SUPPLEMENTARY MATERIAL:

"In vitro modeling of dendritic atrophy in Rett syndrome: determinants for phenotypic drug screening in neurodevelopmental disorders"

NERLI Elisa, ROGGERO Ottavia, BAJ Gabriele and TONGIORGI Enrico

BRAIN Center for Neuroscience, Department of Life Sciences, University of Trieste, 34127 Trieste-Italy

This file contains:

- Supplementary Figure 1.
- Supplementary Figure 2.
- Supplementary Figure 3.
- Supplementary Table 1.

Supplementary Figure 1. Comparison between different stainings. Panel A: AAV9-GFP and rabbit polyclonal anti-MAP2 1:500 isotypes A+B+C (SantaCruz, dismissed) stainings and comparison between the TDL measures (panel B). Panel C, mouse anti-MAP2 1:500 isotypes A+B (Sigma M1406) and rabbit anti-MAP2 1:500 isotypes A+B+C+D (Genetex, GTX50810), and the comparison between the TDL measures (panel D). Scale bar = 100 μ m.

Supplementary Figure 2. Morphological parameters in presence or absence of Ara-C. (A) DIV12 mouse hippocampal neurons immunostained for cytoskeleton (MAP2 red) and nuclei (Hoechst blue) at different seeding cell densities with Ara-C 2,5 μ M (top line) or without Ara-C (bottom line) on 96 well plates (Scale bar = 100 μ m). (B) Quantitative data on the number of neurons per mm² counted at the different seeding cell densities. Data are expressed as mean ±SEM, n=3 mice per condition. (C) Number of neurons (%) normalized on the number of counted viable nuclei (total cells), (D) average TDL per neuron (μ m), (E) average number of endpoints per neuron and (F) soma area per neuron (μ m²). Number of neurons measured ranged from 1000 for the highest seeded cell density, down to 200 neurons for the lowest seeded cell density. t-test to compare the 2 different conditions (+ Ara-C or – Ara-C) at each cellular concentration: ns P>0.05, * P≤0.05, ** P≤0.01, *** P≤0.01.

Supplementary figure 3. DMSO effect on neuron viability and morphology. Effect of increasing concentration of DMSO on neuron number (panel A) and average TDL (panel B) on $MeCP2^{-/y}$ neurons seeded at 160 cells/mm². Dotted line is referred to WT untreated, which means WT neurons maintained in Neurobasal + B27 for the whole experiment. In figure C, a detail of average TDL at 2% DMSO with respect to WT untreated for WT and $MeCP2^{-/y}$ neurons (i.e. maintained in Neurobasal + B27). One-way ANOVA to compare the effect of different concentration of DMSO in figure A and B: ### P≤0.001. t-test to compare WT and $MeCP2^{-/y}$ neurons in figure C: * P≤0.05. For each condition, 20 wells per WT and 12 wells per $MeCP2^{-/y}$ neurons were analyzed (1 field per well, 1800 and 1000 neurons, respectively). n=9 wells for UNTR condition (800 neurons), n=3 wells for the other conditions (270 neurons).

Supplementary Table 1 Boltzmann sigmoidal Best-fit values

	WT 640	WT 320	WT 160	WT 80
Slope	1.85	5.789	10.88	8.222
Std. Error	0.1193	0.5477	2.221	2.129

Boltzmann sigmoidal Best-fit values

	MeCP2 KO 640	MeCP2 KO 320	MeCP2 KO160	MeCP2 KO 80
Slope	7.903	10.94	3.278	0.09788
Std. Error	1.198	3.204	0.4467	0.1038

Supplementary Table 1. Best-fit values of spontaneous calcium spike activity, shown in Figure 5D.