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Abstract— The resilient consensus problem over a class
of discrete-time linear multiagent systems is addressed.
Because of external cyber-attacks, some agents are as-
sumed to be malicious and not following a desired cooper-
ative behavior. Thus, the objective consists in designing a
control strategy for the healthy agents to reach consensus
upon their state vectors, while due to interaction among the
agents, the malicious agents try to prevent them to achieve
consensus. Although this problem has been investigated
by some researchers, under the existing approaches in the
literature, achieving consensus is only guaranteed when
the information exchange among the agents is determin-
istic. Based on this motivation, the main contribution of
the paper is on almost sure resilient consensus control of
a network of healthy agents in the presence of stochas-
tic links failure and communication noises. We design a
discrete-time protocol for the set of the healthy agents, and
we show that under some probabilistic conditions on inter-
action among the agents, achieving almost sure consensus
among the healthy agents can be guaranteed. The results
also are verified by numerical examples.

Index Terms— Almost sure consensus, communication
noises, cyber-physical systems, discrete-time, malicious
agents, multiagent systems, stochastic topology.

I. INTRODUCTION

COOPERATION in networks of autonomous agents has
emerged as an important topic of research in various

engineering areas such as space missions [1], [2], cooperative
robots [3], [4], power networks [5], [6], etc. To accomplish
a cooperative task, due to distributed behaviors of multiagent
systems (MASs), it may be necessary for the agents to achieve
consensus upon some quantities of interest via local interaction
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under a communication network [7]–[12]. One of important
obstacles in achieving consensus in a network of agents is
the malicious behavior of some unknown agents because of
possible external cyber-attacks. The malicious agents do not
follow the desired cooperative control strategy designed for
the MAS. Thus, as they are unknown, they can deteriorate
the performance of the MAS and may lead to divergence
and instability in all the agents behaviors. The cyber-security
of such systems is usually ensured by suitable information
and communication technologies. However, these technologies
may not be effective in all possible scenarios, and it is
necessary to consider cyber-security in the MASs in the control
layer by designing appropriate resilient control strategies [13]–
[15].

A. State of the Art and Existing Problems
Primary studies on resilient consensus control of dynamical

agents have been done on networks of single-integrator agents
in [15] and [16]. The main idea of those studies is planning a
strategy such that each agent detects and ignores any probable
anomaly in its neighborhood. In [17] and [18], graph theoretic
resilient consensus control strategies are presented in which
sufficient conditions on the network robustness for achieving
consensus are derived. The mentioned strategy is extended to
achieve resilient consensus in a network of agents with double-
integrator model in [19], and is extended to a network of
agents with quantized values and randomized updating times
in [20]. In [21], the performance of the mentioned strategy in
the presence of communication delays is investigated. In [22],
that idea is employed for resilient synchronization of high-
order MASs. In [23] and [24], resilient consensus control of
MASs with asynchronous update time is investigated. In [25],
the resilient max consensus problem is studied. In [26], the
resilient leader-follower control of MASs based on the idea of
graph robustness is addressed. In [27], to relax the condition
of graph robustness in a network of first-order agents, it is
supposed that some agents are trustworthy for other agents
and are not under cyber-attacks. In [28], a consensus protocol
resilient against message manipulation attacks for time syn-
chronization over sensor networks is proposed, and in [29],
based on an expected/desired cooperative behavior from each
agent, a reputation-based consensus control scheme for single-
integrator MASs under cyber-attacks is proposed.

By investigation of the existing results on resilient consen-
sus control of MASs, the following issues are noteworthy:
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1) The base of the existing studies is deterministic dis-
tinguishing/selection of safer interaction links such that
the malicious behaviors of agents are ignored over time.
However, because of stochastic properties of devices or
employing randomized communication protocols [30],
the communication links may not be deterministic in
many cases, and they may fail at any time instant. Thus,
in practice, selection of safer communication links may
not be deterministic.

2) The existing results are based on accurate communication
among the agents and are not suitable for networks with
noisy channels. Indeed, in the presence of communication
noises, achieving consensus does not imply an equilib-
rium condition for the MAS as the measured consensus
errors are noisy. Moreover, since communication noises
lead to stochastic errors in received information, they may
affect distinguishing/selection of safer state information
received from neighboring agents.

B. Objectives and Contributions
In this paper, consensus control of a network of agents with

stochastic interaction is dealt with. We consider a class of
linear MASs in which some agents have malicious behaviors.
In this condition, the objective is to address a resilient con-
sensus control scheme under which the healthy agents reach
consensus on a common state vector, despite the presence
of the malicious agents that try to prevent the consensus
achievement. In summary, the main contributions of this paper
are:

1) Resilient consensus control of MASs when the commu-
nication links stochastically fail and rebuild over time.

2) Resilient consensus control of a network of agents when
information exchange among the agents is not accurate
because of stochastic noises.

To achieve these goals, we define a safety variable for each
agent which will be shared with other agents through a
stochastic network. Then, we design a control strategy under
which each healthy agent at each time instant evaluates the
stochastic safety variables of its neighbors and uses only
the safest information to update its own states. Upon some
probabilistic conditions on the noises and the communication
graph robustness, achieving almost sure consensus among the
healthy agents is addressed.

Remark 1: It is worth mentioning that the challenges of
resilient control of MASs are different from those in fault
tolerant control addressed in the literature [31]–[35]. Indeed,
in the presence of cyber-attacks, an agent may be under the
control of an attacker and be sagacious. Thus, a cyber-attack
may not be modeled as a fault. However, since a faulty agent
is a special form of a malicious agent, the obtained results for
resilient control of MASs are also useful to filter out and evade
faulty behaviors as well, such that a desired performance for
the group of healthy agents can be guaranteed.

The organization of this paper is as follows. Preliminaries
are provided in Section II. Motivation of the study is presented
in Section III. In Section IV, the problem is stated. The
proposed resilient consensus control strategy in the presence

of stochastic links failure is presented in Section V. In Section
VI, the results are extended to networks with noisy channels.
Simulation results are presented in Section VII, and Section
VIII concludes the paper.

II. PRELIMINARIES

Notation and some concepts and definitions on graph theory
and stochastic variables that are needed in the paper are
provided in this section.

A. Notation

Let R, R>0, and R≥0 be the sets of real, positive real,
and nonnegative real numbers, respectively. N denotes the set
of nonnegative integer numbers. 1n is an n × 1 ones vector.
0n is an n × 1 zeros vector. ∧ denotes ‘and’ and ∨ denotes
‘or’. v(p(t)) expresses a stochastic switching parameter where
p(t) (p in short) is the index associated with the switching set
with nv members such that p(t) : [0,∞) → {1, 2, . . . , nv}.
E{·} and P{·} express the expected value and probability,
respectively, and E{X|E} denotes the conditional expected
value of X given an event E. For any scalar x, |x| is the
absolute value, and for a set S, |S| denotes the cardinality.
‖ · ‖ denotes the absolute Euclidean norm. For two sets S1
and S2, S1\S2 denotes the reduction of S1 by S2. For two
sets S1 and S2, we say S1 ≥ S2 if any member of S1 is
greater than or equal to any member of S2. det(·) stands
for the determinant. Moreover, ‘max’ means ‘maximum’,
‘min’ means ‘minimum’, ‘a.s.’ denotes ‘almost surely’, ‘i.p.’
denotes ‘in the sense of probability’, and ‘w.p.’ denotes ‘with
probability’.

B. Graph Theory

Interaction among the agents is described by a directed
graph G = (V, E ,A) where V = {1, 2, . . . , N} denotes the
set of N agents or nodes and E ⊆ V × V is the set of
communication links or edges where an edge (j, i) denotes
that the ith agent receives information from the jth one. Under
this condition, we say that the jth agent is a neighbor of the ith
agent, and accordingly, Ni is defined as the neighboring set of
the ith agent. Moreover, A is the adjacency matrix associated
with G expressed as A = [aij ] ∈ RN×N where aij ∈ R>0 if
(j, i) ∈ E , i 6= j, and it is zero, otherwise. Indeed, the value
of aij determines the weight of the edge from the jth node to
the ith node. Such weights are used in the consensus protocols
introduced in Sections V and VI.

For a directed graph G, a nonempty set S ⊂ V is said to
be r-reachable if ∃i ∈ S s.t. |Ni\S| ≥ r. According to this
definition, a directed graph G is said to be r-robust if for each
two disjoint nonempty sets S1,S2 ⊂ V such that S1∩S2 = ∅,
at least one of them is r-reachable. Moreover, a set of nodes
S ⊂ V is called f -local if for i ∈ V\S, |Ni ∩ S| ≤ f [17].

C. Stochastic Processes

The stochastic behavior of a process is described by the
triple (Ω,F ,P) where Ω is the sample space, F is a σ-algebra
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on Ω, and P is a probability measure on (Ω,F) where 0 ≤
P{·} ≤ 1 and P{Ω} = 1 [36].

A filtration {Fr, r ≥ 0} on (Ω,F ,P) is a sequence of sub
σ-algebras of F such that F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ F .
Based on the definition of filtration, a stochastic process
X = {X(r), r ≥ 0} is said to be adapted to the filtration
{Fr} if for each r, X(r) is Fr-measurable. Now, based on
the definition of adapted stochastic processes, a process X is
a super-martingale relative to {Fr} and P if [36, Chap. 10]:

i) X is adapted to the filtration {Fr},
ii) E

{
|X(r)|

}
<∞,∀r,

iii) E{X(r)|Fr−1} ≤ X(r − 1), r ≥ 1.
Moreover, a process X is a martingale difference sequence
(MDS) relative to {Fr} and P if the above third condition is
changed as follows [37]:

E{X(r)|Fr−1} = 0, r ≥ 1.

For instance, a white noise is a special form of MDSs.
The stochastic variable X(t) converges to Xf in the sense

of probability if [38]

lim
t→∞

P
{
|X(t)−Xf | ≥ ε

}
= 0,∀ε ∈ R>0.

In this case, we write limt→∞X(t)
i.p.−→ Xf . Moreover, the

stochastic variable X(t) converges to Xf almost surely if [38]

P{ lim
t→∞

X(t) = Xf} = 1.

In this case, we write limt→∞X(t)
a.s.−−→ Xf . In general, we

say that an event occurs almost surely, if the probability of
other events is zero. It is worth mentioning that convergence
in the sense of probability is the weaker criterion in which
nonzero errors with zero probability still may happen.

III. MOTIVATION

Achieving consensus in a MAS is based on information
exchange among the agents via a sufficiently connected net-
work such that each agent is an attraction point for a group
of agents, while it is attracted toward neighboring agents [7].
The attraction of a team of two-dimensional agents toward
each other is shown in Fig. 1. According to the figure, the
distance between the maximum and minimum values of the
agents states (in each dimension) is decreased over time such
that consensus is achieved in the MAS. However, decreasing
of such distances may not be realizable if some agents are
malicious. For instance, consider a case when one of the agents
has an unstable trajectory. As shown in Fig. 2, if this malicious
agent, shown by a red circle, is unknown to the other agents,
it can attract them toward itself and can lead to divergence in
the MAS.

To cope with this issue, the concept of resilient consensus
has been developed. The main idea of the resilient consensus
problem is that while each agent updates its states toward
the states values of its neighbors, it ignores some of them
based on the knowledge of the maximum number of possible
malicious neighbors. In [17] and [18], it was analyzed that
to keep consensusability after ignoring some neighbors, more
communication links among the agents should be established.
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Fig. 1. Convergence of the maximum value and the minimum value
of six agents states (in two dimensions) toward each other to achieve
consensus.
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Fig. 2. Divergence of the states values of six agents when one of
the agents (the red circle) does not follow the consensus strategy,
while according to the consensus strategy, it attracts the healthy agents
toward itself.

However, the established links may still not be available
constantly, and they may fail over time randomly. In this
condition, the evaluation of the states of the neighboring agents
and selecting safer ones is a random process. Hence, the
design and analysis tools available in the literature for resilient
consensus control are not applicable.

Another important practical concern not considered in the
literature of the resilient consensus problem is that information
exchange among the agents may not be precise, because of
noisy communication channels. In the presence of commu-
nication noises, the steady state of the MAS may be noisy,
and zero consensus errors may not imply an equilibrium
condition for the MAS. Moreover, when the channels are
noisy, received state information from neighboring agents
may jump to incorrect values at some time instants. In this
condition, each healthy agent should evaluate, select, and use
states which however are erroneous due to communication
noises.

The consensus problem in the presence of stochastic links
failure and noisy channels is already considered in the lit-
erature [39]–[44]. However, when the resiliency property is
considered, the evaluation and selection of safer neighboring
agents by each healthy agent has to be considered, and this
leads to “state-dependent switching laws” that are not dealt
with in those studies. Thus, in such case, the existing control
strategies and analysis tools for stochastic networks are not
applicable to guarantee the achievement of consensus in the
MAS. Moreover, achieving resiliency in the sense mentioned
above is even more challenging in the presence of noisy
channels, since the mentioned state-dependent switching law
is also based on noisy and imprecise stochastic information.

Based on the above-mentioned issues, it is worth proposing
and analyzing a resilient consensus strategy such that when in-
teraction among the agents is not reliable, achieving consensus
in the network is still achievable.
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IV. PROBLEM STATEMENT

Consider a class of discrete-time MASs comprising of N
agents where the model of the ith agent is described by

xi(t+ 1) = Axi(t) +Bui(t) (1)

where xi(t) ∈ Rn is the state vector which is assumed to be
measurable, A ∈ Rn×n is the state matrix, B ∈ Rn×1 is the
input matrix, and ui(t) ∈ R is the control input.

Assumption 1: The pair (A,B) is controllable.
As the system is controllable, we can consider a similarity

transformation ξi(t) = T−1xi(t) where if

det(zIn −A) = zn + γ1z
n−1 + γ2z

n−2 + . . .+ γn, (2)

the MAS described in (1) can be described by the following
companion model [45]:

ξi(t+ 1) = Āξi(t) + B̄ui(t) (3)

in which

Ā =


−γ1 −γ2 . . . −γn−1 −γn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , B̄ =


1
0
0
...
0

 .
This transformation is used in presentation of the main results.

Because of cyber-attacks, some agents are assumed to have
malicious behaviors. Indeed, an agent in the MAS is called
malicious (also called Byzantine [16], [18]) if it has at least
one of the following behaviors:

- It updates its states in any way other than what is
designed/desired in the consensus protocol.

- It shares fake/wrong state information in the network
other than its real state information (the shared informa-
tion in various communication links may be different).

Note that this definition of attacks covers a wide range of
cyber-attacks in practice few of which are as follows:
• Data injection attacks: They are a type of attacks in

network systems when the information flow from a sub-
system to another one is corrupted by injecting some un-
desirable data. For instance, in the case of data injection
attacks in communicated state information, by defining
xcij(t) as the corrupted state information of the jth agent
received by the ith agent, it can be described as [12]

xcij(t) = xj(t) + βij(t)δij(t)

where βij(t) ∈ {0, 1} denotes the attack activation
function and δij(t) is an unknown data injected by the
attacker. Thus, the jth agent shares fake/wrong state in-
formation with the ith one. Based on a similar argument,
one can say that in the case of such attacks in the actua-
tors or sensors of an agent, the agent updates its states in
a way other than what is designed/desired. Sensor attacks
lead to sharing fake/wrong state information as well.

• Replay attacks: Replay attacks happen when an attacker
records transmitted information over a network and then
replays/repeats it instead of the real information. For

instance, in the case of such attacks in communicated
state information, if we define xrij(t) as the replayed
information of the jth agent received by the ith agent,
it can be modeled as [46]

xrij(t) = xj(t) + βij(t)
(
− xj(t) + xj(t− Tij(t))

)
where Tij(t) ∈ R≥0 denotes a time-delay. Thus, re-
playing communicated state information leads to sharing
fake/wrong state information in the network.

• Denial of service attacks: Under a denial of service
attack, the information flow between two components will
be prevented. For instance, in the case of such attacks
between the control unit and the actuators of an agent,
the real control command affecting the agent can be [47]

uai (t) = (1− βi(t))ui(t)

where βi(t) ∈ {0, 1} denotes the attack activation func-
tion. In this condition, the agent may not update its states
in a desired way.

Thus, in the presence of such cyber-attacks, we have two
groups of agents: Nh healthy agents described by the fixed set
Vh and Nm unknown malicious agents described by the fixed
set Vm where Nh + Nm = N and Vh ∪ Vm = V . Since the
malicious agents are under the control or partial control of the
attacker, the objective is designing an interaction consensus
protocol for the healthy agents such that while the malicious
agents try to prevent them to achieve consensus, they reach
safe consensus upon their state vectors as

lim
t→∞

(xi(t)− xj(t)) = 0n, i, j ∈ Vh, (4)

and all the states remain bounded (with a bound depending on
initial states) during transient times.

Assumption 2: While the malicious agents are considered
unknown to the healthy agents, we assume that the set of the
malicious agents is f -local where f is known, i.e., we assume
that the worst case of the number of malicious agents in the
neighborhood of each healthy agent is known.

Remark 2: Throughout the paper, any control strategy and
decision making scheme is planned for the healthy agents as
we have no control or partial control on the malicious agents.
Indeed, the details of the malicious agents behaviors are not
relevant, and the objective is to propose a consensus control
strategy that acts while being resilient against malicious behav-
iors of some agents (due to any source/type of cyber-attacks).

In order to achieve consensus among the healthy agents,
the agents should share their state information with each other
through communication links. Due to random availability of
these communication links, their connectivity is described in
probabilistic terms: the connectivity of the link from Agent j
to Agent i, where i, j ∈ V , is modeled by the time-varying
probability pij(t) ∈ [0, 1] (if ∀t there is no a communication
link from Agent j to Agent i, we have pij(t) = 0,∀t). In this
condition, the adjacency matrix of the communication graph
will be stochastic defined as A(p) = [aij(p)] where aij(p) is
a stochastic switching parameter with the following stochastic
switching law:

aij(p) =

{
∈ R>0 w.p. pij(t)
0 w.p. 1− pij(t).
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Accordingly, the communication graph will be stated as
G(p) = (V, E(p),A(p)) and the ith agent neighborhood will
be Ni(p). Due to the stochastic properties of the closed-loop
system, it is necessary to study achieving consensus among
the healthy agents in the view of stochastic processes theory.
Thus, our objective is achieving almost sure safe consensus in
the network such that the objective (4) is modified as

lim
t→∞

(xi(t)− xj(t))
a.s.−−→ 0n, i, j ∈ Vh, (5)

while all the states almost surely remain bounded (with an
expected bound depending on initial states) during transient
times.

The main results are presented in the subsequent sections.

V. RESILIENT CONSENSUS UNDER STOCHASTIC LINKS
FAILURE

The basic idea in resilient consensus control of MASs is the
evaluation of the state information of neighboring agents and
ignoring some of them in updating own states. Thus, based
on agents models and existing practical issues, designing a
resilient consensus control strategy for a network of agents
has two main challenges [15]–[19]:

1) How should each healthy agent distinguish and select
neighbors which do not lead to divergence?

2) How should it employ the selected neighbors state in-
formation to achieve safe consensus with other healthy
agents?

To develop a resilient consensus strategy in the presence of
stochastic links failure, we consider a criterion to guarantee
safety in the network under which the states of the healthy
agents almost surely remain in a bound. According to this
criterion, the ith agent shares a safety variable si(t) with other
agents, and the value of this safety variable will be investigated
by the jth healthy agent to choose this agent for interaction
or not (if i ∈ Nj(p), j ∈ Vh). Then, if the ith agent is chosen
by a healthy agent for interaction, si(t) will be used by that
healthy agent in an interaction consensus protocol such that
consensus is achieved in the network eventually. Indeed, each
healthy agent at each time instant updates its states just based
on the safety variables of those neighbors which do not lead
to divergence of its own safety variable (this safety variable
should be designed such that its boundedness guarantees the
boundedness of all the states of the agent, which is designed
later). Therefore, we have two reasons for links cutting in the
network:

- The primary is stochastic failure of communication links
discussed in the previous section.

- The secondary is deliberate ignoring of some
links/neighbors by each healthy agent based on a
designed resilient consensus strategy. In this case, we
define a variable kij(t), i ∈ Vh, j ∈ Ni(p), where
kij(t) = 1 describes that the ith agent selects the jth
neighbor; otherwise, kij(t) = 0.

Therefore, after the selection/ignoring strategy, we define the
network effective adjacency matrix as A(p, t) = [aij(p, t)]

where

aij(p, t) =

{
∈ R>0 w.p. pij(t) ∧ kij(t) = 1
0 w.p. 1− pij(t) ∨ kij(t) = 0.

In a similar way, the effective neighboring set of each agent
will be defined as Ni(p, t). Note that we only deal with
aij(p, t) if i ∈ Vh, because the malicious agents are not under
our control, and thus the entries of the adjacency matrix if
i ∈ Vm are not important for us.

After selecting the safest neighbors, a proper control strat-
egy should be employed such that guarantees reaching con-
sensus among the healthy agents, while it guarantees the
boundedness of the healthy agents safety variables. Therefore,
we propose our resilient consensus control strategy for the
healthy agents in two parts:
(a) The healthy agent i receives the information sj(t) if

j ∈ Ni(p), and sets kij(t) = 1, j ∈ Ni(p). If |Ni(p)| ≥
f , it considers f neighbors with largest sj(t) and if
|Ni(p)| < f , it considers all the |Ni(p)| neighbors. Then,
for a neighbor j if sj(t) > si(t), it sets kij(t) = 0. In a
similar way, if |Ni(p)| ≥ f , it considers f neighbors
with smallest sj(t) and if |Ni(p)| < f , it considers
all the |Ni(p)| neighbors. Then, for a neighbor j, if
sj(t) < si(t), it sets kij(t) = 0 (the idea of selection
based on the knowledge of f is inspired by the existing
literature for first-order systems [15]–[18]). Since the
boundedness of si(t) should guarantee the boundedness
of the healthy agents states, by stating ξi(t) as

ξi(t) =
[
ξn−1,i(t) ξn−2,i(t) . . . ξ0,i(t)

]>
, (6)

we have proposed it as follows:

si(t) = ξn−1,i(t) +

n−1∑
m=1

λmξn−1−m,i(t), i ∈ Vh, (7)

where λ1, λ2, . . . , λn−1 ∈ R are chosen such that the
following polynomial is Schur stable:

pol(z) = zn−1 + λ1z
n−2 + λ2z

n−3 + . . .+ λn−1. (8)

The details of the boundedness of the healthy agents
states under the boundedness of the safety variables will
be discussed later.

(b) We should design a consensus strategy such that by using
the state information of the selected stochastic neighbors
in Part (a) and by considering the criterion which has
selected these neighbors, the healthy agents reach safe
almost sure consensus upon their state vectors.

Based on the mentioned consensus control strategy in Parts
(a) and (b), the remained and challenging issue is designing
ui in Part (b) such that the requirements of Parts (a) and (b)
are satisfied.

The proposed resilient control strategy for MASs in the
presence of stochastic links failure is proposed in the following
theorem.

Definition 1: For a stochastic graph G(p), let Ec(t) be the
set of edges which are probable to be connected at time t.
In other words, let Ec(t) = {(j, i)|pij(t) 6= 0}. We say that
the set of the stochastic edges of the graph G(p) with nonzero
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probability makes the graph k-robust, if Ec(t) always makes
the graph k-robust. Then, we write P{G(p) is k-robust} 6= 0.

It is worth noting that a k-robust graph is a special form of
a graph with the condition P{G(p) is k-robust} 6= 0. Indeed,
a graph with the condition P{G(p) is k-robust} 6= 0 can be
obtained by considering a k-robust graph and by letting the
edges fail and rebuild over time (with nonzero probability of
connectivity). Thus, the condition P{G(p) is k-robust} 6= 0 is
weaker than the condition of being k-robust.

Theorem 1: Consider a network of N agents described in
(1) containing Nh healthy agents and Nm malicious agents.
Let the malicious agents set be f -local and P{G(p) is (2f +
1)-robust} 6= 0. Moreover, the safety variables are chosen
as (7), and accordingly the gains kij(t), i ∈ Vh, j ∈ Ni(p),
follow the proposed selection strategy in Part (a). The follow-
ing consensus protocol guarantees almost sure safe consensus
among the healthy agents:

ui =

n∑
m=1

γmξn−m,i(t)−
n−1∑
m=1

λmξn−m,i(t) + si(t)

+ αi(p, t)

N∑
j=1

aij(p, t)
[
sj(t)− si(t)

]
, i ∈ Vh,

(9)

in which at each time instant, αi(p, t) should be chosen such
that for an arbitrary θi ∈ R>0,

0 < αi(p, t) ≤
1

θi +
∑N
j=1 aij(p, t)

. (10)

Proof: See the appendix for the proof.
By considering all the mentioned issues in this section, the

resilient consensus control algorithm of Theorem 1 at step time
t is summarized in Algorithm 1.

Algorithm 1 Consensus algorithm of Theorem 1 at time t
1: The healthy agent i receives the information sj(t) if j ∈
Ni(p), and sets kij(t) = 1, j ∈ Ni(p).

2: If |Ni(p)| ≥ f , it considers f stochastic neighbors with
largest sj(t) and if |Ni(p)| < f , it considers all the
|Ni(p)| stochastic neighbors. Then, if sj(t) > si(t), it
sets kij(t) = 0.

3: If |Ni(p)| ≥ f , it considers f stochastic neighbors with
smallest sj(t) and if |Ni(p)| < f , it considers all the
|Ni(p)| stochastic neighbors. Then, if sj(t) < si(t), it
sets kij(t) = 0.

4: By calculating the effective adjacency matrix entries
aij(p, t) from kij(t), the agent updates its states via the
proposed interaction protocol (9).

Remark 3: It is noteworthy that Part (a) of the consensus
control strategy does not imply that all the ignored neighbors
are malicious or all the malicious neighbors are ignored.
Indeed, based on the evaluation of safety variables, only the
neighbors with the safest behaviors will be selected by each
healthy agent. Therefore, the cooperation of a malicious agent
may be safe at some time instants, if the transmitted value of
its safety variable is inside a range such that it is not ignored
in Part (a) of the consensus control strategy (no matter the
transmitted value is fake or real).

Remark 4: In the consensus protocol (9), for the case of
n = 1, all the summations from the index 1 to n − 1 should
be considered zero.

The obtained results will be extended to noisy networks of
agents in the next section.

VI. RESILIENT CONSENSUS UNDER STOCHASTIC LINKS
FAILURE AND NOISY CHANNELS

In this section, we consider the problem of resilient con-
sensus under stochastic links failure when the agents are also
prone to stochastic noises in communication. We assume that
each agent receives the information of its neighbors via a
channel subject to noises with MDS properties independent
to stochastic failure of the links. In this condition, if the jth
agent sends sj(t) to the ith agent, the ith agent receives s̃ij(t)
defined as follows:

s̃ij(t) = sj(t) + ωsij (t)

where ωsij (t) describes the noise associated with communica-
tion of sj(t) to the ith agent. It should be noted that the main
idea of the proposed control strategy in this section is using
the MDS properties of the communication noises to filter their
effects on the steady state of the MAS. Without this property,
the communicated information can be similar to information
sent by a malicious agent.

In the resilient consensus control strategy proposed in the
previous section, communication noises in two ways can affect
the performance of the healthy agents in achieving consensus.
Firstly, in Part (a) of the consensus control strategy, the healthy
agent i selects/ignores some of its neighbors by receiving
and evaluating the noisy information of safety variables of
its neighbors defined as s̃ij(t), j ∈ Ni(p). Thus, the selec-
tion/ignoring strategy is prone to some stochastic errors. In
this case, the selection parameter kij(t), i ∈ Vh, j ∈ Ni(p),
should be modified by kij(t, ω), i ∈ Vh, j ∈ Ni(p), to
show that they are affected by noises. Moreover, we should
modify the network effective adjacency matrix as A(p, t, ω) =
[aij(p, t, ω)] where

aij(p, t, ω) =

{
R>0 w.p. pij(t) ∧ kij(t, ω) = 1
0 w.p. 1− pij(t) ∨ kij(t, ω) = 0,

and in a similar way, the effective neighboring set of each
agent should be modified as Ni(p, t, ω). The second way on
which communication noises affect the performance of the
healthy agents is that the consensus protocol designed in Part
(b) of the consensus control strategy in Theorem 1 is based
on the state information of some selected neighboring agents,
while this information contains stochastic noises. Thus, by
employing the consensus strategy proposed in Theorem 1,
almost sure consensus may not be guaranteed. To cope with the
mentioned problems, the consensus protocol of Theorem 1 will
be modified and analyzed in the presence of communication
noises. The main results are presented in a theorem as follows.

Theorem 2: Consider the MAS described in (1) contain-
ing Nh healthy agents and Nm malicious agents under
a noisy communication network which the noises satisfy
the conditions of MDSs. Let the malicious set be f -local,
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P{G(p) is (2f + 1)-robust} 6= 0, the safety variables are
chosen as (7), and the gains kij(t, ω), i ∈ Vh, j ∈ Ni(p),
follow the proposed selection strategy in Part (a). The follow-
ing consensus protocol guarantees almost sure safe consensus
among the healthy agents:

ui(t) =

n∑
m=1

γmξn−m,i(t)−
n−1∑
m=1

λmξn−m,i(t) + si(t)

+ αi(p, t, ω)

N∑
j=1

aij(p, t, ω)
[
s̃ij(t)− si(t)

]
,

i ∈ Vh,

(11)

if at each time instant, αi(p, t, ω) is chosen such that for an
arbitrary θi ∈ R>0, the following properties hold:

0 < αi(p, t, ω) ≤ 1

θi +
∑N
j=1 aij(p, t, ω)

, (12a)

lim
t→∞

αi(p, t, ω) = 0, (12b)
∞∑
t=t0

αi(p, t, ω) =∞,∀t0 ≥ 0. (12c)

Proof: See the appendix for the proof.
By considering all the mentioned issues in this section, the

resilient consensus control algorithm of Theorem 2 at step time
t is summarized in Algorithm 2.

Algorithm 2 Consensus algorithm of Theorem 2 at time t
1: The healthy agent i receives the noisy information s̃ij(t)

if j ∈ Ni(p), and sets kij(t, ω) = 1, j ∈ Ni(p).
2: If |Ni(p)| ≥ f , it considers f stochastic neighbors with

largest s̃ij(t) and if |Ni(p)| < f , it considers all the
|Ni(p)| stochastic neighbors. Then, if s̃ij(t) > si(t), it
sets kij(t, ω) = 0.

3: If |Ni(p)| ≥ f , it considers f stochastic neighbors with
smallest s̃ij(t) and if |Ni(p)| < f , it considers all the
|Ni(p)| stochastic neighbors. Then, if s̃ij(t) < si(t), it
sets kij(t, ω) = 0.

4: By calculating the effective adjacency matrix entries
aij(p, t, ω) from kij(t, ω), the agent updates its states via
the proposed interaction protocol (11).

It should be noted that the idea of using vanishing gains
similar to (12) is also employed in the literature for consensus
control of MASs in the presence of communication noises
(for instance, see [43] and [44]). However, when resiliency
property is considered, the existing design and analysis tools
are not applicable to guarantee achieving consensus in the
network.

Remark 5: Under the control strategies proposed in Theo-
rem 1 and Theorem 2, if the number of malicious neighbors
is not more than f , the healthy agents almost surely reach
consensus upon their state vectors. According to these results,
for cases when some agents are malicious only in finite time
periods, the following issues are worthy to be noted:
• Because of finite time malicious behaviors of some

agents, the number of malicious neighbors may be more
than f in some finite periods of time, but in t ≥ tf

for a finite tf , it is not more than f . Now, if the safety
variable information transmitted by each malicious agent
is bounded for t < tf , according to (9) and (11), the
healthy agents safety variables remain bounded for t < tf
as well. In this condition, for t ≥ tf , since the number of
the malicious neighbors is not more than f , if the safety
variables of new added healthy agents are bounded at
t = tf , the control strategies proposed in Theorem 1 and
Theorem 2 guarantee achieving almost sure consensus
among the new fixed set of healthy agents.

• The number of malicious neighbors is not more than f in
all time, but Agent i is malicious in some finite periods
of time and it is healthy in t ≥ tf for a finite tf . In
this condition, if si(tf ) is bounded; then, for t ≥ tf ,
it behaves the same as a healthy agent and satisfies the
results of Theorem 1 and Theorem 2 for the healthy
agents.

Remark 6: It should be noted that Theorem 2 is applicable
for both noisy and noise-free networks. However, because of
using the property (12b), Theorem 2 leads to more conserva-
tive results compared with Theorem 1 as the property (12b)
affects the transient response of the MAS. Therefore, for a
noise-free network, the control strategy proposed in Theorem
1 is preferred to guarantee achieving consensus.

The proposed consensus control strategies will be evaluated
via numerical examples in the following section.

VII. NUMERICAL EXAMPLES

We consider the depth consensus problem in a network of
twelve autonomous underwater vehicles (AUVs). The math-
ematical model of the depth dynamics of the ith vehicle is
described as follows [48] (we have used the discrete-time
model of the depth dynamics of an AUV with step size 1):x1i(t+ 1)

x2i(t+ 1)
x3i(t+ 1)

 =

 0.4037 −0.2052 0
0.684 0.8825 0
−0.1175 −0.2875 1

x1i(t)x2i(t)
x3i(t)


+

 0.02394
0.01371
−0.00146

ui(t)
where x1i(t) is the rate of the pitch angle, x2i(t) is the
pitch angle, x3i(t) denotes the depth, and ui(t) is the control
input. Moreover, from (2), it follows that γ1 = −2.2862,
γ2 = 1.7828, and γ3 = −0.4966, and therefore the similarity
transformation matrix T can be obtained. The 6th and the
12th agents are supposed to be malicious because of external
cyber-attacks, while the other agents are healthy and follow
the desired consensus strategy proposed in Theorems 1 or 2.
Without loss of generality, let the set of the malicious agents
be 1-local. Thus, to guarantee that P{G(p) is 3-robust} 6= 0,
a communication graph as shown in Fig. 3 is considered,
whose links are stochastic and the probability of the con-
nectivity of each link is a time-varying number belonging to
[0.6, 0.8] (we have used various sinusoidal functions to model
pij(t), i, j ∈ V). The agents initial conditions are set arbitrarily
and the consensus protocol gains are chosen as λ1 = 1/5 and
λ2 = 1/100 to make the polynomial z2 + λ1z + λ2 Schur
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1 2 3 4

5 6 7 8

9 10 11 12

Fig. 3. Network communication graph when Agents 6 and 12 are
malicious (each link stochastically fails over time).

stable. Moreover, for (9) and (11), at each time instant we set
aij(·) = 1, i ∈ Vh, if the ith healthy agent uses the information
of the jth one. In the following, three scenarios of malicious
behaviors are considered.

Scenario 1 (Replay attacks in actuators): In the first sce-
nario, we employ the proposed resilient consensus control
strategy in Theorem 1 when the communication channels are
assumed not to be noisy and just stochastic links failure among
the agents in considered. Thus, to satisfy the condition of the
theorem on αi(p, t), let

αi(p, t) =
1

5
(
1 +

∑N
j=1 aij(p, t)

) .
Moreover, the malicious agents are assumed to be subject to
replay attacks in their actuators for t ≥ 20s. Accordingly,
without loss of generality, we model the replay attacks as 2s
time delays in the actuators.

In this condition, as depicted in Fig. 4, whereas the mali-
cious agents have unstable behaviors and are in interaction
with the healthy agents, almost sure consensus among the
healthy agents is achieved.

Scenario 2 (Simultaneous data injection and denial of
service attacks in actuators and data injection attacks on
communication links): In the second scenario, we consider
the same control strategy as that in Scenario 1 when the
communication channels are noisy. In this case, the malicious
agents are assumed to be subject to simultaneous denial of
service attacks and data injection attacks in their actuators
for t ≥ 20s, and also subject to data injection attacks in
communicated information to other agents for t ≥ 25s such
that the injected data to various links are different (we have
considered various sinusoidal injected signals with magnitudes
belonging to [−10, 10] to model the data injection attacks).

For simulation, we have employed the white noise tool in
MATLAB with various powers to model the noisy channels.
In this condition, the state trajectories of the agents are
depicted in Fig. 5 showing that the performance is significantly
deteriorated by the noises. Therefore, the resilient consensus
control strategy of Theorem 1 is not effective in coping with
the noises in the communication channels.

0 20 40 60 80 100 120
-1

0

1
Malicious AUVs

Healthy AUVs

0 20 40 60 80 100 120
-1

0

1

0 20 40 60 80 100 120
0

2

4

6

8

Convergence of the AUVs pitch angles to zero

 after reaching consensus

AUVs depth consensus

Fig. 4. State trajectories of the agents under the consensus protocol of
Theorem 1 when the communication links fail stochastically.

Scenario 3 (Simultaneous data injection and denial of
service attacks in actuators and data injection attacks on
communication links): Finally, we consider Scenario 2 when
the agents are under the action of the resilient consensus
control strategy proposed in Theorem 2. In this case, to satisfy
the conditions of the theorem, we design αi(p, t, ω) as

αi(p, t, ω) =
1

(0.2t+ 4)
(
1 +

∑N
j=1 aij(p, t, ω)

) . (13)

Since 1/(0.2t+4) < 1 and αi(p, t, ω) eventually converges to
zero, the conditions (12a) and (12b) are satisfied. Moreover,
by considering (13), it can be said that

αi(p, t, ω) ≥ 1

N(0.2t+ 4)

implying that the condition (12c) is satisfied as well. As
depicted in Fig. 6, the proposed strategy can cope with
the problem of noisy channels and guarantee almost sure
consensus in the network. It should be noted that, although
the proposed strategy in Theorem 2 can also guarantee almost
sure consensus under stochastic links failure without noisy
channels, the results of this theorem are more conservative
compared with those of Theorem 1. In fact, since 1/(0.2t+4)
is asymptotically vanishing; then, the convergence time for
achieving consensus is increased (see Fig. 6).

VIII. CONCLUSIONS AND FUTURE WORK

In this study, a consensus control framework for a class
of discrete-time linear MASs in the presence of cyber-attacks
was proposed. We developed a resilient control strategy under
which a group of healthy agents tried to employ the safest
available information exchanged via the network, while some
malicious agents tried to prevent them to achieve consensus.
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Fig. 5. Deterioration of the performance of the consensus protocol
of Theorem 1 when the communication links fail stochastically and the
communication channels are subject to noises.
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Fig. 6. State trajectories of the agents under the consensus protocol
of Theorem 2 when the communication links fail stochastically and the
communication channels are subject to noises.

Despite the existing studies in the literature on resilient
consensus control of MASs, the communication network was
considered unreliable because of stochastic links failure and
noises. Accordingly, upon some conditions on the stochastic
probabilities of the unreliable communication network, achiev-
ing almost sure safe consensus among the healthy agents was
guaranteed.

The main assumption of the proposed strategy was model-
transformation based on the knowledge of the agents models
and parameters. Thus, extension of the results to networks
of agents with more general models and with model and
parameter uncertainties is a topic of research to be studied as
future work. Moreover, the proposed consensus strategy was
based on states feedback, and achieving consensus based on
only outputs feedback is another open problem in this area.

APPENDIX

Proof: [Proof of Theorem 1] The proof is carried out in
two steps:
• First, according to Part (a) of the consensus control

strategy and (9), we show that the safety variables
si(t), i ∈ Vh, remain in a convex set depending on
si(0), i ∈ Vh. Then, based on the design of si(t), i ∈ Vh,
the boundedness of the agents states is guaranteed.

• In the next step, we show that if P
{
G(p) is (2f +

1)-robust
}
6= 0, while si(t), i ∈ Vh, remain in a

set/bound, they almost surely converge toward a common
value. Then, the achievement of almost sure consensus in
the MAS as (5) is concluded.

Step 1- By substituting (9) into (3) and by considering (7),
one can observe that

si(t+ 1) =si(t) + αi(p, t)

×
N∑
j=1

aij(p, t)
[
sj(t)− si(t)

]
, i ∈ Vh,

(14)

which from (10), it implies that si(t+ 1) is a convex combi-
nation of si(t) and sj(t), j ∈ Ni(p, t). To show safety in the
healthy agents behaviors, at each time instant, let us define

sM (t) = max
i∈Vh
{si(t)},

sm(t) = min
i∈Vh
{si(t)}.

Since the set of the malicious agents is f -local, the healthy
agent (or agents) with the safety variable sM (t) has at
most f neighbors with safety variables outside the range
[sm(t), sM (t)]. In this condition, according to Part (a) of the
consensus control strategy, these neighbors will be ignored by
the agent. Therefore, as si(t+ 1) is a convex combination of
si(t) and sj(t), j ∈ Ni(p, t), we have

sm(t) ≤ sM (t+ 1) ≤ sM (t). (15)

We have similar arguments for the healthy agent (or agents)
with safety variable sm(t) as well, and therefore

sm(t) ≤ sm(t+ 1) ≤ sM (t). (16)
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From (15) and (16), it follows that sM (t) is nonincreasing over
time, while sm(t) is nondecreasing, and accordingly, si(t) is
always bounded as sm(0) ≤ si(t) ≤ sM (0). Note that the
healthy agent (or agents) with maximum/minimum safety vari-
able may not be unique over time but the maximum/minimum
value of si(t), i ∈ Vh, is always nonincreasing/nondecreasing.
From (3) and (6), it follows that ξm,i(t) = ξ0,i(t + m),m ∈
{1, 2, . . . , n− 1}. Thus, based on the definition of the safety
variable si(t) in (7), we have

ζi(t+ 1) = Áζi(t) + B́si(t) (17)

in which

ζi(t) =
[
ξn−2,i(t) ξn−3,i(t) . . . ξ1,i(t) ξ0,i(t)

]>
,

and

Á =


−λ1 −λ2 . . . −λn−2 −λn−1

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , B́ =


1
0
0
...
0

 ,
where due the Schur stability of the polynomial (8), Á is Schur
stable. In this condition, because of the input to state stability
of Schur stable systems [49], the input to state stability of the
system (17) with respect to the input si(t) can be observed.
Now, since sm(0) ≤ si(t) ≤ sM (0), the boundedness of
the healthy agents states can be concluded which the bound
depends on the initial states.
Step 2- Now, we should show achieving almost sure consensus
in the MAS. Because of the stochastic properties of the
interaction links, although (15) and (16) are satisfied, the
convergence of sM (t) and sm(t) are probabilistic. By defining

s(t) =
[
s1(t) s2(t) . . . sN (t)

]>
,

and by considering the filtration

Fr = {s(0), s(1), . . . , s(r)}, r ≥ 0, (18)

from (15) and (16), it can be said that

E
{
|sM (r)− sm(r)|

}
<∞,∀r,

E{sM (r)− sm(r)|Fr−1} ≤ sM (r − 1)− sm(r − 1), r ≥ 1.

Now, since sM (t) − sm(t) is Fr-measurable, it satisfies the
conditions of super-martingales given in Section II-C. There-
fore, from the super-martingales convergence theorem [36], it
follows that the limit of sM (t) − sm(t) almost surely exists
such that

lim
t→∞

[
sM (t)− sm(t)

] a.s.−−→ sf (19)

where sf ∈ R≥0. If sf 6= 0, at each time instant, we can
consider three sets of the healthy agents defined as S1(t),
S2(t), and S3(t) such that S1(t) contains all the agents with
maximum si(t), i ∈ Vh, S2(t) contains all the agents with
minimum si(t), i ∈ Vh, and S1(t) ∪ S2(t) ∪ S3(t) = Vh. In
other words,

S1(t) =
{
i ∈ Vh|si(t) = sM (t)

}
,

S2(t) =
{
i ∈ Vh|si(t) = sm(t)

}
,

S3(t) = Vh\(S1(t) ∪ S2(t)).

(20)

Since P
{
G(p) is (2f + 1)-robust

}
6= 0, the probability of

the (2f+1)-reachability of one of the sets S1(t) and S2(t)
is nonzero. Therefore, at each time instant, with a nonzero
probability there is at least one healthy agent in S1(t) or S2(t)
which has at least 2f+1 neighbors outside its set. Since the
malicious agents set is f -local, with a nonzero probability this
agent has at least f+1 healthy neighbors outside its set and
according to (20) and based on the selection strategy in Part
(a), it uses the information of at least one of them. Thus,
by considering (14), with a nonzero probability this agent
converges toward the other set. Note that by considering (10)
and (14), si(t + 1) is a convex combination of si(t) and
sj(t), j ∈ Ni(p, t), and according to the selection strategy
in Part (a), possible malicious agents with the safety variables
outside the range [sm(t), sM (t)] will be ignored by the healthy
agents. Therefore, while sf 6= 0, the convex range will be
shortened over time such that

lim
t→∞

[
sM (t)− sm(t)

] i.p.−→ 0. (21)

From (21), it follows that (19) can be satisfied only if sf = 0.
Thus, as sM (t) is always nonincreasing and sm(t) is always
nondecreasing, there exists an a priori unknown finite constant
sa ∈ R such that

lim
t→∞

si(t)
a.s.−−→ sa, i ∈ Vh. (22)

If we define an error vector ei(t) as

ei(t) = ζi(t)−
sa1n−1

1 +
∑n−1
m=1 λm

,

by considering (17) and (22), one gets

ei(t+ 1) = Áei(t) + B́εi(t) (23)

where εi(t) = si(t) − sa, and limt→∞ εi(t)
a.s.−−→ 0. Based

on the Lyapunov stability criterion for linear systems, since
Á is Schur stable, for each symmetric positive definite Q ∈
R(n−1)×(n−1), there exists a symmetric positive definite P ∈
R(n−1)×(n−1) such that Á>PÁ−P = −Q. Thus, for a Q, we
consider a Lyapunov candidate of the error vector as Vi(t) =
ei(t)

>Pei(t), and accordingly along (23), it can be said that

Vi(t+ 1)− Vi(t) =− ei(t)>Qei(t) + 2ei(t)
>Á>PB́εi(t)

+ εi(t)
2B́>PB́.

From the results of Step 1 and according to definition of εi(t)
and ei(t), it follows that there exists a finite ηi(t) ∈ R≥0 such
that |2ei(t)>Á>PB́εi(t) + εi(t)

2B́>PB́| ≤ ηi(t). Moreover,
ηi(t) almost surely converges to zero as εi(t) almost surely
converges to zero. In this condition, for a nonzero Vi(t), since
−ei(t)>Qei(t) < 0, it can be said that for some di ∈ R>0,
there exists a finite time tdi ∈ N such that [50]

Vi(t+ 1)− Vi(t) ≤ −di a.s., t ≥ tdi .

Therefore, as t → ∞, Vi(t) almost surely converges to zero;
thus, the consensus errors almost surely converge to zero as
well, implying that

lim
t→∞

ξi(t)
a.s.−−→ sa1n

1 +
∑n−1
m=1 λm

.
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Since xi(t) = Tξi(t), one can conclude that the objective (5)
is achieved which implies achieving almost sure consensus in
the MAS (1), and the proof is completed.

Proof: [Proof of Theorem 2] The main reason of using the
property (12b) is that as t→∞, it omits the noisy signals in
the protocol. However, these noisy signals are necessary to be
employed by each healthy agent such that consensus with other
healthy agents in the network is achieved. Therefore, while
the noisy signals are vanishing, we should simultaneously
guarantee achieving almost sure consensus in the MAS. We
present the proof in two steps:

• First, considering the effect of the noises on Parts (a) and
(b) of the consensus control strategy, we show that under
the consensus protocol (11), E{si(t)}, i ∈ Vh, remain in
a convex set depending on si(0), i ∈ Vh. Then, based on
the design of si(t), i ∈ Vh, the almost sure boundedness
of the agents states is guaranteed.

• In the next step, from the property (12b), we conclude
that the limits of si(t), i ∈ Vh, exist almost surely.
Then, we show that if P

{
G(p) is (2f + 1)-robust

}
6= 0,

according to the property (12c), the almost sure limits of
si(t), i ∈ Vh, are identical. Accordingly, achieving almost
sure consensus in the MAS as (5) is concluded.

Step 1- By substituting the consensus protocol (11) into (3),
from the definition of si(t), one can observe that

si(t+ 1) =si(t) + αi(p, t, ω)

×
N∑
j=1

aij(p, t, ω)
[
s̃ij(t)− si(t)

]
, i ∈ Vh.

(24)

Based on (24) and according to (12a), the healthy agents
safety variables will be updated such that si(t+ 1) will be a
convex combination of si(t) and s̃ij(t), j ∈ Ni(p, t, ω), while
the set Ni(p, t, ω) is determined with stochastic errors due
to noises. Indeed, in stochastic analysis of the evolution of
si(t), i ∈ Vh, we should note that some aij(p, t, ω), j ∈ Ni(p),
may not be the same as them when there are no noises
in the communication channels, i.e., for some j ∈ Ni(p),
aij(p, t, ω) 6= aij(p, t). To analyze the evolution of si(t), i ∈
Vh, at each time instant, we first assume a case when Part (a)
of the consensus control strategy is not affected by noises,
while Part (b) is affected (let us call it Case I). In other
words, we assume a case when the adjacency matrix is not
affected by noises, while the interaction term of (24) denoted
by
[
s̃ij(t) − si(t)

]
is affected. Although this assumption is

not realistic, we will use the obtained results for the real case
when both parts are affected by noises (let us call it Case II).
Indeed, we will show that if Case I is satisfied, the MAS has
stochastic properties the same as when there are no noises in
the network. Then, we will show that if Case II is satisfied, the
MAS stochastic trajectory will be in a set determined by Case
I. Thus, we continue with Case I. Let us consider a filtration
the same as (18). Therefore, if Case I is satisfied, we have

E
{
αi(p, t, ω)aij(p, t, ω)

[
s̃ij(t)− si(t)

]∣∣∣Ft}
= E

{
αi(p, t)aij(p, t)

[
s̃ij(t)− si(t)

]∣∣∣Ft},

and as the communication noises are MDSs, one can observe
that

E
{
αi(p, t, ω)aij(p, t, ω)

[
s̃ij(t)− si(t)

]∣∣∣Ft}
= E{αi(p, t)aij(p, t)|Ft}

[
sj(t)− si(t)

]
.

(25)

Therefore, from (12a) and (24), we can say that E{si(t +
1)|Ft} is a convex combination of si(t) and sj(t), j ∈
Ni(p, t), and thus based on similar arguments in the proof
of Theorem 1 for (15) and (16),

sm(t) ≤ E{sM (t+ 1)|Ft} ≤ sM (t),

sm(t) ≤ E{sm(t+ 1)|Ft} ≤ sM (t).
(26)

In this case, based on the selection strategy of Part (a), we
have four sets of neighboring agents for the ith healthy agent
as follows:

Ih,i(p, t) = {j ∈ Ni(p)|sj(t) > si(t), aij(p, t) = 0},
Sh,i(p, t) = {j ∈ Ni(p)|sj(t) ≥ si(t), aij(p, t) > 0},
Sl,i(p, t) = {j ∈ Ni(p)|sj(t) ≤ si(t), aij(p, t) > 0},
Il,i(p, t) = {j ∈ Ni(p)|sj(t) < si(t), aij(p, t) = 0}

(27)

where

Il,i(p, t) ≤ Sl,i(p, t) ≤ Sh,i(p, t) ≤ Ih,i(p, t).

In the presence of communication noises, a communicated in-
formation may jump to incorrect values at some time instants.
Therefore, if Case II is satisfied, considering the effects of
noises on the selection strategy of Part (a) may lead to jumps
of some agents among the mentioned four sets, and for some
j ∈ Ni(p), we may have aij(p, t, ω) 6= aij(p, t). Thus, for
Case II, due to jumps among the four sets (27), we can define
the sets

Ih,i(p, t, ω) = {j ∈ Ni(p)|s̃ij(t) > si(t), aij(p, t, ω) = 0},
Sh,i(p, t, ω) = {j ∈ Ni(p)|s̃ij(t) ≥ si(t), aij(p, t, ω) > 0},
Sl,i(p, t, ω) = {j ∈ Ni(p)|s̃ij(t) ≤ si(t), aij(p, t, ω) > 0},
Il,i(p, t, ω) = {j ∈ Ni(p)|s̃ij(t) < si(t), aij(p, t, ω) = 0}

where

Il,i(p, t, ω) ≤ Sl,i(p, t, ω) ≤ Sh,i(p, t, ω) ≤ Ih,i(p, t, ω).

Note that when Case II is satisfied, αi(p, t, ω)aij(p, t, ω) and[
s̃ij(t)−si(t)

]
may not be stochastically uncorrelated and thus

results like (25) may not hold. To analyze the MAS behavior
when Case II is satisfied, we should investigate the effects of
jumps among the four sets (27) on the stochastic inequality
(26). Any jump from Sh,i(p, t) ∪ Sl,i(p, t) to Ih,i(p, t) ∪
Il,i(p, t) leads to ignoring some neighbors which were not
ignored in Case I. Based on the selection strategy in Part
(a), we have |Ih,i(p, t, ω)| ≤ f and |Il,i(p, t, ω)| ≤ f ; thus,
ignoring some neighbors which were selected in Case I may
lead to selecting some neighbors which were ignored in Case
I. In these conditions, by ignoring and selecting some new
neighbors, for s̃ij(t) ≥ si(t), j ∈ Ni(p, t, ω), compared with
(25), we should have (note that compared with (25), neighbors
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with larger s̃ij(t) can be ignored)

0 ≤
N∑
j=1

E
{
αi(p, t, ω)aij(p, t, ω)

[
s̃ij(t)− si(t)

]∣∣∣Ft}
≤

N∑
j=1

E
{
αi(p, t)aij(p, t)

[
s̃ij(t)− si(t)

]∣∣∣Ft}
implying that

0 ≤
N∑
j=1

E
{
αi(p, t, ω)aij(p, t, ω)

[
s̃ij(t)− si(t)

]∣∣∣Ft}
≤

N∑
j=1

E{αi(p, t)aij(p, t)|Ft}
[
sj(t)− si(t)

]
.

(28)

In a similar way, for s̃ij(t) ≤ si(t), j ∈ Ni(p, t, ω), we have

N∑
j=1

E{αi(p, t)aij(p, t)|Ft}
[
sj(t)− si(t)

]
≤

N∑
j=1

E
{
αi(p, t, ω)aij(p, t, ω)

[
s̃ij(t)− si(t)

]∣∣∣Ft} ≤ 0.

(29)

It was mentioned that in Case I, (25) guarantees (26); thus, in
Case II, (28) and (29) also ensure (26). Now, we investigate
the effects of other types of jumps. By any jump from
Ih,i(p, t) ∪ Il,i(p, t) to Sh,i(p, t) ∪ Sl,i(p, t), some neighbors
which were not selected in Case I will be selected. Based on
the selection strategy in Part (a), |Ih,i(p, t, ω)| < f only if
{j ∈ Sh,i(p, t, ω)|s̃ij(t) > si(t)} = ∅, and |Il,i(p, t, ω)| < f
only if {j ∈ Sl,i(p, t, ω)|s̃ij(t) < si(t)} = ∅; therefore,
selecting some neighbors which were ignored in Case I may
lead to ignoring some neighbors which were selected in Case
I. In these conditions, by ignoring and selecting some new
neighbors, for s̃ij(t) ≥ si(t), j ∈ Ni(p, t, ω), and for s̃ij(t) ≤
si(t), j ∈ Ni(p, t, ω), compared with (25), we should still
have (28) and (29), respectively, ensuring (26). The third type
of jumps is from Ih,i(p, t) ∪ Il,i(p, t) to Ih,i(p, t) ∪ Il,i(p, t)
under which compared with Case I, the members of Ih,i(p, t)
and Il,i(p, t) may change. On the one hand, |Ih,i(p, t, ω)| <
f only if {j ∈ Sh,i(p, t, ω)|s̃ij(t) > si(t)} = ∅, and
|Il,i(p, t, ω)| < f only if {j ∈ Sl,i(p, t, ω)|s̃ij(t) < si(t)} =
∅; one the other hand, we always have |Ih,i(p, t, ω)| ≤ f
and |Il,i(p, t, ω)| ≤ f . Therefore, based on the arguments
the same as those for the previous two types of jumps, for
s̃ij(t) ≥ si(t), j ∈ Ni(p, t, ω), and for s̃ij(t) ≤ si(t), j ∈
Ni(p, t, ω), compared with (25), we should still have (28) and
(29), respectively, ensuring (26). Finally, if we have jumps
from Sh,i(p, t) ∪ Sl,i(p, t) to Sh,i(p, t) ∪ Sl,i(p, t), it implies
(25), and the stochastic inequality (26) still is satisfied. By
considering the combination of the mentioned types of jumps
among the four sets (27), if Case II is satisfied; then, the
stochastic inequality (26) is satisfied. As a result

sm(0) ≤ E{si(t+ 1)|Ft} ≤ sM (0)

which implies that |si(t)| < ∞ a.s., because if the bound-
edness is not almost surely, there exist nonzero probabilities
for instability which is in contradiction with the bounded

expectation of si(t). Now, if we consider the evolution of ζi(t)
along the Schur stable system (17), due to the input to state
stability of Schur stable systems [49], one gets

‖ζi(t)‖ <∞ a.s.. (30)

Step 2- Due to the MDS properties of the communication
noises, based on arguments similar to those for si(t), it can
be said that they are almost surely bounded. In this condition,
the property (12b) along (30) results in

lim
t→∞

αi(p, t, ω)

N∑
j=1

aij(p, t, ω)
[
s̃ij(t)− si(t)

] a.s.−−→ 0,

and from (24), it follows that

lim
t→∞

[
si(t+ 1)− si(t)

] a.s.−−→ 0. (31)

Therefore, (30) and (31) imply that the limit of si(t) exists
almost surely such that

lim
t→∞

si(t)
a.s.−−→ sai (32)

where sai ∈ R. Now, we show that sai = saj , i, j ∈ Vh. To
achieve this goal, we show that if sai 6= saj for some i, j ∈ Vh,
we reach a contradiction with (32). From (32), it follows that
for any neighborhood µi ∈ R>0 close to sai, there exists a
finite time tµi ∈ N such that

|si(t)− sai| ≤ µi a.s., t ≥ tµi
. (33)

Moreover, from (32), if for some i, j ∈ Vh, sai 6= saj , there
exists a finite time tµi,j ≥ tµi such that

|sj(t)− si(t)| > 0 a.s., t ≥ tµi,j . (34)

For t ≥ maxi,j{tµi,j}, let us consider three sets of the healthy
agents defined as S1, S2, and S3 such that S1 contains all the
healthy agents with maximum sai, i ∈ Vh, S2 contains all the
healthy agents with minimum sai, i ∈ Vh, and S1∪S2∪S3 =
Vh. In other words,

S1 =
{
i ∈ Vh|sai = max

j∈Vh
{saj}

}
,

S2 =
{
i ∈ Vh|sai = min

j∈Vh
{saj}

}
,

S3 = Vh\(S1 ∪ S2),

(35)

and as for some i, j ∈ Vh, sai 6= saj , we have S1 6= S2.
Since P

{
G(p) is (2f + 1)-robust

}
6= 0, the probability of the

(2f+1)-reachability of one of the sets S1 and S2 is nonzero.
Therefore, at each time instant, with a nonzero probability
there exists at least one healthy agent in S1 or S2 which has
at least 2f+1 neighbors outside its set. Since the malicious
agents set is f -local, with a nonzero probability this agent has
at least f+1 healthy neighbors outside its set and according
to (35) and based on the selection strategy in Part (a), it uses
the information of at least one of these healthy neighbors.
Therefore, it can be said that with a nonzero probability there
exists at least one healthy agent i ∈ S1 or i ∈ S2 which uses
the information of at least one healthy agent j ∈ Vh outside
its set which satisfies the inequalities (34) as follows:

sj(t)− si(t) < 0 a.s., t ≥ max
i,j
{tµi,j} i ∈ S1

sj(t)− si(t) > 0 a.s., t ≥ max
i,j
{tµi,j} i ∈ S2.

(36)
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According to (12a) and (12c), for any φi(t) ∈ R>0 and any
finite constant χi ∈ R>0, there exists a finite time period
[t0, t0 + τi], τi ∈ N, such that

t0+τi∑
t=t0

αi(p, t, ω)φi(t) ≥ χi. (37)

On the other hand, according to (36) and considering the
stochastic properties of the communication links and noises,
there exists a nonzero probability such that over the period
[t0, t0+τi], t0 ≥ maxi,j{tµi,j} (based on the selection strategy
in Part (a) and since Vm is f -local),

N∑
j=1

aij(p, t, ω)
[
s̃ij(t)− si(t)

]
< 0 i ∈ S1

N∑
j=1

aij(p, t, ω)
[
s̃ij(t)− si(t)

]
> 0 i ∈ S2.

(38)

In this condition, considering (37) and (38) in the protocol
(24), there exists a nonzero probability such that si(t) leaves
a neighborhood determined in (33) which has a contradiction
with almost sure convergence of si(t) described in (32).
Therefore, we should have sai = saj , i, j ∈ Vh, and therefore
from (32), we have

lim
t→∞

si(t)
a.s.−−→ sa (39)

where sa ∈ R. By considering (30) and (39), following a
procedure similar to the proof of Theorem 1 for (22), almost
sure convergence of the healthy agents upon their state vectors
will be concluded.
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