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Multifidelity Recursive Cokriging
for Dynamic Systems’ Response
Modification
In order to perform the accurate tuning of a machine and improve its performance to the
requested tasks, the knowledge of the reciprocal influence among the system’s parameters
is of paramount importance to achieve the sought result with minimum effort and time.
Numerical simulations are an invaluable tool to carry out the system optimization, but
modeling limitations restrict the capabilities of this approach. On the other side, real
tests and measurements are lengthy, expensive, and not always feasible. This is the rea-
son why a mixed approach is presented in this work. The combination, through recursive
cokriging, of low-fidelity, yet extensive, numerical model results, together with a limited
number of highly accurate experimental measurements, allows to understand the dynam-
ics of the machine in an extended and accurate way. The results of a controllable experi-
ment are presented and the advantages and drawbacks of the proposed approach are
also discussed.

1 Introduction

In industrial practice, it is rarely possible to optimize all the
system’s parameters during the design phase or through simula-
tion tools. Consequently, the system’s tuning must inevitable be
executed during the operative phase.

To this end, the possibility to combine experimentally acquired
information and numerical models’ results, to map the effects of
different system’s parameter setups, represents a clear competitive
advantage in terms of process knowledge and faster system’s tun-
ing [1].

The focus of this work is to identify a system’s natural frequen-
cies, while varying its mass distribution, exploiting results
from low-fidelity numerical models and high-fidelity experimental
measurements. The motivation, underneath this test, is to predict
the resonance frequencies of the system, as function of the
masses’ positions, minimizing the lengthy and expensive
experimental-operational phases.

The adopted test case is rather simple, in order to have the total
control of the system dynamics and validate the proposed
approach. Of course, more interesting applications will be the tun-
ing of complex machineries, where the number of variables explo-
des and the simulation models loose, inevitably, prediction
capabilities and accuracy. Given the purpose, in this application,
the system’s natural frequencies can be simply identified both by
experiment analysis, such as experimental modal analysis (EMA),
and numerical analysis, such as finite element method (FEM).
Both can be easily performed with good levels of reliability and
the effort to detect how the natural frequencies vary changing the
system setup is affordable. Clearly, as soon as the complexity of
the system increases, this operation becomes extremely difficult
and onerous, raising the number of setup configurations for which
natural frequencies’ values have to be acquired.

The classical approach to this issue, that is, the mapping of the
effects of different system’s parameter setups, would be to
numerically compute the quantity of interest, changing the process
parameters on a significant design of experiments (DOE). Further-
more, model updating approaches can be used to improve the
numerical analysis results, enhancing the correlation between the
measured data and the numerical models [2].

A different approach is based on the use of surrogate models of
process parameters. Using these interpolating methods, it is possi-
ble to reduce the size of DOE on which the process parameters
have to be actually simulated or measured. Most popular surrogate
models are polynomial response surfaces, kriging, and artificial
neural networks.

In literature, there are few examples where surrogate models
are used for identifying plant characteristics starting from opera-
tive phase measurements [3]. An interesting work in this direc-
tion is presented in Ref. [4], where kriging is used to model the
counter-electromotive force of an electric motor with rotor speed
and position as input data. The kriging model, used in the men-
tioned work, is particularly interesting among the other surrogate
models, because it allows not only to predict the unknown
values of the quantity of interest, starting from a set of known
values, but also to quantify the level of uncertainty associated
with prediction. The development of kriging technique [5–7] has
resulted in different forecasting methodologies, including cokrig-
ing, proposed by Kennedy and O’Hagan [8], where multiple
information sources with different level of fidelity are exploited
to estimate the surrogate model. Later, the Kennedy and
O’Hagan model, has been reformulated by Grati�et et al. [9–11]
as a recursive framework of s-independent kriging problems,
known as recursive cokriging. In this approach, a sequence of
simpler kriging problems has to be solved, with smaller covari-
ance matrices when compared with the original Kennedy and
O’Hagan formulation.

The recursive cokriging model not only has the interesting
feature to associate an error estimation of the predicted model, as
standard kriging, but also allows a more efficient handling of the
information sources’ reliability with respect to cokriging. These
properties make the recursive cokriging very attractive to build a
response surface of process parameters during the operative
phase.

In this work, the updated model computed by FEM, and both
kriging and recursive cokriging models are compared on their
capability of mapping the process variable influences and to pro-
vide simplified and faster tuning processes.

The paper is organized as follows: Section 2 introduces the
kriging and recursive cokriging theory. In Sec. 3, the test case
used to compare the updated model, kriging, and recursive cokrig-
ing is described. Section 4 illustrates the results obtained. Section 5
reports an application. Finally, in Sec. 6, our main findings are
discussed.
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2 Kriging and Recursive Cokriging Theory

2.1 Kriging. In kriging theory, the response z(x), which is a
deterministic real-valued function of the d-dimensional variable
x¼ (x1,…, xd), is considered as a realization of a Gaussian process
Z(x). Z(x) is assumed to be the sum of a deterministic regression
function m(x), constructed by observed data, and a Gaussian pro-
cess Y(x), constructed through the residuals

ZðxÞ ¼ mðxÞ þ YðxÞ (1)

The trend function m(x) is actually the mean of the broader
Gaussian process Z(x), and it is assumed to be a multivariate poly-
nomial, namely, mðxÞ ¼ hðxÞ b, where h(x) is a vector of polyno-
mial basis functions and b is the vector of coefficients. Y(x) is the
Gaussian process with zero mean and covariance function Cðx; x0Þ
¼ r2rðx; x0; hÞ, where r2 is a scale parameter, called the process
variance, and r is a positive function with parameters h, called the
correlation function.

Let us suppose that z(x) has been evaluated at a set of n samples

D ¼ ðx1;…; xnÞT. We denote by ZðnÞ ¼ ðZ1;…; ZnÞT the Gaussian
vector containing the values of the random process Z(x) at the

points in the experimental design set D and by zðnÞ ¼ ðz1;…; znÞT
the vector containing the values of z(x) at the points in D.

We use the information contained in Z
(n) to predict Z(x) consid-

ering the joint distribution of Z(x) and Z(n). Then, the conditional
distribution ½ZðxÞjZðnÞ ¼ zðnÞ; b; r2; h� is a Gaussian Nðm̂ZðxÞ;
ŝ2

ZðxÞÞ with

m̂ZðxÞ ¼ hðxÞbþ rTðxÞR�1ðzðnÞ �HbÞ (2)

and

ŝ2
ZðxÞ ¼ r2ð1� rTðxÞR�1rðxÞÞ (3)

where H is the model matrix, R is the correlation matrix between

the observations ZðnÞ; rðxÞ is the correlation vector between

Z(x) and the observations Z(n), and b is evaluated as b ¼
ðHTR�1HÞ�1

HTR�1zðnÞ (see Appendix A). The hyperparameters
h of the correlation function r are identified by the maximum

likelihood estimation, so that the process variance r2 ¼ ð1=nÞ
ðzðnÞ �HbÞTR�1ðzðnÞ �HbÞ is the maximum likelihood estimate
for r2 given b.

In Eqs. (2) and (3), m̂ZðxÞ is the kriging mean, which is the sur-
rogate model that we use to approximate the response z(x), and
ŝ2

ZðxÞ is the kriging variance, which represents the model mean
squared error.

2.2 Recursive Cokriging. Recursive cokriging is a recursive
framework of s independent kriging problems, which exploits
multifidelity data coming from sources with different reliability.

In this case, there are s levels of response ðztðxÞÞt¼1;…;s sorted
by increasing order of fidelity and modeled by Gaussian processes
ðZtðxÞÞt¼1;…;s; x 2 X . zs(x) is the most accurate and costly

response and ðztðxÞÞt¼1;…;s�1 are cheaper versions of it, with z1(x)

the less accurate one.
An autoregressive model can be formulated for t¼ 2,…, s

ZtðxÞ ¼ qt�1ðxÞZt�1ðxÞ þ dtðxÞ
Zt�1ðxÞ?dtðxÞ

qt�1ðxÞ ¼ gT
t�1ðxÞbqt�1

8><
>: (4)

where dt(x) is a Gaussian process, with mean fT
t ðxÞbt and covari-

ance function r2
t rtðx; x0Þ, independent of Zt�1ðxÞ;…; Z1ðxÞ and

qt–1(x) represents a scale factor between Zt(x) and Zt–1(x). gt–1(x)
and ft(x) are vectors of polynomial basis functions and bqt�1

and
bt are the vectors of coefficients.

The Gaussian process Zt(x) modeling the response at level t is
expressed as a function of the Gaussian process Zt–1(x) condi-
tioned by the values zðt�1Þ ¼ ðz1;…; zt�1Þ at points in the experi-
mental design sets ðDiÞi¼1;…;t�1.

We have for t¼ 2,…, s and for x 2 X

½ZtðxÞjZðtÞ ¼ zðtÞ;bt;bqt�1
;r2

t � � N ðm̂Zt
ðxÞ; ŝ2

Zt
ðxÞÞ (5)

where

m̂Zt
ðxÞ ¼ qt�1ðxÞm̂Zt�1

ðxÞ þ fT
t ðxÞbt

þ rT
t ðxÞR�1

t ðzt � qt�1ðDtÞ � zt�1ðDtÞ � FtbtÞ (6)

and

ŝ2
Zt
ðxÞ ¼ q2

t�1ðxÞŝ2
Zt�1
ðxÞ þ r2

t ð1� rT
t ðxÞR�1

t rtðxÞÞ (7)

The notation � represents the Hadamard product. Rt is the corre-
lation matrix and rT

t ðxÞ is the correlation vector. We denote
by qt�1ðDtÞ the vector containing the values of qt–1(x) for
x 2 Dt; zt�1ðDtÞ the vector containing the known values of Zt(x)
at points in Dt, and Ft is the experience matrix containing the val-
ues of f tðxÞT on Dt (see Appendix B).

The recursive framework of cokriging is clearly visible in
Eqs. (6) and (7), where the mean and the variance of the Gaussian
process Zt(x) are functions of mean and variance of the Gaussian
process Zt–1(x).

The mean l̂Zt
ðxÞ is the surrogate model of the response at level

t, 1 � t � s, taking into account the known values of the t first lev-
els of responses ðziÞi¼1;…;t. The variance ŝ2

Zt
ðxÞ represents the

mean squared error of the surrogate model of the response at level
t. The variance will be zero at known values of the t first levels of
responses.

The parameters ðhtÞ are estimated by minimizing the opposite
of the concentrated restricted log-likelihoods at each level t

logðjdetðRtÞjÞ þ ðnt � pt � qt�1Þlogðr̂2
t Þ (8)

for t¼ 1,…, s.

3 Test Case

The analyzed test case is a simple system, in order to have com-
plete control on the variables and measurements and to have an
easier three dimensional representation of the analysis results. We
are aware that caution is needed to extend the achieved conclu-
sions to more complex systems. In these latter case, the number of
variables and their combinations will lead to very large solution
spaces, with very high computational and time costs to be fully
explored. In most cases, it could become prohibitive for plant
requirements, and this is the reason why nowadays, the tuning is
mostly done on the base of previous experiences and good sense.
Nevertheless, we believe that the obtained results are meaningful
and a proof of correctness of the proposed approach.

We consider a rectangular steel plate, on which two masses can
be added to change the system’s mass distribution. The system is
shown in Fig. 1. For easiness of results representation, the two
masses are placed along two lines, parallel to the long side on the
plate, at fixed ordinates. The different positions of the masses,
(x1, y1) for mass 1 and (x2, y2) for mass 2, represent the specific
setup configuration. As y1 and y2 are constant, a configuration is
completely described by two variables, x1 and x2.

The goal is to identify the natural frequencies of the system for all
the possible configurations (x1, x2) � [80, 480]� [300, 500] mm2.
Only the first 10 system’s natural frequencies have been considered
in the present analysis.

The natural frequencies values have been experimentally eval-
uated for 11 different masses’ configurations. Three configura-
tions of these, henceforth named as test points, p1, p2, and p3,
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have been used to analyze the methodologies (see Table 1 for the
coordinates (x1, x2) of test points), the remaining have been used
as training points for the model updating and the building of
response surfaces. As an example, the experimental values of nat-
ural frequency 9 are shown in Fig. 2(a). In Table 2, the values of
the first 10 natural frequencies in the test points are reported.

The natural frequencies’ values have been obtained by an FEM
numerical model, too. We have computed them for 2500 different
configurations. Figure 2(b) shows the numerical values of natural fre-
quency 9, computed by FEM code with a fine mesh, as function of
the position of the masses along the coordinates x1 and x2. The nodes
of the mesh plotted in figure correspond to computed values of natu-
ral frequencies. A subset of the natural frequencies’ values computed
by FEM code has been used for training the low-fidelity level of cok-
riging surface. More details are given in Secs. 3.1 and 3.2.

3.1 Experimental Setup. The transfer function measure-
ments and the subsequent natural frequencies identification were
carried out using an LMS Pimento data acquisition and analysis
system.

The structure used in the experiment is 600 mm by 230 mm by
1 mm plate on which two extra masses, of about 30 g, have been

added through small neodymium magnets. These can move along
two ordinates, y1¼ 150 mm for mass 1 and y2¼ 80 mm for mass
2. The plate was suspended through very soft springs along the
shortest side, in order to simulate free–free boundary conditions.
These have been achieved assuring a sufficient separation between
the last rigid mode (suspension) and the first flexible mode (plate).

The measurement have been acquired using a rowing hammer
technique (PCB Modal Hammer 086C01) on ten degrees-of-
freedom evenly distributed on the plate. Great care have been
devoted to minimize the disturbance caused by sensors (PCB
352C22 0.5 g) and to select the best acquisition parameters to
increase the frequency response function frequency resolution
(0.05 Hz) and improve the overall quality of the measurements.

3.2 Finite Element Method Model. The plate and the added
masses have been modeled in ANSYS APDL. The implemented
Block Lanczos natural frequency and mode shape extraction
method has been used between 0 and 1000 Hz. The added masses
were both modeled as accurate geometries or as point masses
without leading to relevant discrepancies.

First, the only plate vibrational modes have been simulated
using Young’s modulus E¼ 210,000 N/mm2 and density
q¼ 7800 kg/m3. No additional masses have been simulated. The
mesh size have been changed between 50 and 1 mm in order to
simulate the dynamics of the simplified system with different
levels of approximation. The results of convergence analysis are
reported in Table 3 together with the experimental values of natu-
ral frequencies of the plate without masses.

Later, the natural frequencies of the complete system, plate and
masses, have been computed for 2500 different configurations
using mesh size equal to 10 mm, henceforth named coarse mesh

Table 1 List of the three configurations used as test points

(mm) p1 p2 p3

x1 180 180 300
x2 300 420 300

Fig. 1 Scheme of test system (bold lines represent the locus
of points where the two masses can be positioned)

Fig. 2 Natural frequency 9 for different configurations of masses (x1, x2): (a) values measured for 11 different configurations
(x1, x2) and (b) values computed by FEM code with the fine mesh in 2500 different configurations (x1, x2)

Table 2 The first 10 EMA natural frequencies f in test points

(Hz) p1 p2 p3

f1 28.32 28.81 27.95
f2 46.75 46.51 46.88
f3 78.37 77.15 80.08
f4 98.51 99.61 98.02
f5 151.49 152.71 149.66
f6 161.13 160.28 162.35
f7 199.22 198.12 200.44
f8 218.26 216.55 220.09
f9 241.33 242.43 240.36
f10 260.62 260.99 261.11
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or equivalently low-fidelity mesh, and mesh size equal to 5 mm,
henceforth named fine mesh or equivalently high-fidelity mesh.
The computational time required to model 2500 configurations
with coarse mesh is about 30 min, with fine mesh is about 8 h.

Assuming the experimentally observed values of the natural
frequencies as the true values, the distance between the numerical
and the experimental values is the absolute error. The error of
FEM model with the fine and the coarse mesh has been computed
in the test points and summarized in Table 4.

It is noted that the values obtained by FEM model with
coarse and fine mesh are quite close and in both cases the relative
error grows at higher natural frequencies. The error remains lim-
ited becoming higher than 5% only after the tenth natural
frequency.

The signed errors have been analyzed too, in order to individu-
ate a pattern, but no patterns have been observed, which is reason-
able being the natural frequencies uncorrelated.

4 Results

4.1 Updated Model. Since the accuracy of natural frequency
values, obtained by FEM model with coarse and fine mesh, is sim-
ilar, while the computing time largely increases using a fine mesh,
the model updating have been run only with the coarse mesh
model.

The model updating consists in searching for Young’s modulus
E and density q of the plate to move the numerical results closer
to experimental values.

The model updating was conducted in DDS FEMTools.
At first, we have tried a model updating starting from the model

obtained with E¼ 210,000 N/mm2 and q¼ 7800 kg/m3. The code
was not able to increment the match between numerical and
experimental results.

As second attempt, we have tried a model updating starting
from a bad model obtained with E¼ 300,000 N/mm2 and
q¼ 6000 kg/m3. The code was able to find a model closer to exper-
imental results with E¼ 206,409 N/mm2 and q¼ 8054 kg/m3.

In Table 5 there is a comparison among the plate’s natural fre-
quencies obtained by the three different models: the original, the
bad, and the updated one.

The updated model values are now very close to experimental
ones. The relative errors are less than 2.3%.

Using the updated E and q, the natural frequencies of the com-
plete system, plate plus masses, have been computed again for all
2500 configurations (x1, x2). The relative error in test points is
now less than 3.2% for all first 10 natural frequencies.

The achieved improvement is evident in Figs. 3(a) and 3(b),
where the natural frequency 9 is shown, as an example.

In practical cases, the maps, obtained by the model updating,
for each natural frequency and masses configuration, are those a
technician should use to find the correct setup of the system. In
the specific case, they allow to identify the setup to avoid having
the natural frequencies at specific resonance values. The time
needed to build these maps is function of the amount of configura-
tions needed to achieve an appropriate response surface, able to
give a reasonable knowledge of the dynamic system behavior,
plus that needed for the initial model updating. In this case, a sim-
plified model has been used, so the model updating was immedi-
ate, but that is not the case for complex systems.

Let us notice that, if we acquire, during the operative phase of
the plant, new experimental values, it is not possible to add the
information to the numerical model in order to improve it. This
would be possible only if we perform a model updating using the
complete system, but this means we have to perform a full optimi-
zation to find the best numerical model variables for all measured
configurations, so that the complexity of the approach to build the
maps for each natural frequency increases, such as the computa-
tional time and cost.

4.2 Kriging. The kriging model, differently by the updated
model presented in Sec. 4.1 and the recursive cokriging model
presented in Sec. 4.3, is built using only experimental observa-
tions, neglecting the results of the FEM analysis.

Table 3 Convergence analysis of the first 10 natural frequen-
cies f of the plate; the EMA values are reported for comparison

Mesh size (mm)

(Hz) Experimental 50 30 10 5 3 1

f 1 28.93 30.09 29.89 29.79 29.78 29.78 29.78
f 2 46.88 47.90 47.78 47.71 47.68 47.65 47.61
f 3 80.18 86.03 83.93 82.88 82.78 82.76 82.74
f 4 99.61 103.41 102.52 102.02 101.93 101.87 101.78
f5 156.62 174.60 167.07 162.74 162.33 162.24 162.18
f6 162.23 175.88 171.24 169.48 169.24 169.12 168.97
f7 202.64 224.16 216.34 211.75 211.27 211.17 211.11
f8 220.58 240.30 233.07 228.64 228.14 228.00 227.89
f9 245.48 271.31 261.20 256.05 255.45 255.25 255.02
f10 262.82 303.41 290.21 276.91 275.68 275.40 275.25

Table 4 Absolute errors of FEM model respect to experimental
natural frequencies in test points

Fine mesh Coarse mesh

(Hz) p1 p2 p3 p1 p2 p3

E1 0.87 0.78 0.86 0.88 0.79 0.87
E2 0.82 0.96 0.80 0.85 0.99 0.83
E3 2.82 2.51 2.70 2.92 2.60 2.80
E4 2.64 2.18 2.54 2.73 2.27 2.63
E5 5.97 7.42 5.04 6.36 7.81 5.41
E6 7.07 7.21 6.89 7.31 7.46 7.13
E7 8.47 8.40 9.51 8.92 8.83 9.98
E8 8.20 7.48 8.05 8.69 7.94 8.55
E9 11.49 11.53 11.14 12.06 12.11 11.70
E10 14.99 14.56 14.57 16.22 15.79 15.80

Table 5 Natural frequencies f of plate obtained by three different FEM models

(Hz) Experimental E¼ 210,000 N/mm2 q¼ 7800 kg/m3 E¼ 300,000 N/mm2 q¼ 6000 kg/m3 E¼ 206,409 N/mm2 q¼ 8054 kg/m3

f1 28.93 29.79 40.60 28.94
f2 46.88 47.71 65.02 46.34
f3 80.18 82.88 112.95 80.51
f4 99.61 102.02 139.03 99.10
f5 156.62 162.74 221.78 158.08
f6 162.23 169.48 230.96 164.63
f7 202.64 211.75 288.57 205.69
f8 220.58 228.64 311.59 222.10
f9 245.48 256.05 348.94 248.73
f10 262.82 276.91 377.37 268.99
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The kriging model has been computed using eight experimental
values. The computational time needed to map the first 10 natural
frequencies in 2500 configurations is about 1 min. The kriging
model is a Gaussian process, so that it provides the mean and the
standard deviation of each predicted value. Being a standard
deviation associated with the prediction for each configuration,
the confidence of the model is known. Obviously, the standard
deviation is zero and the kriging model is exact at the measured
configuration. This is evident both in Figs. 3(c) and 4(b).
Figure 3(c) shows the predicted values of natural frequency 9, that
is, the mean of the kriging model, which fits the experimental
training points. Figure 4(b) shows the standard deviation of krig-
ing model for natural frequency 9 as function of (x1, x2). The
standard deviation is exactly 0 in correspondence of the experi-
mental training points. The training points are not shown for
clarity purposes.

Table 6 reports the absolute errors of kriging model in test
points. Let us remark they are similar to those of the updated
model, but the computational time and cost to build the maps for
each natural frequency, varying the masses configuration, is paltry
respect to that needed using the model updating.

At the same time, it is evident that some features of the function
are lost. Let us underline if we acquire new experimental values,
we can improve the kriging model adding the information. But,
this has a cost, because the increasing of the number of observa-
tions demands higher computational cost. N observations lead to
an O(N3) scaling for implementations based on maximum likeli-
hood estimation, such as the employed model.

Fig. 3 Natural frequency 9: comparison between numerical models and experimental values: (a) original FE model, (b)
updated FE model, (c) kriging model, and (d) recursive cokriging model

Fig. 4 Kriging model of natural frequency 9: (a) mean and (b)
standard deviation
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4.3 Recursive Cokriging. The recursive cokriging model has
been computed using 40 low-fidelity training points and 8 high-
fidelity ones. The low-fidelity training points are computed by
FEM code with coarse mesh and high-fidelity points are those
experimentally observed. Figure 5 shows the training points used
to model natural frequency 9, as an example.

The computational time needed to map the first 10 natural fre-
quencies in 2500 configurations is about 3.5 min. Figure 6 shows
the mean and the standard deviation of cokriging prediction for
natural frequency 9 as function of (x1, x2). Observing Figs. 6(b)
and 4(b), it is evident that the standard deviation has been greatly
reduced compared to kriging model which has been built using
the same number of high-fidelity training points. This is because
the recursive cokriging model takes into account of a considerable
number of cheap low-fidelity observations, too.

Recursive cokriging model, here based on two fidelity levels
but more levels could be used, is able to reduce the error in the
test points (see Table 6) so that the relative error is now less than
1.2% for all first 10 natural frequencies (3.2% for updated model,
3.4% for kriging model).

The cokriging model has been computed even using observa-
tions obtained by FEM code with fine mesh instead of coarse and
even using three levels (observations obtained by FEM code with
coarse mesh, observations obtained by FEM code with fine mesh
and experimental observations). These models are very close to
that one we have presented. That is due to the fact that the numeri-
cal observations computed with coarse and fine mesh, even if they

have different values, they have the same topology, so that they
do not add significantly different information to final model.

Let us notice that, as for kriging, new experimental values,
acquired during operative phase, can be added to our model in
order to improve it. Thanks to recursive formulation, adding
training points to the high fidelity level does not request the recal-
culation of all lower levels, but only of the final one. So, new
information can be added at a cheap computational cost, till the
number of experimental observations is less than 1000.

The benefit of adding new experimental values to recursive
cokriging model is visible observing the new model, computed
moving one of the test point to the training set of high-fidelity
level. For example, in Table 7, there are the absolute errors of the
recursive cokriging model moving the test point p3 in the training
set. It is remarkable that the error reduction we have obtained
except for natural frequency 7 in test point p2. But, even that it is
not so disturbing, because, observing Figs. 7(b) and 7(d), a consid-
erable average reduction of the standard deviation of natural fre-
quency 7 has been obtained adding test point p3 to training points.

Table 6 Absolute errors of updated FEM model, kriging model
and recursive cokriging model respect to experimental natural
frequencies in test points

Updated Kriging Recursive cokriging

(Hz) p1 p2 p3 p1 p2 p3 p1 p2 p3

E1 0.06 0.05 0.07 0.05 0.24 0.14 0.00 0.12 0.02
E2 0.51 0.37 0.54 0.01 0.03 0.05 0.02 0.05 0.03
E3 0.64 0.41 0.43 0.28 1.52 1.44 0.14 0.14 0.01
E4 0.14 0.64 0.21 0.15 0.50 0.42 0.10 0.10 0.25
E5 1.99 3.30 1.18 2.35 0.08 5.14 0.30 1.69 1.70
E6 2.52 2.70 2.28 0.36 0.87 1.77 0.29 0.31 0.37
E7 3.07 3.04 3.99 1.52 0.67 2.74 1.14 1.40 0.17
E8 2.24 1.65 2.01 0.28 1.38 2.07 0.06 0.76 1.04
E9 4.89 4.86 4.62 2.38 0.94 3.95 0.00 0.48 0.89
E10 8.31 7.88 7.88 6.99 7.29 7.36 3.06 2.31 2.87

Fig. 5 Natural frequency 9: high-fidelity and low-fidelity train-
ing points of recursive cokriging model

Fig. 6 Recursive cokriging model of natural frequency 9: (a)
mean and (b) standard deviation

Table 7 Absolute errors of recursive cokriging model in test
points p1 and p2, moving test point p3 to the training set of
high-fidelity level (compare with Table 4)

Recursive cokriging

(Hz) p1 p2

E1 0.00 0.12
E2 0.03 0.05
E3 0.14 0.15
E4 0.14 0.12
E5 0.29 1.32
E6 0.30 0.42
E7 0.49 2.94
E8 0.34 0.49
E9 0.13 0.47
E10 0.86 0.20
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In order to increase the confidence in the results, the recursive
cokriging models have been recomputed exploiting 8 different
training points among the 11 experimental observations at dis-
posal, computing the absolute error in the remaining 3 points used
for testing the models. 20 different randomly chosen combinations
have been analyzed. We have not reported all the results on the
paper, to not make it heavier, but they confirm what previously
observed.

5 Application

Let us consider the system shown in Fig. 8. The system is the
same as the previously described test case, on which a third mass
has been added. Its position is fixed at (495 mm, 55 mm), in the
referring system shown in figure, and its weight is 240 g. As previ-
ously, other two masses can be placed along two lines, parallel to
the long side on the plate, at two fixed ordinates. Again, a system
configuration is completely described by the two variables x1 and
x2, which are the abscissas where mass 1 and mass 2 are posi-
tioned, respectively.

Let us suppose two excitation forces, with frequencies
fe1¼ 216 Hz and fe2¼ 231 Hz, are acting on the system. We want
to find the best configuration of masses 1 and 2 to assure the natu-
ral frequencies of the system are far enough from the two forcing
frequencies, to avoid the resonance effects.

We compute the recursive cokriging model of the first 10 natu-
ral frequencies of the system as function of (x1, x2). 81 training
points, obtained by FEM with a coarse mesh, and 19 training
points, obtained by measurements, have been used to compute the
models.

The obtained recursive cokriging models have been used to
point out which are the closest natural frequencies to fe1 and fe2,
that are frequencies f8 and f9.

Let us name the prediction of these natural frequencies as m̂f8
and m̂f9 and the standard deviation of the prediction as ŝf8 and ŝf9

.
It is reasonable that the configurations (x1, x2), where the predic-
tion of the natural frequencies m̂f8 and m̂f9

are outside the intervals

Fig. 7 Recursive cokriging model of natural frequency 7: (a) mean and (b) standard deviation are computed using 8 high
fidelity training points, (c) mean and (d) standard deviation are computed using 9 high fidelity training points

Fig. 8 (a) Picture and (b) scheme of system to optimize (in (b)
the bold lines represent the points where the two masses can
be positioned)
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fe162 Hz and fe262 Hz, will avoid the appearance of resonance.
Different intervals could also be explored.

Among all these feasible configurations, we want to find the
one which guarantees, simultaneously, the maximum distances
between the natural frequencies f8 and f9 and the exciting frequen-
cies fe1 and fe2.

We use a GA algorithm to perform the optimization. The
searching interval is (x1, x2) � [100, 500]� [100, 500] mm2. The
objectives to optimize are 6

max jm̂f8ðx1; x2Þ � fe1j (9)

max jm̂f8ðx1; x2Þ � fe2j (10)

max jm̂f9ðx1; x2Þ � fe1j (11)

max jm̂f9ðx1; x2Þ � fe2j (12)

min ŝf8ðx1; x2Þ (13)

min ŝf9ðx1; x2Þ (14)

and the constrains are 4

ðm̂f8ðx1; x2Þ � fe1Þ2 > 4 (15)

ðm̂f8ðx1; x2Þ � fe2Þ2 > 4 (16)

ðm̂f9ðx1; x2Þ � fe1Þ2 > 4 (17)

ðm̂f9ðx1; x2Þ � fe2Þ2 > 4: (18)

Let us remember that the lower is the standard deviation, the
higher is the probability to have performed an accurate prediction.
So, the inclusion of the standard deviation of the predicted values
in the optimization allows to find configurations able, not only to
assure the maximum distances between the natural and the excit-
ing frequencies but also to assure the maximum distances with the
maximum reliability.

Being the optimization problem, a multi objective optimization,
we have obtained a set of optimal configurations, shown in Fig. 9
(the values are reported in Appendix C).

It is evident how the best configurations, named as optimal
points, lay all in the zone, of the nonlinear surface maps, where

Fig. 9 Recursive cokriging model of natural frequencies 8 an 9: (a) f8 mean, (b) f8 standard deviation, (c) f9 mean, and (d) f9
standard deviation (black line: locus of points (x1, x2), where the natural frequency is equal to frequency fe1 or fe2; gray line:
locus of points (x1, x2), where the natural frequency is equal to frequency fe162 Hz or fe262 Hz)
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the difference to the excitation frequencies are the highest and the
standard deviations are minimal.

6 Conclusion

Engineers and technicians often have to identify the correct setup
of a plant, during the operative phase. To avoid the attempts and com-
mon sense practice, a map of the process parameters must be built on
the setup variables. There are methods which exploit both experimen-
tal and numerical observations, to build this map, such as the model
updating of a FEM model and the multifidelity response surfaces.
These allow to reduce the number of measurements and experiments.

In this paper, we have compared the updated model, kriging
model and recursive cokriging model, analyzing the advantages
and disadvantages of the approaches by a practical example. The
process variables to map are the natural frequencies of a system
made up by a plate and two masses whose positions on the
plate correspond to different setup configurations. Thanks to the
proposed recursive cokriging, for each masses’ positions, we are
capable to predict the resonance frequencies’ values with
extremely low relative errors.

The recursive cokriging model has shown to be more computa-
tional cost-effective and accurate than the updated model, and even
more precise of the kriging model on which recursive cokriging
method grounds. It is worthwhile noticing that the response surfaces
do not allow to identify the physical parameters of the system, such as
the Young’s modulus and the density of the plate. Such issue can be
faced only by model updating, which search for the physical parame-
ters that move numerical analysis results closer to measured data.

In our test case, we obtained the response surface in the model
updating case out of 2500 numerical simulations, while in the
recursive cokriging case with just 40 computations. The resour-
ces’ saving is evident.

The recursive cokriging model can be definitely used to per-
form the optimization of process parameters, as shown in Sec. 5.

Moreover recursive cokriging model can be easily updated with
new experimental observations collected during the functioning of
the plant. This means that we can also monitor the process param-
eters to detect variations caused by wear and malfunction.

Nevertheless, we are aware that recursive cokriging has some lim-
itations: it performs well only for smooth phenomena and the higher
the number of the system variables is, the higher is the number of the
observations needed to have an accurate prediction. This leads to an
increase in computational time, as already underlined in Sec. 4.3.

In our opinion, the strong point of the approach is its recursive
framework to exploit multifidelity data. We believe that the same
recursive scheme could be exploited to model highly nonlinear
phenomena, as it will be shown in a following paper:

Appendix A: Kriging

The joint distribution of Z(x) and Z
(n) is given by

ZðxÞ
ZðnÞ

� �
� N hðxÞb

Hb

� �
;r2 1 rTðxÞ

rðxÞ R
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(A1)

where

H ¼
h1ðx1Þ … hpðx1Þ

� . .
.

�

h1ðxnÞ … hpðxnÞ

0
BB@

1
CCA (A2)

is the n� p model matrix

R ¼
rðx1; x1Þ … rðx1; xnÞ

� . .
.

�

rðxn; x1Þ … rðxn; xnÞ

0
B@

1
CA (A3)

is the n� n correlation matrix between the observations Z(n) and

rðxÞ ¼
rðx; x1Þ

�

rðx; xnÞ

0
@

1
A (A4)

is the n� 1 correlation vector between Z(x) and the observations
Z

(n).

Appendix B: Recursive Cokriging

The joint distribution of Zt(x) and Z
(t) is given by

ZtðxÞ
ZðtÞ
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1 0

0 0
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where Dt ¼ ðxðtÞ1 ;…; xðtÞnt
ÞT

Ft ¼
f1ðxðtÞ1 Þ … fpt

ðxðtÞ1 Þ

� . .
.

�

f1ðxðtÞnt
Þ … fpt

ðxðtÞnt
Þ

0
BB@

1
CCA (B2)

is the nt� pt experience matrix

Rt ¼
rtðxðtÞ1 ; x

ðtÞ
1 Þ … rtðxðtÞ1 ; x

ðtÞ
nt
Þ

� . .
.

�

rtðxðtÞnt
; x
ðtÞ
1 Þ … rtðxðtÞnt

; xðtÞnt
Þ

0
BB@

1
CCA (B3)

is the nt� nt correlation matrix between the observations Z
(t) and

rtðxÞ ¼
rtðx; xðtÞ1 Þ

�

rtðx; xðtÞnt
Þ

0
B@

1
CA (B4)

is the nt� 1 correlation vector between Zt(x) and the observations
Z(t).

Table 8 Optimal configurations

f8 (Hz) f9 (Hz)

x1 (mm) x2 (mm) Mean Std. dev. Mean Std. dev.

100 451 213.98 1.29 225.75 0.13
101 201 214.00 1.39 225.65 0.10
102 218 213.66 1.14 225.55 0.07
110 304 213.99 0.33 227.14 0.26
118 300 213.95 0.21 227.38 0.21
120 218 213.63 1.13 225.81 0.02
127 238 212.83 0.02 226.40 0.01
140 124 212.48 0.08 227.48 0.11
141 214 213.79 1.25 226.67 0.10
141 260 213.51 1.04 227.78 0.04
151 257 213.30 0.88 228.23 0.04
160 244 212.58 0.09 228.43 0.06
180 300 213.75 0.00 228.88 0.00
269 228 213.22 0.57 229.00 0.06
418 297 213.73 0.71 228.96 0.38
425 289 213.87 0.98 229.00 0.40
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Appendix C: Optimal Configurations

The set of optimal configurations (x1, x2) is reported in Table 8,
together with the corresponding mean and standard deviation of
recursive cokriging model for natural frequencies 8 and 9.
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