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Summary A new class of two-phase periodic laminates with a quasicrystalline structure (generated by the Fibonacci substitution rule)

is introduced. Recently, we found that the Floquet-Bloch spectrum of antiplane waves propagating in this particular type of layered

composite has a self-similar layout which can be characterized through an invariant function of the frequency, the so-called Kohmoto

invariant. Moreover, for particular ratios between the geometrical and constitutive parameters of the two constituent phases (canonical

ratios), the spectra are periodic. We illustrate how these two unique properties can be used to design quasicrystalline lamitates providing

negative refraction of an antiplane wave obliquely incident at the interface with an elastic substrate. It is shown that, beyond a certain

frequency threshold, high order Fibonacci laminates allow negative refraction of a single transmitted mode at lower frequencies with

respect to a periodic classical bilayer. The attained results represent an important advancement towards the realisation of multilayered

quasicrystalline metamaterials with the aim to control negatively refracted elastic waves.

QUASICRYSTALLINE-GENERATED LAMINATES

We define a class of two-dimensional, two-phase quasicrystalline laminates with layering direction parallel to the axis

y (see Fig. 1/(A)). Each of its elements is composed of a repeated elementary cell Fi where the two basic components, A

and B, are arranged in series according to the standard Fibonacci sequence, which is based on the following substitution

rule A → AB, B → A. The repetition of the fundamental cells assures global periodicity along axis x and the possibility

of applying the Floquet-Bloch technique in order to study harmonic wave propagation in these systems.

Figure 1: (A): two-dimensional laminates assembled according to F2, F3 and F4 Fibonacci cells. (B): Diagram reporting, in the grey

zones, the number N
f
i of real solutions Ky of the dispersion relation for cells F2 to F8 as a function of the frequency. Transition zones

are highlighted in red.

The dispersion relation for Floquet-Bloch harmonic antiplane waves propagating in Fibonacci laminates as those

illustrated in Fig. 1/(A) assumes the form

cos (KxLi) =
1

2
trMi(f,Ky), (1)

where Mi is the trasmission matrix of the ith-order cell Fi, Li is the total length of the cell, f = ω/2π is the wave

frequency, Kx and Ky are the components of the wave vector directed along x− and y− axis, respectively. Mi is

unimodular, i.e. detMi = 1, and follows the recursion rule Mi+1 = Mi−1Mi, with M0 = MB and M1 = MA [1].

Assuming a given wave frequency f , for any real value of Kx we found a finite number Nf
i of real and an infinite number

of imaginary solutions Ky of the dispersion relation (1) [2]. This means that for any real Kx we have Nf
i propogating

waves and infinite evanescent modes along the y−direction. The numerical solution of (1), obtained for a determinate set

of frequencies by varying Kx along the intervals 0 ≤ Kx ≤ mπ/Li, m ∈ N (Brillouin zones), shows that: i) assuming

given values of f and Kx, Nf
i increases for high order Fibonacci cells Fi [3]; ii) if f belongs to some particular frequency

ranges, Nf
i depends on the value of Kx and we have Nf

i = t−1 for 0 ≤ Kx ≤ Kx and Nf
i = t for Kx ≤ Kx ≤ mπ/Li.

We denote these frequency ranges as transition zones. The t-th transition zone is that where Nf
i switches from t− 1 to t.
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SELF-SIMILAR TRANSITION ZONE LAYOUT AND CANONICAL RATIO

An example of transition zone layout for laminates designed according to cells F2 to F8 is reported in Fig. 1/(B)

as a function of the frequency. We note that they are disposed according to a self-similar pattern. The analysis of the

dispersion curves obtained assuming Ky = 0 (transverse wave propagation in the laminate) reveals that for any cell Fi

the position of pass bands coincide with that of transition zones. In this specific case, the transfer matrix Mi and the

dispersion relation (1) become identical to those defined in [1] and [5]. Consequently, the self similarity is governed by a

local scaling whose factor is analogous to that used in those papers for studying the spectrum of quasicrystalline-generated

structural waveguides:

κ+

0 (f) =
1

4

(

√

4 + (4 + I0(f))2 + (4 + I0(f))
)2

, (2)

where I0(f) is the so-called Kohmoto’s invariant [4]. A transition zone fB
i − fA

i of the cell Fi centred at a frequency

f∗ is related to the transition zone fB
i+6 − fA

i+6 of Fi+6 centred almost about the same value f∗ by the scaling law

fB
i+6 − fA

i+6 ≈ (fB
i − fA

i )/κ, where κ = κ+

0 (f
∗). Similarly, fB

i+3 − fA
i+3 ≈ (fB

i − fA
i )/λ, with λ =

√
κ.

By observing Fig. 1/(B), we also note that for any cell Fi, the arrangement of the transition zones is periodic. This is

achieved for rational values of the ratio β = cAhB/cBhA, where hA and hB are the thicknesses of phases A and B,

cA and cB the shear wave speed in materials A and B, respectively. We denote β as canonical ratio, and the laminates

characterized by β ∈ Q as canonical laminates (for the case shown in Fig.1/(B), β = 2).

NEGATIVE REFRACTION USING QUASICRYSTALLINE LAMINATES

We now use the quasicrystalline laminates to obtain negative refraction of an antiplane wave across an interface with

an elastic substrate (schematic of the problem reported in Fig.2/(A)). For each value of Kx corresponding to a given

frequency and an arbitrary angle of incidence in the interval 0 ≤ θ ≤ π/2, we have Nf
i real solutions of the dispersion

relation (1). These real solutions correspond to propagating modes transmitted at the interface. In order to have only

one single negatively refracted mode (pure negative refraction), the incident wave frequency should belong to the interval

fmin
i ≤ f ≤ f̃i [3], where fmin

i =
√
µ0/(2Liρ0) (with µ0 and ρ0 shear modulus and mass density of the substrate,

respectively), and f̃i is the highest frequency of the second transition zone. Remembering the spectrum analysis reported

in the first section, we can calculate f̃i for any Fibonacci cell Fi. Moreover, using the scaling factor (2) together with

the associated scaling relationships and the condition of periodicity β ∈ Q, we can design canonical laminates providing

pure negative refraction in several ranges of frequencies considering different elastic substrates. The results illustrated

in Fig.2/(B) for a PMMA-steel laminate bonded to a polyethylene substrate show that, by considering the same angle of

incidence (θ = 20◦) high-order Fibonacci cells yield single negatively refracted modes at lower frequencies with respect

to standard two-phase periodic laminates (represented by cell F2).

Figure 2: (A): Schematic of the problem of an antiplane wave approaching the interface between an elastic substrate and a Fibonacci
laminate F4. (B): Angles of refraction corresponding to an incident angle θ = 20

◦ plotted versus the frequency for cells F2 to F5.

CONCLUSIONS

The propagation of antiplane shear waves in two-phase periodic quasicrystalline-generated laminates following the

Fibonacci substitution rules has been studied. The Floquet-Bloch analysis reveals that particular ranges of frequencies,

called transition zones, are disposed in the dispersion diagrams according to a self-similar pattern. Numerical results show

that these self-similarity properties together with the condition for the periodicity of the spectrum can be used to design

high order Fibonacci laminates allowing negative wave refraction of a single transmitted mode at lower frequencies with

respect to a classical periodic bilayer.
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