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Abstract: Ground motions recorded in near-fault regions may contain pulse-like traces in the velocity
domain. Their long periodicity can identify such signals with large amplitudes. Impulsive signals can
be hazardous for buildings, creating large demands due to their long periods. In this study, a dataset
was collected from various data centres. Initially, all the impulsive signals, which are in reality rare,
are manually identified. Furthermore, then, synthetic velocity waveforms are created to increase the
number of impulsive signals by using the model developed by Mavroeidis and Papageorgiou, and
k−2 kinematic modelling. In accordance, a convolutional neural network (CNN) was trained to detect
impulsive signals by using these synthetic impulsive signals and ordinary signals. Furthermore,
manually labelled impulsive signals are used to detect the initiation and the termination positions
of impulsive signals. To do so, the velocity waveform and position and amplitude information of
the maximum and minimum points are used. Once the model detects the positions, the period
of the pulse is calculated by analysing spectral periods. Although our detection algorithm works
relatively worse than three robust algorithms used for benchmarks, it works significantly better in
the determination of initiation and termination positions. At this moment, our models understand
the features of the impulsive signals and detect their location without using any thresholds or any
formulations that are heavily used in previous studies.

Keywords: near-fault ground motion; pulse-like ground motion; pulse shape identification; time
series analysis; machine learning in seismology

1. Introduction

The increasing number of seismic stations near the active fault lines has allowed
the investigation of near-fault seismic features of earthquakes. The characteristics of the
signals recorded in near-fault regions on large-magnitude earthquakes are the interest of
both classical and engineering seismology due to the presence of large-amplitude velocity
time histories, with long periods in particular cases (e.g., Baltzopoulos et al. [1]). These
signals are called impulsive signals. The directivity effect is one of the major causes of such
signals [2]. It can be explained as the propagation of the rupture front to the site with the
similar shear wave velocity of the medium in which the earthquake rupture propagates.
When the directivity effect is present at the site of interest, most of the energy of the
earthquake would be focused on a single or several periodic signals on velocity records.
The directivity effect can be visible on both fault normal [3,4] and fault parallel sites [5,6]
depending on the fault type. The fling step effect, which is the permanent displacement
at the site of interest, is the second source of impulsive signals [7]. Shallow soil effects
may also create impulsive signals. The basin effect focuses the seismic energy to a certain
location, which creates an impulsive signal [8]. Loose soils also create impulsive signals [6].
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Since the shallow soil effects depend on the local geology of the site of interest, they cannot
be formalised as directivity or fling step effects. The effects that may damage the structures
can be as follows:

1. spectral ratios can be locally amplified in the region where the fundamental structural
period is closer to the pulse period [9];

2. the structure will be loaded with considerable seismic energy in few pulses in the
higher modes [7,10–12].

Impulsive signals can be destructive to various types of structures, such as idealised
single and multi degree-of-freedom systems [13], seismically isolated structures [14], and
bridges [15]. Because of their hazardous effects on structures, it is vital to detect impulsive
signals. Detecting impulsive signals makes it possible to calculate their probability of
occurrence [16–18]. Thus, the effects of impulsive signals can be implemented into hazard
maps [19].

Various methods have been developed to identify impulsive signals. Mavroeidis and
Papageorgiou [20] used Gabor wavelets for the identification. Baker [21], on the other
hand, used fourth-order Daubechies wavelets. A pulse identifier (PI) is developed for the
identification process, which is a mathematical formula with a combination of various
ratios and constants. Shahi and Baker [17] improved the study of Baker [21] with new
data and created a new PI. Chang et al. [22] used energy-based classification using the
energy ratio around the peak ground velocity (PGV) location and the total energy of the
signal. Ertuncay and Costa [23] used Ricker and Morlet wavelets to analyse and determine
impulsive signals. An energy-based classification is implemented in both the velocity
time history and wavelet power spectrum. Different decision-making criteria have created
disagreements on the characterisation of the signals.

Machine learning (ML) algorithms require a vast amount of data to understand
the nature of the given problem. Thanks to the large set of waveforms recorded by
the stations of national and international data centres, large datasets, such as Stanford
Earthquake Dataset (STEAD) database of Mousavi et al. [24], are created. ML algorithms
have enough data to understand the features of various seismological problems. With
the help of a large amount of data, Meier et al. [25] differentiate noise from earthquakes,
and Mousavi et al. [26], Ross et al. [27,28] detect P and S wave arrivals of the earthquakes
along with the polarity detection of the first motion. Titos et al. [29] used recurrent neural
networks, long short-term memory, and a gated recurrent unit to detect and classify
continuous sequences of volcano-seismic events at the Deception Island Volcano, Antarctica.
Titos et al. [30] evaluated the classification performance on seven different classes of isolated
seismic events by using two different deep neural networks. Furthermore, ML can calculate
the station-based magnitude of earthquakes Mousavi and Beroza [31].

In this study, we try to solve two problems, which are the detection of impulsive
signals and their initiation and termination positions. For the first problem, two CNN
models are trained using both synthetic and real data. Features of the real and synthetic
data are explained Section 2. Features of the CNN are given in Section 3, and the outcomes
of the CNN models are discussed in Section 4. For determining if a signal is impulsive or
non-impulsive, a procedure is developed based on information from previous methods
and a manual inspection. To measure the success of the model, the false positive (FPR) and
false negative (FNR) rates were observed. We would like to minimise the rates to ensure
that our model can detect impulsive signals with high accuracy. We want to reduce the
FPR to ensure that our model is not giving false alarms; in this case, it is a non-impulsive
signal. Furthermore, we also want to minimise the FNR as much as possible to have a
model that labels the impulsive signals correctly. Our aim is to overcome the disagreements
among previous studies by creating a generalised CNN model, and to do that, manual
detection of impulsive signals is chosen. This approach is used by Baker [21], Mavroeidis
and Papageorgiou [20], and Somerville [32] to create an empirical relation between the
moment magnitude (Mw) and pulse period and generalise the features of impulsive signals.
The same approach is implemented, and the waveforms are inspected visually. Accordingly,
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manually detected impulsive signals are used to validate our model. To understand the
performance of our model, we not only compare it with manually inspected signals but
also with identification results of the same signals by recently developed algorithms.

For the second problem, only the manually detected impulsive signals are used along
with their initiation and termination positions. To understand the performance of the
model, three parameters are defined, which are the mean squared error (MSE), the mean
absolute error (MAE), and the coefficient of determination (R2). We try to minimise the
error while maximising the determination coefficient, and then, the performance of our
model was compared with the previous studies. After the determination of the impulsive
part, the period of the impulsive signal is determined. Spectral amplitudes and periods are
used for the determination of the period. Periods determined by previous methods and
our model are also compared. Several signals with a large difference in terms of the period
are analysed individually.

2. Data

To train the CNN model efficiently, a dataset is created by collecting waveforms from
the NGA-West 2 [33] database and national data centres from Canada, Chile, Costa Rica,
Greece, Italy, Japan, Mexico, New Zealand, the United States of America, Taiwan, and
Turkey. Crustal earthquakes are collected from various data centres. Earthquake data from
strong-motion and broad-band stations are collected (Figure 1a). Earthquakes with a Mw
bigger than 5.5 with a hypocentral depth smaller than 55 km are chosen. Stations with
epicentral distance less than 150 km are used.

Figure 1. (a) The distribution of earthquakes (red stars) and stations (blue dots); (b) a histogram of
the number of manually detected impulsive (orange) and non-impulsive (blue) signals with Mw with
a 0.1 interval; (c) a histogram of the number of impulsive and non-impulsive signals with epicentral
distance with a 10 km interval.
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The stations with two horizontal components were chosen, and the orientations were
changed from North–South and East–West to fault normal and fault parallel since the
directivity effect can be seen more easily in the fault-normal component [2,34]. Later
studies show that impulsive signals may also occur in other orientations [9]. Vertical
stations are also used. If a station does not have both of its horizontal components, only
the vertical component of the station is selected.

In total, 21,458 waveforms are collected (Figure 1). Signals are analysed with three
different algorithms for the determination of impulsive signals. The number of waveforms
labelled as impulsive by Shahi and Baker [17], Chang et al. [22], Ertuncay and Costa [23]
are 405, 454, and 438, respectively. Shahi and Baker [17] uses two multi-component ground
motion data, whereas other algorithms use a single component. To use the algorithm
from Shahi and Baker [17], the same signal is fed as the second record. These signals
are used for the benchmark between previous studies and the CNN methods. In total,
534 signals are manually labelled as impulsive. Velocity waveforms and pseudo-spectral
responses of these signals are visually inspected in the labelling process. The idea be-
hind the manual labelling is to overcome different criteria between previous studies. For
instance, Chang et al. [22], Ertuncay and Costa [23] use the threshold of 30 cm s−1 for PGV,
which is implemented by Baker [21], which is defined for the potential damaging effect
of such amplitudes on structures. Shahi and Baker [17] uses a pulse indicator (PI) to
detect impulsive signals that have the impulsive part at the signal’s beginning. PI is a
second-degree polynomial function that uses PGV and a principal component parameter
that carries information about the energy and PGV ratios between the original waveform
and a residual that is the result of the 4th Daubechies wavelet from the original waveform.
If PI is greater than 0, the signal is identified as impulsive. Chang et al. [22] uses the energy
ratio between the squared velocity time history of the earthquake and the impulsive part of
the waveform. If the ratio exceeds 0.34, a waveform is considered impulsive. Ertuncay and
Costa [23] analyses the waveform in both the time and frequency domains. If the average
of the energy ration between the squared velocity time history and the wavelet power
spectrum of the earthquake and the impulsive part of the waveform is more than 0.3, the
given waveform is labelled as impulsive.

Different decision-making algorithms raise different results for a given waveform.
Various examples can be seen in Figure 2. In Figure 2a, Shahi and Baker [17] identified
these signals as non-impulsive even though the PI is bigger than 0. It is due to the late
arrival of the impulsive part. In Figure 2b, Chang et al. [22] labelled the signal as non-
impulsive since the energy ratio is 0.339. As one can note, the signal is mislabelled due
to the 0.001 energy difference. In Figure 2c, Chang et al. [22], Ertuncay and Costa [23]
labelled the signals as non-impulsive. Chang et al. [22] calculate the energy ratio as 0.64
and Ertuncay and Costa [23] as 0.42. However, the PGV of the signal is 28.43 cm s−1, which
is smaller than the hard threshold of 30 cm s−1. In Figure 2d, only the manual investigation
labelled the signal as impulsive. Both Chang et al. [22] (energy ratio = 0.79) and Ertuncay
and Costa [23] (energy ratio = 0.57) are mislabelled due to the PGV threshold. The PI is
calculated −0.40 by the algorithm of Shahi and Baker [17], which is less than 0. Therefore,
all previous studies mislabelled the signal.
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Figure 2. (a) Velocity waveform (black) of the radial component of Düzce station (Rjb = 13.6 km) in the 17th of August 1999
Kocaeli, Turkey earthquake (Mw = 7.5); (b) velocity waveform of the radial component of TCU038 station (Rjb = 25.4 km)
in the 20th of September 1999 Chi-Chi, Taiwan, earthquake (Mw = 7.6); (c) velocity waveform of the transverse component
of TCU026 station (Rjb = 56.0 km) in the Chi-Chi, Taiwan earthquake; (d) velocity waveform of the radial component of
4809 station (Rjb = 7.8 km) in the 21st of July 2017 Aegean Sea earthquake (Mw = 6.5). Green, red, and blue wavelets are
fitted wavelets determined by Shahi and Baker [9], Chang et al. [22], Ertuncay and Costa [23], respectively.

Manually picked impulsive signals are a tiny portion of the entire dataset (≈2.5%).
One way to overcome this problem is to remove non-impulsive incidences from the dataset
and use only 534 impulsive and 534 non-impulsive signals. However, the CNN method
requires vast amounts of data with almost equal examples on each class to understand the
nature of the inputs to make correct predictions. To increase the ratio, synthetic signals are
produced. Synthetic impulsive signals are only used in the identification of the impulsive
signals. Two different methods are used to create synthetic impulsive motions.

The first algorithm is the methodology developed by Mavroeidis and Papageorgiou [20].
In the study, an analytical model for a near-fault velocity pulse is formalised as below,

v(t) =


A

1
2

[
1 + cos

(
2π fp

γ
(t− t0)

)]
cos[2π fp(t− t0) + ν]

0 otherwise

t0 −
γ

2 fp
≤ t ≤ t0 +

γ

2 fp
withγ ≥ 1.

(1)
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In the equation, A is the amplitude of the signals, fp is the period of the pulse, ν is
the phase angle of the harmonic (varies between 0 and ±π/2), γ stands for the oscillatory
characteristics, and t0 is the epoch of the impulsive motion. To have a large amount
of impulsive signals, 44 sets of ν (varies between 0 and ±π/2), γ (varies between 1.1
and 3.0) are created, and soil conditions with the same pulse period and magnitude of
each manually labelled impulsive motions are required. Synthetic earthquake signals are
enriched with high-frequency content using Sabetta and Pugliese [35]. In total, 22,464 of
the synthetic signals are labelled as impulsive by Shahi and Baker [17], Chang et al. [22] or
Ertuncay and Costa [23], and 17,620 of them are randomly picked to use in the study. Pure
waveforms (without the high-frequency content of Sabetta and Pugliese [35]) are enriched
with random samples of normal distribution with zero mean and 1–3 standard deviation
(std). This model is named as the Mavroeidis model in this study.

To create the synthetic waveforms, the k−2 kinematic model that models the high-
frequency decay on displacement spectra [36,37] is also used. The rupture propagation
has started from the hypocenter point of the fault plane and propagated with a constant
rupture velocity of 3200 m s−1. The 1-D velocity model of Ameri et al. [38] is used as the
subsurface structure. The fault plane is divided into 100 subfaults with dimensions of
0.5 km by 0.5 km. Numerical Green’s tractions are calculated for each subfault with the
frequencies from 0.05 Hz to 2.2 Hz by the AXITRA software developed by Coutant [39]. A
constant Mw = 7.2 is used. This method is also used by Scala et al. [40] for the variation of
impulsive signals with changing source parameters. This model is named the k−2 model in
this study.

In total, 129,600 synthetic waveforms are created by using 15 fault plane orientations
and 10 different slip distributions. Stations are distributed based on both the epicentral
distance and azimuthal variations. Epicentral distances vary between 5 km to 120 km with
a 5 km interval. Stations are placed where they satisfied 360◦ azimuthal coverage with
30◦ of azimuthal differences. There are 288 stations (East–West, North–South, and vertical
components) for each set fault plane geometry. Synthetic earthquake signals are enriched
as in the Mavroeidis model.

Since it takes an excessive amount of time to classify synthetic signals manually, three
previous methods are used to label signals. They are labelled using the outputs of previous
classification methods. In total, 36,433 of the synthetic signals are labelled as impulsive by
Shahi and Baker [17], Chang et al. [22] or Ertuncay and Costa [23]. There are agreements
among studies up to a certain point on the labelling of these signals as impulsive. All
three algorithms labelled 25,675 of them as impulsive, 27,690 are labelled as impulsive
by Shahi and Baker [17] and Ertuncay and Costa [23], 26,319 by Shahi and Baker [17]
and Chang et al. [22], and 30,343 by Ertuncay and Costa [23] and Chang et al. [22]. If either
of these algorithms identified the signal as impulsive, it is considered as impulsive. Non-
impulsive synthetic signals are eliminated. Differently, real non-impulsive signals are used
as negative examples. Synthetic signals are given to train the CNN algorithm to generalise
the features of the impulsive signals. Real non-impulsive signals are used as examples of
the non-impulsive class for the model.

In total, 20,924 synthetic impulsive signals out of 36,433 and 20,924 recorded non-
impulsive signals are provided to the CNN method. Signals are down sampled to 20 Hz to
reduce the computation time, and frequencies lower than 0.05 Hz and higher than 10 Hz
were filtered out. Sixty seconds of the velocity waveform are given as input. The starting
point of the signals are P wave arrivals. If the duration of the signal is less than 60 s, the
signal is padded with zeros.

Before passing the waveform, they are normalised in order to be more suitable for the
neural network. The normalisation is done by removing its mean value from the waveform
and dividing it by the standard deviation. Since the maximum and the minimum values
of the signal are very important for the characterisation of an impulsive signal, these two
values are stored before the normalisation and fed to the neural network in a later stage.



Geosciences 2021, 11, 388 7 of 18

3. Method
3.1. Identification of Impulsive Signals

To identify impulsive and non-impulsive signals, a convolutional neural network
is designed. The inputs of the neural network are a couple of vectors, ~w′ and ~v. The
former is the normalised version of the velocity waveform ~w′ = ~w−µ~w

σ~w
, where µ~w and σ~w

are, respectively, the mean and the standard deviation of ~w. The latter is a vector of two
components 〈max(~w), min(~w)〉. The output of the network is a single value that represents
the probability of the given signal impulsiveness. The neural network is composed of two
parts: one convolutional and the other fully connected. The former extracts features from
the raw velocity waveform, whereas the latter performs the actual classification. In order
to help the classification step, two additional inputs are added in this stage: the maximum
and the minimum values of the velocity waveform (〈max(~w), min(~w)〉). The architecture
of the convolutional neural network is reported in Table 1. Models are developed using
tensorflow [41] and Keras [42] as frameworks.

The activation function for each layer is a Rectified Linear Units (ReLu) with the
exception of the last one, in which a sigmoid function is used. The neural network is
trained using a binary cross entropy loss function. The learning rate is dynamically varied
during the learning with the Adam algorithm [43]. The initial values of the neuron weight
have been done using the Glorot procedure [44]. The kernel for the convolutional layers
are set to 12, 6, 3, and 3. Regarding the dropout layer, a dilution rate equal to 0.5 is used.
Further details on the architecture can be found in the source code together with the
Supplementary Material. During the learning phase, the data are split into two portions:
those used to train the neural network and the others for validation. On each training step,
the loss function is measured on both intervals. If the value of the loss function increases for
3 steps, the learning is stopped in order to prevent the network from overfitting. Otherwise,
the training is iterated for a maximum of 200 steps. For the validation, 20% of the training
samples is used.

Table 1. Description of layers used in the model to identify impulsive signals. For each layer, the
dimension of the layer output is reported.

Layer Type Output Shape

Input 1200
Conv1D 1189× 16
MaxPooling1D 297× 16
Conv1D 292× 16
MaxPooling1D 146× 16
Conv1D 144× 32
MaxPooling1D 48× 32
Conv1D 46× 64
MaxPooling1D 15× 64
Dropout 15× 64
Flatten 960
Input 2
Concatenate 962
Dense 40
Dense 30
Dense 1
Activation 1

3.2. Determination of Initiation and Termination Positions of Impulsive Signals

The inputs of this neural network are vectors of ~w′ and~v. Unlike the model for the iden-
tification of impulsive signals, the latter is a vector of four components 〈max(~w), min(~w),
arg max(~w), arg min(~w)〉 (Figure 3). The output of the neural network is a pair of values, s
and e, which represent the initiation and termination positions of the velocity pulse.
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Figure 3. Representation of the waveform (~w) and the input data (~v) on the 23rd of November 1980 Irpinia, Italy earthquake
(Mw = 6.9) ground motion record at Arienzo station (Rjb = 52.93 km). Initiation and termination positions of manual picking,
CNN model, Chang et al. [22], Ertuncay and Costa [23], and Shahi and Baker [17] are given with cyan, magenta, green, red,
and blue colours, respectively.

The model is structured with two different parts (Table 2): the first one is the convolu-
tional part, which process ~w′ in order to extract the relevant pattern from the normalised
waveform. The second part is a fully connected neural network, which takes the features
extracted by the convolutional part as input and ~v and outputs the estimated initiations
and termination positions. Features of the model (activation functions, learning rate, loss
function, and data splitting) are the same as in the identification of impulsive signals.
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Table 2. Description of layers used in the model to identify initiation and termination positions of
impulsive part of the signals. For each layer the dimension of the layer output is reported.

Layer Type Output Shape

Input 1200
Conv1D 1189× 64
MaxPooling1D 297× 64
Conv1D 292× 16
MaxPooling1D 146× 32
Conv1D 144× 32
MaxPooling1D 48× 32
Conv1D 46× 64
MaxPooling1D 15× 16
Dropout 15× 16
Flatten 240
Input 4
Concatenate 244
Dense 40
Dense 30
Dense 30
Activation 1

4. Results
4.1. Cross-Validation of Identification of Impulsive Signals

In order to experimentally assess the method, a five-fold cross-validation is performed.
This procedure is important to verify the generalisation of the model by testing it on new,
unseen data. Typically, the cross-validation is performed by dividing the dataset into five
subsets and repeating the training five times. For each training phase, four subsets are used,
then the performance of the neural network on the remaining unseen subset is evaluated.
By doing that, the evaluation of the model is not affected by very lucky (or unlucky) data.
This paper has a slightly different approach for which only the negative examples (not
impulsive signals) are divided into five folds, while four folds are used for the training, and
the remaining is used for the testing. Then, an amount of synthetic examples as large as the
training set are added to the training set, and all the real positive examples are added into
the testing set. The rationale for this choice is two-fold: first of all, we do not want to test
the model on synthetic signals, but we want to asses the proposal on real data. Secondly,
we want to have a balanced training set to help the network learn how to differentiate
between positives and negatives properly. In addition to cross-validation, the training
is repeated on each fold five times to deal with the randomness of weight initialisation.
The training has been done on an Intel® Xeon® Gold 6140 CPU @ 2.30 GHz with 34 cores
and equipped with 196 GB of RAM along with Tesla V100 with 16 GB of RAM GPU. The
duration of the training process is in the order of dozens of seconds.

The performance of the model is measured by using FPR and FNR. FPR and FNR are
calculated as in Equation (2). These indices are averaged among the 5× 5 repetitions, and
the averaged results are compared. Obtaining a low FNR means that the method is able to
correctly identify the large amount of impulsive signals, whereas a low FPR indicates that
the model tends to classify a signal as impulsive only if it is actually impulsive.

FPR =
False Positive

False Positive + True Negative

FNR =
False Negative

False Negative + True Positive

(2)

The performance of the models are compared against three strong baselines Shahi and
Baker [17], Chang et al. [22], Ertuncay and Costa [23]. The comparison has been done using
the exact same portions of data for all methods during the cross-validation. The results of
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the comparison have been reported in Table 3. Each row shows the performance in terms
of FPR and FNR for each method, ours and the baselines. We remark that, because of the
disproportion between positive and negative examples, it is important to evaluate both
this method and the baselines using two performance indices instead of a single one, such
as accuracy, which could be tainted by unbalanced data.

Table 3. FRP and FNR averaged over the 5-folds.

Method Noise FPR FNR

Shahi & Baker (2014) 0.003 0.279
Chang et al. (2016) 0.002 0.328
Ertuncay & Costa (2019) 0.043 0.320
Mavroeidis Model Sabetta and Pugliese [35] 0.206 0.360
Mavroeidis Model 1 std 0.223 0.356
Mavroeidis Model 2 std 0.161 0.381
Mavroeidis Model 3 std 0.187 0.386
k−2 Model Sabetta and Pugliese [35] 0.421 0.062
k−2 Model 1 std 0.223 0.356
k−2 Model 2 std 0.214 0.446
k−2 Model 3 std 0.318 0.378

Table 3 shows the performance of previous studies along with the models. It must be
taken into account that only synthetic signals are used as positive examples for the training
phase. Synthetic signals are enriched by using the method from Sabetta and Pugliese [35]
and Gaussian noise with zero mean and 1–3 std. As explained in Section 1, impulsive
signals may be created due to many reasons. For instance, in the velocity structure that is
used for the synthetic waveforms, weak local soil condition is not implemented. Parameters
such as rupture velocity, stress drop, soil conditions [45], and rise time [40] may create
impulsive signals. None of these parameters are used as a variable in the synthetics.
Limits on the creation of impulsive signals reduce the variation of the pulse shapes of
the synthetics.

Both of the models show worse performance with respect to the previous studies
in FPR. It means that the models tend to predict a given waveform as impulsive. It can
be tolerable up to certain point since the definition of the impulsive motions can vary
depending on the decision maker (human interpreter or algorithm). The Mavroeidis model
has a smaller FPR with respect to k−2 model, however it performs worse than previous
algorithms. Even though the k−2 model has the worst performance in FPR, it has the best
performance in FNR. The FNR of Mavroeidis is in the same level of the previous studies.

4.2. Cross-Validation of Determination of Initiation and Termination Positions of Impulsive Signals

We experimentally assess the model performing a five-fold cross-validation on 534 im-
pulsive signals and compare the results of the CNN with three challenging baselines Shahi
and Baker [17], Chang et al. [22], Ertuncay and Costa [23]. Since some of the baselines
cannot correctly extract s and e from a given signal, the signals where none of the baseline
methods can find the initiation and the termination points are removed from each of the
five testing sets. The total number of removed signals are six. This way, all the methods are
compared on the same signals. To evaluate the performance of these four methods, ours
and the baselines, three performance indices for measuring the errors (see in Section 1)
are defined.

Concerning the MSE and MAE, the lower the value, the better the method, whereas
R2 ranges between 0 and 1 and a value closer to the maximum indicate a fitter model. In
the experimental evaluation, these indices are calculated by averaging them among the five
repetitions at the end of the cross-fold procedure. Since the output of the model is a pair
of values (s and e), both the error in individuating the right values of s and of e and also
the average error in finding both of them (µ) are evaluated. This way, the model is valid
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independent of the data used to train the neural network. The neural network is trained on
the same computers that are explained in Section 4.1. The duration of the training process
is in the order of dozens of seconds.

The results of the cross-validation procedure are summarised in Table 4. The table
reports the averaged values for R2, MAE, and MSE for all the methods measured on
the initiation and termination points and the average between them. The comparison
shows how the model outperforms the baselines in finding the initiation point of the
impulsive waveform: the CNN obtained a better score considering all the different indices.
Concerning the termination point, Chang et al. [22] is the best method, but our model is
the second-best one. Globally, our method is the best if the MSE index is considered and is
even with Chang et al. [22] with respect to R2.

Table 4. Results of all methods averaged among 5-fold cross-validation.

R2 MAE MSE
Method s e µ s e µ s e µ

Chang et al. (2016) 0.95 0.97 0.96 19.60 12.85 21.40 844.41 1171.01 1007.71
CNN 0.97 0.97 0.97 17.51 22.53 20.03 610.23 1057.47 833.85
Ertuncay and Costa (2019) 0.94 0.97 0.95 24.27 25.79 25.03 1190.31 1154.98 1172.65
Shahi and Baker (2014) 0.95 0.98 0.96 22.55 20.56 21.55 978.44 812.89 895.77

4.3. Comparison of Pulse Periods

The period of the impulsive signal is important due to its destructive effect on the
structure (Section 1). After the determination of the initiation and termination points of
the impulsive part of the velocity waveform, its period is determined. To do that, the
pseudo-spectral velocity of the impulsive part of the signal is calculated. The period of the
largest amplitude is assigned as the period of the impulsive signal.

The spectral velocity of the fitted wavelets of the previous studies is calculated to compare
with our model. The correlation of Tp between Shahi and Baker [17], Chang et al. [22], Er-
tuncay and Costa [23], and our model are investigated. Before the investigation, velocity
waveforms are smoothed. Smoothing is applied to remove high-frequency signals em-
bedded inside the long-period signal. The high-frequency noise creates larger amplitudes
in shorter periods, which leads to very low Tp for the CNN model. The central moving
average method has been implemented with a 10 moving average to do the smoothing.
Correlation coefficients (R) are around 0.77 for all of them (Figure 4). There are several
incidences where the differences between the measured periods are unexpectedly large.
These outliers are given with x symbols in Figure 4. The reasons for the difference are
discussed case by case.
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Figure 4. Comparison between pulse periods found by (a) Shahi and Baker [17], (b) Chang et al. [22],
and (c) Ertuncay and Costa [23]. Red lines are the regression lines, and their formulate with R value
are given on lower left. Outliers are plotted with x, and other impulsive signals are plotted with #.

4.4. Outliers

The first outlier is the El Centro Array #5 station record in 15th of October 1979
Imperial Valley, USA earthquake (Figure 5). The pulse period of the signal is determined
as 3.30 s, 5.09 s, 9.46 s, and 13.61 s by Chang et al. [22], Ertuncay and Costa [23], Shahi and
Baker [17], and the CNN model, respectively. Chang et al. [22] and Ertuncay and Costa [23]
are concentrated to the arrival of PGV, whereas Shahi and Baker [17] is concentrated to the
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general trend of the waveform. Ertuncay and Costa [23] is able to capture the long period
in the spectral domain with correct amplitudes. The developed model was able to correctly
determine the ending position of the impulsive part of the waveform. However, it failed to
locate the starting position, which caused a miscalculated pulse period.

Figure 5. (a) Spectral response and (b) velocity waveform of the 15th of October 1979 Imperial Valley, USA earthquake
(Mw = 6.5) recorded at El Centro Array #5 station (Rjb = 29.5 km) along with fitted waveforms and their spectral responses
of previous studies. Colour and Tp information are the same as in Figure 3.

The second outlier is the Lucerne station record in 28th of June 1992 Landers, USA
earthquake (Figure 6). The pulse period of the signal is determined as 1.60 s, 7.19 s, 7.77 s,
and 1.61 s by Chang et al. [22], Ertuncay and Costa [23], Shahi and Baker [17], and the CNN
model, respectively. In this case, both Ertuncay and Costa [23] and Shahi and Baker [17]
are able to locate long-period (≥5.5 s) information, but none of these studies capture the
amplitude information correctly. The model captured the period of the largest amplitude
1.61 s similar to Chang et al. [22]. Due to the false prediction of the termination position, the
model failed to capture the larger period information properly. Even if the model captured
the termination position properly, it would not change the pulse period since the amplitude
of 1.61 s is larger than the amplitudes at around 5.5 s. It is important to underline that the
pulse period calculation is not done by the CNN model but by a very simple method of
measuring the period of the maximum amplitude inside the predicted locations of the
impulsive part of the waveform by the model.
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Figure 6. (a) Spectral response and (b) velocity waveform of the 28th of June 1992 Landers, USA earthquake (Mw = 7.3)
recorded at Lucerne station (Rjb = 2.2 km) along with fitted waveforms and their spectral responses of previous studies.
Color and Tp information are the same as in Figure 3.

It is important to clarify that outliers do not necessarily mean that one method is
superior to another. Previous studies used different approaches to explain impulsive
parts. In this study, impulsive motions are detected by an expert using visual inspection.
Hence, the model learns the features of the impulsive signals and labels the initiation and
termination points accordingly. A very simple decision algorithm, which is selecting the
period with the largest amplitude both in the determination of the Tp of manual signals
and the CNN model, is used. There can be two major periods with large amplitudes in the
spectral domain. In such cases, it is better to check the initiation and termination points of
the model or fitted wavelets of previous studies to decide about the pulse period.

5. Discussion and Conclusions

In this study, we proposed two CNN models for detecting impulsive velocity wave-
forms and a model for the position of the impulsive behaviour of a given waveform. To
identify the impulsive signals, the neural network using both real and synthetic signals
is trained, where the last ones were created in order to equalise the ratio between impul-
sive and non-impulsive signals. Real impulsive signals are detected manually, and the
performance of the CNN method is measured by using these waveforms as ground truth.

Unlike the previous studies, CNN methods make predictions by learning the features
of the impulsive signals given in the training phase. Thus, there are no ratios, wave
fitting, or thresholds in the model. Instead, it “learns” the features of the impulsive and
non-impulsive signals by using a set of activation functions and convolutions.

CNN could help overcome the decision-making problem on impulsive signals even
though our models require further investigation to increase the performance. Both Mavronei-
dis and k−2 models perform worse than three robust previous studies that are used as
a baseline. k−2 has the FNR ratio, but it also has the worst FPR ratio. The Mavronei-
dis model has more stable results in both metrics, and its FNR is almost as good as the
previous studies.
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Many reasons may have played a role in the results. As mentioned in the Section 1,
impulsive signals can be seen as a result of multiple sources. Neither Mavroneidis nor
k−2 models can cover all these sources. Mavroeidis and Papageorgiou [20] created a
mathematical formula by using the limited amount of impulsive signals. Many impulsive
signals are detected after this study, and the mathematical model may require further
adjustments to model the later recorded motions. Moreover, synthetics created by this
algorithm cannot cover any of these effects. The k−2 model requires physics-based inputs
to create synthetics. However, this model does not cover effects, such as fling step and local
soil conditions.

Furthermore, the study of Sabetta and Pugliese [35] is used for high-frequency content
to enrich the synthetics, which does not cover all the effects of a shallow surface. White
Gaussian noise with standard deviations from one to three instead of the methodology
of Sabetta and Pugliese [35] is also used. Synthetics-added increasing standard deviation
tend to label signals as non-impulsive. False positives, on the other hand, have no trend,
and the best result is obtained with synthetics added 2 std Gaussian noise. The best
model among Mavroeidis models is the one with 2 std noise. In the k−2 model, Gaussian
noise significantly increases the false negatives whereas decreases the false positives.
On average, synthetics enriched with the method of Sabetta and Pugliese [35] have the
best performance in terms of the average FPR and FNR. In general, Mavroeidis models
have more stable results regardless of the noise type, whereas k−2 models vary between
Sabetta and Pugliese [35] and Gaussian noises, but k−2 models have stable results among
Gaussian noises.

The CNN method understood the nature of the impulsive signals by training only
on synthetic impulsive velocity waveforms. Lack of the representation of the effects that
played role on the creation of ground motions that are identified as impulsive in synthetics
signals may reduce the accuracy of the models. CNNs do not need any mathematical
formulations or thresholds to make decisions about the impulsiveness of a waveform but
instead, depend only on the used training set.

In the second part of the study, initiation and termination positions of the given
impulsive motion are determined. Thanks to the modular structure of our study, one can
use the models depending on their needs. The second part works independent from the
first part; hence, one can use the previous studies to detect impulsive signals and use our
initiation and termination model to detect the location of the impulsive motions .

To identify the initiation and the termination positions of a given impulsive signal, we
proposed a convolutional neural network fed with the impulsive signal and some ancillary
inputs that help the network identify the relevant points. The results were compared
with three very challenging baselines on the same data, and the comparison shows how
our method is better at identifying the initiation point and is in second place concerning
the termination point. Our proposal clearly outperforms all three baselines, although the
differences between previous studies and our proposal are not significantly large.

In addition, the determined impulsive periods were compared. In most short period
impulsive signals, our model and previous models are in agreement. However, there
are several signals in which Tp is determined with large variance among the previous
studies and our model. These examples were analysed in detail and found that in the
presence of multiple large-amplitude periods, previous models tend to focus on one of
them depending on their algorithms. In such cases, it is more logical to determine the
initiation and termination of the impulsive part of the waveform and further analyse each
waveform. Thus, our model is a good candidate to detect the impulsive parts of the signals.
Although our proposal has to be investigated further, we believe that our results are very
promising and can be a starting point for further research in this field.

More advanced synthetic ground motion creation algorithms may be used in the future
to help cover the multiple aspects of the motions. The effects of permanent displacement
of the ground and directivity effect can be investigated in both azimuth and distance. Fault
plane information, such as the dip and rake angle, and hypocentral distance, may also be
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implemented to have variation on impulsive motions. Site conditions, such as the basin
effect and shallow soil conditions, may also be modelled to see their effects.
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