a r I Universita degli Studi di Trieste
Archivio della ricerca — postprint

STARLIKENESS FOR FUNCTIONS
OF A HYPERCOMPLEX VARIABLE
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(Communicated by Franc Forstneric)

ABSTRACT. In this paper we introduce new notions of starlikeness for a class of
functions of a hypercomplex variable. We then obtain equivalent formulations
for starlikeness which resemble the analogous ones in the holomorphic case such
as Nevanlinna’s criterion. Furthermore we give a characterization of algebraic
starlikeness in terms of non-vanishing of a suitable analog of the Hadamard
product.

1. INTRODUCTION

The study of starlikeness has a central role in many different subjects of geome-
try and topology and is particularly important in geometric function theory. This
very rich topic has been investigated in several papers (see [2] and the references
therein) often following different approaches by many mathematicians; also in the
hypercomplex setting (see [3], [4]). In the present paper we introduce a new def-
inition of starlikeness for a class of functions of a hypercomplex variable, which
is inspired by a geometric point of view and which aims at providing tools for a
generalization of the usual notions in the conformal and holomorphic setting.

Definition 1.1. Assume f is an injective slice-regular function in the unit ball
B(0,1) of H such that f(0) = 0. Then we say that f is starlike with respect to 0 if
and only if, for any real r such that 0 < r < 1, then (1 —¢)f(B(0,r)) C f(B(0,r))
for any real ¢t with 0 <t < 1.

The property of starlikeness for a slice-regular function f is proved to be equiv-
alent to the positivity of the real part of a suitable Hermitian product (-|-) of an
expression involving the Cullen (0¢f) and the Spherical (Jsf) derivatives of f
together with f as stated in the following

Theorem 1.2. A function f: B(0,1) — H is starlike with respect to 0 if and only
if

1 (f(@)]0sf(q))
() ne {u Ll = 0

for any q € B(0,1).
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We then introduce the notion of algebraic starlikeness which can be characterized
by imposing positivity for the real part of an expression involving only the Cullen
derivative of the slice—regular function f and f itself. The notions of starlikeness and
algebraic starlikeness are proven to be equivalent for slice-preserving slice-regular
functions.

Since a slice-regular function over H is a g-analytic, or spherical analytic function
(see [9]), it is natural to expect that these characterizations for the notions of
starlikeness should extend the results obtained for complex analytic or holomorphic
functions over C: these generalizations are shown in Section 5.

Finally, a suitable application of the Hadamard product %y for hypercomplex
power series allows us to extend Theorems 1 and 2 proved in [11].

Proposition 1.3. If a function f is algebraically starlike, then for any s € R, I in
the sphere of imaginary units of H and q € B(0,1) it turns out that

(1.2) q ' [f(q) *u [(1 = @) "*(q(1 = sI) + ¢*sI)] # 0
or equivalently, if g is a primitive of ¢~ f(q) such that g(0) = 0, then
(1.3) ¢ [9(q) *ir (1 —a)"*(a(L = sI) + ¢*(1 + s1))] # 0.

Vice versa, if for a slice—reqular function f and for the primitive g of ¢~ f(q) (such
that g(0) = 0) conditions (1.2) and (1.3) hold, then f is algebraically starlike and
g is algebraically convex.

2. BACKGROUND AND PRELIMINARY RESULTS
Let V be a vector space over R.

Definition 2.1. A subset F C V is said to be starlike or star-shaped with respect
to a point wy € E if the linear segment joining wg to every other point w € F
lies entirely in E. In formula, F is starlike with respect to wy € F if and only if,
YVweE, VteR, 0<t<1,tw+ (1—t)wp, belongs to E.

Definition 2.2. A subset FF C V is said to be convex if it is starlike with respect

to each of its points; i.e., the linear segment joining any two points in F lies entirely
in F.

Definition 2.3. Let Vi and V5 be real vector spaces. A function f:U C V; — V5
is
o starlike iff f(U) is a starlike set in Vo (with respect to a point f(zg) of V2);
e convez iff f(U) is a convex set in V5.

Remark 2.4. The notion of starlikeness and convexity for sets or functions is in-
variant for rigid motions.

Assume that K is an associative, unitary real algebra with division of finite
dimension (i.e. K= C or K = H). If Sk is the sphere of imaginary units of K, then
every non-real element ¢ in K can be written in a unique way as ¢ = x + yl,, with
I, € Sk and z,y € R,y > 0. We will refer to = Re(q) as the real part of ¢ and
to y = Sm(q) as the imaginary part of ¢. As in the case K = C, the conjugate of q
will be denoted by g := 2Re(q) — g.

Each algebra K can be regarded as a normed topological real vector space, after
introducing |g|?> = ¢g € R as the norm of an element ¢ of the algebra. Moreover
if ¢ # 0, then ¢~! = |q|~27; since the center of K coincides with R there is no



ambiguity in writing ¢! as |¢|72g or as g|g|~? so we often adopt the notation

7/lq|? which will be applied in general for a fraction when the divisor is a real
number (different from zero). In a similar way the real vector space V = KV for
N € N can be equipped with the Euclidean topology.

Let X and Y be open sets in KV such that 0 € X and f : X — Y. We may
always assume that f(0) = 0, since otherwise one can consider f; = f — f(0). With
this in mind, the condition of starlikeness for f with respect to 0 € f(X) can also
be summarized in the following way:

(2.1) (1=1)f(X) C f(X), Vvtelo1],

which allows us to use the following notation (1 —¢)f < f (commonly adopted
for subordination relation of functions) and say that the function h, with A(t,z) =
(1 =1t)f(x), is subordinate to f.

If in addition we assume that f : X — Y is an injective continuous function
starlike with respect to 0, then the function

(2.2) Ot ) = fTH(A - 1) f(2))

is well defined. With B(0,r) we indicate the open disc in KV centered at the origin
of radius 7, namely B(0,7) = {z € KV : |z| < r}. We observe that ®(0,z) = z
for any x € X and if

A, = f(XNnB(0,r))
for a positive r, then (1 —¢)A, C A, and hence

YA -1A,) C fYA,) = XN B0,r);

in other words, if |z] = r; < r and z € X, then |®(¢,z)| < r1 = |z|. Furthermore,
since for t # 0, (1 — t)A, € A,, it follows that |®(¢t,z)| = |z|, if and only if
t = 0, which actually means ®(0,z) = x. Therefore we can summarize the previous
considerations in the following

Lemma 2.5. If h(t,z) = (1 — t)f(z) is subordinate to f and [ is continuous
and injective in an open set of K containing 0 and such that f(0) = 0, then the
function ®(t,z) = f~1((1 —t)f(x)) is well defined and it turns out that

(2.3) @, z)| < ||

where | - | is the (induced) Euclidean norm. Furthermore, equality in (2.3) holds
if and only if t = 0; in other words |®(t,x)| = |x| implies ®(t,x) = x (which can
actually occur if and only if t =0).

Remark 2.6. The assumption on the continuity on f is essential. Indeed it is easy
to prove that, without this assumption, the function |®(¢, ¢)| is decreasing in ¢, but
it is not strictly decreasing as the following example shows: take f from B(0,1) to
itself, such that f(0) = 0 and such that a generic point z = |z|e?? (0 < ¥ < 27)

is mapped to a point w = —el?l. This function is not continuous. The function

T
t — |®(t,q)| is not strictly decreasing, since it maps every line through the origin
onto a circle.



3. THE COMPLEX HOLOMORPHIC CASE

In this section we’ll primarily consider the case of holomorphic starlike and con-
vex functions in the complex plane. In particular, our attention will be focused
on (normalized) holomorphic starlike and convex functions which are injective in
B(0,1) ={z € C : |z] < 1}. The choice of this domain of definition is not restric-
tive, since, by the Riemann’s Mapping Theorem, any simply—connected, open and
connected set of C different from the entire complex plane C is biholomorphic to
B(0,1).

We recall that in this setting an open and connected complex set is also called
a domain of C and an injective holomorphic function is commonly said to be a
univalent function or a schlicht function.

An interesting application of the classical Schwarz Lemma implies a geometric
characterization for convex and starlike univalent functions, known as the Theorem
of Study (see [10]).

Theorem 3.1. A univalent function f : B(0,1) — C is starlike with respect to 0
if and only if, for any real v such that 0 < r <1, f(B(0,7)) is a starlike set with
respect to 0. A univalent function f : B(0,1) — C (such that f(0) = 0) is convex
if and only if, for any real r such that 0 <r <1, f(B(0,r)) is a convex set.

Similarly, it follows directly from the Schwarz Lemma that, whenever f is a
univalent function from the unit disc B(0,1) to C and starlike with respect to 0,
then ®(t,2) = f~1((1 — t)f(2)) is a Schwarz function for any t, with 0 < ¢t < 1,
namely for any given ¢, with 0 < ¢ < 1 the function ®(¢, z) is holomorphic in B(0,1)
with ®(¢,0) = 0 and |®(¢,2)| < |2, Vz € B(0,1). For our purposes, we can
always assume that a univalent function f : B(0,1) — C is such that f(0) = 0 and

— f(@
1/(0) = 1. Indeed, if f is univalent (hence f/(0) # 0), then so is z — %
We then introduce the class of (normalized) univalent functions
S:={f:B(0,1) = C, f injective, holomorphic and such that f(0) =0
and f/(0) = 1}.
For functions in S, the notions of starlikeness with respect to 0 and convexity can
be stated in a more analytic way, since one can apply the conformal properties of
holomorphic functions to study the plane curves t — f(pe'’) for suitable choices of
radius 0 < p < 1. We summarize the main characterizations in the following result
(see e.g. [10]), also known as Nevanlinna’s criterion.

Theorem 3.2. Given f € S, then
o f is starlike with respect to 0 if and only if

2f'(2)
{70
for any z € B(0,1);
e f is convex if and only if

w{F) ()

for any z € B(0,1).



We observe that the condition of convexity for f can be equivalently obtained
from the condition of starlikeness for the function z — zf’(z) (this result is also
known as Alezander’s Theorem). We then introduce these classes of functions

S*:={f €S8, [ starlike with respect to 0}, C:={f€S, f convex}.

Clearly C C §* C §. Furthermore we notice that if f € &*, then the function
®(t,2) as in (2.2) turns out to be holomorphic in z and such that ®(¢,0) = 0 for
any t € [0,1].

Consider now the half-plane H, := {z € C : Re(z) > 0}; since, traditionally, a
holomorphic function with positive real part is known as a Carathéodory function,
we also introduce the class of functions

P:={f:B(0,1) - H;, f holomorphic and such that f(0) =1}.
Therefore we can also say that a function f is such that
(1) f € S*if and only if 2z +— 2 () belongs to P,

f(2)
(2) feCif andonly if z+— 14 z)’:,(g) = (z}c,((zz))) belongs to P,

(3) feCif and only if z — zf’(2) belongs to S*.

4. THE ANALYTIC CASE

Given two analytic functions f,g whose power series are f(w) = > w"an,
g(w) = >, w"b, where a,, and b, belong to a ring (R,+,-), we can define their
sum and their Hadamard product in the following way:

(f+9)(w Zw (an +bn); g glw Zw ap - by.

It turns out that the Hadamard product of analytic functlons is an analytic function.
In general the Hadamard product is not commutative; if the ring R is a unitary
ring of unit 1z for -, the function w — 3 w™ - 1z is the neutral element for the
Hadamard product. It will be also denoted by (1 —w)~!. Furthermore if the ring
is a field, then any function f(w) =), w"a, with all a,, different from the neutral
element Og for + in R, has an inverse for the Hadamard product given by

w = Z:w”(an)_1

In addition to that, if f(w) =", w"a, we consider:
o wPf(w) =Y, w"Pa, with p € Z,

o fllw)=>", w” 'na,, where na, = an + ap + ... + an,

n—times

o af(w)=>, w'(a-ay) with a € R.
The function f’ is said to be derived from the function f or to be the derivative of

f.

It follows that
(4.1) (a 47 b)f(w) = (af +bf)(w), with a,b € R;
(4.2) wf'(w) +g g(w) = f(w) *m wg'(w);
(4.3) (wf'(w))" = (f +w(f))(w).



Therefore if ag = 0g and a1 = 1, then

(44) (@l ) = (' +w(f))(w) = f'(w) xa (Z w"‘lnha) -

Furthermore, given f(w) =" w"ay, if, for any n there exists ¢, such that

Cnpt+Cp+...+Cp =ay,

(n+1)—times
then F(w) =Y, w"* ¢, has the following property:
Fl(w) = f(w)

and the function F' is called a primitive of f. In this setting we can state the
following result [11].

Proposition 4.1. The analytic function f belongs to S* if and only if

e I

forw € B(0,1) and |z| = 1.
Equivalently, if g is the primitive of w=!f(w) such that g(0) = 0, then g is
convez if and only if

w! {g(w) * {(1 —w)™? (w+ wzx)}} #0
forw e B(0,1) and |z| = 1.

5. THE REGULAR QUATERNIONIC CASE
Let ©Q C H be a domain.

Definition 5.1. We say that Q is

e an azially symmetric domain if, for all x + Iy € Q, with I € Sy, the whole
sphere x + Syy is contained in §2;

e a slice domain if Q N R is non—-empty and if given any I € Sy the complex
line L; = R + RI intersected with €2 is a domain in L;.

It is possible (see [9]) to introduce a notion of regularity for functions defined
in any open ball B(0,r) = {¢ € H : |q| < r} (and, more in general, in some
axially symmetric slice domains of H) which extends the one of holomorphicity in
the complex case.

Definition 5.2. If 2 is an axially symmetric slice domain in H, a real differentiable
function f : Q) — H is said to be slice—regular if, for every I € Sy, its restriction f
to the complex line Ly = R + RI passing through the origin and containing 1 and
I is holomorphic on QN Lj.

Remark 5.3. Tt can be proved that a function f : B(0,r) — H is slice-regular in
B(0,r) C Hif and only if there exists a converging power series > ¢"a, in B(0,7),
with a,, € H for any n € N, such that f(q) =5, ¢"a, with ¢ € B(0,r).

As a direct computation on the real components of a slice-regular function, one
immediately obtains (see [9])



Lemma 5.4. If f is a slice—regular function on an azially symmetric slice domain
Q C H, then for every I € Sy and for any J € Sgy, J L I, there exist two
holomorphic functions Fy, Fo : QN Ly — L; such that f(z) = F1(z) + F2(2)J with
z=x+ ly.

For the sequel it will be important to recall a natural notion of product of
polynomials (then extended to power series) which turns out to provide a “regular”
multiplication of slice-regular functions when represented by converging regular
power series.

Definition 5.5. Let f(q) = 3,70 ¢"a, and g(q) = Y./ ¢"b, be given power
series with coefficients in H whose radii of convergence are greater than r. We
define the regular product of f and g as the series f * g(q) = :::6 q"cp, where
Cn = Y p_o @kbn—p for all n, which is convergent in B(0,r).

It is not difficult to see that fxg is a slice-regular function defined in the open ball
B(0,7). Furthermore, the regular product is extended for slice-regular functions
defined on a general axially symmetric domain  in the following way:

0 if f(¢) =0,

f@g(f(a)~af(q)) otherwise.
Definition 5.6. For aslice regular function f:B(0,r) —H, with f(q)=3."> ¢"a,,

n=0
we define the regular conjugate f€ and the symmetrized f° of f as f¢(q)= Z:f) q"an,

and f5(q) = f*f°(q) = fo* f(q) =125 ¢"ry with 7, =S "1_ akdn—x € R. Finally
if f #£ 0, then the regular reciprocal of f is the (slice-regular) function f~* = fsl(q) fe
defined on B(0,7)\ Z(f®), where Z(f?®) is the zero set of the symmetrized function
fe.

Regular reciprocals are well-defined slice-regular functions whose power series
expansions are converging in their domains of definition.

In the spirit of Gateaux, a notion of derivative is well defined for slice-regular
functions, namely (see [9])

(5.1) fxg(q) =

Definition 5.7. Let 2 be an axially symmetric slice domain in H and let f : Q@ — H
be a slice-regular function. For any I € Sy and any point ¢ = = 4+ yI in Q (with
x = Req and y = Ymyq) we define the Cullen derivative of f at g as

1/0 0
0 I)=f H=-|——-1— I).
of (@ +yl) = [z +yl) =5 (317 ay) fi(z +yI)
Since in H one can choose different imaginary units, it is also worth considering
the following

Definition 5.8. Let 2 be an axially symmetric slice domain in H and let f : Q@ — H
be a slice-regular function. We define the spherical derivative of f at q as

dsfla) == (g—0) ' [f(q) — F@)].

Recently, some attempts to generalize the notion of convexity and starlikeness
from the holomorphic case to the class of quaternionic valued functions have ap-
peared (see [3], [4], [5]). The strategy of imitating directly the approach and def-
initions of the holomorphic setting fails almost immediately. As pointed out, in
the holomorphic case, the function ®(t,z) = f~1((1 —t)f(z)) for any real ¢t with



0 <t < 1 turns out to be automatically holomorphic in B(0,1) when f € S*
and this fact is crucial to obtain Theorem 3.1. Indeed the property of starlikeness
of f in B(0,1) is proved to be equivalent to starlikeness of f in any ball B(0,r)
with 0 < r < 1. We remark that this characterization is essential to prove the
Nevanlinna’s criterion (Theorem 3.2). Despite the similarity with the complex
holomorphic case, in the hypercomplex setting, the assumption of geometric star-
likeness allows us only to define the function ®(¢,q) = f~1((1—1t)f(q)) for any real
t with 0 < ¢ <1 when ¢ € B(0, 1), but in general one cannot prove any regularity
(besides continuity) for ®(¢,q) in ¢ (for a given ¢, with 0 < ¢ < 1) even though f is
assumed to be a slice-regular function. In order to obtain inequality conditions for
starlikeness which generalize the Nevanlinna’s criterion for hypercomplex functions,
in this paper we characterize starlikeness of slice-—regular functions in the following
way.

Definition 5.9. Assume f is an injective slice-regular function in the unit ball
B(0,1) of H such that f(0) = 0. Then we say that f is starlike with respect to 0 if
and only if, for any real r such that 0 < r < 1, then (1 —¢)f(B(0,7)) C f(B(0,r))
for any real ¢t with 0 <t < 1.

In analogy with the complex holomorphic case we introduce the following classes
of slice-regular functions:

Su:={f:B(0,1) = H, f injective, slice-regular such that f(0) =0

and /(0) = 1,
Sfy = {f € Su, starlike with respect to 0},
Pu:={f:B(0,1) - H, f slice-regular such that Ref(g) > 0 and f(0) =1}.

5.1. Inequality conditions for starlikeness. We begin by proving a result which
generalizes Lemma 1 in [12] for holomorphic functions.

Lemma 5.10. With the above given notation (and assumptions) for f € S and
O(t,q) = f~H(1 —t)f(q)) for any real t with 0 <t < 1 when q € B(0,1), assume
there exists a positive o such that the limit

(I)(Ov Q) — (I)(tv Q)

5.2 li

(5:2) t—l>I(€l+ te
exists; call it wy(q). Then, for ¢ # 0,

(5.3) Re(g™'we(q)) 2 0.

Proof. Define, for ¢ # 0, U(t,q) := 2q(q + ®(t,q)) "1 (q — ®(¢,q)); it follows from
Lemma 2.5 that the function ¥ is well defined and

g "U(t,q) =2(q+ ®(t,q)) (g — D(t, q));
hence
Re(q~'U(t, q)) = 2Re((q+ D(t,q)) (¢ — ®(t,q)))
= 2Re((q(1+ ¢ ' ®(t,9))) "(a(1 — ¢ ' ®(t,q)))
= 2Re((1+ ¢ '®(t,q) (1 — ¢ '®(t,q))).



Put 3 := ¢ '®(t, q); since
Re(q™'U(t,q) = 2Re((1+ B) "' (1~ B))

(1430 -8+1+p801-5) _ol- LR
B 11+ B2 ST+ 82

from (2.3) we conclude that
(5.4) Re(g~1U(t,q)) > 0.

Finally we have

—1 -1 -1 _
i V(e e 20l 2(89) " (g — 2(t )
t—0+ te t—0+ te
: (g —2(tq))
~ lim [2(q+ 0(t,q)) U= 2L ]
Jim 12(g + 2(,9)) e ;

we recall that ®(0, g) = ¢ for any g, therefore, using the assumption on the existence

of lim;_, o+ q*‘fgt"” = w,(q) and (5.4) we obtain that Re(q~'w,(q)) > 0. O

Definition 5.11. Let 2 be an axially symmetric slice domain in H and let f : Q —
H be a slice-regular function. If gy = xg + yolo € 2, we consider the slice-regular
function Ry, f : Q@ — H to be defined as follows:

Ry, f(q) == (¢ = q0) " [£(@) = f(q0)]-
We have this result (see [8])

Proposition 5.12. Let Q be an azially symmetric slice domain in H and let f :
Q — H be a slice—regular function. If qo = o+ yoly € 2, then, for any q € €2,

f(q) = f(qo) + (¢ — q0)Reo f (@) + [(q — 20)* + y3] RggRyo f (q0)-
Remark 5.13. It turns out that

Ry, f(q0) = 0c f(q0), Rgof (@) = 0sf(q0)-
We recall also (see [7])

Theorem 5.14. Let 2 be an axially symmetric slice domain in H and let f : Q — H
be a slice-reqular function. If qo = xo + yoJ € Q, J L Iy and Ry, f(q) splits
as Ry, f(q) = Ri,4,(q) + Ra2,4,(q)J with Ry 4., R2 4, holomorphic in Ly,, then the
complex Jacobian of f at qq is

_( Rig(@) —Roq (%) )
Df‘IO ( RQ,QO (qO) Rl,qo (q_O) .

We can proceed and prove

Lemma 5.15. Let Q be an azially symmetric slice domain in H and f: Q — H
be a slice-regular function. If qo = xo + yolo € Q, J L Iy, v = v + voJ with
v1,v2 € Ly, then

(Dfgo) " [0]

= oy 40 @) = o () )+ (i, )~ Ro, (1))}




Proof. Following the notation as in [8]
1

or = pete) Few ) ()

_ 1 ( RLQO (Q_O) "1+ R2,qo (%) s U2 ) .
RI:QO (CIO) : Rl,qo (%) + RQ,qo (Q_O) ’ RQ,QO (qo) _RZ,qO (qo) “vL Rl’qo (QO) "2

Using the (standard) Hermitian product (:|-) in C?, applied to the splitting, we can
write

Ri,40(q0) * 1,40 (@) + R2,0 (@) - R2,40(90) = (9 f(490)[05.f (q0))
and the previous equation becomes

o |
(0c f(90)10s f(q0))

Rl,QO (q_O) “U1 + R2,q0 (q_o) * VU2
+[—=R2,4,(q0) - v1 + R1,4.(qo0) - v2]J }
1

= (5‘cf(qo)|3sf(q())> {Ul(RLQO (%) - R27q0 (QO)J) + ’U2J(R17q0 (QO) - R2,¢Zo (%)J)} .

]

Remark 5.16. Note that both the functions Ry 4, (q) — Ra2,q,(q)J and Ry 4, (q) —
Rs 4,(q)J are not holomorphic.

Let H(t,q) := (1 —1t)f(q); then H(t,q) — H(0,q) = —tf(q). Therefore, H(t,q) —
H(0, q) is a slice-regular function for any ¢ and
H - H
Now f(®(t,q)) = H(t,q) and f(®(t,q)) — f(q) = H(t,q) — H(0,q). On the other
hand

~f(a) = 1F(@(0)  (@)] = [F(@(t.0) ~ F@[@(tq) — g D=,
Now as t — 07 the limit
im 29—
t—0+ t

exists and is finite; we call it —w1(g) and we get f(q) = D fylw1(g)] so that wi(q) =
(Df,)"'[f(q)]. Following the notation of Lemma 5.15 with v = f(q) = Fi(q) +
Fy(q)J we get

wr (4) = 1 R1,4(q) - F1(q) + R2,4(@) - F2(q)
G o) = s (A A e et P )
Applying Lemma 5.10, we get

(5.6) Re{g™(Dfy) "' [f(@)} 2 0.

Now observe that the real part of ¢~lw;(q) is given by the real part of ¢~ ! times

the first row of the previous matrix, so
1 B10@) - Fi(g) + Rog(@) - Fo(a) | _ g [, -1 ()95 (a))
e {q 00/ (@)[051 () } = e {0 ol fonsta ) 2

Notice that, also, the inverse of q_1% has positive real part; then

10



Theorem 5.17. Assume f : B(0,1) — H is starlike with respect to 0. Then it
turns out that
(5.7)
- 9sf(q))
o L1 U@l0s
{q (9c £(9)10s f(@))

for any q € B(0,1).

} > 0 or analogously Re {q—<30f(Q)|8Sf(q)> } >0

(f(@)|0sf(q))

We can also prove the converse of the previous proposition, namely

Proposition 5.18. Assume that f is in Sy and is such that

1 (f(@)]0sf(q))
(58) me{a el ) =0

Then f belongs to Sp.

Proof. Take q € B(0,r) and consider (1 —t)f(q). For |t| < e, with ¢ sufficiently
small, there exists ®(t,q) € B(0,1) such that f(®(t,q)) = (1 —t)f(q) since f is a
local diffeomorphism. Observe that ®(0,q) = ¢ from the univalence of f. Now we

have
—f(q) = = [f(e(t,q) — flet,q) —d] ———-

t
As t — 0% we get f(g) = Dfylwi(q)] and wi(q) = (Dfy)™'[f(q)], thus ®(t,q) =
(0, q) + twi(q) + g(t) where lim; o+ th) = 0. Using the assumption

L (F@)l9sf(a)
e {q el 0105/ (@) } =0

we get that |® (¢, q)| is decreasing in ¢ in a right open neighborhood of 0. In fact

f(@(t,q)) — f(®(0,9)) ~1[®(t,9) — ]

t—0+ t
iy (200.9) —wn1(9)t + g(0))(®(0,9) — wit +g(1))) — |af?
t—0t+ t

— ~2Reur(a) = 2 Re ¢~ en(g) = -2e { o BT

(Oc f(a)|9s f(q))
Hence for any 0 < ¢ < 1 and ¢ € B(0,r) with 0 < r < 1 there exists a point

®(t,q) € B(0,r) such that (1 —t)f(q) = f(®(t,q)). We conclude that, for any
r <1, f(B(0,r)) is starlike with respect to 0, so f is starlike. O

Remark 5.19. If ¢ € R, then f is quaternion-differentiable at q and its derivative
f'(q) coincides with Oc f(q) so, following Theorem 5.17, we get that Re ¢~ f(q) -

@) =Re g fq) * e flq) " > 0.

It becomes interesting to study those functions in Sy such that the previous
condition holds for ¢ ¢ R. We give the following

Definition 5.20. We say that a function f € Sy is algebraically starlike (and we
write f € ASy) iff ¢71f(q) x Oc f(q)~* € Pa.

1"



Notice that since ¢~ f(q)xOc f(q) ~* is slice-regular, then the maximum principle
on the real part of it (Theorem 7.13 in [8]) implies that for f € AS} necessarily
Re ¢ 1 f(q) * dcf(g)~* > 0. We can also assert that a function f is in AS}; iff

(5.9) Re [(¢9c f(q)) * f(q)~] > 0.

The previous formula follows from the next lemma which is more general and is in
the spirit of the results proved in [6].

Lemma 5.21. Let Q be an azially symmetric domain in H and let F : Q — H be
a slice-regular function. If ReF >0 in £, then Re(F~*) >0 in Q' :=Q\ Z(F?).

Proof. The function F~* is well defined in €', where the following formula holds:
F~*(q) = F(T(q))~! with T(q) := F¢(q)~'qF*(q) which maps Q' to itself. Now
from ¢! = |q|~2q, we have

Re (F~"(q)) = Re (F(T(q))~") = |F(T(q)|7*Re (F(T(q))) > 0.
]
and Z(h*) = @. Indeed

— %

Notice that in our case h*(q) = ¢~ 2f*(q) * f'°(q)
Z(h*) = Z(q7 ' f(q) * ¢ f*(9))-

Furthermore, if go = 2o + yolo € Q, J L Iy and g € Ly, thanks to Lemma 5.4,
one can write fr,(¢) = Fi(q) + F2(q)J and dc f(q) = Fi(q) + F4(q)J. Using the
expressions (1.16), (1.19) and (1.20) as in [8], we get

[(0c1(2) 1), = [Fl@F@ + FU)F@) - [F@ - F(a)]
and so the real part of {[qflf(q) * 8cf(q)**]ho} is

Re {q [Fi(0) @ + F@F@) "+ R0 F@ + Pa(a) F3@) }

Remark 5.22. It is not difficult to observe that for slice-preserving functions (i.e.
slice-regular functions that map each slice L; to itself) the condition of starlikeness
is equivalent to the one of algebraic starlikeness. Indeed, the Cullen and Spherical
derivatives of f are also slice-preserving functions so that the complex Jacobian of
[ at go is diagonal. It then turns out that (Df,, ) *[f(q0)] = f(qo) - 8cf(q0)71,
and therefore 0 < Relqf(q) *dc f(q)~*] = Re[qf(q) - e f(q) "], since from (5.1) for
slice-preserving functions the *—product coincides with the usual one (see Lemma
1.30 in [8]).

5.2. Hadamard conditions for algebraic starlikeness. Assume f is in ASj.
Under this hypothesis, the (slice-regular) function ¢! f(q) is well defined, and if
(@) =>,514"an, then ¢ f(q) =, <, ¢" 'a,. Let g be a primitive of ¢~ f(q)
such that g(0) = 0; in other words, if g(q) = >, <, ¢"bn, then dcg(q) = ¢ ' f(q).
This condition implies that nb, = a, for any n > 0. In particular, since a; = 1,
then b; = 1.

Definition 5.23. We say that a slice-regular function g in the unit ball, such that
g(0) = 0 and dcg(0) = 1 is algebraically convex iff Re {0c(¢dcg)(q) * [0cg(q)]*} >
0.

Thanks to the previous definition we obtain this analog of Alexander’s Theorem

Lemma 5.24. If a function f is in ASy;, then the primitive g of ¢~ f(q) such that
g(0) = 0 is algebraically conve.
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Proof. Since
Re (0c(49c9)(q) * dcg(q) ™) = Re (1 + ¢dc(dcg(q)) * og(q) ™)
=Re (14 (g9cf(q) — f(q)) * f(a) ™) = Re (¢9c f(q) * f(a)™*) >0

we conclude that ¢ is algebraically convex. ]

We have the following results which generalize Proposition 4.1 (see also [11]).

Proposition 5.25. If a function f is in ASy, then for any s € R, I € Sy and
q € B(0,1) it turns out that

(5.10) g [f(a) #u [(1 = q)"*(a(1 = sI) + ¢?sI)]] # 0
or equivalently, if g is a primitive of ¢~ f(q) such that g(0) = 0, then
(5.11) ¢ '[9(q) *ir (1= a) > (a(1 = sI) + ¢*(1 + s1))] # 0.

Vice wersa, if for a slice-regular function f and for the primitive g of ¢~ 'f(q)
(such that g(0) = 0) conditions (5.10) and (5.11) hold, then f € ASf and g is
algebraically conver.

Proof. Note that for ¢ € B(0,1)
¢ g(a) *mr (1 = ¢)7*(a(1 = sI) + ¢*(1 + sI))]

= ¢ 'g(q) *m q(1 — q) 3 (2q(1 + gsI — sI) + (1 — q)(1 — sI + 2gsI))]
= ¢ 'g(q) *u q(1 — q)*(2q(1 + gsI — sI)]
+q7 () *um q(1 — q)(1 — sI 4 2gsT)]

= ¢ '[9(q) *m qc[(1 — ) 72(q(1 — sI) + ¢*sD)]].
Using equation (4.2) it then follows that

q '9(q) *u ¢9c[(1 — q)2(q(1 — sI) + ¢*sI)]]

= ¢ '[f(@)=n [(1—q)"*(q(1 — sI) + ¢*sI)]],

so we conclude that condition (5.10) is equivalent to condition (5.11).

Now from the algebraic starlikeness of f it turns out that ¢ is algebraically
convex; then Re[dc(g0cg)(q) * (Ocg(q))~*] > 0. From the assumptions f(0) = 0
and d¢f(0) = 1 it also follows that

dc(a0cg)(a) * (9cg(q)) " [q=0 =1
and from g(q) = g+ 3_, 5, ¢"bn we have

0c(90c9)(q) —1—|—Zn2q" Y, = 0c9(q) *u an =0cg(q) *n (1 —q)~2.

n>2 n>1

Hence Re[0c(q0cg)(q)*(0cg(q))~*] > 0is equivalent to I (q0cg)(q)*(Dcg(q))* #
sI for any s € R and for any I € Sy or to

9c(q0cg)(q) — dcg(q)sI # 0
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which can be also written as dcg(q) *u [(1 —q) ™2 — (1 — g)~tsI] # 0 thanks to the
associativity property of the Hadamard product and the notation adopted for the
neutral element of the Hadamard product. Finally, from

9c9(@) *m [(1—q) 72 = (1 = q)7'sl] = dcg(q) *a ¢~ '[(1 = @) *(a(1 = sI) + ¢*s1)]

we conclude our proof. (Il

The authors are also looking for possible new characterizations of other classes of
functions of a hypercomplex variable and for their applications to the proof of other
statements. In this sense, a version of the solution of the Bieberbach conjecture for
starlike functions of a hypercomplex variable will be given in a forthcoming paper.
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