC(y) = x ∧ NextC(y) = z → x = z

)
.

For every natural number k, by x = (k)C we mean:

(∃x0, . . . , xk−1)
(
x0 = 0C ∧

∧k−1
i=0 xi+1 = NextC(xi) ∧ x = xk

)
.

Lemma 5. For each natural number k, we have in T :

(a) (k + 1)C = NextC((k)C); (b) x = (k)C ∧ y = NextC(x) → = (k)C ;

(c) ∀x(Cod(x) ∧ (k + 1)C = NextC(x) → x = (k)C ; (d) Cod((k)C);

(e) ∀x
(
Cod(x) → ¬ <C 0C

)
; (f) ∀x

(
Cod(x) → (x ≤C (k)C ↔ x <C (k + 1)C)

)
;

(g) ∀x
(
Cod(x) → (x <C (k + 1)C ↔ x = 0C ∨ . . . ∨ x = (k)C)

)
;

(h) ∀x
(
Cod(x) → (x <C (k)C ∨ x = (k)C ∨ (k)C <C x)

)
.

Corollary 1. For all natural numbers h and k, we have that if h = k, then
T ` (h)C = (k)C ; if h < k, then T ` (h)C <C (k)C .

4 Formulae

We require the following symbols (and the related identifying predicates): Symbol⇒,
Symbol∀, Symbol∈, Symbol=, and a renaming symbol for each variable vi, SymbolRi

.
The intent of the last predicate is to integrate a rename operator for each variable
in the language. Each one of the symbols has two parameters, either variables or
subformulae, thus we add predicates to recognize the type (the symbol on top of
the syntax tree of the formula) of code sequences. Remember that the topmost
node of the generation tree is the last element of a code sequence. We start by
defining predicates that recognize the function of a triple t of index i inside a
code f of height c:

impl(f, t, i, c)
Def←→ Symbol⇒(π1(t)) ∧ π2(t) ∈ i ∧ π2(t) 6= 0 ∧ π3(t) ∈ i ∧ π3(t) 6= 0,

forall(f, t, i, c)
Def←→ Symbol∀(π1(t)) ∧ π2(t) < c ∧ π3(t) < i ∧ π3(t) 6= 0,

rename(f, t, i, c)
Def←→ SymbolR(π1(t)) ∧ π2(t) < c ∧ π3(t) < i ∧ π3(t) 6= 0,

equals(f, t, i, c)
Def←→ Symbol=(π1(t)) ∧ π2(t) < c ∧ π3(t) < c.

in(f, t, i, c)
Def←→ Symbol∈(π1(t)) ∧ π2(t) < c ∧ π3(t) < c.

All of these formulae are (∃)0. We can now define the formula predicate,
which holds when every node of some code is one of the elementary nodes.

Definition 4 (Code of a formula).

Form(f)
Def←→ (∀c ∈ ranC f)(∀i ∈ domC f)(∀t ∈ ranC f)[c = f

↼

0 ∧ t = fi →
impl(f, t, i, c) ∨ forall(f, t, i, c) ∨ rename(f, t, i, c) ∨

equals(f, t, i, c) ∨ in(f, t, i, c)] ∧ Cod(f).

The formula is clearly (∀∃)0. We can also straightforwardly define predicate
symbols for derived connectives and quantifiers as we can express ⊥ as ∀ v0(v0 ∈
v0) and thus ¬ϕ as ϕ → ⊥; accordingly, ∃vϕ will stand for

(
∀v(ϕ → ⊥)

)
→ ⊥.

Consider now the following axiomatization of first-order logic with axioms:

(A1) (((((ϕ→ ψ)→ ((χ→ ⊥)→ (θ → ⊥)))→ χ)→ τ)→ ((τ → ϕ)→ (θ → ϕ))) ;
(A2) ∀vi

(
(ϕ→ ψ)→ (ϕ→ ∀vi(ψ))

)
(vi not free in ϕ) ;

(A3) ∀vi(ϕ(vi)→ ϕ(vj)) ;
(A4)

(
∀vi

(
(ϕ→ (∀viϕ→ ⊥))→ ⊥

))
→ ⊥ ;

(A5) x = x ;
(A6) x = y → (ϕ(x)→ ϕ(y)) .

For each such schema, we can write a (∀∃)0-formula that recognizes whether
the code of a formula is in the schema. As the reader can check, most of these
specifications are rather trivial. However, the specifications of (A2), (A3), and
(A6) are more problematic. Formulae that are instances of the schema (A3) are
captured by the following predicate A3:

A3(f)
Def←→ (∀x ∈ domC f)(∀u ∈4 f)(∀v ∈5 f)(∀i ∈4 f)(∀t ∈5 f)[

x+ = domC f ∧ π2(fx) = u ∧ π3(fx) = v ∧ π2(fu) = i ∧ π3(fu) = t →
impl(f, fx, x, f

↼

0) ∧ forall(f, fu, u, f

↼

0) ∧
(∃j ∈ f

↼
0)[renamei(f, fv, v, f

↼

0) ∧ t = π3(fi)]
]
∧ Cod(f).

One can proceed similarly with (A6). As for (A2), we also need means to express
whether a variable has free occurrences in a formula. While this problem is
particularly hard to solve in general, it will be easy in the context in which it
will be needed.
We are now able to define

LAxiom(f)
Def←→ A1(f) ∨ A2(f) ∨ A3(f) ∨ A4(f) ∨ A5(f) ∨ A6(f),

which recognizes whether the code of a formula is a first-order logic axiom.
Depending on the theory we are considering, we also have several theory axioms
that are usually trivial to express. Using similar specifications, one can define
the TAxiom that holds whenever a formula code is an axiom in the theory. We
also put:

Axiom(f)
Def←→ LAxiom(f) ∨ TAxiom(f).

We define next the two predicates that hold when f is a left or a right copy of
g:

CLCopy(f, g)
Def←→ (∀i ∈ domf)(∀x ∈ π2(ranf))[x = π2(lastf) → (fi ∈ ran g ↔

(∃j ∈ domf)(j ≤ x ∧ PtBy(i, fj)) ∨ i = x)],

CRCopy(f, g)
Def←→ (∀i ∈ domf)(∀x ∈ π2(ranf))[x = π3(lastf) → (fi ∈ ran g ↔

(∃j ∈ domf)(j ≤ x ∧ PtBy(i, fj)) ∨ i = x)].

The formula PtBy(i, t) holds when the triple t has a pointer to the ith node.
This is clearly an (∃)0-formula, which can be written as:

PtBy(i, t)
Def←→

(
Symbol⇒(π1(t)) ∧ (i = π2(t) ∨ i = π3(t))

)
∨

(Symbol∀(π1(t)) ∧ i = π3(t)) ∨
(SymbolR(π1(t)) ∧ i = π3(t)) .

The temporary notation lastf can be eliminated by means of the rewriting rules
explained below:

– add (∀n ∈ dom f), involving a new n, in front of the quantificational prefix;
– conjoin n+ = dom f with the antecedent of the matrix;

– replace every occurrence of last f by the term fn.

The added complexity depends on the complexity of checking n+ = dom f that
normally has a ∀∃-prefix. Although this would yield a (∀∃∀)0-formula, we will
use it in a context in which we will be able to rewrite it as an (∃∀)0-formula,
hence we will be able to write the two predicates with (∀∃)0-formulae.
Given a code c, in order to recognize bound variables, we will consider a sequence
of the same length that contains the bound variables in each triple (subformula).
The following (∀∃)0-predicate establishes that b is the bound list of a code c:

BoundList(b, c)
Def←→ Fun(b) ∧ dom b = domC c ∧

(∀i ∈ domC c)(∀j ∈ domC c)(PtBy(i, bj)→ bj ⊆ bi) ∧
(∀i ∈ domC c)(∀v ∈4 b)

(
v ∈ bi ↔

(∃j ∈ domC c)(PtBy(i, bj) ∧ v ∈ bj) ∨
(Symbol∀(π1(fi)) ∧ π2(fi) = v)

)
,

where bi ⊆ bj is a shorthand for (∀x ∈ bi)x ∈ bj , so that BoundList(b, c) is clearly
(∀∃)0. When BoundList(b, c) holds and we encounter a variable v in some triple
ci, it is sufficient to check if v ∈ bi holds in order to know whether v is bound.

Proofs. Accessing the domain and the predecessor of a natural number can be
done with a (∀∃)0- and a (∀)0-formula, respectively. This can be problematic
when the former is in the antecedent of an implication and when the latter is
in the succedent of some implication, as we would almost certainly end up with
∀∃∀-formulae in both cases. To solve this problem, we will embed two sequences
that contain all the needed predecessors and domains in the definition of the
Proof predicate.
The idea is that a proof is a sequence composed of three parts: (i) a value at
index 0 that contains the point in the sequence that separates the other two
parts; (ii) a list of triples, one for each one of the subformulae of the formulae
that occur in the proof, that contain the subformula in the first projection, a
copy of the left child in the second, and a copy of the right child in the third
(between index 1 and f

↼

0 - 1); and (iii) a list of indices between 1 and f

↼

0 that
point to the formulae that are supposed to be the steps of the proof. We also
fill a list of bound variables for each of the subformulae in order to be able to
always tell which variables are bound in a given formula.

Proof′(f, x, p, d, df , b)
Def←→

Fun(f) ∧ Num(domf) ∧ Num(f(0)) ∧ f(0) ∈ domf ∧ df = domf
Fun(p) ∧ dom p = domf ∧ (∀i ∈ dom p)(i 6= 0→ pi = i−) ∧
Fun(d) ∧ dom d = domf ∧ (∀i ∈ dom d)(f(0) ∈ i→ di = dom fi) ∧
(∀i ∈ f(0))[Triple(fi) ∧ Form(π1(fi)) ∧ Form(π2(fi)) ∧ Form(π3(fi)) ∧

(NotAtom(fi)→ (∃j1, j2 ∈ i)(π1(fj1) = π2(fi) ∧ π1(fj2) = π3(fi)))] ∧
(∀i ∈ f(0))[i ∈ f(0) ∧ NotAtom(π1(fi)) ∧ i 6= 0→

CLCopy(π1(fi), π2(fi)) ∧ CRCopy(π1(fi), π3(fi))] ∧
(∀i ∈ domf)(f(0) ≤ i → fi ∈ f(0) ∧ fi 6= 0) ∧
Fun(b) ∧ dom b = f(0) ∧ (∀i ∈ f(0))(BoundList(bi, π1(fi))) ∧
(∀i, n, j ∈ domf)[df = n+ ∧ f(0) ≤ i → π1(f(f(n)) = x ∧ Ψ],

where the formula Ψ will be defined below. Clearly, NotAtom is easily definable
starting from last and the Symbol predicates. This is the point in the formula in
which d is implicitly used in order to be able to express last as an (∃)0-formula
occurring in antecedents. All the conjuncts, but the last one, enforce that the
three stated conditions hold on the formula. The last one states that x must
be the conclusion of the proof steps, and with the formula Ψ defined below we
intend to verify that all the steps are either axioms or results of the application
of some inference rule. Given a (∀∃)0-definition of Ψ , the whole formula plainly
becomes (∀∃)0.
The formula Ψ is the disjunction of the following four formulae:

Axiom(fi). Clearly, to recognize axiom (A6), we have to use the bound variables
list properly. This clearly does not raise the ∆0-complexity, as it is sufficient
to access the list that comes with just existential quantifiers.

Modus Ponens:
(∃j1, j2 ∈ i)(f(0) ∧ f(0) ≤ j2 ∧ Symbol⇒(π1(last(π1f(fj1))) ∧

π1(f(fi)) = π3(f(fj1)) ∧ π1(f(fj2)) = π2(f(fj1))).
Universal Generalization:

(∃j1 ∈ i)[f(0) ∧ π1(f(fj1)) = π3(f(fi)) ∧ Symbol∀(π1(last(π1(f(fi)))].

Rename Resolution:
(∀k ∈ domπ3(f(fpi)))(∀t ∈ ranπ3(f(fpi)))(∀j ∈ f(0))[
j = rfrom(lastf(fi)) ∧ t = π3(f(fpi))(k)→ ψ

]
∧ f(0) ≤ pi,

where rfrom extracts the variable that has to be renamed from a rename node
(depending on the encoding, with natural numbers it is (∀)0), and ψ checks is
a (big) formula that forces the nodes in the formula to be a renamed version
of the preceding formula. Hence, ψ just checks for each triple t if it contains
the variable that has to be renamed, and states that it is renamed in f(fi).
Clearly the entire formula is (∀∃)0.

Thus Ψ and also Proof′ are (∀∃)0. Finally, we have the (∀∃)0-specification:

Proof(p, x)
Def←→ Quintuple(p) ∧ Proof ′

(
π1(p), x, π2(p), π3(p), π4(p), π5(p)

)
.

5 Essential undecidability

What follows presupposes that an essential preliminary step for an arithmetiza-
tion of the syntax, namely a map ϕ 7→ dϕe sending every formula into a natural
number whence one can retrieve a formula ϕ′ such that ϕ′ a` ϕ, has been im-
plemented (cf. [7]). Our next lemma will be useful in exploiting such a “Gödel
numbering”.

Lemma 6. The function that associates a Cod, c, with its index k is strongly
representable in T ′ through the existential closure of a (∀∃)0-formula ϕind(c, k).

Lemma 7. The predicate Subst(c, t, d) that holds when the formula with code
d results from the formula with code c through substitution of the lowest-index
variable by the code of a term t is strongly represented in T ′ by a Σ1-formula
with a (∀∃)0-matrix ϕsub(c, t, d). More specifically, we have that for each formula
ϕ and term code t:

T ′ ` ∀d(Subst(dϕe, t, d)↔ d = d∀x(x = t→ ϕ)e).

In practice, we will write ϕsub(c, t, d, w), where w is an n-tuple containing all
the existentially quantified variables, to intend the same formula after dropping
its external existential quantifiers.

Lemma 8 (Fixpoint). Given a formula ϕ(c), there is a formula χ that has the
same free variables as ϕ, save c, such that:

T ′ ` χ↔ ∀c
(
c = dχe → ϕ(c)

)
,

where dχe is some code for the formula χ.

Proof. Let D(c, d, w) ≡ ϕsub(c, c, d, w) and assume, without loss of general-
ity, that w and d are not free in ϕ. By the previous lemma, we have that
for every formula ψ, ∀c

(
c = dψe → ∃d,wD(c, d, w)

)
, and ∀c

(
c = dψe →

∀d,w
(
D(c, d, w) → d = d∀c(c = dψe → ϕ)e

))
. Putting ψ = ∀d,w(D(c, d, w) →

ϕ(d)), we have: ∀c
(
c = d∀d,w(D(c, d, w) → ϕ(d))e → ∀d,w

(
D(c, d, w) → d =

d∀c(c = d∀d,w(D(c, d, w)→ ϕ(d))e → ϕ)e
))

. Let χ = ∀c(c = d∀d,w(D(c, d, w)→
ϕ(d))e → ∀d,w(D(c, d, w) → ϕ(d))). Then: ∀c∀d∀w

(
c = d∀d,w(D(c, d, w) →

ϕ(d))e ∧ D(c, d, w)→ d = dχe
)
. Since ∀c

(
c = dψe → ∃d,wD(c, d, w)

)
, we have

∃d,w
(
c = d∀d,w(D(c, d, w)→ ϕ(d))e ∧ D(c, d, w)

)
for any c such that c = dψe.

Thus, as c, d, w are not free in ϕ, we have:

χ ≡ ∀c
(
c = d∀d,w(D(c, d, w)→ ϕ(d))e →

∀d,w(D(c, d, w)→ ϕ(d))
)
↔ ϕ(dχe).

In general, c = (k)C is a Σ1-formula with a (∀∃)0-matrix, whilst χ can be seen
as the universal closure of the formula obtained from ϕ by eliminating its un-
bounded quantifiers. In general, c = (k)C is a Σ1-formula with a (∀∃)0-matrix,
whilst χ can be seen as the universal closure of the formula obtained from ϕ by
eliminating its unbounded quantifiers. When we take ϕ(x) ≡ ∀p(¬Proof(p, x)),
which is a Π1-formula with a (∃∀)0 matrix, then also χ is a Π1-formula with
(∃∀)0-matrix. This fact can be exploited to apply a Gödel incompleteness theorem-
like argument.

Theorem 2. If T ′ is Cod-consistent, i.e.,

(@α ∈ L∈)
(
T ` ∃x

(
Cod(x) ∧ α

)
∧ (∀c ∈ Cod)

(
T ` ¬α(c)

))
,

then it is incomplete with respect to the class of Σ1-formulae with a (∀∃)0-matrix.

Proof. By applying the fixpoint lemma on the formula ϕ(x) = ∀p(¬Proof(p, x)),
we obtain a formula χ such that:

T ′ ` χ↔ ∀p(¬Proof(p, dχe)).
As T ′ is Cod -consistent, it neither proves nor disproves χ. Therefore, since ¬χ
is a Σ1-formula with a (∀∃)0-matrix, then T ′ is incomplete with respect to this
class of formulae. ut

The usual computability notions on functions over natural numbers can naturally
be extended on codes thanks to the fact that their index can be computed. If we
take a recursively axiomatizable theory Θ on L∈, the collection of the indices
of its axioms is a recursive set. Therefore, as computable functions are strongly

representable, also the collection of code indices C ′ is faithfully representable in
T ′, i.e., there is a formula ϕC′ such that n ∈ C ′ ⇔ T ′ ` ϕC′(n). We saw that
also the correspondence between codes and their indices is strongly representable
through the formula ϕind. Thus, the collection C of codes of the axioms of
the theory is faithfully representable through the following formula ϕC(x) ≡
∃y(ϕind(x, y) ∧ ϕC′(y)). Clearly, for every formula ϕ of L∈, assuming Cod-
consistency, we have: T ′ ` ϕ ⇔ T ′ ` ∃y Proof(ϕ, y), and, in particular, when
we instantiate ϕ with ϕC(c): T ′ ` ϕC(c) ⇔ T ′ ` ∃y Proof(ϕC(c), y). Thence:

C(x) = ∃z, u, y, w
(
z = dϕCe ∧ ϕsub(z, x, u, w) ∧ Proof(u, y)

)
is Σ1-formula with a (∀∃)0-matrix that faithfully represents the collection of
codes C.
From the previous discussion, we have the following result:

Lemma 9. If the theory T ′ is Cod-consistent, every r.e. collection of codes C
is faithfully representable through a Σ1-formula C with a (∀∃)0-matrix.

Hence, we can state our main result:

Theorem 3. Let Θ be a recursively axiomatizable, Cod-consistent extension of
the theory T ′. Then Θ is incomplete with respect to the collection of Σ1-formulae
with a (∀∃)0-matrix.

Proof. Let C be the r.e. collection of codes of the theorems in Θ. It suffices to
refer the fixpoint lemma to ϕ(c) ≡ ¬C(c). ut

To resume the discussion on decidability in the Introduction, we state:

Corollary 2. In any recursively axiomatizable, Cod-consistent extensions of ei-
ther Ts or Tf , the decision problem for the collection of (∀∃)0-formulae is algo-
rithmically unsolvable.

6 Conclusions

The claim just made is closely akin to a result in [1, Sec. 2], but the framework
in which this paper has cast Corollary 2 is much broader. Instead of referring
the undecidability of (∀∃)0-formulae to a full-fledged set theory, we have been
working under very weak, explicit axiomatic assumptions; moreover, our lim-
iting results contribute to a general investigation on essential (set-theoretic)
undecidability.

We have striven, while revisiting the material of [10], to balance transparency
of the encodings with complexity of the undecidable collection of formulae; and
yet, we expect that further work along the lines of this paper—possibly calling
into play also the milestone result [8]—can improve this tradeoff.

References

1. Cantone, D., Omodeo, E.G., Panettiere, M.: From Hilbert’s 10th problem to slim,
undecidable fragments of set theory. In: Cordasco, G., Gargano, L., Rescigno, A.A.
(eds.) Proc. of the 21st Italian Conf. on Theoretical Computer Science, ICTCS
2020. CEUR Workshop Proc., vol. 2756, pp. 47–60. CEUR-WS.org (2020)

2. Costantini, S., Pitoni, V.: Towards a logic of “Inferable” for self-aware transparent
logical agents. In: Musto, C., Magazzeni, D., Ruggieri, S., Semeraro, G. (eds.)
Proc. of Italian Workshop on Explainable Artificial Intelligence, XAI.it@AIxIA
2020, Online Event, November 25-26, 2020. CEUR Workshop Proc., vol. 2742, pp.
68–79. CEUR-WS.org (2020)

3. Formisano, A., Omodeo, E.G., Policriti, A.: Three-variable statements of set-
pairing. Theoretical Computer Science 322(1), 147–173 (2004)

4. Hill, P.M., Lloyd, J.W.: The Gödel programming language. MIT Press (1994)
5. Jech, T.: Set Theory. Springer Monographs in Mathematics, Springer-Verlag Berlin

Heidelberg, Third Millennium edn. (2003)
6. Levy, A.: A hierarchy of formulas in set theory, vol. 57. Providence, RI: American

Mathematical Society (AMS) (1965)
7. Panettiere, M.: Essential undecidability: Foundations versus Proof Technology.

Master’s thesis, Università degli Studi di Catania, Italy, 83 pp. (July 28, 2021)
8. Parlamento, F., Policriti, A.: The logically simplest form of the infinity axiom.

Proc. of the American Mathematical Society 103(1), 274–276 (1988)
9. Parlamento, F., Policriti, A.: Undecidability results for restricted universally quan-

tified formulae of set theory. Comm. on Pure and Applied Mathematics 46(1),
57–73 (1993)

10. Parlamento, F., Policriti, A.: Decision procedures for elementary sublanguages of
set theory. IX. Unsolvability of the decision problem for a restricted subclass of
the ∆0-formulas in set theory. Comm. on Pure and Applied Mathematics 41(2),
221–251 (1988)

11. Robinson, R.M.: An essentially undecidable axiom system. In: Proc. of the Interna-
tional Congress of Mathematicians (Harvard University, Cambridge, MA, August
30–September 6, 1950). vol. 1, pp. 729–730. AMS, Providence, RI (1952)

12. Tarski, A.: Sur les ensembles fini. Fundamenta Mathematicae VI, 45–95 (1924)
13. Vaught, R.L.: On a theorem of Cobham concerning undecidable theories. In: Nagel,

E., Suppes, P., Tarski, A. (eds.) Proc. of the 1960 International Congress on Logic,
Methodology, and Philosophy of Science. pp. 14–25. Stanford Univ. Press (1962)

