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Catastrophic wind disturbance affects not only forest structure and regeneration, but also functional and

compositional dynamics of the herbaceous layer. However, the issue of changes in functional diversity 

and functional trait values of the understory layer in response to wind disturbance has not been 

addressed so far. This study aims at investigating the patterns of variations in functional diversity, trait 

values and species richness of herbaceous species following wind disturbance.

The study was carried out in the Piska Forest, a woodland complex in northern Poland, which was 

almost completely destroyed by a windstorm in 2002 and part of which was successively set aside to 

study the effects of natural disturbance on forest ecosystems. Vegetation surveys were conducted at 

112 sample plots between 2014 and 2015. Four forest habitat types were identified and individually 

examined. The degree of disturbance severity was assessed as percentage of dead trees on all trees per 

surface unit. A set of twelve functional traits was assigned to the recorded species. 

Three functional diversity metrics (richness, evenness and divergence) were calculated based on the 

selected functional traits. We assessed the relationship between each of such metric and disturbance 

severity for each habitat type. The relationship between species richness and disturbance severity was 

also determined. We then estimated the relative importance of habitat type and disturbance severity on 

both functional diversity and species richness. Lastly, we examined the response of functional trait 

values to both disturbance severity and habitat type. 

Our results showed that wind disturbance effects on functional diversity are not univocal and that they 

strongly depend on habitat type. In fact, while in coniferous stands disturbance determined a decrease 

of functional divergence and left functional richness unaltered, in mixed-coniferous habitats it 

enhanced functional richness and did not affect functional divergence. In mixed-deciduous habitats, 

both functional richness and divergence decreased. In swamp habitats no major changes in functional 

diversity were observed. Changes in functional evenness were not significant. At the same time, 
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disturbance significantly enhanced species richness in all forest habitats, but the coniferous one. It was 

not possible to clearly disentangle the relative contribution of disturbance and habitat type, since the 

two are strictly correlated. Out of the tested functional traits, only SLA, seed releasing height and share 

of stress-tolerant species exhibited significant response along the tested disturbance gradient. Most of 

the other traits reacted only to variations in the habitat type.

Key words: natural disturbance/ temperate forest ecosystems/ functional richness/ functional 

divergence/ habitat type/ life traits

Introduction

Complexity has its costs. Forests, as complex-structured, multi-layered ecosystems, are those 

which undergo the most dramatic changes following catastrophic natural events. Windstorms represent 

the more frequent natural disturbance in the forests of the temperate belt (Nagel, Svoboda, & Diaci, 

2006; Papaik & Canham, 2006; Fischer, Marshall, & Camp, 2013) and their frequency is expected to 

increase as a consequence of the ongoing climate changes (Dale et al., 2001; Goldenberg et al. 2001; 

Gregow et al., 2017).  

Although generally perceived as negative phenomena by society and policy makers, windstorms

play a pivotal ecological role. Several studies (Zielonka & Malcher, 2009; Dobrowolska, 2015; Wild et 

al., 2014; Kulakowski et al., 2017, 2019; Szwagrzyk et al., 2017; Meigs & Keeton, 2018) have 

highlighted that catastrophic windstorms, far from representing a threat to forest ecosystem integrity 

and functioning, actually make up an integral component of this ecosystem and trigger important forest 
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dynamics. Due to the considerable changes they generate in the overall structure of forest stands, and 

consequently, in micro-environmental conditions, windstorms represent stimulators of forest 

regeneration (Long et al., 1998; Panayotov et al., 2011; Bolte et al., 2014; Dobrowolska, 2015), 

enhance diversification of forest stands in terms of age, height and structure (Dobrowolska, 2015) and 

provide a chance for shade-intolerant and early-successional species to take advantage of the canopy 

opening created by tree falling (Bormann & Likens 1979; Peterson & Pickett, 1995). Most importantly,

wind disturbance, as other types of natural disturbances, creates and maintains forest spatial 

heterogeneity (Seidl et al, 2014, Meigs et al., 2017; Kulakowski et al., 2019). Because of the beneficial 

effects of wind disturbance on forest ecosystems, an increasing tendency to simulate wind disturbance 

in forest management practices and forest ecosystem modelling has been established during the last 

decades (Cooper-Ellis et al., 1999; Crow & Perera, 2004; Drever et al., 2005; Rammig et al., 2007; 

Seidl et al., 2014).

So far, most studies about the impact of windstorms on forest ecosystems eaddressed the 

structural and compositional changes they produce in the tree layer and on forest regeneration (Peterson

& Pickett, 1991, 1995; Wolf et al., 2004;  Bolte et al., 2014; Dobrowolska, 2015; Meigs et al., 2017; 

Rossi et al., 2017; Szwagrzyk et al., 2017; Meigs & Keeton, 2018), and at a lesser extent, on their 

effects on soils (Schaetzl et al., 1989; Munthe et al., 2007; Šamonil et al., 2010) and insect 

communities (Bouget & Duelli, 2004). 

Far less is known about post-disturbance effects on the herbaceous layer. Yet, this is the layer 

which hosts most of forest biodiversity (Gilliam and Roberts, 2003a; Whigham, 2004; Gilliam 2007, 

2014) and provide the setting for most vegetation dynamics, ultimately affecting all forest 

compartments.  Indeed, while overstory influences herbaceous species dynamics by determining light 

availability (Gilliam 2007, 2014) and driving soil fertility (Muller 2003, Neufeld and Young 2003), 

understory species can in turn affect forest structure by enhancing or interfering with tree species 
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regeneration (George & Bazzaz 1999a, b, 2003; Nilsson & Wardle, 2005; Royo & Carson 2006). Since 

herbaceous layer diversity, composition and biomass are strongly correlated to changes in forest 

structure (Tonteri et al., 2016; Mestre et al., 2017; Bugno-Pogoda et al., 2021; Chelli et al., 2021) we 

may aspect it to undergo major dynamics following wind disturbance, at both compositional and 

functional level. ( 

Yet, research on the effects of wind disturbance on the herbaceous layer has focused just on 

changes in species taxonomical diversity. Cooper-Ellis et al. (1999) observed an increase of understory 

species richness after a simulated hurricane in broad-leaved forests of Northeastern USA. A significant 

increase in species richness following windstorm events was reported also by Ulanova (2000) and 

Palmer et al. (2000)In their review on the effect of natural disturbance on forest ecosystems of the 

temperate and boreal belt, Thom & Seidl (2015) showed that all tested indicators of biological diversity

were positively affected by them.  Meanwhile, other aspects of post-disturbance forest dynamics are 

still waiting to be elucidated. One of these is the effect of windstorm disturbance on functional 

diversity and on the share and distribution of specific life-traits in the understory. Since plants exert 

multiple functions (resource acquisition, space occupation, reproduction and dispersal, resprouting after

disturbance) in both the above- and belowground compartments, addressing diversity merely as a 

variation of taxonomic units may lead to overlook fundamental forest dynamics. In particular, plant 

functions regarding the belowground compartment are usually neglected, despite they are key for 

understory species persistence (Klimesova et al., 2018. Campetella et al., 2020). Functional diversity 

and life trait analyses address just such multifunctionality and help us foresee how assemblages of 

species sharing similar functional features will react to changes in abiotic and biotic factors.  

In fact, it is not only individual species that experience disappearance and replacement, the two 

elemental phases of vegetation dynamics.  Although compositional changes within ground vegetation 

can potentially occur without involving significant changes in functional relationships (if the relative 
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share of individual functional units remain constant after disturbance), dominance relationships among 

functional units are likely to be subverted by the sudden change in environmental conditions (e.g. 

canopy cover, light availability, exposure to wind) following windstorm events. The examination of 

how functional assemblages are shuffled and redistributed following catastrophic disturbance events 

can give us a much more sensible information about how the environment is responding to them. 

This study proposes to investigate the long-lasting effects of windstorm disturbance on 

functional diversity of the herbaceous layer. The Szast Reserve, within the Piska Forest, a lowland 

forest complex in northern Poland, provided an ideal site for studying understory specie dynamics 

following catastrophic natural disturbance, having been set aside after a powerful windstorm destroyed 

most of the forest stands. The study was conducted 13 years after the windstorm event, when the forest 

ecosystem was already in an advanced stage of recovery.

We examined changes in different functional diversity metrics and in mean values of response 

traits across areas characterized by different degrees of disturbance severity and habitat types. The 

analyses of these changes were conducted separately for each different forest habitat. In fact, forest 

ecosystem response to wind disturbance is expected to be influenced by stand species composition and 

structure (Cooper-Ellis et al., 1999; Baker et al., 2002) and, overall, by habitat type (Peterson and 

Rebertus 1997; Baker et al., 2002; Ilisson et al. 2005; Anyomi et al, 2017). Examining the impact of 

windstorm on forest diversity patterns without considering the potential effect of habitat type would 

lead to an oversimplification and to the loss of precious ecological information. 

Specifically, we hypothesize that:

1) Functional diversity of the herbaceous layer will generally increase along with the disturbance 

severity gradient, since we expect new guilds of species, typical of open areas, to enter the com-

munity following the stand disruption;
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2) Functional diversity and species richness will be strongly correlated, since each species newly 

arriving in a plant community likely represents a new different set of functional traits;

3) Habitat type will exhibit a deciding influence on the relationship between severity gradient and 

functional diversity patterns;

4) Clonal traits and SLA will decrease along the severity gradient, while Canopy Height, Releas-

ing Height, Seed Mass, as well as share of Ruderals, Annual/Biennials and Anemochoric 

species will increase.

Material and methods

Study site

The Szast P.F. (Szast P. F.,53°33′33″N, 21°49′47″E), within the Puszcza Pinska forest complex,

covers approximately 460 ha and lies on a flat terrain, with elevation ranging from 150 to 180 m a.s.l 

(Fig 1). The mean annual temperature is 6.9°C and the sum of annual precipitation is 613 mm. 

The forest communities prevailing in the study area are Scots pine forest on well-drained sandy 

soils, Leucobryo-Pinetum (coniferous type — C) and mixed Scots pine–pedunculate oak forest, Pino-

Quercetum (mixed coniferous type — MC). In more fertile and wet habitats, riparian forest, Fraxino-

Alnetum (mixed deciduous type — MD) and swamp forests (S) Carici elongatae-Alnetum occur. 

In 2002 a violent windstorm destroyed approximately 30,000 ha of the Piska Forest. As a result,

large-scale salvage logging was conducted, with more than 3 million cubic meters extracted in the 

following 2 years (Rykowski, 2012), but an area of approximately 460 ha of the disturbed forest was 

set aside in 2003 as a “reference site” for studying the natural regeneration processes of forest 
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ecosystems after catastrophic wind disturbance (Dobrowolska, 2015; Rykowski, 2012; Szwagrzyk et 

al., 2017).

Data collection

In order to get an objective estimate of the range and spatial distribution of the disturbance 

severity in our study area, we established a network of 112 circular sample plots located at the nodes of

a regular grid covering the whole forest area of the Szast reserve. The plots were spaced at 200 m, had 

a size of 100 m2 and their centers marked with pieces of plastic pipe. At each plot, living and dead trees

were measured and mapped within an area of 500 m2, which provided a clear picture of tree mortality 

following the windstorm. The plots were nested in the middle of the 500m2 plots for tree stand 

measurements. The severity of disturbance was calculated for each plot as the percentage of broken or 

uprooted trees divided by the number of both living and dead trees together (Szwagrzyk et al. 2017). 

Field work was carried out in 2014 and 2015, 12–13 years after the disturbance event. 

All vascular plant species present within the 100 m2 plots were recorded, and their cover was 

assessed as percentage. Based on the forest habitat maps provided by the Bureau of Forest Management

and Geodesy, available online in the Polish National Forests Database, 

(https://www.bdl.lasy.gov.pl/portal/en), four habitat types were distinguished in our study area: 

coniferous (C), mixed coniferous (MC), mixed deciduous (MD) and swamp (S) habitat types. These 

habitat types can be considered as lying along a gradient going from the poorest one, i.e. coniferous 

type, to the richest one, i.e. swamp type.
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We selected 11 response functional traits (Tab.1), which were tested for the herbaceous 

vascular species recorded in the sampling, tree species being excluded from the analyses. These traits 

were selected based on their significance from the point of view of the plant adaptation to a post-

disturbance scenario. Clonal traits such as persistence of clonal connections, bud bank size and lateral 

spread provide crucial information about plant adaptation to an environment where resources are 

heterogeneously distributed, while Clonal Index synthetizes the clonal predisposition of species. Plant 

longevity and CSR strategies provide a tool to assess the stage of vegetation succession in disturbed 

sites and the dynamics which can be expected to take place, while dispersion mode give us information 

about how new species and guilds can enter the community. Finally, SLA, Seed Mass, Canopy Height 

and Releasing Height provide elemental information about plant ability to compete for resources, 

dispersal abilities and chances to successfully reproduce. 

Data about canopy height were taken from Szafer (1969) and Rutkowski (1998) while data 

about all other functional traits were taken from TRY, LEDA and COP-LA (Klimesova et al., 2017) 

databases (Table1). Data about CSR strategy were integrated from Grime et al. (2007). Continuous trait

values were averaged for each species. Categorical traits were selected based on the geographic origin 

of the data and the affinity of environmental conditions and vegetation to the ones of our study site (we 

chose only records from Europe, possibly from Central Europe), as well as on the authority of the data 

sources.

Table 1. Summary of the selected plant functional traits.

Plant trait Description Data range Data source

Canopy height Maximum height of the photosynthetic part of a

plant

cm                        Szafer (1969), 

Rutkowski (1998)
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Releasing height Height of seed releasing cm LEDA Databse

Seed mass Oven-dry mass of an average seed of a species 

(Cornelissen et al. 2003).

mg TRY Database

Specific leaf area 

(SLA)

One sided area of a fresh leaf divided by its 

oven-dry mass.

mm2*mg-1 TRY Database

Total bud bank size Number of buds on plant organs. Number of buds Klimešová et al. (2017).

Lateral spread Horizontal extension of clonal organs  m Klimešová et al. (2017).

Persistence of 

clonal connections

Lifespan of the physical connection between 

mother and daughter shoots.

years Klimešová et al. (2017).

Clonal index An aggregate measure of the ability of a species

to spread clonally (Klimešová et al. 2017).

Categories: 0 – 6 Klimešová et al. (2017).

Plant longevity Plant life span Categories: 

Annual/biennal – 

perennial 

TRY Database

CSR strategy Life strategies Categories: C, S, 

R, CR, CS, CSR

TRY Database, Grime 

(2007)

Seed dispersal 

mode

Modes of seed dispersal in space Categories: 

Anemochorical, 

Zoochorical, 

Hydrochorical

TRY Database

Statistical analyses
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In order to test for differences in abundance-weighted trait values in plant communities under 

different disturbance levels, we calculated Community-level Weighted Means (CWMs) per plot for 

each functional trait using the R package “FD” (Laliberté, Legendre, & Shipley, 2014). CWMs were 

derived by averaging trait values in the community weighted by the relative abundance of taxa bearing 

each value in the plot (Lavorel et al., 2008). For nominal functional traits, CWM were calculated 

considering the relative abundance of each individual class (Tordoni et al. 2019). 

 Furthermore, a distance-based framework to compute multidimensional functional diversity 

(FD) indices was applied: specifically, the functional trait matrix was combined with the species 

composition matrix to calculate, at the plot level, the following statistics: 1) Functional Richness, 2) 

Functional Evenness and 3) Functional Divergence (for the description of these three indices see 

Villéger et al. 2008).

Quantitative and nominal functional traits (as CWM), species diversity and functional diversity 

indices were analyzed using generalized linear models (GLMs, McCullagh & Nelder 1989). 

Disturbance level (quantitative), Habitat (factor with 4 levels) and the interaction term Disturbance x 

Habitat were used as linear predictors in each model. Normal error distribution was selected as a fitting 

parameter in GLM for quantitative functional traits and for Functional diversity indices, Binomial error

distribution for binary functional traits and, finally, Poisson error distribution was used to model 

Species Richness (count data). The adequacy of the selected error distributions in GLM as well the 

occurrence of a linear relationships between responses and predictors were checked and tested on 

model residuals once the model was performed.

Significance of each predictor in the linear predictor was tested using the F-statistic for Normal 

models and using the X2statistic for Poisson and binomial models. As a measure of ‘‘goodness of fit’’ 

for each GLM, the adjusted D2 (D2adj) was calculated (Bacaro et al., 2008).
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Both species composition and functional composition at the plot level were analyzed via 

Redundancy Analysis (RDA). For species composition, an RDA on the Hellinger-transformed plant 

species abundances constrained by all the predictors (Coordinates, Disturbance and Habitat type) was 

performed. Quantitative predictors were standardized (mean 0, 1 standard deviation) before running the

analysis. A similar RDA analysis was performed using the CWM functional matrix instead of the 

species composition data, and using the same predictors. RDA analyses and significant tests (for 

constrained axes and environmental predictors) were performed using the “rda”, “anova.cca” and 

“permustats” functions within the “vegan” v.2.5-7 package (Oksanen et al., 2020).

Finally, using a variation partitioning approach (Borcard et al., 1992; Legendre, 2008), we 

partitioned the variation in each response matrix (composition and functional) that could be explained 

by habitat as well as by the plot location (space) and from the disturbance level. The outputs obtained 

allowed us to distinguish the proportion of total variation explained by the (a) pure effect of habitat,  

(b) pure effect of disturbance, (c) partial shared effects of the two set of factors, (d) total shared effect 

of all the variables considered along with unexplained variation. The partitioning was based on the 

adjusted R2 statistic as recommended by Peres-Neto et al. (2006). 

Results

GLMs showed that the response of the tested metrics of functional diversity strongly varied 

depending on habitat type.

 The disturbance effect on Functional Richness was found to be highly significant. Functional 

Richness increased with increasing disturbance for mixed-coniferous stands, while it decreased for 
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mixed-deciduous stand and remained substantially unaffected by disturbance gradient for coniferous 

and swamp stands (Fig.1a, Supplementary Material). The habitat effect was also significant, while the 

interaction term Disturbance x Habitat was not (Supplementary Material). 

Functional Evenness exhibited no significant response to disturbance (graph not shown) and 

only the interaction term Disturbance x Habitat was significant (Supplementary Material).

Functional Divergence exhibited strongly significant correlation to disturbance, decreasing with

the latter for coniferous and mixed-deciduous habitat types, while remaining unaffected in the case of 

mixed-coniferous and swamp types (Fig 1b, Supplementary Material). As for Functional Richness, the 

habitat effect was also significant, while the interaction term Disturbance x Habitat was not 

(Supplementary Material).
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b) 

Fig.1. GLM models showing variation along with disturbance gradient of: a) functional richness; b) functional 

divergence. The graph for functional evenness was not shown since the model was not significant (see Table 2).
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b) 
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Fig.2. GLM models of variation of a) species richness along with disturbance severity and b) of functional 

diversity along with species richness.
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Species richness increased with increasing disturbance for all forest types except for coniferous 

stands, the strongest increase being observed for mixed-coniferous and swamp habitat types (Fig.2a, 

Supplementary Material). Overall, 166 species were recorded in the survey, with the highest number in 

the mixed-deciduous type (Supplementary Material). 

Functional richness in turn increased with increasing species richness for all habitat types, with 

the strongest relationships shown for mixed-coniferous and coniferous stands (Fig.2b). Both species 

richness and functional richness were higher in swamp stands, following in mixed-deciduous, mixed-

coniferous and coniferous stands (Fig.1 and Fig.2). 

Disturbance severity was strongly correlated with the habitat type/fertility, being the highest in 

coniferous and mixed-coniferous stands and the lowest in swamp forests (Fig. 3).
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 Fig.3. Relationship between disturbance gradient and habitat type/fertility. C= coniferous; MC= mixed-

coniferous; MD= mixed-deciduous=; S= swamp.

In the RDA based on functional diversity data (Fig.4a), RDA axes explained 44% of the total 

variation, but only the first axis was significant (Tab 3). All the predictors were significant in the 

ordination. The main predictor of functional diversity was habitat type, followed by disturbance degree 

(Table 4). Out of all functional traits, only SLA and Canopy Height were shown to significantly vary 

according to the tested explicative variables (Fig.4a). However, Variation Partitioning showed that only

habitat type significantly explains variation in functional diversity (Fig. 4b).
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Fig.4. a) RDA of functional diversity; b) Functional Variation Partitioning

Table 3. RDA axes summary.

% Exp % Cum Exp % Exp % Cum Significa
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Variance Variance Variance/To

tal

Exp

Variance/

Total

nce

Rda1 0.989 0.989 0.444 0.444 0.001***

Rda2 0.001 0.999 0.004 0.448 0.825NS

Rda3 <0.001 0.999 <0.001 0.448 1.000NS

Rda4 <0.001 1.000 <0.001 0.449 1.000NS

Total R2=0.448 0.001+++

Table 4. RDA summary of explanatory variable significance.

Variable df F Significance

Disturbance 1 12.231 <0.001***

Type 3 24.987 <0.001***

Residual 107

In the RDA based on species composition data (Fig.5a) RDA axes explained 33.2% of the total 

variation, and the first and second ordination axes were significant (Table 5). Habitat type and 

disturbance resulted both significant in the constrained ordination (Table 6). Variation Partitioning 

showed that also in this case only habitat type significantly explains variation in functional diversity 

(Fig. 5b).
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Fig.5. a) RDA of species composition; b) compositional Variation Partitioning.

Table 5. RDA statistics. Only first axis is significant. RDA axes explain 35.7% of the total variation.
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% Exp

Variance

% Cum

Exp

Variance

% Exp
Varianc
e/Total

% Cum
Exp

Varianc
e/Total

Significa

nce

Rda1 0.832 0.832 0.276 0.276 0.001***

Rda2 0.113 0.945 0.037 0.315 0.001***

Rda3 0.033 0.979 0.011 0.325 0.146NS

Rda4 0.020 1.000 0.006 0.332 0.339NS

Total R2=0.33

2

0.001***

Table 6. RDA statistics. Summary of explanatory variable significance.

Variable df F Significance

Disturbance 1 8.769 <0.001***

Type 3 14.805 <0.001***

Residual 107

GLMs for SLA revealed a negative relationship with disturbance and a positive relationship 

with the increase in the habitat fertility, from coniferous to swamp forest stands, while for releasing 

height they showed a positive relationship with disturbance and a strong positive relationship with the 

increase in habitat fertility (Fig.6, Supplementary Material). For persistence of clonal connections and 

canopy height only the relationship with habitat type was significant, with an initial increase from 
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coniferous habitats to mixed-coniferous ones followed by a levelling in the case of persistence, and a 

strong and almost linear increase of values with increasing habitat fertility for canopy height. All the 

other quantitative traits did not exhibit significant response either to disturbance or habitat type (results 

not shown).

Fig. 6. Variation trend along the disturbance gradient and among habitat type for a) SLA and b) releasing height 

and along habitat type only for c) persistence of clonal connections and d) canopy height.
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No significant pattern emerged for life longevity (annuals vs biennials/perennials), while in the 

case of plant life strategies we observed a significant increase in the share of competitive and 

competitive/ruderal species with increasing habitat fertility, an increase of the share of stress-tolerant 

species with both increasing disturbance and increasing habitat fertility, as well as an initial increase of 

the share of CSR species from coniferous to mixed-coniferous stands, followed by a sharp decrease 

with further increase of habitat fertility (Fig.7). No significant pattern was highlighted for zoochorically

dispersed species, while we observed a significant increase in the share of anemochorically dispersed 
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species with increasing habitat fertility and an initial decrease of the share of hydrochorically dispersed 

species from coniferous to mixed coniferous habitat, followed by a sharp increase with further 

increasing of habitat fertility (Fig.7).
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Fig.7. Variation trend along disturbance gradient and habitat type for stress-tolerant (a) and along habitat type 

only for competitive (b), CR (c); CSR (d); anemochoric (e) and hydrochoric (f).
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Discussion

Response of functional diversity metrics to wind disturbance

Each of the tested functional diversity metrics revealed a different response to disturbance 

depending on the habitat type, which made it not possible to define a general pattern. 

In coniferous stands wind disturbance determined a significant decrease of functional 

divergence while leaving functional richness almost unaltered. This means windstorm caused an 

expansion of the share of those species lying towards the centre of the functional spectrum which were 

already present in the community and the disappearance of those lying at its ends. We can hypothesize 

the function groups which expanded their share consisted of forest generalists, e.g. Rubus idaeus L., 

and their expansion was determined by the decline of the share of more specialized species, i.e. shade 

tolerant and light-demanding ones. Such decline can be accounted for by the fact that, after disturbance,

the forest stand was no longer dense enough for shade-tolerant species, yet, due to the abundant forest 

regeneration, it was not open enough for light-demanding species either. The higher competitiveness of

generalists in comparison with specialized species is well documented (Denelle et al., 2020). In their 

study on long-term human disturbance in tropical forests, Sanaphre-Villanueva et al. (2017) showed 
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that disturbance indeed favoured generalist species, but this did not result in functional homogenization

of the ecosystem, while, in our case, the expansion of generalists in coniferous forest habitats appears 

to cause a functional homogenization of the community. Chelli et al. (2021), in their work on coppice 

forests, highlighted that higher amounts of dead wood are related to a shift of functional diversity 

patterns from convergence to divergence for traits such as reproductive height, seed mass, specific leaf 

area and leaf area. In our case, although coniferous stands were those characterized by the highest 

amount of dead wood among all tested habitats following the windstorm, no positive effect of 

abundance of dead wood on functional divergence was observed.

For mixed-coniferous habitats, the strong increase in functional richness and the simultaneous 

lack of changes in functional divergence suggest that disturbance here allowed for the entry of species 

lying again at the centrum of the functional spectrum, but unlike in coniferous habitats, these 

generalists did not expand their share at the cost of more specialized species. In these case our results 

are in line with those of Sanaphre-Villanueva et al. (2017), but they are again in contrast with those of 

Chelli et al (2021), since here too the high amount of dead wood generated by the windstorm did not 

show any enhancing effect on functional divergence.

In mixed-deciduous habitats, the decrease of functional richness was paired with a decrease of 

functional divergence, which suggests the species sharing a similar multifunctional setting which 

disappeared from the community  lied at one of the extremes of the functional spectrum and consisted 

of the shade-tolerant species, the ones which are most negatively affected by the changed 

environmental conditions. Also in this case, we can hypothesize the niche left empty by the 

disappearance of the shade-tolerant species was filled by the expansion of generalists, which led again 

to a homogenization of the community.

In swamp habitats wind disturbance left functional richness and divergence unaffected. This 

may be accounted for by the lower sensitivity of this forest habitat to wind disturbance, as well as to the
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higher resilience of swamp species to changing light conditions. Such species depended rather on water

than on light availability, so that changes in canopy openness did not exert a significant impact on the 

community. 

Overall, these results did not match our expectations, especially in the case of coniferous and 

mixed-deciduous habitats. The observed patterns can be accounted for by the fact that after 13 years 

from the windstorm event the effect of wind disturbance was screened and possibly counterbalanced by

the rapid forest regeneration.

Species richness response to wind disturbance and correlation with functional richness

While changes in functional diversity patterns differed depending on habitat type, species 

richness following wind disturbance increased in all habitats but the coniferous one, with the highest 

increase observed in mixed-coniferous and swamp forests. The positive effect of wind disturbance on 

species diversity confirms the results of Cooper-Ellis et al. (1999), Ulanova (2000) and Palmer et al. 

(2000.), as well as what reported by Thom & Siedl (2015), who showed that natural disturbances 

positively affect various diversity indices and increase species richness on average by 35.6%. 

The strong correlation between species richness and functional richness found in our study 

confirms our expectations, as well as the results of previous studies (Biswas & Mallik, 2011). 

However, such correlation was stronger for poor habitats, i.e. coniferous and mixed-coniferous forest 

stands, than for fertile habitats, i.e. mixed-deciduous and swamp forests. In fact, in coniferous stands 

we did not observe any increase in either species richness or functional richness, whereas in the mixed-

coniferous stands the increase in species richness was mirrored by an increase in Functional Richness. 

This strong correlation suggests that in poor habitats the addition of any new species to the set of 

already existing ones is likely to create a new group of species with similar multifunctional setting. 

Where the correlation was less strong, like in mixed-deciduous and swamp stands, the increase in 
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species richness was not paired with an increase in functional richness, which, on the contrary, 

decreased. This apparent inconsistency can be accounted for assuming that in fertile habitats the 

species which entered the community  shared the same functional setting  of species already present in 

the community. Besides, in mixed-deciduous habitats, this determined an expansion of such groups at 

the cost of those lying at the edge of the functional spectrum, i.e. shade-tolerant species, which would 

explain the decrease of both functional richness and functional divergence observed in mixed-

deciduous habitats.

Relative importance of disturbance and habitat type on functional diversity

By performing RDA and Variation partitioning analyses we tried to assess the relative 

contribution of disturbance severity, habitat type and spatial distance to variations in functional 

diversity and compositional diversity, but our results did not show a univocal response, highlighting 

that both habitat and disturbance can equally likely represent the main driver of changes in diversity, 

being strongly collinear. In fact, windstorm effects were strongly related to the habitat type, with stand 

characterized by a higher proportion of deciduous trees increasingly resistant to disturbance 

(Szwagrzyk et al., 2017). Similar results, with differences in disturbance severity largely explained by 

habitat type, were found also in previous studies (Peterson & Rebertus 1997, Ilisson et al. 2005; 

Anyomi et al., 2017). Because of that, the impact of the disturbance severity on forest floor diversity 

was indiscernible from that of habitat constraints. So the question of the relative contribution of habitat 

and disturbance in forest ecosystems cannot be answered unless comparing habitats with a similar 

sensitivity to a specific disturbance agent.

Variation trends of life trait values following wind disturbance
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GLMs allowed us to test the variation of each individual functional traits separately along the 

disturbance gradient and the fertility gradient represented by the various habitat types. From the 

analyses emerged that the majority of traits remained unaffected by variations in disturbance severity, 

while many of them varied depending on habitat type. Only SLA and seed releasing height 

significantly responded to the disturbance severity gradient, besides varying among habitats.

SLA exhibited a strong decrease along with increasing disturbance, according to our 

expectation, and increased with increasing habitat fertility, though its values were lower for swamp 

than for mixed-deciduous forests. This can be explained considering that swamp stands are 

characterized by a high patchiness in the distribution of microsites available for trees to grow, so that 

such forest type is usually more open than mixed-deciduous stands, which are denser and shadier. The 

lower light intensity on the forest floor of mixed-deciduous habitats accounts for the highest values of 

SLA observed in plants occurring this habitat type. Canopy height shows just a very slight increase 

with increasing disturbance, but a strong and linear increase with increasing habitat fertility. 

Persistence of clonal connections and releasing height only showed a significant variation in relation to 

the habitat type and displayed an almost identical pattern, with values increasing from coniferous to 

mixed-coniferous and then decreasing with further increase of habitat fertility. Such pattern may be 

rather the result of the dominance by a particular species (like Vaccinium myrtillus L.) in mixed-

coniferous stands, than of specific environmental constraints. 

The SLA decrease with increasing disturbance severity confirmed our expectations, as well as 

what already highlighted by Prado Júnior et al. (2015) in seasonal Brazilian forests. At the same time 

the lack of response of clonal traits, in particular persistence of clonal connections and lateral spread, 

contrasted with our expectations of a decrease of these traits with increasing disturbance. In fact, 

regeneration from aboveground vegetative sources (e.g., lateral extension, runners) is typical of plant 

communities where the disturbance agent affects mainly tree canopy (Roberts, 2004) and changes 
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along the disturbance gradient as a consequence of the increased light availability and uniformity of 

distribution would be reasonable to observe. The lack of response of clonal traits could be explained by

the retaining by blowdowns of a certain degree of environmental patchiness, even after light has 

become much more uniformly distributed due to stand disruption, or by its restoration, due to the rapid 

forest regeneration.

Unlike SLA, seed releasing height exhibited significant increase with increasing disturbance 

severity, which can be accounted for by the enhanced vegetation development due to the increase in 

light availability following stand disruption. The fact, that seed releasing height was positively 

associated with increasing disturbance severity, while plant height was not, could be accounted for by 

the architecture of grasses (like Deschampsia flexuosa (L.) Trin. and Calamagrostis arundinacea (L.) 

Roth), which are abundant in more disturbed habitats. The foliage in most grasses is set much lower 

above the ground than the inflorescence and the structures containing seeds.

The lack of a significant response of bud bank size, lateral spread, seed mass and share of 

annual species to the disturbance severity gradient, as well as the strong negative response of SLA, 

contrasts with the results of Herben et al. (2017), who showed a strong decrease in bud bank size values

with increasing disturbance severity, a strong increase of lateral spread, a moderate decrease of seed 

mass, a strong increase of the share of annual species and a moderate increase of SLA. At the same 

time, our results confirm the strong positive relationship with habitat fertility of both SLA and Canopy 

Height already observed in their study. However, Herben et al. (2017) studied several different habitat 

types, so that their results did not specifically refer to forest communities. Besides, they examined 

several types of both anthropogenic and natural disturbance and did not practically assess the actual 

degree of disturbance from direct observation, but based on personal knowledge and experience of 

typical disturbance severity in certain habitats.
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While the share of annuals and biennial/perennials did not exhibit significant variations either 

along the disturbance gradient or among different habitats, plant strategies as well as dispersal modes 

significantly varied together with the habitat type. We observed an obvious trend of increasing the 

share of C species from the coniferous forest type to the swamp forest type, which was predictable, 

since in poor habitats there are very few strong competitors, while in more productive habitats their 

share increases. The only significant relationship with both disturbance severity and habitat type was 

observed for the stress-tolerant species, whose share was highest in coniferous forests and lowest in 

swamp forests and increased together with increasing disturbance both overall and within the 

coniferous habitat type. The S species abundantly occurring in the coniferous forest type (Calluna 

vulgaris, Vaccinium vitis-idaea, Deschampsia flexuosa) are also light-demanding species, so they are 

more common in places where the forest canopy cover had been strongly reduced by disturbance. 

Similar, although weaker tendency was found in mixed coniferous habitat type. In more productive 

habitats (mixed deciduous and swamp habitat types) the S plants are rare and they are not the light-

demanding ones, so the relationship between disturbance severity and the presence of S plants is 

negative, but weak and insignificant. In case of ruderals (R plants) there was no significant relationship 

both with disturbance severity and habitat type. We need to take into account, that ruderals are very 

likely to appear and thrive immediately after wind disturbance, but they disappear soon after. In this 

study, conducted 13-14 years after disturbance they are long gone, replaced by typical forest plants. 

The share of anemochoric species almost linearly increased with increasing soil fertility, namely from 

coniferous to swamp habitat types, while the share of hydrochoric species decreased from coniferous 

habitats to mixed coniferous and then increased to reach the highest value in swamp habitat types. The 

high share of hydrochoric species in coniferous forest type is probably an artifact, as there is hardly any

water available for seed trasport in dry habitats. Yet some species occurring in coniferous habitat types 

are characterized by both anemochory and hydrochory (see TRY database), so in dry habitats they rely 
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mostly on wind dispersal, while in wet habitats, especially close to water streams, they can be dispersed

mainly by water.

Looking at the results of this study overall, we need to consider that many changes in species 

composition of the herbaceous layer occur in the first 2-3 years after disturbance, when the light-

demanding species are able to colonize the openings created by canopy tree mortality (Szwagrzyk et al.

2016; Daniels & Larson, 2019). However, these changes can be only temporary, not affecting the 

composition and structure of forest community in a long run. The patterns of functional diversity and 

trait variation highlighted by this study refer to an advanced stage of forest regeneration, when a low 

canopy layer, made up by tall saplings and young trees, begins to be formed. In fact, according to 

literature, forest communities start returning to their original state within 6-15 years form the 

disturbance event (Cooper-Ellis et al., 1999; Palmer et al., 2010; Szwagrzyk et al., 2018; Daniels & 

Larson (2019).

Conclusions 

Our results show that wind disturbance effects on functional diversity are not univocal and that 

they strongly depend on habitat type. However, changes in functional diversity did not show a trend 

consistent with the habitat gradient and the strictly related disturbance severity gradient, as might have 

been expected. In fact, while wind disturbance caused a functional homogenization of the community 

in habitats that significantly differ in their environmental features like coniferous and mixed-deciduous 

ones, it did not in mixed-coniferous nor in swamp ones. The reason behind these inconsistencies is an 

issue which deserves further investigation. Management practices simulating wind disturbance in order 

to stimulate undergrowth diversity should thus take into account the individual forest habitat features, 

i.e. their resistance and resilience to wind disturbance events. Based on the results of our study, it 
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appears that wind disturbance exerts a generally positive effects on mixed-coniferous habitats, since it 

increases there both species and functional richness. In such habitat type, simulation of wind 

disturbance as a management practice can be expected to be appropriate, while it should be considered 

with caution in coniferous and mixed-deciduous habitats.

Contrary to functional diversity, species richness showed rather consistent patterns across the 

tested habitat types, since it increased in all of them but the coniferous one, which confirms the positive

effects of windstorms on biodiversity, even on the long run. The relative impact of habitat type and 

disturbance severity on patterns of functional diversity remains unclear because of the strong 

correlation among disturbance severity and habitat types. Most examined traits did not show any 

relationship with the disturbance gradient, except SLA, seed releasing height and share of stress-

tolerant species. We suggest that repeated monitoring at different time intervals form the disturbance 

events is needed to reliably assess the changes in diversity and species composition in disturbed forest 

communities. 
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