
Two algorithms for fast 2D node generation: Application to
RBF meshless discretization of diffusion problems and image
halftoning
Riccardo Zamolo *, Enrico Nobile
Department of Engineering & Architecture, University of Trieste, via Alfonso Valerio 10, 34127 Trieste, Italy

a r t i c l e i n f o

 Accepted 15 March 2018

Keywords:
Meshless methods
Local RBF
Node/point generation algorithms
Quadtree
Dithering
Stippling

a b s t r a c t

Mesh generation techniques for traditional mesh based numerical approaches such as FEM
and FVM have now reached a good degree of maturity. There is no such an acknowledged
background when dealing with node generation techniques for meshless numerical ap-
proaches, despite their theoretical simplicity and efficiency; furthermore node generation
can be put in connection with some well-known image approximation techniques. Two
node generation algorithms are here proposed and employed in the numerical solution of
2D steady state diffusion problems bymeans of a local Radial Basis Function (RBF)meshless
method. Finally, such algorithms are also tested for grayscale image approximation through
stippling.

1. Introduction

The introduction and development of mesh based numerical techniques for the discretization of PDEs have led to an
analogous growth and improvement of mesh generation techniques [1]. In particular, unstructured meshing is crucial when
dealingwith engineering relevant geometries with generic shapes; therefore there is awide andwell established knowledge
in the field of unstructured mesh generation [2].

Emerging numerical techniques such as meshless (or mesh-free) approaches for the solution of PDEs [3–5] only require a
proper node distribution and no additional geometrical data to define a spatial discretization of the problem; obviously, this
appealing advantage over mesh-based approaches relies upon the availability of node generation techniques which have to
be simple, fast and robust.

Up to now, only a few node generation algorithms have been proposed for the specific use with meshless methods [6–8];
nonetheless such approaches confirmed that node generation can be easier and faster than traditional mesh generation.
Recently, another advancing-front type algorithm has been proposed for 2D node generation [9], which showed the
possibility to deal with complex boundaries and strong node density variations, still maintaining computational speed and
algorithmic simplicity.

In this work we propose two different algorithms for the fast generation of 2D node distributions which are suitable for
RBF meshless discretization of PDEs: an initial node distribution, which satisfies the prescribed nodal spacing, is generated
and then iteratively refined in order to obtain a locally isotropic node distribution; both algorithms are characterized by
simplicity and high node generation rates (≈65000 nodes per second on a single core).
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Several test cases are carried out using the node distributions generated by the proposed algorithms in order to solve 2D
steady state heat conduction problems (diffusion problems) through a local RBF collocation meshless method; the results
are also compared to Finite Element Method (FEM) and Finite Difference (FD) approaches, showing that the coupling of our
node generation algorithms with the above-mentioned meshless method can be highly effective in the practical simulation
of heat conduction problems (but not only) over complex shaped domains.

Another application of node generation algorithms is stippling, a technique used for the approximation of grayscale
images through the 2D placing of scattered points; some visual test cases are also presented for this problem in order to
show how the proposed algorithms can also be used for an efficient and accurate halftoning approximation of grayscale
images.

2. 2D Node generation algorithms

2.1. Inputs of the problem

The node generation problem here considered assumes a prescribed spacing function s(x) and the shape of the domain
Ω as input data to generate an isotropic distribution of nodes X(s) within Ω . The prescribed spacing function s(x) defines
the local linear spacing between the nodes, and in 2D it is formally defined by:

1
s2(x)

= lim
A→x

k→+∞

#nodes(X(s/k), A)
k2µ(A)

(1)

where k ∈ R+, A is a portion of Ω whose measure (area) is given by µ(A) and #nodes(X, A) gives the number of nodes of
distribution X lying inside A; in the limit (1) Amust satisfy µ(A) ≥ ck−α for some constants α < 2 and c > 0.

2.2. Notes on iterative node repel approach

Both proposed algorithms are characterized by two phases: an initial node placing phase and an iterative refinement
phase; the initial phase creates a distribution whose node spacing matches the prescribed spacing function s(x) except for
somehigh spatial frequency error that is smoothed out in the refinement phasewhich improves the local quality and isotropy
of the distribution,while a fixed boundary node distribution, obeying s(x), is considered; in the refinement phase, based upon
a node repel algorithm, nodes move according to the mutual radial repulsion forces of the 9 nearest neighboring nodes:

∆xi = ωs(xi)
9∑

NB=1

eji

[
4
(
rij
s̄ij

)2

+ 1

]−2
(2)

where ∆xi is the displacement of node xi, rij = ∥xi−xj∥ is the distance between a couple of nodes i and j, j = iNB is the index
of the NBth nearest neighbor of node i, eji = (xi − xj)/rij is the unit vector from node j to node i, s̄ij = [s(xi)+ s(xj)]/2 is the
mean spacing between the two nodes and ω ∈ [0.5, 1] is a relaxation parameter.

The use of 9 neighbors in Eq. (2) allows a better behavior of the refinement process during the initial iterations when the
local node anisotropy can be very high. The choice of the actual nearest neighboring nodes is performed after each single
repel step since this operation has positive effect on the node distribution quality and has a negligible cost (only few squared
distances have to be evaluated).

Eq. (2) is asymptotically correct in the following sense: if an isotropic distribution of nodes X(s) satisfies rij = s̄ij for
each node i and for each of its 9 neighbors j = iNB, then ∆xi/s(xi) depends only on the local node anisotropy, which is
by definition ‘‘small’’ or zero, and therefore node displacements will be ‘‘small’’ or zero; the contrary does not hold: if the
refinement process converges, the final stable node configuration is not guaranteed to satisfy rij = s̄ij (consider a uniform
cartesian node distribution and a constant spacing function), but hopefully this last condition will be ‘‘sufficiently’’ satisfied.

A two level strategy is employed to improve the iterative refinement: we found that an effective choice is to alternate 1
iteration with a relaxation factor ω = 0.9 followed by 7 iterations with ω = 0.5, therefore the number of iterations here
presented will be multiple of 8. In fact, ω acts as a multiplier in Eq. (2), setting the amount of displacement for each node:
the choiceω = 0.9 (which would cause the divergence of the process if iterated indefinitely) for just 1 iteration can partially
avoid the stagnation of the refinement process when locally equilibrated configurations arise, since large displacements are
allowed for that single iteration. We note that this problem could also be avoided introducing some random displacement
∆xi = ωRs(xi)UeU , with U a uniform random variable in [−1, 1], eU a uniform random unit vector and ωR ∈ (0, 0.5] the
corresponding displacement multiplier.

The initial node placing phase is required because the node repel iterative refinement algorithm efficiently smooths out
only the high spatial frequency component of the error between the spacing of the node distribution and the prescribed
spacing s, while the low spatial frequency component would require a very high number of iterations to be significantly
reduced.

This property is highlighted by Fig. 1, where two initial 1-D distributions with high and low frequency error are subjected
to refinement iterations; in the first case the deviation σ [∆x] between the spacing ∆x within nodes and the prescribed
spacing s = cost rapidly decreases to 0 within a small number of repel iterations, while in the second case the deviation
stagnates for a large number of repel iterations.
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Fig. 1. Refinement algorithm evolution for 1-D initial distributions with high (top) and low (bottom) frequency error in the case of a prescribed spacing
s = cost and N = 80 nodes.

2.3. The Overlapping Crossed Columns (OXC) algorithm

Starting from the smallest box (alignedwith x−y directions) bounding domainΩ , this algorithm proceeds by filling each
vertical strip in which the box is partitioned; these operations are then repeated reversing the spatial directions, therefore
proceeding on horizontal strips.

The pseudocode for this procedure is reported in Algorithm 1, where:

– S(BoundingBox, s, dir) are the vertical (dir = dx) or horizontal (dir = dy) strips in which BoundingBox is partitioned;
each of these strips has width w along direction dir such that w = max swithin each strip;

– GenerateNodesOXC(·, Strip, s) fills the whole Strip using spacing s;
– LinearDistribution(·, Strip, s) fills Strip as long as w/2 < s ≤ w, where w is the width of Strip;
– H(Strip) are the two vertical substrips of the unfilled portion of Strip;
– ParentStrip(Strip) is the unfilled portion of the parent strip of Strip.

Algorithm 1 Overlapping Crossed Columns (OXC) 2D node generator
Input: domain Ω , prescribed spacing function s
Output: NodeDistribution
1: NodeDistribution← empty node distribution
2: BoundingBox← smallest box bounding domain Ω

3: for each dir = dx, dy do
4: for each Strip ∈ S(BoundingBox,

√
2s,dir) do

5: GenerateNodesOXC(NodeDistribution,Strip,
√
2s)

6: function GenerateNodesOXC(Nodes,Strip,s)
7: StripState← LinearDistribution(Nodes,Strip,s)
8: switch StripState do
9: case s decreasing

10: for each SubStrip ∈ H(Strip) do
11: GenerateNodesOXC(Nodes,SubStrip,s)
12: case s increasing
13: ParentStrip← ParentStrip(Strip)
14: GenerateNodesOXC(Nodes,ParentStrip,s)
15: end function

We point out that the
√
2 factor for spacing s in Algorithm 1 is due to the double call to GenerateNodesOXC in order to

ensure the correct final spacing.
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Fig. 2. Node placing with OXC algorithm.

A graphical representation of the procedure is reported in Fig. 2 in the case of a linear spacing s decreasing with y;
LinearDistribution(Nodes, Strip, s) fills Strip placing nodes with an alternating horizontal offset o = ±(w − s)/2 from the
vertical midline, while the vertical offset is ∆y = s2/w which guarantees a correct mean spacing within Strip.

Function LinearDistribution, which is the core of the OXC algorithm, consists of roughly 50 lines of C code, while the
whole OXC algorithm has been implemented in roughly 150 lines of C code.

To the best of authors’ knowledge, the principles of OXC algorithmhere presented have never been previously considered
in literature for node/point generation processes, and are here introduced for the first time.

2.4. The Modified Quadtree (MQT) algorithm

The Quadtree algorithm [10] is a widely used space partitioning technique; mesh generation using such algorithm is
also widely known [11], while an example of quadtree node generator for meshless discretizations can be found in [8]. In
order to correctly account for space varying node spacing, we propose a modification of the original algorithm as reported
in Algorithm 2, where:

– InitializeNumerosity(s, BoundingBox) initializes a numerosity function that gives the prescribed number of nodes,
evaluated from prescribed spacing s, to be contained in each square sub-box of BoundingBox;

– GenerateNodesMQT(·, Box,M) fills the whole square Box using numerosity functionM;
– InsertNodes(·, Box, i) fills Boxwith an integer number i ≤ 3 of nodes;
– DitheringMQT(M, err, Box) is the Quadtree version of the dithering algorithm: the quantization error err of Box is

spread onto the unvisited neighboring boxes, correcting the numerosity functionM;
– Q(Box) are the four square sub-boxes of Box;

Algorithm 2Modified Quadtree (MQT) 2D node generator
Input: domain Ω , prescribed spacing function s
Output: NodeDistribution
1: NodeDistribution← empty node distribution
2: BoundingBox← smallest square bounding domain Ω

3: Ms ← InitializeNumerosity(s,BoundingBox)
4: GenerateNodesMQT(NodeDistribution,BoundingBox,Ms)
5: function GenerateNodesMQT(Nodes,Box,M)
6: m← M(Box)
7: if ⌊m⌉ ≤ 3 then
8: InsertNodes(Nodes,Box,⌊m⌉)
9: QuantizationError ← ⌊m⌉ −m

10: DitheringMQT(M,QuantizationError ,Box)
11: else
12: for each SubBox ∈ Q(Box) do
13: GenerateNodesMQT(Nodes,SubBox,M)
14: end function

Themainmodification of the traditional Quadtree approach is the introduction of a dithering correction of the numerosity
function as the node placing proceeds; dithering is a widely known image processing algorithm which diffuses the
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Table 1
Features of OXC and MQT algorithms.

Algorithm Complexity Memory Robustness

OXC O(N) O(N) Low
MQT O(N log s−1min) O(s−2min) High

quantization error of a pixel onto its neighboring pixels in order to maintain a negligible mean error across the image. We
chose the well known Floyd–Steinberg dithering algorithm [12], whose weights stencil is the following:[

− ◦ 7/16
3/16 5/16 1/16

]
(3)

where ◦ is the pixel being processed and the algorithm proceeds by lexicographic order. This algorithm is implemented in
order to diffuse the quantization error between the integer number of nodes that are placed in a box and the corresponding
non-integer prescribed numerosity through the Quadtree data structure; this task is performed by DitheringMQT, which in
our implementation consists of roughly 30 lines of C code, while thewholeMQT algorithm has been implemented in roughly
200 lines of C code.

2.5. Features of OXC and MQT algorithms

Table 1 summarizes three main features of both proposed algorithms, namely, algorithmic complexity, memory con-
sumption and robustness against strong node density variations.

The OXC algorithm is the simplest and has no special needs for the data structure: only a linear array whose length is
dynamically adjusted during the computation is needed to store the coordinates of the nodes; both complexity andmemory
consumption are linear in the number of nodesN . These favorable characteristics are counterbalanced by the low robustness
against steep/discontinuous spacing functions: the OXC algorithm, by its naturewithin current implementation, can produce
wrong node distributions for strong node density variations which are not aligned with the cartesian axes.

On the contrary, the MQT algorithm has a slightly less straightforward implementation since it needs a Quadtree
hierarchical data structure in order to diffuse quantization errors on different hierarchical levels. This non-trivial data
structure,which requiresO(s−2min)memorywhere smin is theminimumvalue of the spacing function, implies a complexity that
also depends upon smin; these properties are justified by the high robustness against strong or even discontinuous spacing
functions.

3. Local RBF collocation meshless discretization

3.1. Problem definition

In order to test and compare the proposed node generation algorithms when coupled with a meshless approach,
a RBF-based meshless method is employed to discretize the 2D Poisson equation:

∇
2T = q (4)

defined on domain Ω , and subjected to Dirichlet boundary conditions T = T̄ on ΓD and Neumann boundary conditions
∂T/∂n = n · ∇T = f̄ on ΓN , where ΓD ∪ ΓN = ∂Ω is the domain boundary and n is the exterior normal to the boundary.
Eq. (4) is representative of steady state diffusion problems, such as heat conduction in a homogeneous media with internal
heat generation.

3.2. Numerical method

We briefly present the local Radial Basis Function collocation meshless method employed in [13,14] for the numerical
solution of thermal problems.

RBF interpolation.
The unknown field T around x is approximated through the following expansion:

T (x) =
∑
j∈Jn(x)

ajϕ(∥x− xj∥)+ b · x+ c (5)

where Jn(x) represents the indices j of the n nodes xj closest to x. T (x) is therefore a linear combination of n radial functions
ϕ centered at the n local nodes xj plus a linear polynomial in x.

Hardy’s Multiquadric (MQ) [15] has been chosen as RBF:

ϕ(r) =
√
1+ (εr)2 (6)
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where the shape factor is rescaled as ε = smaxε̄/dn: ε̄ is the rescaled shape factor, smax is the maximum prescribed spacing
on Ω and dn is the local subdomain size, defined as the root mean square distance of the n local nodes from their midpoint.

The coefficients aj, b and c can be computed writing Eq. (5) for the m ≤ n local nodes which do not lie on the Neumann
boundary ΓN :

T (xi) = Ti (7)

where Ti is the unknown field in xi. The following additional relations are needed because of the linear polynomial in (5):
n∑

j=1

aj = 0 ,

n∑
j=1

xjaj = 0 ,

n∑
j=1

yjaj = 0. (8)

If any of the local nodes lies on the Neumann boundary, for each of these n−mNeumann nodes the corresponding boundary
condition must be satisfied:

n · ∇T (xi) = f̄i (9)

where ∇T (·) is given by the gradient of Eq. (5).
Collecting the n coefficients ai, the m unknown values Ti and the n − m Neumann boundary contributions f̄i in column

vectors a, T and f̄, respectively, the interpolation system, in compact form, is the following:

G

{a
b
c

}
=

⎧⎨⎩T
0
f̄

⎫⎬⎭ (10)

In the perspective of developing simple and light approaches for the solution of practical problems for which a 2nd order
accuracy can be enough, we chose a small number of local nodes n varying from 6 to 8; larger stencil sizes are not considered
in this work, in spite of the benefits reported in [16,17] where stencil sizes varied in the range 10 < n < 100, obtaining up
to 9th order accuracy.

Finally, we note that the asymptotic number of edges per node in a triangular mesh with recursive partitioning is exactly
6 [18], corresponding to the choice n = 7; an analogous behavior is observed with the node refinement process previously
described: each node tends to be surrounded by 6 nearest neighbors, which is an obvious fact since it is the configuration
which maximizes the node density.

Collocation.
Eq. (4) with RBF approximation (5) becomes:

∇
2T (x) =

∑
j∈Jn(x)

aj∇2ϕ(∥x− xj∥) = q(x). (11)

Writing Eq. (11) for a generic node xk gives:

aTL(xk) = q(xk) (12)

where L(xk) is the column vector of the Laplacian of ϕ evaluated in xk for each of the n neighbors xj. Recalling aT from Eq. (10)
we obtain:{

TT 0 f̄T
}
[GT
]
−1
a L(xk) = q(xk) (13)

where [GT
]
−1
a is the left (n + 3) × n submatrix of [GT

]
−1. Eq. (13) made valid for each node xk which does not lie on the

boundary gives the following linear system:

AIITI = q− AIDTD − f̄Ne (14)

where the subscripts I, D and Ne refer to Internal, Dirichlet and Neumann contributions, respectively; system (14) has been
solved through direct LU decomposition of AII since it is unsymmetric.

Error norms.
The comparison between the computed solution Tcomp and the corresponding analytical solution Tan has been done

computing the normalized root mean square norm of the error (NRMSE):

NRMSE =

√
1

µ(Ω)

∫
Ω

(
Tcomp − Tan
Tmax − Tmin

)2

dΩ (15)

where µ(Ω) is the measure (area) of Ω; the 2D integral has been approximated by numerical quadrature using the squared
prescribed spacing function s2 as quadrature weight (s2 is an approximation of the area around each node).

6
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Fig. 3. Test case A: geometry (a) and node distributions: specific/regular (b), OXC (c) and MQT (d), N ≈ 1000 nodes.

Finite Element results have been obtainedusing COMSOLMultiphysics R⃝ FEA software using triangularmesheswith linear
elements (3 nodes); the number of mesh nodes is kept as close as possible to the number of unknowns of the corresponding
meshless solution, as well as the element sizing which is chosen to be as close as possible to the prescribed spacing function
s(x).

The computer times for FEM solution (FE discretization and system solution) are in the same order of magnitude of the
ones for meshless solution (local RBF discretization and system solution) here presented; this is mainly due to the choice of
linear elements in FEM for which the stencil has approximately 7 nodes using high quality triangular meshes, which is very
close to the stencil size n = 6÷ 8 for the present meshless discretization.

4. Results

4.1. Test case A: 1/4 of a circular annulus

The geometry of the problem is reported in Fig. 3a where the center of the circular sector is also the origin for the radial
r coordinate; the ratio Ri/Re is chosen to be 0.05. The chosen analytical solution is the following:

Tan = log(r/Re) (16)

which is harmonic: q = ∇2Tan = 0, while the prescribed spacing function is chosen to be s ∝ r .
A specific and regular geometry dependent node distribution is reported in Fig. 3b, while Fig. 3c and 3d show the node

distributions generated by the proposed approaches, OXC and MQT respectively.
The following boundary conditions have been considered:

• Case A1: Dirichlet BC on the whole boundary;
• Case A2: Neumann BC on sides 2 and 4, Dirichlet BC elsewhere.

7
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Fig. 4. Test case A1: errors vs number of refinement iterations for n = 6 (left) and n = 8 (right) neighboring nodes, N ≈ 10000 nodes and ε̄ = 1.

First of all we investigated the effect of the number of refinement iterations on the error for n = 6 and n = 8, Fig. 4, for
case A1 with N ≈ 10000 nodes and ε̄ = 1. For both cases and both generation algorithms it can be seen that the use of
the refinement algorithm is extremely effective in the error reduction within the first 15÷ 25 iterations, while beyond that
point the error shows no significant improvement; for this reason we chose a fixed number of 24 refinement iterations for
every other result within this test case.

When dealing with Multiquadrics RBF, it is important to carry out a preliminary sensitivity analysis in order to choose
the appropriate rescaled shape factor ε̄; such analysis is reported in Fig. 5 for both test cases A1 and A2, for each number of
local nodes n = 6, 7, 8 and N ≈ 10000 nodes; FEM results are also displayed as reference.

We first point out that rescaled shape factors ε̄ below 1 have little influence on the error, while above 1 the error can
grow by a factor of 10 or 100; for this reason we chose ε̄ = 1 for the following results presented in this test case. Another
interesting fact that can be observed is that errors obtained with the regular node distribution are always larger than the
errors from the refined distributions (MQT and OXC); this can be due to the fact that the regular node distribution here
employed has optimal subdomain node arrangements with n = 9 nodes, while with n < 9 the refined distributions are
more effective.

The ε̄ dependency curves also show the influence of boundary conditions: for each case n = 6, 7, 8 the error grows by
roughly a factor of 5÷10 passing from A1 (Dirichlet BC) to A2 (Mixed BC), confirming the problem of sensitivity to boundary
conditions in local RBF approaches. However, an appropriate choice of the rescaled shape factor, for example ε̄ = 1, can lead
to small errors than FEM in each of the presented cases if refined distributions are employed.

Fig. 6 shows the convergence curves (i.e. NRMSE vs total number of nodes N) for both test cases A1 and A2, for each
number of local nodes n = 6, 7, 8 and ε̄ = 1. Again, the regular node distribution produced greater errors than refined
distributions, although an almost perfect 2nd order accuracy behavior in space (i.e. NRMSE ∼ N−p/2 for p = 2 in 2D) for
each of the considered cases; the refined distributions reveal also 2nd order accuracy for each case, despite an irregular
behavior.

Besides a common 2nd order accuracy, an important conclusion that can be desumed from the analysis of convergence
curves is that the employment of refined distributions (MQT and OXC) always produces better results, in terms of error,
compared to regular distributions; finally, MQT and OXC node distributions show similar convergence curves in all cases.

The following points summarize the results for this test case:

• A small number of node refinement iterations (≈ 24) is enough to reduce the final error by some orders of magnitude,
for both OXC and MQT node distributions;
• Refined OXC andMQT node distributions always allow smaller errors than the regular node distributions for the small

stencil sizes here employed (n < 9);
• Nearly 2nd order accuracy in each case;
• Significant influence of Neumann BC;
• Small shape factors ε̄ are preferable, within the limits of numerical stability (well-known fact).

4.2. Test case B: L shaped domain

The geometry of the problem is reported in Fig. 7a, while the chosen analytical solution is the following:

Tan =
( r
L

)β

sin(βϑ) , β = 2/3 (17)

8
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Fig. 5. Error vs rescaled shape factor ε̄ for n = 6 (a), n = 7 (b) and n = 8 (c) neighboring nodes, test case A1 (1) and test case A2 (2), N ≈ 10000 nodes.

which possesses unbounded radial derivatives in r = 0; the analytical solution (17) is also harmonic: q = ∇2Tan = 0. The
prescribed spacing function is chosen to be s ∝ r1/4 in order to adequately resolve the singularity in r = 0.

9
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Fig. 6. Error vs number of nodes N for n = 6 (a), n = 7 (b) and n = 8 (c) neighboring nodes, test case A1 (1) and test case A2 (2), ε̄ = 1.

A specific and regular geometry dependent node distribution is reported in Fig. 7b, while Fig. 7c and 7d show the node
distributions generated by the proposed approaches, OXC and MQT respectively; Dirichlet boundary conditions have been
imposed along the whole boundary.

10
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Fig. 7. Test case B, geometry (a) and node distributions: specific/regular (b), OXC (c) and MQT (d), N ≈ 5000 nodes.

Fig. 8. Test case B: errors vs number of refinement iterations for n = 6 (left) and n = 8 (right) neighboring nodes, N ≈ 10000 nodes and ε̄ = 1.

As in test case A, we first investigated the effect of the number of refinement iterations on the error for n = 6 and n = 8,
Fig. 8, with N ≈ 10000 nodes and ε̄ = 1. Except for the OXC node distribution for n = 8, it can be seen that, again, the use
of the refinement algorithm is extremely effective in the error reduction within the first 15 ÷ 25 iterations, while beyond

11



4316 R. Zamolo, E. Nobile / Computers and Mathematics with Applications 75 (2018) 4305–4321

that point the error does not show monotonic behavior; for this reason we chose again a fixed number of 24 refinement
iterations for every other result within this test case.

The results of sensitivity analysis with respect to the rescaled shape factor ε̄ are reported in Fig. 9a for each number of
local nodes n = 6, 7, 8 and N ≈ 10000 nodes; FEM results are also displayed as reference.

From these figures it can be seen that within the considered range for ε̄, it has negligible effect on the error for each type
of node distribution, also because of the chosen type of analytical solution with a singularity.

However, as in test case A, it can be observed that errors obtained with the regular node distribution are again larger
than the errors from the refined distributions (MQT and OXC), especially for n = 7, 8 neighboring nodes; in this case the
regular node distribution here employed does not have optimal subdomain node arrangements with n = 9 nodes, but
still, for n = 7, 8 the refined distributions are more effective and lead to smaller errors than FEM results for all cases.
Since the rescaled shape factor does not affect the results, we chose ε̄ = 1 for the following results within this test
case.

Fig. 9b shows the convergence curves for each number of local nodes n = 6, 7, 8 and ε̄ = 1. As observed from sensitivity
analysis with respect to ε̄, the regular node distribution produces greater errors than refined distributions and shows almost
perfect 2nd order accuracy behavior for n = 7, 8, while for n = 6 all convergence curves show similar behavior; the
refined distributions reveal also 2nd order accuracy for n = 7, 8, despite an irregular behavior as in the previous test
case.

Again, from convergence curves for n = 7, 8 it can be desumed that the employment of refined distributions (MQT and
OXC) can produce better results compared to regular distributions; finally, MQT and OXC node distributions show similar
convergence curves in all cases.

The following points summarize the results for this test case:

• Again, a small number of node refinement iterations (≈ 24) is enough to reduce the final error by some orders of
magnitude, for both OXC and MQT node distributions;
• Refined OXC and MQT node distributions always allow smaller errors than the regular node distributions, but the

difference is less evident than test case A;
• An approximate≈ 2nd order trend can be desumed for the accuracy;
• Shape factor influence is negligible in the range [0.1, 10] here considered;
• The error strongly depends upon the accurate solution near the singularity: the influence of the node distribution near

the corner is stronger than in the remaining part of the domain;

4.3. Test case C: image defined spacing function

In order to showhow the proposednode generation algorithms are also able to dealwith different node density variations,
we tested our generators with image defined spacing functions; given a square image defined on Ω = [0, 1]2 by RGB values
of pixels (R,G, B ∈ [0, 1]) and their brightness ν defined as:

ν =
R+ G+ B

3
(18)

we define the spacing function s to be proportional to:

s ∝ 1+ 2ν2 (19)

while the reference solution Tan is here indirectly defined by the RHS of Eq. (4):

∇
2Tan = qan (20)

defined over the square domain Ω = [0, 1]2 with zero valued Dirichlet boundary conditions:

Tan(∂Ω) = 0. (21)

The RHS of Eq. (20) is then defined as:

qan = (η −min
Ω

η)2 (22)

where η = 1 − ν is the brightness complement; therefore the RHS term qan ≥ 0 increases where the reference image has
low brightness while approaches 0 where the reference image reaches its maximum brightness: on the contrary the spacing
function defined by Eq. (19) assumes small values (thick node distribution) in the former case and large values (coarse node
distribution) in the latter case.

The reference solution Tan is then evaluated by solving Eq. (20) with a 2nd order FD discretization (5 points stencil) on a
uniform 2048× 2048 grid and an accurate solver based on matrix eigendecomposition.

12
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Fig. 9. Test case B: error vs rescaled shape factor ε̄ with N ≈ 10000 nodes (a) and error vs number of nodes N with ε̄ = 1 (b) for n = 6 (1), n = 7 (2) and
n = 8 (3) neighboring nodes.

The classical Lena test image (512 × 512 pixels, grayscale) shown in Fig. 12a has been employed; Fig. 10 shows
the corresponding node distributions generated by the proposed approaches, OXC and MQT respectively, with 24 node
refinement iterations.

13
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Fig. 10. Test case C, node distributions: OXC (left) and MQT (right) with N ≈ 15000 nodes.

Fig. 11. Test case C: error vs number of nodes N for n = 7 (left) and n = 8 (right) neighboring nodes with ε̄ = 1.

Fig. 11 shows the convergence curves for n = 7, 8 neighboring nodes, a rescaled shape factor ε̄ = 1 and 24 node
refinement iterations; convergence curves obtained with the above mentioned FD method are also reported as reference.
All these convergence curves have irregular behavior, due to the irregular behavior of the image defined RHS term qan;
however, the curves from bothmeshless refined distributions (OXC andMQT) show similar behavior with FD curves with an
approximatively overall 2nd order accuracy, while above N ≈ 30000 nodes the meshless results exhibit some convergence
issue, especially with n = 7. This could be due to the employment of a spacing function swith steep node density variations
combinedwith an irregular behavedRHS term qan; however, this is a limit case in the application of proposednode generation
algorithms for meshless discretization of diffusion problems.

4.4. Test case D: stippling

This test case will not present any numerical result, but only some visual results of the application of the proposed algo-
rithm for the halftone approximation of images through the stippling technique [19]. Stippling is employed to approximate
the continue halftones of a grayscale imagewith an adequate distribution of equally sized black dots over awhite background
(or vice versa: white over black); it differs from the dithering techniques which are widely used in image processing [20]
where the black dots can only have fixed positions and sizes (pixels).

From this point of view, the proposed node generation algorithms can also be used for stippling; the relation between
the image brightness ν and the spacing function s is now needed. For simplicity we assume that the local brightness ν

can be expressed as the complement of the ratio between the local area which is covered by the dots Ac and the local
area A:

ν = 1−
Ac

A
= 1−

NdAd

A
= 1−

Ad

s2
(23)

14
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Fig. 12. Test case D: halftone approximation of grayscale test image (a) with OXC (b) and MQT (c), N ≈ 50000 nodes.

where Nd is the local number of dots, Ad is the dot area and Nd/A = 1/s2 is a mean local approximation of spacing definition
(1). Assuming circular dots with diameter dd, from Eq. (23) we have:

s = dd

√
π

4(1− ν)
. (24)

A clear fact is that the smaller the dots, the smaller the spacing and therefore more and more dots will be needed for the
approximation of a certain region; obviously, Eq. (24) does not account for overlapping dots.

Figs. 12a and 13a show two classical grayscale test images that have been considered for this problem, while Figs. 12b,
12c, 13b and 13c show their stippling approximation using both the proposed algorithms, namely OXC and MQT, with 24
node refinement iterations and N ≈ 50000 nodes for each case.

Both the proposed algorithms produced images with remarkable quality and visually satisfactory node arrangements,
without any artifact or noticeable patterns; from these visual tests it can also be observed howour procedures can effectively
handle node densities with steep variations.

4.5. Implementation details and CPU times

The implementation of the presented procedures has been done using MATLAB R⃝ environment for the exchange and
visualization of data and for the direct LU solution of sparse linear system (14), while the remaining part of the computational
expensive tasks, such as the initial node placing phase, nearest neighbor search, iterative refinement phase and local matrix
inversion (13) have been carried out through MATLAB linked MEX functions which are compiled from C source code. The
initial node placing phase throughOXC algorithmhas a specific time consumption of 0.2 s/million nodes, 0.18 s/million nodes
for theMQT algorithm,while the refinement phase takes approximately 0.6 s/(million nodes× iteration) on amodern laptop
Intel R⃝ i7 2.6 GHz using only one single core. It is indeed evident that the refinement phase is the most expensive, since a

15
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Fig. 13. Test case D: halftone approximation of grayscale test image (a) with OXC (b) and MQT (c), N ≈ 50000 nodes.

minimum number of 10÷20 iterations are always needed within the presented procedures in order to obtain suitable node
arrangements. Nonetheless we point out the importance of the initial node placing phase through the proposed algorithms
without which the refinement phase would need a much larger number of iterations.

4.6. Conclusions

Two algorithms for fast 2D node generation are proposed, each of which is composed of an initial phase, where nodes
are placed according to a prescribed spacing function, and a refinement phase which improves the node distribution quality
and local spacing isotropy.

Several test cases have been considered, where the proposed algorithms have been used to generate node distributions
which are then employed for a local RBF discretization of diffusion problems and for image halftone approximation.

For the local RBF discretization test cases, the computed solutions have been compared to the corresponding analytical
ones; the influence of the most important parameters such as number of refinement iterations, number of local neighbors
n, shape factor ε, total number of nodes N and boundary conditions has been thoroughly investigated. For each test case an
approximate 2nd order accuracy has been obtained, even when considering singular solutions or RHS with steep variations;
a remarkable fact is that in many cases the employment of the node distributions generated by the proposed algorithms
produced better results than regular/specific node distributions.

Visually remarkable results have also been obtained when both proposed algorithms are employed for the halftone
approximation of grayscale images through the stippling technique.

Alongside the ability to deal with steep node density variations, these favorable properties confirm that the proposed
algorithms can be promising candidates for 2D meshless node generation; the extension to 3D cases is straightforward for
the MQT algorithm, while a 3D extension of the OXC algorithm would require some additional work (space partitioning),
but is still possible.
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