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ABSTRACT
The localized radial basis function collocation meshless method
(LRBFCMM), also known as radial basis function generated finite differences
(RBF-FD) meshless method, is employed to solve time-dependent, two-
dimensional (2D) incompressible fluid flow problems with heat transfer
using multiquadric RBFs. A projection approach is employed to decouple
the continuity and momentum equations for which a fully implicit scheme
is adopted for the time integration. The node distributions are character-
ized by non-Cartesian node arrangements and large sizes, i.e., in the order
of 105 nodes, while nodal refinement is employed where large gradients
are expected, i.e., near the walls. Particular attention is given to the accur-
ate and efficient solution of unsteady flows at high Reynolds or Rayleigh
numbers, in order to assess the capability of this specific meshless
approach to deal with practical problems. Three benchmark test cases are
considered: a lid-driven cavity, a differentially heated cavity and a flow
past a circular cylinder between parallel walls. The obtained numerical
results compare very favorably with literature references for each of the
considered cases. It is concluded that the presented numerical approach
can be employed for the efficient simulation of fluid-flow problems of
engineering relevance over complex-shaped domains.
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1. Introduction

The difficulties connected to the mesh, i.e., generation, properness, quality issues, and possible
adaptation requirements, when using traditional mesh-based methods, led to the development of
various meshless or meshfree methods for the solution of partial differential equations over com-
plex-shaped domains encountered in practical problems [1] and [2]. Radial basis function (RBF)
collocation approaches have been widely applied because of their real meshless nature [3]–[9],
using both the global formulation [10] and the localized formulation [11]–[19]. The localized
RBF collocation approach is also known as RBF-generated Finite Differences (RBF-FD) method
because it is the extension of the standard FD schemes to irregular node arrangements using local
RBF interpolants [20]. The coefficient matrix arising from such discretization is sparse, contrary
to the full matrices arising from global approaches. Since sparse matrices are generally more effi-
cient to solve and less prone to ill-conditioning than full matrices, the localized approaches have
shown to be more efficient and robust compared to global approaches when a large number of
nodes is employed [21]–[23]. In recent years such RBF-FD approach has been successfully
employed for the solution of fluid flow and heat transfer problems [24]–[29], showing that this
approach is very promising for the solution of practical problems of engineering relevance.
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This article is intended to continue and extend the application of the RBF-FD method to two-
dimensional incompressible fluid flow problems with heat transfer for which important practical
issues are addressed, such as the use of irregular node arrangements with variable nodal spacing,
an efficient solution procedure for large size problems with approximately 105 nodes or more, the
possibility to deal with moderately high Reynolds (Re) or Rayleigh (Ra) numbers and the use of
primitive flow variables, i.e., velocity and pressure. The use of irregular node arrangements with
variable nodal spacing has two practical outcomes: the possibility to deal with arbitrarily-shaped
domains, which is one of the strengths of meshless methods, and the opportunity to employ high
node density, i.e., small nodal spacing, where large gradients are expected, similarly to traditional
mesh based methods. Computational efficiency is achieved by coupling a projection scheme [29]
with a fully implicit scheme for the momentum equations, which allows the use of large time
steps and therefore providing an effective time integration procedure. A compact local support
for the RBF discretization is employed, i.e., n¼ 7 nodes, allowing an efficient iterative process at
each time step, for which the fast solution of large and sparse linear systems is of utmost import-
ance. Finally, the employment of a primitive variables formulation allows a straightforward exten-
sion to three-dimensional problems with possible applications to more complex fluid
flow phenomena.

Nomenclature

B nondimensional buoyancy vector
CD drag coefficient
dcyl cylinder diameter
Dn local support size
DT energy equation parameter
Du momentum equation parameter
eW spacing parameter, eW ¼ 1:75
f nondimensional frequency
Fx horizontal force
g gravity acceleration
g gravity vector
iMAX number of nodes along x and y
j vertical unit vector
Jn local support
kW spacing parameter, kW ¼ 3
kC spacing parameter, kC ¼ 24
L characteristic length
M number of internal nodes
MD number of Dirichlet nodes
MN number of Neumann nodes
n number of local support nodes
n unit normal
Nuy local Nusselt number
�Nu mean Nusselt number
p pressure
Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
s spacing function
sm minimum spacing function
sM maximum spacing function
t time
�t shedding period
T temperature

TC cold wall temperature
TH hot wall temperature
u Cartesian component of velocity
u velocity vector
u� tentative velocity vector
x horizontal coordinate
x̂ horizontal nodal coordinate
x position vector
x̂ nodal positions
�x mean local support point
y vertical coordinate
Y linear operator
a thermal diffusivity
b volumetric expansion coefficient
Dt time step
DT reference temperature scale
e shape factor
�e rescaled shape factor
c spacing parameter, c¼ 40
C boundary
CN Neumann boundary
� kinematic viscosity
X domain
/ velocity correction potential
w streamfunction
q density
Subscripts
d Cartesian component, d¼ 1, 2
i, j nodal indexes
k iteration index
0 reference value
Superscripts
n time level
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The developed RBF-FD meshless scheme is applied here to the solution of three classic bench-
mark problems: a lid-driven cavity at Re ¼ 1,000, 5,000, 7,500, 10,000, a differentially heated cav-
ity at Ra ¼ 106, 107, 108, 2� 108; 4� 108; and a flow past a circular cylinder between parallel
walls at Re ¼ 200, 300, 500, 1,000, 2,000, 4,000, 8,000. For each of these problems, suitable node
distributions are easily generated starting from a simple spacing function definition in order to
get higher node density where needed, e.g., near the walls. Very good results have been obtained
for each of these test cases in terms of both quantitative numerical results and computational effi-
ciency, showing the capability of the proposed method to deal with steady and unsteady flows at
high Re or Ra numbers. Alongside the typical implementation ease of meshless methods, these
features confirm that the present RBF-FD approach can be effectively used for the simulation of
fluid-flow problems with heat transfer over complex-shaped domains with possible time-depend-
ent behavior. Furthermore, the possibility of a straightforward extension to three-dimensional
problems is an important feature when facing engineering relevant problems.

2. Governing equations

A two-dimensional, incompressible and nonisothermal flow is considered, for which the conser-
vation equations of mass, momentum and energy are the following:

r � u ¼ 0 (1)

@u
@t

þ u � rð Þu ¼ � 1
q0

rpþ �r2u�gb T�T0ð Þ (2)

@T
@t

þ u � rT ¼ ar2T (3)

where the pressure p is deprived of the hydrostatic component and the Boussinesq approximation
is employed, i.e., constant thermophysical properties except for the density in the buoyancy term
which has a linearized dependence on the temperature:

q
q0

¼ �b T�T0ð Þ (4)

where T0 and q0 are the reference values for temperature and density in the linearization, respect-
ively. In the case of isothermal flows, the energy Eq. (3) is not considered and the buoyancy term
is dropped, i.e., b¼ 0.

Eqs. (1)–(3) can be made nondimensional using the following reference values: L for length, u0
for velocities, L=u0 for time, DT for temperature, and q0u

2
0 for pressure. For isothermal flows, the

flow Reynolds number is defined as Re ¼ u0L=�; while for nonisothermal flows the Rayleigh
number Ra ¼ gbDTL3=ð�aÞ ¼ u20L

2=ð�aÞ and the Prandtl number Pr ¼ �=a are chosen as nondi-
mensional groups. A Prandtl number Pr¼ 0.71 is chosen, which is representative of air. The non-
dimensional form of Eqs. (1)–(3) is therefore:

r � u ¼ 0 (5)

@u
@t

þ u � rð Þu ¼ �rpþ 1
Du

r2uþ B (6)

@T
@t

þ u � rT ¼ 1
DT

r2T (7)

where B ¼ ðT�T0Þj in the non-isothermal cases; T0 is assumed to be 0 without loss of generality.
The values for Du, DT, and B are reported in Table 1 for isothermal and nonisothermal cases.
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3. Numerical procedure

3.1. Time discretization and solution procedure

A second order backward Euler scheme, or Gear scheme, is employed for the time discretization
of Eqs. (6)–(7), while a segregated approach is chosen for the decoupling of the system of Eqs.
(5)–(7). The projection approach [29] is employed for the decoupling of mass and momentum
equations. At each iteration k the tentative velocity u� is computed by implicitly solving the
momentum Eq. (6) with a linearized advective (nonlinear) term as follows:

3u�k
2Dt

þ unþ1
k�1ru�k�

1
Du

r2u�k ¼
4un�un�1

2Dt
�rpnþ1

k�1 þ Bnþ1
k�1 (8)

where the values with iteration index k – 1 are extrapolated at the first iteration k¼ 1 as fol-
lows: unþ1

0 ¼ 2un�un�1;Bnþ1
0 ¼ 2Bn�Bn�1; pnþ1

0 ¼ 3
2 p

n� 1
2 p

n�1:
The tentative velocity u�k is then projected onto the space of divergence-free fields in order to

satisfy the continuity Eq. (5) [29], i.e., u�k is deprived from its irrotational component r/ :

unþ1
k ¼ u�k�r/ (9)

The equation for the potential / is obtained by taking the divergence of Eq. (9) and enforcing
the mass constraint r � unþ1

k ¼ 0; obtaining the following Poisson equation:

r2/ ¼ r � u�k (10)

subject to the boundary condition r/ � n ¼ 0 on the whole boundary in order to satisfy the nor-
mal boundary condition for the velocities. Poisson Eq. (10) has to be solved at each time step in
order to compute the velocity correction of Eq. (9).

The pressure is then updated as:

pnþ1
k ¼ pnþ1

k�1 þ
3/
2Dt

(11)

Lastly, the temperature is computed by implicitly solving the energy Eq. (7) for Tnþ1
k :

3Tnþ1
k

2Dt
þ unþ1

k rTnþ1
k � 1

DT
r2Tnþ1

k ¼ 4Tn�Tn�1

2Dt
(12)

where the divergence-free velocity unþ1
k is now considered for the advective term.

The whole system of Eqs. (8)–(12) is iterated four times for each time step in order to properly
address the nonlinear coupling between the different variables, especially when using large
time-steps.

Since implicit solvers are employed for both the computation of velocities, Eq. (8), and tem-
perature, Eq. (12), there is no stability requirement for the choice of the time step Dt; i.e., CFL
condition, and therefore it is possible to employ large time steps, i.e., large Courant numbers C ¼
Dtjjujj=s � 1 where s is the nodal spacing, allowing an efficient time marching scheme.

Table 1. Parameters for Eqs. (6) and (7) for isothermal and nonisothermal cases

Case Du DT B

Isothermal Re – 0
Nonisothermal

ffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p ffiffiffiffiffiffiffiffiffi
RaPr

p
Tj
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3.2. RBF-FD space discretization

3.2.1. 2D Node distributions
The RBF-FD meshless approach requires a set of N nodes x̂i; i ¼ 1; :::;N; appropriately distrib-
uted over the domain and its boundary. M nodes are distributed inside the domain X (internal
nodes), while the remaining N – M nodes are distributed over the boundary C (boundary nodes).
Boundary nodes are composed by MD Dirichlet nodes, i.e., where Dirichlet BCs are imposed, and
MN ¼ N�M�MD Neumann nodes, i.e., where Neumann BCs are imposed. Such two-dimensional
node distributions have been obtained through the technique proposed in [30] in the case of iso-
thermal problems where isotropic node arrangements are required. This node generation tech-
nique employs a modified quadtree algorithm followed by repel refinement in order to obtain
high quality node distributions; such algorithm is briefly summarized here.

Starting from a prescribed spacing function sðxÞ; which defines the spacing between the nodes,
an initial node distribution is obtained through the quadtree algorithm [31] modified with a dith-
ering correction [32] in order to reduce the nodal quantization error, i.e., the difference between
the integer number of nodes that can be contained in any square box X and the prescribed (non-
integer) node number

Ð
XsðxÞ�2dx: The resulting node distribution is then improved by the appli-

cation of a certain number of refinement iterations which are based on radial repel forces
between the nodes, while a fixed boundary distribution of nodes is employed (Figure 1).

In the case of the differentially heated cavity, the employment of anisotropic node distributions
is required for the efficient and accurate solution of the thin boundary layer occurring at the ver-
tical walls. In such cases we employed Cartesian nodal arrangements which are highly stretched
near the walls of the cavity.

3.2.2. Localized RBF interpolation
A localized RBF expansion augmented with a linear polynomial is employed to approximate a
generic field n in the neighborhood of x:

n xð Þ ¼
X
j2Jn xð Þ

aju kx � x̂ jk
� �þ bT x��xð Þ þ c (13)

where JnðxÞ is the set of the indices j of the n nodes x̂j closest to x ¼ fx1; x2gT : Such local nodes
represent the local support for nðxÞ and �x ¼ P

j2JnðxÞ x̂ j=n is the mean point for the local support.

Figure 1. Example of a local support for the RBF expansion around x. The nodes x̂ j inside the circle are the 7 nearest nodes
from x.
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When isotropic distributions are employed, we used n¼ 7 local nodes, since this choice allows a
second order accuracy and the higher fraction of positive stencils in the range n< 10 [30], in the
case of the Poisson Eq. (10). In the case of Cartesian node arrangements, the traditional five-
point stencil is employed, i.e., n¼ 5.

The expansion defined by Eq. (13) is therefore a linear combination of n radial functions u
centered at the n local nodes x̂ j plus a linear polynomial in x. The choice of a linear polynomial
follows the recommendation 2q�n ¼ 5� 7 [33], where q is the number of polynomial terms,
therefore q¼ 3 is the higher number of allowed polynomial terms, corresponding to a complete
linear polynomial in 2D.

Hardy’s multiquadric (MQ) [34] is chosen as RBF since it seems to offer the best interpolation
results if an appropriate shape factor e is employed [35] and [36]:

u rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ erð Þ2

q
(14)

In Eq. (14) the shape factor e is rescaled as:

e ¼ sM�e=Dn xð Þ (15)

where �e is the rescaled shape factor, sM is the maximum prescribed spacing function over the
domain and DnðxÞ is the local support size:

Dn xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
j2Jn xð Þ

kx̂ j � �xk2
s

(16)

The rescaling defined by Eq. (15) is motivated by two reasons. The first reason is to avoid large
differences in the condition number for the local interpolation matrix of Eq. (20) between different
parts of the domain where different nodal spacings are employed, while the second reason is to avoid
the appearance of stagnation errors [37] when nodal spacing is continuously reduced on the whole
domain. The former issue is addressed by dividing �e by the local support size DnðxÞ; while the latter
issue is addressed by multiplying �e by the maximum prescribed spacing function over the domain
sM. Obviously, the rescaled shape factor �e has to be chosen in order to avoid ill-conditioned local
interpolation matrices. In all the presented results a rescaled shape factor �e ¼ 1 is employed.

The coefficients aj, b, and c in Eq. (13) are formally obtained by writing the same Eq. (13) for
the m � n local nodes x̂ i which do not lie on the part of the boundary C where Neumann BCs
are imposed (Neumann boundary CN):X

j2Jn xð Þ
aju kx̂ i � x̂ jk

� �þ bT x̂i��xð Þ þ c ¼ ni i 2 In xð Þ (17)

where ni is the value for n in x̂i and InðxÞ 	 JnðxÞ is the set of the indices i of the m � n local
nodes x̂i which do not lie on the Neumann boundary CN. It is appropriate to require exactness
of Eq. (13) for any linear function n: Eq. (17) with ni ¼ bT x̂i þ c should give the unique obvious
solution aj ¼ 0. Since the MQ-RBF interpolation matrix is always invertible [38], any additional
homogeneous linear system in aj with rank 3 can be employed. It is then convenient to impose
the following homogeneous conditions in order to get a symmetric interpolation matrix:X

j2Jn xð Þ
aj ¼ 0;

X
j2Jn xð Þ

aj x̂ j��x
� � ¼ 0 (18)

If a local support node x̂k lies on a Neumann boundary CN, x̂k is a Neumann node and the
corresponding boundary condition has to be satisfied:

@n
@n

����
x̂k

¼
X
j2Jn xð Þ

aj
@

@n
u kx � x̂ jk
� �� �

x̂k
þ bTn ¼ �nk k 2 Kn xð Þ (19)
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where �nk is the imposed outward normal derivative for n on the Neumann node x̂k; n is the unit
outward normal to the boundary in x̂k and KnðxÞ 
 JnðxÞ is the set of the indices k of the n – m
local nodes x̂k lying on the Neumann boundary CN. InðxÞ and KnðxÞ are disjoint sets
and JnðxÞ ¼ InðxÞ [ KnðxÞ:

By collecting n local coefficients aj, m unknown values ni and n – m normal derivatives �nk in
column vectors a, nloc and �nloc; respectively, the local interpolation system is:

Ge ¼ n0loc (20)

where e ¼ fa; b; cg 2 R
nþ3 is the column vector of RBF expansion coefficients, n0loc ¼

fnloc; 0; �nlocg 2 R
nþ3 is the column vector of local nodal values and outward normal derivatives

(the symbol ‘;’ denotes column concatenation) and the zero vector is a column vector with three
components corresponding to the three conditions of Eq. (18). G is a square ðnþ 3Þ � ðnþ 3Þ
matrix whose first ðmþ 3Þ rows represent the contribution of MQ-RBF interpolation with an
augmented linear polynomial as expressed by Eq. (13), while the remaining ðn�mÞ rows repre-
sent the equations for Neumann BCs, if any. If m¼ n, i.e., no local support nodes on the
Neumann boundary, an LDLT factorization is performed on G since it is symmetric but not posi-
tive definite, otherwise a Schur complement [39] is first performed for the Neumann equations,
followed again by an LDLT factorization on the remaining symmetric part of G.

It is convenient to introduce the following compact form for the RBF expansion of Eq. (13):

n xð Þ ¼ w xð Þe (21)

where wðxÞ ¼ fuðkx � x̂1kÞ; :::;uðkx � x̂nkÞ; ðx��xÞT ; 1g is the row vector of RBFs, including the
polynomial terms.

3.2.3. RBF-FD approach
Let us consider the following linear PDE:

Y nð Þ ¼ q (22)

where Y is a linear differential operator and q is a known function. Recalling the compact nota-
tion of Eq. (21) for n, Eq. (22) is made valid on each of the M internal nodes x̂i through the col-
location approach:

Y w xð Þð Þjx̂ ie ¼ q x̂ið Þ i ¼ 1; :::;M (23)

where YðwðxÞÞjx̂ i is obtained by applying the differential operator Y to each scalar function com-
posing the vector wðxÞ; evaluated at the collocation node x̂ i; while e is moved outside Y because
of its linearity.

By recalling e ¼ G�1n0loc from Eq. (20), Eq. (23) becomes:

Y w xð Þð Þjx̂ iG�1n0loc ¼ q x̂ið Þ i ¼ 1; :::;M (24)

Eq. (24) therefore represents the final RBF-FD equation for the M internal nodes x̂ i: The RBF-
FD definition is due to the fact that Eq. (24) represents a pointwise, or collocation, approximation
of the starting differential Eq. (22) using local nodal values for the unknown function. The first
m components of row vector YðwðxÞÞjx̂ iG�1 define the stencil, i.e., the equation coefficients for
n0loc; while the remaining n – m components define the coefficients for the imposed outward nor-
mal derivatives on n for Neumann local nodes, if any.

Writing Eq. (24) for each internal node x̂i; i ¼ 1; :::;M; gives the following linear system:

Anþ �A�n ¼ q (25)

where n 2 R
MþMD is the column vector of n values for all M internal nodes and MD Dirichlet

nodes, while �n 2 R
MN is the column vector of imposed outward normal derivatives on n for MN
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Neumann nodes. A 2 R
M�ðMþMDÞ and �A 2 R

M�MN are the corresponding coefficient matrices and
q 2 R

M is the column vector of RHS terms qðx̂ iÞ for each of the M internal nodes.
The order of the entries in the column vector n is chosen to have the unknown values at the

internal nodes at the beginning, followed by the known values at the Dirichlet nodes. This is for-
mally expressed by n ¼ fnI ; nDg; where the subscripts I and D stand for internal and Dirichlet
nodes, respectively. Eq. (25) then becomes:

AInI ¼ q��A�n�ADnD (26)

where AI 2 R
M�M and AD 2 R

M�MD are the coefficient matrices for internal and Dirichlet nodes,
respectively, and are obtained as a column partition of A following the corresponding ordering
for n : A ¼ ½AIAD�:

Eq. (26) is the final M�M sparse linear system representing the discretized version of
Eq. (22). Eq. (22) solved for nI gives the nodal values for n on the M internal nodes.

3.2.4. RBF-FD for the momentum equation
Each scalar component of the linearized momentum Eq. (8), in a Cartesian coordinate system,
can be recast in the form of Eq. (22) where the linear differential operator Y is given by:

Y nð Þ ¼ 3n
2Dt

þ unþ1rn� 1
Du

r2n (27)

where n ¼ u�d; d ¼ 1; 2 for each of the Cartesian components of the tentative velocity u� ¼
fu�1; u�2gT and the iteration subscript k is dropped for simplicity of notation. The RHS function q
is given by the RHS of Eq. (8):

q ¼ 4und�un�1
d

2Dt
� @pnþ1

@xd
þ Bnþ1

d d ¼ 1; 2 (28)

where u ¼ fu1; u2gT ;B ¼ fB1;B2gT in Cartesian components and the iteration subscript k is
again dropped. Since the advective term in Eq. (8) is linearized, each of its Cartesian components
can be solved independently for u�d; d ¼ 1; 2:

3.2.5. RBF-FD for the Poisson equation and velocity correction
Poisson Eq. (10) is already in the form of Eq. (22) with Y ¼ r2 and q ¼ r � u�k: The divergence
term for q is approximated applying the same RBF-FD scheme employed for the discretization.
When the discretized Poisson equation is solved for the potential / on the internal nodes, it is
possible to correct the nodal tentative velocities u�k using the correction Eq. (9) where the gradient
operator is again approximated using the same RBF-FD scheme employed for the discretization
of the Poisson equation.

It is important to notice that the present approach for the velocity correction does not satisfy
exactly the continuity Eq. (1) at discrete level, i.e., the discrete divergence of the corrected velocity
evaluated with the present RBF-FD scheme is not exactly 0 even if the discretized Poisson equa-
tion is solved at machine zero. This is due to the RBF-FD discretization of the Poisson Eq. (10),
for which the incompressibility constraint, i.e., vanishing divergence for velocity, is imposed
before the discretization. Although this approach introduces a certain amount of numerical mass
generation/elimination, it is found to be much more stable and efficient than trying to impose a
perfect satisfaction of the discretized continuity equation. In fact, this last operation consists in a
double application of a discrete RBF-FD differential operator (gradient followed by divergence) to
the potential of Eq. (9), which implies a stencil which is almost three times larger than the com-
pact stencil employed for the Poisson equation (19 nodes vs. 7 nodes for a hexagonal node
arrangement).
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Another important observation concerns the treatment of the pressure p in the momentum
equations and in the pressure update after the solution for the potential /: It is known that the
velocity-pressure coupling in discrete formulations can give rise to spurious/checkerboarding
pressure modes if the same discretization scheme is employed for both quantities [40]. In the pre-
sent formulation, this issue is addressed by considering an additional node distribution for the
pressure, which has twice the spacing of the starting node distributions, therefore having roughly
N=4 nodes in 2D. The potential / is still solved on the original node distribution and is also
used for the velocity correction, Eq. (9), on the same node distribution, but / is then interpolated
onto the coarse node distribution for the pressure update, Eq. (11), and for the calculation of
pressure gradient in Eq. (28).

3.2.6. RBF-FD for the energy equation
The energy Eq. (12) can be recast in the form of Eq. (22) where the linear differential operator Y
is given by:

Y nð Þ ¼ 3n
2Dt

þ unþ1rn� 1
DT

r2n (29)

where n ¼ T; while the RHS function q is given by the RHS of Eq. (12):

q ¼ 4Tn�Tn�1

2Dt
(30)

3.3. Solution techniques

The application of the previously introduced RBF-FD discretization to Eqs. (8), (10), and (12)
leads to a large and sparse linear system for each of the corresponding scalar equations.
Therefore, four formally independent linear systems have to be solved at each iteration k
within each time step, in the following order: two linear systems for the momentum equa-
tions, one linear system for the Poisson equation and one linear system for the
energy equation.

The RBF-FD coefficient matrix for the Poisson Eq. (10) is constant at each time step since it is
time-independent. Therefore, it is convenient to perform a single LU factorization for this matrix
at the beginning of the simulation and use it at each time step for the calculation of the potential
/; allowing a very fast and accurate solution. In the case of cavities, the Poisson equation is
undetermined up to a constant and the uniqueness of the solution is obtained by using a
Lagrange multiplier.

The RBF-FD coefficient matrices for momentum and energy Eqs. (8), (12) are time-dependent
because of the advection term which depends upon the velocity, therefore the previous LU
approach cannot be used. An efficient solution strategy is obtained by employing the BiCGSTAB
iterative solver [41] with an incomplete LU (ILU) factorization [42] as preconditioner and reverse
Cuthill–McKee ordering [43]. The ILU factorization is performed each 1� 2 time steps during
the transient, i.e., starting from resting fluid or restarting from a previous solution at lower Re/
Ra, as well as for time-dependent flows with strong recirculations, i.e., the flow past the cylinder
and the lid-driven cavity at high Re. The ILU factorization is performed less frequently when a
solution is approaching the steady-state (factorization every 25� 50 time steps) or in the case of
the differentially heated cavity where most of the fluid is at rest even for time-dependent solu-
tions (factorization every 10� 20 time steps).

In the case of a ILU factorization at each time step, it is very important to choose a suitable
ILU drop tolerance in order to minimize the overall time required for the ILU factorization and
the BiCGSTAB solution at each time step. Low ILU drop tolerances involve high ILU
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factorization times and low BiCGSTAB solution times for each time step, and vice versa.
Therefore there exists an optimal ILU drop tolerance which minimizes the overall solution time
per time step. Such value, which depends upon the matrix nature, residual tolerance for the itera-
tive solution and hardware/implementation characteristics, is continuously and automatically opti-
mized during the simulation by a simple optimization cycle. The residual relative tolerance for
BiCGSTAB is set to 10�8 for the velocities and 10�11 for the temperature, for which two to four
BiCGSTAB iterations are typically required. With these choices, the typical computing time on a
quad-core IntelVR i7 2.6GHz laptop with a MATLAB implementation is 1:2� 2:0 s/(time step)
when N�105 nodes are employed.

3.3.1. Auxiliary computations
The calculation of the streamfunction w, required for vortices detection and graphical evaluation
of the flow features, is carried out by solving the following Poisson equation:

r2w ¼ �r� u (31)

subject to the boundary condition w ¼ �w: The boundary streamfunction �w is constant at all solid
walls, while �w is obtained from the imposed velocities at the inlet and from the solved velocities
at the outlet, by integrating the normal component. Eq. (31) is discretized through the same
RBF-FD approach employed for the discretization of the Poisson Eq. (10) and solved using a dir-
ect LU decomposition.

The local Nusselt number Nuy at the cold wall for the differentially heated cavity is obtained
using the following expression:

Nuy ¼ Tk�TC

1� x̂k
(32)

where k is the index of the internal node x̂k ¼ fx̂k; ŷkgT which is closest to the point x ¼ f1; ygT
and Tk is its temperature. The mean Nusselt number Nu on the cold wall is therefore given
by Nu ¼ Ð 1

0 Nuydy:
The drag coefficient CD for the case of the flow past a circular cylinder between parallel walls

is defined as follows:

CD ¼ 2Fx
q0u

2
0Ldcyl

(33)

where Fx is the x-component of the force exerted by the fluid on the cylinder, which is time-aver-
aged over a period �t in the case of unsteady periodic flows.

4. Geometry and boundary conditions

The geometries for the problems are represented in Figure 2. The lid-driven cavity problem,
Figure 2a, is defined by a square cavity with side length L where the top wall moves to the right
with velocity u0. The boundary conditions in terms of nondimensional variables are u ¼ 0 at
x¼ 0, 1 and y¼ 0, u ¼ f1; 0gT at y¼ 1.

The differentially heated cavity problem, Figure 2b, is defined again by a square cavity with
side length L where the horizontal walls are adiabatic while the vertical walls are isothermal.
The temperature of the left wall (hot wall) is T ¼ TH while the temperature of the right wall
(cold wall) is TC < TH. The reference temperature for the buoyancy linearization is chosen to
be the mean temperature T0 ¼ ðTH þ TCÞ=2 while the reference temperature scale is chosen to
be DT ¼ TH�TC: The boundary conditions in terms of nondimensional variables are the fol-
lowing:
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u ¼ 0 at x; y ¼ 0; 1
T ¼ 1=2 at x ¼ 0
T ¼ �1=2 at x ¼ 1
@T
@y

¼ 0 at y ¼ 0; 1

8>>>><
>>>>:

(34)

The problem of the flow past a circular cylinder between parallel walls, Figure 2c, is defined
by a rectangular channel with height L and length 11 L with a circular obstacle with diameter
dcyl ¼ L=5 placed at half of the channel height and 3L ¼ 15dcyl downstream from the left inlet.
The inlet velocity profile is parabolic with u0 as mean value, while completely developed flow
conditions are imposed at the outlet. The outlet is placed at 8L ¼ 40dcyl downstream from the
cylinder in order to avoid any spurious influence of the outlet boundary conditions on the flow
near the cylinder. The boundary conditions in terms of nondimensional variables are the follow-
ing:

u ¼ 0 at y ¼ �1=2; 1=2; on the cylinder

u ¼ 3=2�6y2; 0
� 	T

at x ¼ �3
@u
@x

¼ 0 at x ¼ 8

8>><
>>: (35)

5. Node distributions

The spacing function s(x, y) employed for the lid-driven cavity problem is the following:

s x; yð Þ
sM

¼ 1
5
þ 1
5

1þ cos p 2x�1ð Þ4
� �� �

1þ cos p 2y�1ð Þ4
� �� �

(36)

for which the maximum spacing at the cavity center is sM, while the minimum spacing at the
walls is sm ¼ sM=5 in order to accurately resolve the boundary layers. A graphical representation

(a)

(c)

(b)

Figure 2. Geometries of the problems: (a) lid-driven cavity, (b) differentially heated cavity, (c) flow past a circular cylinder
between parallel walls.
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of the spacing function is given in Figure 3a, while Figure 3b shows an enlarged view of the node
distribution for the bottom left corner in the case N�105 nodes.

The spacing function s(x, y) employed for the differentially heated cavity problem at
Ra¼106; 107 and 108 is the following:

s x; yð Þ
sM

¼ 1
c
þ c�1

4:2c
1þ cos p 2x�1ð Þ8

� �� �
1:1þ cos p 2y�1ð Þ8

� �� �
(37)

for which the maximum spacing at the cavity center is sM and c¼ 40. The minimum spacing at
the vertical walls is sm ¼ sM=c ¼ sM=40; while the spacing at the horizontal walls is larger than
sm. This choice is motivated by the necessity of an accurate resolution of the thin boundary layers
occurring at the isothermal vertical walls, especially for high Ra numbers. A graphical representa-
tion of the spacing function is given in Figure 3c, while Figure 3d shows an enlarged view of the
node distribution for the bottom left corner.

The solutions of the differentially heated cavity at Ra¼2� 108 and 4� 108; which are expected
to be time-dependent, are obtained on highly stretched, nonuniform Cartesian node arrange-
ments. This choice is due to the strong influence of the accurate resolution of the thin boundary
layer on the time-dependent flow.

Figure 3. Spacing function (left) and enlarged view of the node distribution for the bottom left corner (right) with N�105 nodes:
(a, b) lid-driven cavity, (c, d) differentially heated cavity.
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The employed Cartesian coordinates of the nodes for both directions are:

xi
L
¼ i

iMAX
� 1
2p

sin
2pi
iMAX


 �
; i ¼ 0; :::; iMAX (38)

as suggested in [44]. The spacing defined by Eq. (38) is extremely small at the walls:
2Lp2=ð3i3MAXÞ orthogonally to the wall. Two Cartesian arrangements with iMAX ¼ 200 (N�40; 000
nodes) and iMAX ¼ 320 (N�100; 000 nodes) have been employed, for which the distance of the
first node from the wall is 8:2� 10�7 and 2:0� 10�7 when L¼ 1.

The spacing function s(x, y) employed for the flow past a circular cylinder between parallel
walls is defined as follows:

s x; yð Þ
sM

¼ 1þ kW
2y
H


 �2eW

þ kC
dcyl
2r

" #�1

(39)

where kW ¼ 3, eW ¼ 1:75; kC ¼ 24, and r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from the center of the

cylinder. The ratio between the spacing at the channel walls and the maximum spacing sM,
encountered at the outlet, is approximately 1=ðkW þ 1Þ ¼ 1=4; while the ratio between the spac-
ing at the cylinder wall and the maximum spacing is approximately 1=ðkC þ 1Þ ¼ 1=25: Again, a
very small nodal spacing is employed near the cylinder in order to accurately resolve the bound-
ary layers. A graphical representation of the spacing function is given in Figure 4a, while Figure
4b shows an enlarged view of the node distribution around the cylinder. A total number of nodes
N�105 is employed for each test case in order to assess the properties of the proposed method
with practical problem sizes.

6. Results

6.1. Lid-driven cavity

The lid-driven cavity problem has been solved for Reynolds numbers Re ¼ 1,000, 5,000, and
7,500 with two different node distributions with N�25; 000 nodes and N�100; 000 nodes. The

Figure 4. Spacing function (a) and enlarged view of the node distribution around the cylinder with N�105 nodes (b) for the
flow past a circular cylinder between parallel walls.
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solution for Re ¼ 10,000 is calculated using the fine distribution only, expecting a flow bifurca-
tion between a steady solution at Re ¼ 7,500 and a time-dependent, periodic solution for Re ¼
10,000, as suggested by different authors [45]–[47]. The calculation at Re ¼ 1,000 is started from
rest using a time step Dt ¼ 0:1; reaching an asymptotic steady solution after an appropriate long
time integration, i.e., over 200 time units. Steady solutions are also found for the cases Re ¼
5,000 and Re ¼ 7,500 using a time step Dt ¼ 0:05; starting from the steady solution at the Re
value immediately below and integrating for over 400 time units. These steady solutions are in
perfect agreement with the findings of Fortin et al. [46] and Bruneau and Saad [47], which pre-
dicted a critical Reynolds number Recr�8; 000: The extrema of the streamfunction for the pri-
mary vortex at the center of the cavity and for the secondary vortices at bottom corners are
reported in Table 2 for each of these cases, where the reference results of Bayona et al. [33] are
also reported. Such reference results are obtained using a high order RBF-FD meshless approach
with n¼ 90 local support nodes, N�40; 000 total nodes and a steady-state streamfunction formu-
lation. Good agreement is found in each case, where the increase of the number of nodes from
N¼ 25,000 to N¼ 100,000 suggests an apparently monotonic convergence towards the reference
values. The streamlines at steady state for the streamfunction values reported in Table 3 are
depicted in Figure 5 for Re ¼ 1,000 and Re ¼ 5,000, and in Figure 6 for Re ¼ 7,500, with
enlarged views of the corner regions. Such streamline figures agree, to graphical accuracy, to the
ones reported in [33] and [45].

The calculation for Re ¼ 10,000, performed on the fine node distribution, is started from the
steady solution at Re ¼ 7,500 using a time step Dt ¼ 0:05; reaching an apparently periodic solu-
tion after about 1,000 time units. Such periodic behavior is deduced from the analysis of the time
trace of the x-component of the velocity at the cavity center x ¼ y ¼ 0:5; reported in Figure 7.
The frequency of the strongest harmonic component of this time trace is f¼ 0.57, which agrees
with the reference value f¼ 0.59 reported in [45]. Good agreement with the same reference is
also found for the mean value and the amplitude of this periodic signal. Streamfunction contours
for the streamfunction values reported in Table 3 are reported in Figure 8 for four equally spaced
time intervals along the main period 1=f : From the analysis of Figure 8 it can be deduced that

Table 2. Comparison of streamfunction extrema for Re ¼ 1,000, 5,000, 7,500

Primary vortex, w (location) Secondary vortex BR, w (location) Secondary vortex BL, w (location)

Re ¼ 1,000
Present results
N�2:5� 104 –0.1188 (0.5237,0.5630) 1.700E� 3 (0.8668,0.1117) 2.270E� 4 (0.0837,0.0768)
N�105 �0.1188 (0.5313,0.5686) 1.727E� 3 (0.8657,0.1141) 2.324E� 4 (0.0844,0.0775)
Bayona et al. [33] –0.1189 (0.5308,0.5652) 1.730E� 3 (0.8641,0.1118) 2.334E� 4 (0.0832,0.0781)

Re ¼ 5,000
Present results
N�2:5� 104 –0.1162 (0.5222,0.5370) 2.863E� 3 (0.8036,0.0760) 1.264E� 3 (0.0759,0.1327)
N�105 –0.1219 (0.5170,0.5354) 3.051E� 3 (0.8034,0.0726) 1.367E� 3 (0.0743,0.1370)
Bayona et al. [33] –0.1223 (0.5151,0.5352) 3.077E� 3 (0.8046,0.0727) 1.379E� 3 (0.0728,0.1371)

Re ¼ 7,500
Present results
N�2:5� 104 –0.1177 (0.5074,0.5298) 3.044E� 3 (0.7907,0.0665) 1.397E� 3 (0.0679,0.1493)
N�105 –0.1209 (0.5110,0.5326) 3.178E� 3 (0.7888,0.0646) 1.519E� 3 (0.0656,0.1506)
Bayona et al. [33] –0.1230 (0.5132,0.5317) 3.241E� 3 (0.7909,0.0650) 1.553E� 3 (0.0642,0.1535)

BR¼ bottom right; BL¼ bottom left.

Table 3. Streamfunction values for lid-driven cavity streamline plots

–1� 10�1 –8� 10�2 –6� 10�2 –4� 10�2 –2� 10�2 –1� 10�2 –3� 10�3 –1� 10�3

–3� 10�4 –1� 10�4 –3� 10�5 –1� 10�5 –3� 10�6 –1� 10�6 –1� 10�7 –1� 10�8

–1� 10�9 –1� 10�10 –1� 10�11 –1� 10�12 –1� 10�13 –1� 10�14 0 1� 10�14

1� 10�13 1� 10�12 1� 10�11 1� 10�10 1� 10�9 1� 10�8 1� 10�7 1� 10�6

3� 10�6 1� 10�5 3� 10�5 1� 10�4 3� 10�4 1� 10�3 3� 10�3 1� 10�2
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the time-dependent flow behavior is originated from the periodic growing and detaching of sec-
ondary and tertiary vortices from the bottom and left cavity walls. Again, the streamline plots
agree, with graphical accuracy, to the ones reported in [45] for the same time instants.

6.2. Differentially heated cavity

The differentially heated cavity problem has been solved for Rayleigh numbers Ra ¼ 106, 107, 108

on an isotropic node distribution with N�105 nodes, and for Ra ¼ 2� 108; 4� 108 on the
stretched Cartesian node distributions with 200� 200 and 320� 320 nodes. A transition between
a steady solution at Ra ¼ 108 and a time-dependent, periodic solution for Ra ¼ 2� 108 is
expected, while the solution at Ra¼4� 108 is expected to be weakly turbulent (chaotic), as sug-
gested by different authors [44] and [48].

Starting from rest, a steady-state solution is found for Ra ¼ 106 after an appropriate long time
integration for 300 time units using a time step Dt ¼ 0:1: Steady solutions are also found for the
cases Ra ¼ 107 and 108 using a time step Dt ¼ 0:05; starting from the steady solution at the Ra

Figure 5. Streamfunction contours for Re ¼ 1,000 (a), Re ¼ 5,000 (b) with enlarged view of the bottom left (c) and bottom right
(d) corners at Re ¼ 5,000.
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Figure 6. Streamfunction contours for Re ¼ 7,500 (a), with enlarged view of the top left (b), bottom left (c), and bottom right
(d) corners.

Figure 7. Time history of the x-component of the velocity at the cavity center for Re ¼ 10,000.
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value immediately below and integrating for more than 500 time units. These steady solutions are
in perfect agreement with the findings of Janssen and Henkes [44] and Paolucci and Chenoweth
[48], which predicted a critical Rayleigh number Racr�1:93� 108: Characteristic values such as
mean, maximum, and minimum Nusselt number at the cold wall are reported in Table 4 for each
of these cases, where the reference results of Contrino et al. [49] are also reported. Such reference
results are obtained using a thermal lattice Boltzmann approach with fine meshes up to 2,0432.
Very good agreement is found in each case, with slightly larger deviations from reference values
only for Ra ¼ 108. These deviations are probably due to the employed isotropic node distribution
which is not refined enough to accurately solve the very thin boundary layers at the isothermal
walls at such high Ra numbers.

Figure 9a depicts the local Nusselt number Nuy at steady-state along the cold wall for the Ra
numbers previously considered. The comparison with reference values from Contrino et al. [49]
shows excellent agreement along the whole wall. The contour plots for streamfunction and tem-
perature at steady state are reported in Figure 10, showing a very good agreement, to graphical
accuracy, to the ones reported in [49] and [50].

Figure 8. Streamfunction contours for Re ¼ 10,000: (a–d) correspond to four equally spaced times along the main
period 1=f ¼ 1:75:

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 17

17



The case Ra ¼ 2� 108; which is a slightly larger Ra number than the critical value
Racr�1:93� 108; is started from the computed steady solution at Ra ¼ 108 which is interpolated
onto the 200� 200 Cartesian node distribution. After an integration over 300 time units using a
time step Dt ¼ 0:03; an apparently periodic solution is found, albeit not completely developed.
The periodic behavior is deduced from the analysis of the time trace of the temperature for the
node which is closest to the point ð0:1032; 0:8036Þ; suggested in [48], and is reported in Figure
11a. In order to investigate the influence of the node distribution on the time dependent solution
at this Ra number, the calculated solution is interpolated onto the fine 3202 Cartesian node distri-
bution for a successive integration over 300 additional time units with the same time step Dt ¼
0:03: The analysis of time trace of the temperature at the same point ð0:1032; 0:8036Þ is reported
in Figure 11b and confirms the periodic behavior calculated with the coarse distribution. The fre-
quency f¼ 0.0532 of the strongest component is in close agreement with the value f¼ 0.0527
obtained by Janssen and Henkes [44] with a fourth order finite volume scheme and a 3602 grid.
The time trace also reveals a small harmonic component with frequency 2f ¼ 0:1064 and the
presence of a low-frequency component whose frequency is estimated to be f 0�0:008; which is
also in good agreement with the value f 0 ¼ 0:0078 obtained by Janssen and Henkes. They also
showed that this low-frequency component is damped and has a very slow decay, requiring long
integration periods to be eliminated, e.g., 3,000 time units.

The solution at Ra¼4� 108 is calculated on the fine distribution only, starting from the last
available solution at Ra¼2� 108 and integrating for 300 time units with Dt ¼ 0:02: The time
trace of the temperature at the point ð0:1032; 0:8036Þ is reported in Figure 12, from which it can
be observed that the solution cannot be described by a limited number of harmonic components
and the flow is described as chaotic or weakly turbulent [48]. This chaotic behavior agrees with
the findings of Paolucci and Chenoweth [48] which performed calculations for the same Ra num-
ber using a finite difference scheme on a 1212 grid.

Figure 9. Local Nusselt number Nuy along the cold wall for (a) steady-state solutions and (b) time-dependent solutions
(time averaged).

Table 4. Comparison of characteristic values for the differentially heated cavity
�Nu Numax y Numin y

Ra ¼ 106

Contrino et al. [49] 8.8252 17.5360 0.9608 0.9795 0.0006
Present results 8.8280 17.5611 0.9614 0.9793 0.0030

Ra ¼ 107

Contrino et al. [49] 16.5231 39.3950 0.9820 1.3659 0.0006
Present results 16.5159 39.3889 0.9818 1.3755 0.0022

Ra ¼ 108

Contrino et al. [49] 30.2251 87.2454 0.9917 1.9195 0.0010
Present results 30.0887 86.7845 0.9914 1.9694 0.0014
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Figure 10. Streamfunction contours (left) and temperature contours (right) for Ra ¼ 106, 107, and 108.
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Figure 9b shows the time averaged local Nusselt number Nuy along the cold wall for
Ra¼ 2� 108 and 4� 108: The envelopes for the highest Ra value are also shown, highlighting the
activity at the bottom of the cold wall.

6.3. Flow past a circular cylinder between parallel walls

The case of the flow past a circular cylinder between parallel walls has been solved for Reynolds
numbers Re ¼ 200, 300, 500, 1,000, 2,000, 4,000, and 8,000, expecting a time-dependent flow for
the cases Re300, as suggested by different authors [51] and [52]. The calculation at Re ¼ 200 is
started from rest using a time step Dt ¼ 0:025; reaching an asymptotic steady solution after an

Figure 12. Time trace of the temperature at point (0.1032,0.8036) for Ra ¼ 4� 108:

Table 5. Time steps Dt at different Re number for the flow past a cylinder

Re 200 300 500 1,000 2,000 4,000 8,000

Dt 0.025 0.020 0.015 0.015 0.015 0.010 0.010

Table 6. Comparison of nondimensional period �t and time-averaged drag coefficient CD
Re 200 300 500 1,000 2,000 4,000 8,000

Present results �t – 0.80 0.72 0.65 0.60 0.56 0.52
CD 3.41 2.99 2.77 2.74 2.79 2.79 2.78

Zovatto and Pedrizzetti [52] �t – 0.81 0.73 0.67 – – –
CD 3.40 2.94 2.68 2.62 – – –

Figure 11. Time traces of the temperature at point (0.1032,0.8036) for Ra¼2� 108 using (a) 200� 200 and (b) 320� 320 highly
stretched Cartesian grids.
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Figure 13. Streamlines for the steady flow at Re ¼ 200.

Figure 14. Streamlines for a periodic flow at Re ¼ 8,000 for eight equally spaced times along one shedding period �t ¼ 0:52
(left to right, top to bottom).
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appropriate time integration for over 100 time units. Periodic solutions are found in the remain-
ing cases, using the time steps reported in Table 5, starting from the solution at the Re value
immediately below and integrating for over 200 time units for each case. These periodic solutions
are in perfect agreement with the findings of Zovatto and Pedrizzetti [52] and Chen et al. [51],
which predicted a critical Reynolds number Recr�231: The periodic flow is due to the onset of
an unsteady periodic shedding regime in the cylinder wake. The values of the nondimensional
shedding period �t and drag coefficient CD are reported in Table 6, where the reference results of
Zovatto and Pedrizzetti [52] are also reported. Good agreement for both �t and CD is found for
low Re numbers, while slightly larger deviations of CD are found for higher Re. The calculations
for Re > 1,000 are carried out mainly for the purpose of showing the stability of the proposed
method for high Re numbers, for which more accurate solutions require the use of more nodes.

A streamline plot for the steady solution at Re ¼ 200 is reported in Figure 13, which shows
the typical recirculating zones with perfect symmetry behind the cylinder. Streamfunction con-
tours for the case Re ¼ 8,000 are reported in Figure 14 for eight equally spaced time instants
along one shedding period �t ¼ 0:52: Although the computed solution at such high Re is not
claimed to be accurate, these figures shows that the proposed method can deal with high Re
numbers without the appearance of any long time integration instability or spurious effect, there-
fore enabling the possibility to face engineering relevant problems.

7. Conclusions

In this work a RBF-FD meshless approach is used for the numerical simulation of unsteady fluid
flow problems with heat transfer using primitive variables, i.e., velocity and pressure, on general-
shaped 2D domains with node distributions of practical relevance. A projection scheme is
employed to decouple the momentum and continuity equation, while an implicit scheme is
employed for the solution of the momentum and energy equations. Such solution strategy is pro-
ven to be effective in the long time integration of unsteady flows with large time steps. The lid-
driven cavity, the differentially heated cavity and the flow past a circular cylinder between parallel
walls have been chosen as test cases to assess the properties of the presented numerical approach.
Several computations for moderately high and high Reynolds (Re) and Rayleigh (Ra) numbers
are carried out in order to validate the effectiveness and accuracy of the proposed meshless
approach at different flow regimes, from steady state to periodical time-dependent flows.

The obtained numerical results agree very favorably with literature references for moderately
high Re or Ra numbers, while the accurate solution for the higher Re or Ra cases requires the
use of more nodes than those employed in this work, i.e., N � 105 nodes. This is not a problem
since the proposed scheme is intended to deal with large size problems of practical interest, and
it is proven to be computationally efficient. Such favorable results suggest that the proposed
meshless strategy can be effectively employed for the efficient numerical simulation of unsteady
fluid flow problems with heat transfer on complex-shaped 2D domains with arbitrary node distri-
butions of practical engineering relevance, including highly anisotropic node distributions. This
approach can also be extended to 3D problems with remarkable geometrical advantages over
standard mesh-based methods. The extension to more complex model problems, e.g., turbulence
models, is also straightforward.
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