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ABSTRACT
The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accurate
photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an
essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection
effects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-series
spectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies to
construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy
Survey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations.
We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data.
We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before
photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation,
we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 per
cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys
without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology
analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated
systematic uncertainty.

Key words: surveys – supernovae: general – cosmology: observations.

1 IN T RO D U C T I O N

Type Ia supernovae (SNe Ia) are a mature and well-understood
cosmological probe via their use as standardizable candles (Scolnic
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et al. 2019, and references therein). They remain a uniquely pow-
erful distance indicator in the high-redshift universe, and directly
constrain the properties of dark energy. When combined with Planck
cosmic microwave background (CMB) measurements, current SN
Ia samples measure the dark energy equation-of-state parameter w

with a precision of ∼0.05–0.06 (Betoule et al. 2014; Scolnic et al.
2018; Dark Energy Survey 2019b), and show it to be consistent with
a cosmological constant (w ≡ −1).
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With current and next-generation SN surveys [DES, Abbott et al.
2019; Legacy Survey of Space and Time (LSST), Ivezić et al.
2019; Nancy Grace Roman Space Telescope, formerly WFIRST,
Hounsell et al. 2018], statistical uncertainties on SN Ia cosmological
measurements are becoming comparable to systematic uncertainties
(Brout et al. 2019b). In this paper, we tackle some of the most impor-
tant sources of systematic uncertainty related to SN Ia cosmological
analysis and in particular we focus on core-collapse contamination
and selection effects.

The Dark Energy Survey (DES) SN programme (DES SN) is the
current state-of-the-art sample for SN Ia cosmology analysis. Over
five seasons, this programme discovered and monitored more than
30 000 optical transients of various astrophysical origins. For 60
per cent of this sample, the spectroscopic redshift of the identified
host galaxy has been measured (many via the OzDES programme;
see Lidman et al. 2020) and approximately 570 transients have
been spectroscopically confirmed and classified (e.g. Smith et al.
2020a).

The first cosmological results using SNe Ia from DES (DES-
SN3YR) have been measured from a sample of 207 spectroscopically
confirmed SNe Ia observed during the first three DES SN seasons,
combined with 122 publicly available low-redshift SNe (Dark Energy
Survey 2019a, b; Macaulay et al. 2019). Detailed descriptions
of the analysis are presented by Brout et al. (2019a, b), Kessler
et al. (2019b), Lasker et al. (2019), and Smith et al. (2020b). The
final 5-yr DES SN sample will include not only spectroscopically
confirmed SNe Ia, but also photometrically identified SNe Ia with
a spectroscopic redshift measured from the identified host galaxy.
This constitutes the DES photometric SN sample and it is an order
of magnitude larger than the sample used for the first published
cosmological results. This increases the statistical power of the DES
SN sample significantly, but with the complication of additional
sources of systematic uncertainties that need to be considered, e.g.
those due to the photometric classification of the SNe, and due to the
efficiency of measuring host galaxy redshifts.

The DES photometric SN sample includes a fraction of core-
collapse SN events photometrically similar to SNe Ia but with a
different astrophysical origin, and therefore different intrinsic bright-
nesses. Modelling this population of contaminants, and assessing the
impact on cosmology, is one of the key challenges to fully exploit
the DES photometric SN sample. This modelling is complex and
depends on realistic simulations of core-collapse SNe, which can
be combined with simulations of SNe Ia to build mock catalogues
of the DES SN sample. These simulations are used for modelling
selection effects and biases, and to generate training samples for SN
classification algorithms, i.e. algorithms designed to identify the type
of an SN from photometric data alone.

In the last decade, various SN photometric classifiers have been
developed, and algorithms that exploit machine-learning techniques
typically outperform other classifiers based on a template fitting
approach (e.g. Lochner et al. 2016; Boone 2019; Möller & de
Boissière 2020). However, the performance of machine-learning
photometric classifiers is fundamentally dependent on homogeneous,
representative and large training samples, with >100 000 events
required in some cases. Unfortunately, spectroscopically confirmed
SN samples are significantly more limited in size, usually biased
towards brighter events and discovered in lower surface brightness
local environments where it is easier to observe a spectrum with
the signal-to-noise adequate for classification. Using such spectro-
scopically confirmed SN samples as training samples is therefore
not a viable option, and instead representative training samples are
typically generated with simulations.

For similar reasons, the validation and testing of photometric
classifiers also require realistic simulations and cannot be performed
on data alone. However, the training, validation, and testing of
photometric classifiers on samples (either real or simulated) can
lead to overfitting and overestimations of sample purity, particularly
if the training samples contain only a limited snapshot of the true
astrophysical diversity of the SN population.

Therefore, tests of the true performances of photometric classifiers
must be carefully designed to avoid overestimating the accuracy
of these algorithms and, for future cosmological analysis, this is
ultimately as important as developing photometric classification
algorithms. The methods presented here aim to address this critical
validation issue.

There have been many attempts to improve the simulations of core-
collapse SNe. The initial set of core-collapse templates published for
the Supernova Photometric Classification Challenge (SNPhotCC;
Kessler et al. 2010a, b) has been updated with models of Type
IIb SNe and SN1991bg-like SNe Ia from Jones et al. (2017) in
order to augment the diversity of simulated contamination. The
Photometric LSST Astronomical Time-Series Classification Chal-
lenge Team (PLAsTiCC; The PLAsTiCC Team et al. 2018; Kessler
et al. 2019a; Hložek et al. 2020) further improved and expanded
this library, including other types of transients and exploring other
techniques to augment template diversity. Independently, a new
library of core-collapse templates has been presented by Vincenzi
et al. (2019). These templates are built from core-collapse SNe
using high-quality photometry and spectroscopy, and they have been
robustly extended to ultraviolet (UV) wavelengths. Simulations also
rely on core-collapse SN luminosity functions and rates, for which
several measurements have been recently published (Strolger et al.
2015; Graur et al. 2017; Shivvers et al. 2017; Vincenzi et al. 2019;
Frohmaier et al. 2021).

There are many elements of uncertainty in simulations of core-
collapse SNe, especially at intermediate and high redshifts. Most
measurements of core-collapse SN demographics available in the
literature are based on small and primarily low-redshift samples (z �
0.05), whereas SN surveys like DES probe a significantly larger range
in redshift (z � 1.2). For example, results from the Pan-STARRS
Medium Deep Survey (Jones et al. 2017, 2018) demonstrated that
simulations based on currently published measurements of core-
collapse SN global properties do not accurately reproduce the core-
collapse contamination observed in high-redshift Hubble residuals.
They find that in order to reproduce the contamination observed in the
Pan-STARRS photometric SN sample, the luminosity functions from
Li et al. (2011) need to be brightened by 1 mag, and the brightness
dispersion for SNe Ib/c reduced by 55 per cent.

Finally, the effects of inaccurate modelling of core-collapse SNe
are easily conflated with another important uncertainty in SN sam-
ples: selection effects. Simulations of photometric SN experiments
like Pan-STARRS and DES require modelling of the SN detection
efficiency and the efficiency of measuring host galaxy spectroscopic
redshifts. While the SN detection efficiency has been robustly
modelled for numerous surveys over the past decade using image-
based simulations (e.g. Dilday et al. 2008; Perrett et al. 2012, and
for DES, Kessler et al. 2015, 2019b), there is very limited work
on how to model selection effects from host galaxy spectroscopic
redshift surveys using a similar first principles modelling approach,
and significant fine-tuning is usually applied.

In this paper, we present a set of realistic simulations of the
DES photometric SN survey for which we significantly improve the
modelling of core-collapse SNe and of the efficiency of measuring
spectroscopic redshifts of SN host galaxies. The improvements
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in the core-collapse SN modelling are due to the implementation
of high-quality templates and other published measurements of
global core-collapse SN properties. To improve the modelling of
the spectroscopic redshift efficiency, we explore a novel, data-
driven approach and model the spectroscopic redshift efficiency as a
function of host galaxy properties. We improve the simulation of SN
host galaxies, and associate hosts to simulated SNe using published
measurements of SN rates as a function of galaxy properties. The
simulations presented in this paper constitute the foundation for a
robust estimation of cosmological biases due to the core-collapse SN
contamination expected in the DES photometric SN sample.

We present an overview of the DES SN sample in Section 2, and
describe how we estimate and model selection effects from the host
spectroscopic redshift survey in Section 3. In Section 4, we present
the baseline approach to build simulations of the DES photometric
SN sample. In Section 5, we compare our simulations and the DES
SN data set and we evaluate how well our simulations reproduce
core-collapse SN contamination in the DES sample. In Section 6, we
test how sensitive our results are to our assumptions and the choices
of template libraries used to generate core-collapse SN simulations.
We summarize in Section 7 and discuss future directions.

2 THE DES PHOTO METRIC SN SAMPLE

DES is an optical imaging survey designed to constrain the properties
of dark energy and other cosmological parameters by combining
four different astrophysical probes: weak gravitational lensing, large-
scale structure, galaxy clusters, and SNe Ia (Abbott et al. 2019). The
imaging data are acquired by the Dark Energy Camera (DECam;
Flaugher et al. 2015), mounted on the Blanco 4-m telescope at the
Cerro Tololo Inter-American Observatory. DES surveyed 5000 deg2

of the Southern hemisphere sky over 6 yr. For time-domain science,
DES monitored 10 3-deg2 fields with an average cadence of 7 d in
the griz filters during the first 5 yr. Eight of these ten fields (X1, X2,
E1, E2, C1, C2, S1, and S2) were observed to a single-visit depth of
m ∼ 23.5 mag (‘shallow fields’), and two (X3 and C3) to a depth of
m ∼ 24.5 mag (‘deep fields’).

In this section, we present the DES photometric SN sample. This
is defined as the sample of SN Ia-like events discovered by DES over
5 yr of observations and for which a spectroscopic redshift for the
identified host has been obtained. The discovery and photometry of
DES SNe are presented in Section 2.1, and the host galaxy identifi-
cation and spectroscopic redshift measurements in Sections 2.2 and
2.3, respectively. In Section 2.4, we discuss how SN Ia-like events
are selected from the data, and their light curves fitted using SN Ia
spectra energy distribution (SED) models. In this analysis, we neither
discuss nor apply cuts based on SN Ia photometric classifiers, which
are often used in SN cosmological analysis to improve the purity of
photometrically selected SN samples. This is to intentionally enhance
core-collapse contamination in the DES sample and better analyse
the properties of this population of contaminants.

2.1 SN discovery and photometry

In DES SN, the Difference Imaging pipeline (DIFFIMG; Kessler et al.
2015) is used to discover and estimate the flux of new transients via
image subtraction, comparing new observations with previously col-
lected reference images. The detections are passed through an auto-
mated artefact rejection algorithm (AUTOSCAN; Goldstein et al. 2015).

DIFFIMG is an efficient tool for the rapid identification of transients
and the estimation of their fluxes at the 2 per cent level. However, it
does not provide photometric measurements at the level of precision
and accuracy required for SN Ia cosmology. The DES SN 3-yr

(DES-SN3YR) cosmological analysis therefore used the technique
of scene modelling photometry (SMP; Holtzman et al. 2008; Astier
et al. 2013; Brout et al. 2019a). The SMP algorithm simultaneously
models the time-varying flux of a transient and the time-independent
background flux from the host galaxy. SMP does not require image
remapping and it determines robust uncertainties. However, it is
computationally more expensive to run compared to DIFFIMG. The
ongoing effort of running SMP on the full DES SN sample will be
important for cosmological measurements and it will help in reducing
systematic effects related to uncertainties on SN flux estimates;
however, the DIFFIMG photometry is adequate for developing the
modelling methods and simulations that are presented in this paper.

We use as our initial sample of candidate SNe all DES events
with at least two detections (in any filter, separated by at least one
night) with a signal-to-noise ratio (SNR) greater than 5, and that
passed AUTOSCAN. These criteria are designed to remove asteroids
and artefacts, while allowing relatively low SNR detections to be
included. The total number of photometric transients that pass these
requirements is roughly 30 000. We emphasize that not all of these
transients are SNe, and certainly not all the SNe have adequate light-
curve quality and redshift information to be used for cosmological
measurements.

During survey operations, the light curve of each DES transient
was also fitted with the Photometric SuperNova IDentifier software
PSNID (Sako et al. 2011), an SN photometric classifier tool based on
template fitting techniques. This code provided an estimate of the
time of peak brightness and a preliminary classification of the SN
type.

2.2 Spectroscopic follow-up

Spectroscopic redshift information on the DES SN candidates is
available from a number of sources:

(i) During the course of the DES survey, a wide range of telescopes
was used for the spectroscopic follow-up of DES SN candidates (e.g.
Smith et al. 2020a). These spectra provide SN classifications and
redshifts based on SN spectral features.1

(ii) The same telescope programmes also provide spectroscopic
redshift measurements from host galaxy spectral features appearing
in the SN spectra.

(iii) Using the AAOmega spectrograph on the 3.9-m Anglo-
Australian Telescope (AAT), spectroscopic redshifts for thousands
of galaxies identified as hosts of DES transients were measured as
part of the OzDES programme (Yuan et al. 2015; Childress et al.
2017; Lidman et al. 2020). The OzDES survey is the primary source
of spectroscopic redshifts in the DES photometric SN sample.

(iv) Various external redshift catalogues are available in the
literature from spectroscopic surveys in the same fields as those
monitored by DES SN.

Each source of spectroscopic redshift introduces different selection
effects in the DES SN sample. We describe how these selection
effects are modelled in Section 3.

2.3 Host galaxy association

For each DES transient, the most likely host galaxy has been identi-
fied using the directional light radius (DLR) method (Sullivan et al.

1The list of telescopes used for the spectroscopic follow-up of DES SN
candidates includes the 4-m AAT, the European Southern Observatory Very
Large Telescope, Gemini, Gran Telescopio Canarias, Keck, Magellan, MMT,
and South African Large Telescope.
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2006; Gupta et al. 2016) applied to galaxies in the SVA1-COADD
GOLD image catalogue (Rykoff et al. 2016). This catalogue uses data
in the DES SN fields collected during the DES ‘Science Verification’
(SV) survey. Within the OzDES survey, a galaxy identified as the
host of a DES transient is spectroscopically observed if the following
criteria are satisfied:

(i) The galaxy has the smallest DLR among all catalogue entries
and has DLR < 7, is brighter than 24.5 mag in the r band, is not
flagged as a star (see Wiseman et al. 2020, for more details), and is
not in a catalogue of known variable stars and active galactic nucleus
(AGN; the so-called ‘VETO’ catalogue);

(ii) At least 30 per cent of the detections of the transient passed
AUTOSCAN; the transient has at least one detection with an SNR >

5 in two filters, and at least one filter with two detections with an
SNR > 5;

(iii) The transient is not detected in multiple seasons (i.e. it is not
a long-duration transient such as a superluminous SN, a likely AGN,
or a variable star);

(iv) The day of peak brightness estimated by PSNID fitting lies
within a DES season.

This set of criteria defines the list of OzDES targets. If a spectroscopic
redshift has already been measured by a published redshift survey, or
if a spectroscopic redshift has been measured from galaxy features
in a live SN spectrum, the galaxy is assigned a lower priority or not
targeted at all. In this analysis, we consider OzDES spectroscopic
redshifts measured with a confidence level higher than 95 per cent2

and, if multiple sources of spectroscopic redshift are available for
the same host galaxy, we select the OzDES spectroscopic redshift as
the more accurate redshift.

After using these host galaxy associations and measurements in
the DES-SN3YR analysis, high-quality depth-optimized coadds have
been published by Wiseman et al. (2020). These coadds have been
built combining the highest quality DES SN images taken before and
well after SN detection, with a limiting magnitude of g ∼ 27 mag,
around 1–1.5 mag deeper than the SV data. As discussed by Wiseman
et al. (2020), the host galaxy association was revised when upgrading
from SV data to the deeper coadds: �1.1 per cent of SNe matched
to a potential host in SV data had a different host identified with
the new coadds. We use these revised associations, and all host
galaxy photometric properties are determined from the Wiseman
et al. (2020) stacks. In this paper, we define the host galaxy apparent
magnitudes, mhost, as the Kron-likeMAG AUTOmagnitudes measured
with SEXTRACTOR (Bertin & Arnouts 1996) from the deep coadds.

We identify 7697 galaxies that satisfy the OzDES selection
cuts listed above. For 5049 galaxies, we have a secure redshift
measurement, i.e. a redshift measurement with a confidence level
higher than 95 per cent, either from OzDES or external catalogues.
Table 1 contains a summary of the sources of redshifts.

2.4 SALT2 fitting and selection cuts

To standardize the SN Ia brightnesses, the light curves of DES
transients with an identified host galaxy and spectroscopic redshift
are fitted with the SALT2 light-curve model (Guy et al. 2007,
2010a). SALT2 fits provide an estimate of the epoch of SN peak
brightness t0, a stretch-like parameter x1, a colour parameter c, and

2A spectroscopic redshift measured with a confidence level higher than 95 per
cent corresponds to a quality flag Q = 3; see Lidman et al. (2020) section 4
for further details on the OzDES redshift flag scheme.

Table 1. Summary of redshift sources for DES SNe.

Redshift source SN redshifts Per cent of total

All 5049 –

OzDES 4419 87.52
Galaxy features in SN spectra 65 1.29
External catalogues 565 11.19

SDSS 136 2.69
VIPERS 105 2.08
2dF archival redshiftsa 101 2.00
GAMA 99 1.96
NED 32 0.63
PanSTARRS+MMT 31 0.61
ACES 19 0.38
Othersb 42 0.83

SN features in SN spectrac 81 –

aArchival redshifts from DEVILS, LADUMA, and PanSTARRS SN survey.
bOther external catalogues include VIMOS VLT Deep Survey (VVDS),
ATLAS, MUSE, and Ultra Deep Survey (UDS).
cSNe for which the only source of spectroscopic redshift is the SN spectrum
itself, and either a faint host (mhost > 24 for 26 SNe) or no host (55 SNe,
‘hostless’ SNe) is detected in the deep coadds. These events are excluded
from our analysis.
References: Tasca et al. (2017), Weiner et al. (2005), Newman et al. (2013),
Scodeggio et al. (2018), Geha et al. (2017), Herenz et al. (2017), Colless et al.
(2003), Baldry et al. (2018), Mao et al. (2010), Nanayakkara et al. (2016),
Ahumada et al. (2020), Muzzin et al. (2012), Le Fèvre et al. (2013), Bradshaw
et al. (2013), Davies et al. (2018), Jones et al. (2018), and Baker, Blyth &
Holwerda (2019).

the normalization parameter x0. SALT2 model fitting is implemented
with the SNANA light-curve fitting programme and uses the χ2

minimization algorithm MINUIT to estimate the best-fitting value
and uncertainty of each SALT2 parameter. The SALT2 parameters
are then used to estimate the SN distance modulus, μobs, defined as
(e.g. Tripp 1998; Astier et al. 2006)

μobs = mB + αx1 − βc + MB, (1)

where mB is defined as −2.5log10(x0) and MB is the absolute
brightness for an SN Ia with x1 = 0 and c = 0. α and β are
global nuisance parameters that ‘standardize’ the SN Ia brightnesses,
usually determined from a global fit of the Hubble diagram. The
residuals from a cosmological model �μ (often termed ‘Hubble
residuals’) are then defined as

�μ = μobs − μtheory(C, z), (2)

where μtheory is the theoretical distance modulus, which is dependent
on the cosmological parameters, C.

In our analysis, we assume MB = −19.365 and we set α and β

equal to the values measured by Dark Energy Survey (2019b), i.e.
α = 0.146, β = 3.03. For both observed and simulated SNe, we
measure SN distance moduli, μobs, fixing these nuisance parameters.
The values of α and β found by Dark Energy Survey (2019b) are
also used as the input values for the simulations. We calculate Hubble
residuals assuming a flat �CDM cosmological model with Hubble
constant H0 = 70 km s−1 Mpc−1 and �M = 0.311 (following Planck
Collaboration VI 2020). While these Hubble residuals are very useful
for evaluating our simulations, we note that they do not have the level
of accuracy required for a cosmological measurement for several
reasons: they are measured from DIFFIMG photometry, we have not
included bias corrections for the SN population, we have not included
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Table 2. DES photometric SN sample: a summary of data cuts.

Data cut Number Number
remaining rejected

SNe associated with a spectroscopic redshift 5049a –
Fit by SALT2 3627b –
‘transient status’ flag 3401 226
Visual inspection 2802 599c

Loose SALT2-based cuts 2553 249
SALT2-based cuts from Betoule et al. (2014) 1683 947

aIncluding 54 SNe/hosts located in the DECam inter-CCD chip gaps;
bWe exclude events for which the redshift is estimated from SN spectral
features in the SN spectrum;
cOut of the 599 visually inspected events, only 112 would pass the loose
SALT2 cuts and only 8 would pass the Betoule et al. (2014) SALT2-based
cuts.

SN systematic uncertainties, and therefore we have not optimized the
values of α and β.

To ensure meaningful light-curve fits with the SALT2 model the
following selection requirements are applied: (i) two filters with at
least one epoch with an SNR > 5, (ii) at least one data point before the
time of peak brightness t0, and (iii) at least one data point 10 d after
t0. Out of 5049 transients with a host galaxy redshift, 3627 satisfy
these criteria and are successfully fitted with the SALT2 model.

This sample of events includes a significant fraction of transients
that are clearly not SNe Ia or core-collapse SNe (e.g. AGN, variable
stars, or long-duration transient events). We use the ‘transient status’
flag defined by Smith et al. (2020a) to identify multiseason transients,
which removes 226 events. Finally, we visually inspect all the
remaining transients, and remove artefacts and events that show long-
term variability (removing an additional 599 events). These single-
season requirements reduce the sample to 2802 visually confirmed
SN-like events.

After light-curve fitting, we consider two sets of additional
requirements based on the fitted SALT2 parameters:

(i) ‘Loose’ SALT2-based cuts (x1 ∈ [−4.9, 4.9] and c ∈ [−0.49,
0.49]). This set of cuts intentionally enhances contamination in
the data, and therefore allows us to better analyse the properties
of contamination in our sample. After applying these cuts, 249
additional SNe are rejected from the sample (i.e. 2553 SNe remain);

(ii) The set of SALT2 cuts applied by Betoule et al. (2014)
and Jones et al. (2017) (x1 ∈ [−3, 3], c ∈ [−0.3, 0.3], σx1 < 1,
σ peakMJD < 2 d, and fit probability >0.01).3 These cuts are generally
adopted in SN Ia cosmology analyses to control contamination from
peculiar SNe Ia or other peculiar thermonuclear SNe that are not
well described by a SALT2 model. This set of cuts reduces the data
to 1606 SNe (approximately 30 per cent of the sample is rejected).

In Table 2, we report a summary of the various cuts.

3 SPECTRO SCOPIC REDSHIFT EFFICIENCY

As part of an SN Ia cosmology analysis, modelling selection effects is
essential to estimate bias corrections and simulate training samples.
Detection efficiency and photometric instrumental effects for the
DES SN programme have been characterized and presented by
Kessler et al. (2015). In this analysis, we mainly focus on selection

3Fit probabilities are based on the fit reduced χ2 and quantify how well each
light curve is described by the SALT2 model assuming that the photometric
uncertainties are Gaussian.

effects due to the requirement of a host galaxy spectroscopic redshift.
This is a critical selection effect in the DES SN data set – it shapes the
redshift distribution of the sample and introduces biases towards SNe
in bright, emission-line galaxies for which measuring a spectroscopic
redshift is easier.

In this section, we describe our approach for the modelling of the
spectroscopic redshift efficiency (εzspec ), i.e. the overall efficiency of
obtaining spectroscopic redshifts in DES and how we incorporate
this in our simulations of the DES SN sample.

3.1 A novel approach to modelling selection effects

Previous analyses of photometric SN samples (Jones et al. 2017,
2019) have modelled εzspec as a one-dimensional function of redshift,
tuning εzspec so that the simulations reproduce the observed redshift
distribution. By construction, this efficiency function is tailored to a
specific choice of volumetric SN rates, it does not depend on galaxy
properties, and it is applied to all types of SNe. While this approach
guarantees a good agreement in the redshift distribution between
data and simulations, it does not account for brighter galaxies being
more likely to get a spectroscopic redshift and, as a consequence,
that SNe exploding in bright and high-mass galaxies are more likely
to be selected.

Our approach is substantially different in two respects. First, we
measure εzspec from the data – the sample of host galaxies that satisfy
the criteria listed in Section 2.3, and therefore have been targeted
in the OzDES survey. Secondly, we measure εzspec as a function of
SN host galaxy properties. Using the sample of targeted galaxies, we
calculate the fraction of galaxies with and without a spectroscopic
redshift and measure the efficiency as a function of the host galaxy
brightness and other observables, including the host galaxy g − r
colour and the epoch of SN discovery.

Our efficiency function can be integrated into simulations, but it
in turn requires the simulations to include host galaxies with realistic
properties. In particular, our simulations need to account for the
strong dependence of SN rates on galaxy properties [for a given SN,
not every galaxy is equally likely to be the host galaxy, depending
on the galaxy stellar mass and/or the galaxy star formation rate
(SFR)]. Using empirical SN rate models, the simulated host galaxies
should reproduce the properties and brightness distributions of the
observed SN host galaxies. This approach is fundamentally data
driven, and takes into account the fact that different types of SNe
explode in different populations of galaxies with different brightness
distributions.

In this implementation, a good match between simulations and
data is not guaranteed, as none of the parameters is tuned to ensure
this. Our method also enables a novel independent astrophysical
test of whether measurements of SN rates and their dependences
on galaxy properties are well understood across the redshift range
covered by the DES SN sample.

3.2 Efficiency of the spectroscopic redshift survey

Spectroscopic redshifts are available from various sources (Sec-
tion 2.2), primarily from host galaxy spectral features and, when
the live SN spectrum is available, from SN spectral features. When
the redshift is measured from galaxy spectral features, εzspec depends
primarily on the brightness of the host galaxy and the host spectral
type. For a subset of 81 of the spectroscopically confirmed SNe
(Table 1), the redshift can only be estimated from SN spectral
features, and εzspec depends on the brightness of the SN on the epoch of
spectroscopic observation. Therefore, including SN events for which
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Figure 1. Top panels: For each pair of DES SN fields, we present distributions of mhost
r for all host galaxies that passed the OzDES selection criteria listed

in Section 2.3 (black histogram), for host galaxies with a spectroscopic redshift from OzDES (light blue), from external catalogues (orange), and from galaxy
emission lines in SN spectra (dark red). Bottom panels: We show εzspec versus mhost

r for each pair of SN fields (blue thick line) and for all other SN fields (thin
grey lines). The average host galaxy brightness is mhost

r � 23 mag in the deep fields (X3 and C3) and mhost
r � 22 mag in the shallow fields.

the only source of redshift is from the SN spectral features would
require a very different and independent selection function (e.g. the
selection functions presented in Kessler et al. 2019b; Smith et al.
2020a). This is beyond the scope of this analysis, and we therefore
exclude this redshift information from this paper.

We measure εzspec as a function of host galaxy brightness (Sec-
tion 3.2.1), host galaxy observed colour (Section 3.2.2), and the year
of discovery of the SN (Section 3.2.3). We define the efficiency
as the ratio of the number of host galaxies for which a redshift is
available (either from OzDES or other catalogues), over the total
number of host galaxies that passed OzDES selection criteria. The
OzDES selection criteria are listed in Section 2.3, which are different
from the selection cuts used to define the final DES photometric SN
sample (Section 2.4). We estimate uncertainties on εzspec using the
method described by Paterno (2004) and implemented in the SN
detection efficiency calculations from Frohmaier et al. (2017).

3.2.1 Efficiency as a function of galaxy brightness

We first measure εzspec as a function of mhost
r , presented in Fig. 1

for five sub-groups of DES SN fields. As expected, εzspec is high
for bright host galaxy magnitudes, in many cases 100 per cent, and
drops sharply above mhost

r ∼ 21 mag. The 50 per cent efficiencies
range from mhost

r � 23 to 23.5 mag.
The efficiency varies from field to field for several reasons. First,

the two deep fields, X3 and C3, were prioritized by OzDES as they
include more SN candidates due to the deeper DES data. Secondly,
the E1 and E2 fields were observed more frequently as they have the
longest visibility window from the AAT. Finally, some fields have
more external redshifts available; for example, the X1 and X2 fields
overlap with the GAMA survey (Baldry et al. 2018).

3.2.2 Efficiency as a function of galaxy spectral type

εzspec depends not only on galaxy brightness but also on the galaxy
spectral type (e.g. it is easier to measure redshifts for emission-
line galaxies). This dependence affects the fraction of core-collapse
SN contamination in our sample as these events almost exclusively

(a) (b)

Figure 2. Panel (a): distribution of observed g − r colours for all host
galaxies that passed the OzDES targeting criteria (open histogram) and hosts
with spectroscopic redshift (filled histograms). We define red galaxies as
those with g − r greater than 1.2, and blue galaxies as those with g − r less
than 1.2 (marked by the vertical dotted line). Panel (b): εzspec versus mhost

r for
both red and blue galaxies (red and blue solid lines). The median brightness of
our sample of SN hosts is shown as the vertical dashed line, and it shows the
magnitude at which most of the DES host galaxies are observed and therefore
where discrepancies in efficiency have the largest impact.

explode in star-forming galaxies (Li et al. 2011). Since the spectral
type is not available for all the targeted host galaxies, we consider
alternative proxies of galaxy spectral type, such as the observed g −
r colour.

In Fig. 2, we present the distribution of observed g − r colours
for the sample of SN host galaxies that pass the OzDES criteria
(see Section 2.3). We separately measure εzspec for the 25 per cent
‘reddest’ galaxies in the sample and for the remaining sample of
‘bluer’ galaxies (this corresponds to a threshold of g − r = 1.2 mag).
The efficiency measured from the sub-sample of ‘redder’ galaxies
is systematically lower than that measured from ‘bluer’ galaxies
(5 per cent lower at mhost

r = 22 mag and 15 per cent lower at
mhost

r = 23 mag). We implement this colour dependence of εzspec

in our simulations. We note that this colour dependence is a second-
order effect as the OzDES programme is optimized to achieve a high
completeness to a magnitude limit of mhost

r 24 and the OzDES strategy
is to repeatedly target SN host galaxies until the level of confidence
is larger than 99 per cent (see Lidman et al. 2020, for details).
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(a) (b)

Figure 3. Panel (a): εzspec as a function of mhost
r for SNe discovered in the

first, second, and third years of DES (2013–2015; dotted–dashed line), for
SNe discovered in the fourth year of DES (2016; dashed line) and in the
fifth year of DES (2017; solid line). The limited observing time towards
the end of the OzDES programme caused a small drop in εzspec for Y4 and
Y5. Panel (b): same as panel (a), but excluding galaxies with spectroscopic
redshifts from external redshift catalogues. We compare εzspec measured from
the ratio between galaxies with and without a spectroscopic redshift for the
three different year bins [legend is same as panel (a)] with the εzspec inferred
combining the information on OzDES exposure times with the OzDES
completeness presented by Lidman et al. (2020) (see Section 3.2.3 for details).

3.2.3 Efficiency as a function of the year of SN discovery

The OzDES programme ran between 2013 (first year of the DES
SN programme) and 2018 (1 yr after the end of the DES SN
programme), so that host galaxies of SN discovered in the last
year of DES could be observed. The number of nights allocated to
OzDES was progressively increased each year (see Lidman et al.
2020, for details) in order to accommodate the increasing number
of SNe discovered by DES. The amount of fibre hours available at
the end of OzDES was not sufficient to achieve the same efficiency
obtained for hosts of SNe discovered earlier in the DES survey. For
this reason, we find that εzspec decreases for SNe discovered in the
fourth and fifth years of DES.

We measure this trend by dividing the sample of host galaxies that
passed OzDES selection criteria into three sub-groups, depending
on the year of discovery of the hosted SN. We consider separately
galaxies hosting SNe discovered in the first three years of DES, in the
fourth year of DES, and in the fifth year of DES. We then measured
the εzspec as a function of mhost

r in each sub-group. Our results are
shown in Fig. 3(a).

The progressive decrease observed in εzspec can also be inferred
knowing the observing time spent on each host galaxy and knowing
the survey completeness as a function of exposure time. Exposure
times are known for all galaxies targeted within the OzDES pro-
gramme (but not for galaxies whose redshift is taken from external
redshift catalogues) and the completeness of the OzDES programme
is presented by Lidman et al. (2020) (see fig. 9). In Fig. 3(b), we
compare the εzspec predicted using the information on exposure times
and the εzspec directly measured from the fraction of galaxies with and
without a spectroscopic redshift. The two methods give consistent re-
sults and this confirms that the trend observed is mainly caused by the
progressively decreasing observing time available within the OzDES
programme. In our simulations, we use the measured εzspec and we
model this trend for each pair of SN fields shown in Fig. 1 separately.

4 SI M U L AT I O N S

We next describe the simulations that underpin our study of the
systematic uncertainties introduced by contamination from core-
collapse SNe. These simulations are designed to produce a realistic

realization of the DES photometric SN sample. In the following
section, we present the ‘Baseline’ simulation based on assumptions
about the global properties of SNe Ia, peculiar SNe Ia, and core-
collapse SNe. In Section 6, we present additional simulations and
explore alternative core-collapse SN modelling assumptions.

4.1 Implementation in SNANA

Synthetic SN light curves are generated and analysed using the Su-
perNova ANAlysis software (SNANA; Kessler et al. 2009),4 integrated
in the PIPPIN pipeline framework (Hinton & Brout 2020).5 The SNANA

simulation generates realistic transient light curves from one or
more spectrophotometric models of transients. Kessler et al. (2019b,
hereafter K19) present a detailed description of the simulations
designed to characterize and reproduce SNe Ia within the DES SN
survey, and in particular the DES-SN3YR sample. Here, we briefly
describe the three main steps that constitute the SNANA simulation
(see fig. 1 in K19 for a schematic illustration) and highlight the
assumptions adopted in our analysis.

The first step is to generate a source SED model, selecting
a specific SN population (see Sections 4.2, 4.3, and 4.4) and
astrophysical effects that include host galaxy extinction, redshifting,
cosmological dimming, lensing magnification, peculiar velocity,
and Milky Way extinction. In our analysis, we use where necessary a
Cardelli, Clayton & Mathis (1989) dust law with RV = 3.1 for Milky
Way and host galaxy dust extinction. The integration of the generated
SED model over the DES filters provides an estimate of the ‘true’
magnitudes of the source before observational noise is applied.

The second step is to convert true magnitudes into observed fluxes
and calculate the flux uncertainties. This step uses the observing
conditions provided in a pre-computed observational library (referred
to as a ‘simlib’). The simlib includes measured photometric
zero-points, sky noise, and point spread function (PSF) information at
10 000 random sky locations within the DES fields. Flux uncertainties
are estimated as the quadrature sum of the sky noise and the Poisson
noise from the source and the surface brightness of the host galaxy.
Host galaxies are selected from a galaxy catalogue (‘HOSTLIB’). In
Section 4.5, we present the HOSTLIB used for our simulations and
the recipe implemented for host galaxy association. Finally, the extra
source of anomalous noise introduced by the DIFFIMG pipeline is
estimated and robustly modelled using a set of separate image-based
simulations for which ‘fake’ SNe are placed in real DES images and
processed through the same DIFFIMG pipeline as applied to the data
[see Kessler et al. (2015) and section 6.4 in K19 for an extended
discussion].

The third and final step is to simulate the ‘trigger model’ for the
selection of events. Detection efficiency versus SNR is implemented
as described in section 7.1 in K19. Following the same DES trigger
logic applied to real data, we select simulated events that have at
least one detection on two separate nights.

In the following subsections, we describe the SED models used to
simulate different astrophysics transients and their implementation
in the simulation.

4.2 Simulations of ‘normal’ SNe Ia

We simulate normal SNe Ia, i.e. those that are used in cosmological
fitting, using the SALT2 SED model presented by Guy et al. (2007)
and trained on the Joint Lightcurve Analysis sample presented by

4https://github.com/RickKessler/SNANA
5https://github.com/Samreay/Pippin
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(a) (b) (c)

Figure 4. Simulated g − r colours at peak brightness for various types of SNe as a function of redshift. In panel (a), SNe Ia are generated using the SALT2
SED model from Betoule et al. (2014), and SNe 91bg and SNe Iax using the original PLAsTICC templates. In panel (b), SNe Ia are generated from the SALT2
SED model, and SNe 91bg and SNe Iax are simulated using the PLAsTICC templates with the addition of dust extinction for SNe Iax and stretch diversity
for SNe 91bg (see Section 4.3). In panel (c), core-collapse SNe are simulated using the V19 templates that include dust extinction as measured in the original
events. This is the baseline simulation implemented in this analysis. For comparison with the g − r colour evolution of core-collapse SNe, we also show the g
− r colour measured from blackbody SEDs at temperatures of 5000, 10 000, and 50 000 K.

Betoule et al. (2014). Each SN Ia is generated with random redshift,
t0, x1, and c values. Redshifts are generated following the volumetric
rate presented by Frohmaier et al. (2019), who combined published
measurements from Dilday et al. (2008) and Perrett et al. (2012)
with new measurements from the Palomar Transient Factory (PTF;
Law et al. 2009). The t0 values are randomly distributed within a time
window that starts 2 months before the beginning of DES and finishes
2 months after the last visit of DES to the SN fields. The underlying
distributions of x1 and c are taken from Scolnic & Kessler (2016). For
SN Ia intrinsic scatter, we adopt the ‘G10’ spectral variation model
from Kessler et al. (2013) that is based on the wavelength-dependent
scatter presented by Guy et al. (). Future analyses will explore in
greater depth other approaches to simulating SNe Ia in DES, includ-
ing different intrinsic scatter models (Brout & Scolnic 2020) and
various effects of correlations between SNe Ia and host galaxy prop-
erties (Sullivan et al. 2006; Smith et al. 2012, 2020b; Rigault et al.
2018). In this analysis, the only SN Ia–host correlation that we model
is between x1 and host galaxy stellar mass (see Section 4.5 for details).

4.3 Simulations of peculiar SNe Ia

We include in our simulations two types of peculiar SNe Ia that may
appear as photometric contaminants in SN Ia samples: SN1991bg-
like SNe (Filippenko et al. 1992) and SN2002cx-like supernovae (Li
et al. 2003; Foley et al. 2013, hereafter SNe Iax). SN1991bg-like
(‘91bg-like’) SNe are sub-luminous compared to normal SNe Ia, and
characterized by fast-declining (small x1) light curves and redder
colours at peak. In our simulations, we use the SED library of 35
91bg-like events presented in PLAsTiCC (Kessler et al. 2019a). In the
original PLAsTiCC simulation, only five different SEDs were used
and no stretch diversity was simulated (see section 4.2.2 in Kessler
et al. 2019a) due to an error in the generation of the models. For our
simulations, the PLAsTiCC team have provided us with the correct
set of SED models. In Fig. 4, we present the g − r colour synthesized
at peak before observational noise is applied for our simulated 91bg-
like SNe. This sub-class of peculiar SNe Ia is significantly redder at
peak compared to normal SNe Ia.

SNe Iax (see Jha 2017, for a recent overview) generally rise and
decline faster than normal SNe Ia and are characterized by low-
velocity ejecta. Again, we use the model presented in PLAsTiCC,
based on SN 2005hk (Phillips et al. 2007; Sahu et al. 2008). As
with normal SNe Ia, the absolute brightness of SNe Iax has been

(a)

Figure 5. B − V colour distribution at B-band peak for SNe Iax simulated
using the original PLAsTiCC models (dashed histogram), for the updated
SNe Iax model used in this analysis (solid histogram; Section 4.3), and for
seven observed SNe Iax for which good B- and V-band photometry around
peak has been published (grey-filled histogram, SN 2003gq, SN 2005cc,
SN 2005hk, SN 2008A, SN 2008ha, SN 2011ay, and SN 2012Z from
Silverman et al. 2012; Foley et al. 2013; Stahl et al. 2019).

shown to be correlated with light-curve width (Foley et al. 2013).
To reproduce this correlation and expand the diversity of SN Iax
models, the PLAsTiCC team generated multiple SN Iax SEDs by
warping and renormalizing the original SN 2005hk template. This
reproduces the diversity of SNe Iax in terms of light-curve shape and
normalization, but leaves the colour properties at peak unchanged
(see Figs 4 and 5). The colour evolution and scatter of SNe Iax are
poorly understood. However, as SNe Iax are believed to explode in
younger environments (Takaro et al. 2020), and are therefore likely
to be affected by dust, we opt to use dust extinction to introduce
variation in the colour of the models. The reddening within the host
galaxy for SN 2005hk is estimated to be E(B − V) = 0.09 (Chornock
et al. 2006), so we correct the PLAsTiCC SN Iax models for E(B −
V) = 0.09, and apply a range of host extinctions in the simulations.
We adopt the host extinction distribution described by Rodney et al.
(2014) (which we also adopt for core-collapse SNe in the following
sections), which allows us to well reproduce the colour diversity
observed for SNe Iax (see Fig. 5).

Our revision of the original PLAsTiCC SN Iax models addresses
the issues identified by Popovic, Scolnic & Kessler (2020). They
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Figure 6. Flow chart describing the host galaxy association in the SNANA simulations. Here, we show an example of host galaxy association for SNe Ia, but
the same general process applies to other SN types. Equations (3), (4), and (6) in Sections 4.5.1 and 4.5.2 describe SN rates as a function of galaxy properties
(and additionally x1 for SNe Ia) for all the SN types included in our simulations.

included the PLAsTiCC SN Iax models in their simulations of
the Sloan Digital Sky Survey (SDSS) photometric SN sample,
and observed that this significantly overestimates the predicted
contamination, with the simulated SNe Iax appearing bluer than
other samples of observed SNe Iax (see Fig. 5).

4.4 Simulations of core-collapse SNe: baseline approach

Our Baseline core-collapse SN simulations use the library of 67 SED
time-series templates presented by Vincenzi et al. (2019, hereafter
V19). This library combines spectroscopy and multiband photometry
from 67 well-observed core-collapse SNe across 6 different sub-
classes (SN II, SN IIb, SN IIn, SN Ib, SN Ic, and SN Ic-BL). Each
template covers 1600–11 000 Å; the UV coverage, in particular, is
critical when simulating core-collapse SNe at high redshift. Fig. 4
shows the redshift evolution of the simulated g − r colour at peak for
different types of core-collapse SNe compared to SNe Ia. We find
that core-collapse events in our simulations have the expected colour
evolution. Stripped-envelope SNe are systematically redder at peak
compared to SNe Ia. SNe II, however, are significantly bluer events
and they follow the colour evolution expected from blackbody SEDs
at different temperatures.

By construction, the V19 template library is biased towards bright
core-collapse SNe and may not be representative of the intrinsic
brightnesses and relative rates of different sub-types. Luminosity dis-
tributions and relative rates are generally measured from magnitude-
limited samples such as the Lick Observatory Supernova Survey
(LOSS) sample (Leaman et al. 2011; Li et al. 2011). As the SN
events in the LOSS sample do not have sufficient data quality to
construct SED templates, we adopt a hybrid approach and use the
biased sample of SN events in the V19 template library and normalize
it to brightnesses and rates measured from the LOSS sample.

For core-collapse SN relative rates, we use the measurements
presented by Shivvers et al. (2017). Using the LOSS sample and
revising the Li et al. (2011) measurement, Shivvers et al. (2017)
showed that in the local universe SNe II and stripped-envelope SNe
represent 69.6 per cent and 30.4 per cent of all core-collapse SNe,
respectively. Frohmaier et al. (2021) find a similar result using data
from PTF. Given the lack of measurements of relative rates at higher
redshifts, in our Baseline simulation we assume that these relative
rates do not evolve with redshift. We simulate core-collapse SNe
assuming that the rate follows the cosmic star formation history
presented in Madau & Dickinson (2014) normalized by the local SN
rate of Frohmaier et al. (2021).

For the luminosity functions, the baseline simulation uses the mean
and r.m.s absolute brightnesses measured from the LOSS sample, and
we interpret these measurements as Gaussian luminosity functions.
These were revised in V19 following updated classifications pub-
lished by Shivvers et al. (2017) and they are reported in Table 5. We
use the set of V19 templates that has not been corrected for host-

galaxy dust extinction because the revised Li et al. (2011, hereafter
L11) luminosity functions are also measured from SNe not corrected
for host-galaxy dust extinction. As described by V19, each sub-type
of template is matched to its respective luminosity function applying
sub-type-dependent magnitude offsets and dispersion.

The simulated core-collapse SN contamination can vary signifi-
cantly depending on the choice of luminosity function, on whether
additional host extinction is simulated, and on the adopted distribu-
tion of host-galaxy dust extinction. As most of these quantities are
poorly constrained (especially at high redshift), we do not rely on
one single core-collapse SN simulation but instead design a set of
simulations that explore these different assumptions, and we test how
our modelling choices affect our analysis. In Section 6, we present
in detail each core-collapse simulation built for this analysis.

4.5 Simulating host galaxies

The rates of SNe in galaxies depend on the galaxy properties, such
as stellar mass (M∗), SFR, and metallicity (Sullivan et al. 2006;
Lampeitl et al. 2010; L11; Smith et al. 2012; Johansson et al.
2013; Graur, Bianco & Modjaz 2015; Graur et al. 2017; Rigault
et al. 2018). For any given SN type, not every galaxy is equally
likely to be a host and, in addition, the likelihood of an SN host
having a spectroscopic redshift depends on the galaxy properties
(see Section 3.2). Therefore, realistic simulations require an accurate
modelling of how the SN rate and εzspec are correlated with galaxy
properties. In this section, we discuss our approach in the simulations.
A schematic illustration of galaxy association is presented in Fig. 6.

4.5.1 Simulating host galaxies of SNe Ia

We model correlations between SN Ia rates and galaxy properties
following a two-component parametrization (the ‘A + B’ model)
introduced by Mannucci et al. (2005). In this approach, the SN Ia
rate is described as the sum of two terms:

RA+B
Ia (M∗, SFR) = A × M∗ + B × SFR. (3)

This model was implemented by Sullivan et al. (2006) to analyse
the Supernova Legacy Survey (SNLS) SN Ia sample. We use the
best-fitting A and B parameters presented by Sullivan et al. (2006).

To model the well-known correlation between SN Ia x1 and host
galaxy M∗ (e.g. fig. 4 in Smith et al. 2020b), we multiply the SNLS SN
Ia rate in equation (3) by an additional term [R∗

Ia(x1, M∗)] so that the
rate of SNe Ia in galaxies with M∗ < 1010 M� drops monotonically
to zero with decreasing x1. After analysing the DES-SN3YR SN Ia
sample and comparing the tail of SNe Ia with x1 < 0 in high-mass
galaxies (M∗ > 1010 M�) and low-mass galaxies (M∗ < 1010 M�),
we model the relative probability of having an SN Ia with a SALT2
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Figure 7. Distribution of galaxy SFR [log (SFR)] versus galaxy stellar mass
[log (M∗)] for all galaxies in the HOSTLIB (grey symbols and filled grey
histograms) and for four different types of simulated SNe: SNe Ia (solid blue
line), peculiar SNe Ia (91bg-like and SNe Iax; dotted blue line), SNe Ibc
(solid orange line), and SNe II (dashed red line). The central 2D plot shows
the 68 per cent density contour for each SN type. Different types of SNe are
associated with host galaxies following the SN rates presented in Section 4.5.
The dashed grey line separates our definition of star forming [above the line,
i.e. log (sSFR) > −11.5] and passive galaxies [below the line, i.e. log (sSFR)
< −11.5].

stretch x1 in a galaxy with stellar mass M∗ as

R∗
Ia(x1, M∗) = e−x2

1 for x1 < 0 and M∗ < 1010 M�
R∗

Ia(x1, M∗) = 1 for x1 > 0 and M∗ < 1010 M�
R∗

Ia(x1, M∗) = 1 for ∀x1 and M∗ > 1010 M�.

(4)

As a result, the net rate applied for SNe Ia is

RIa(M∗, SFR, x1) ∝ RA+B
Ia (M∗, SFR) × R∗

Ia(x1, M∗). (5)

A more rigorous approach would be to implement a rate model that
simultaneously fits the dependences on galaxy stellar mass, galaxy
SFR, and SN Ia x1. Given that such a rate model has not been
published yet, we decide to improve this aspect of our analysis in
future work, also taking advantage of several recently published and
ongoing analyses on the modelling of SN–host correlations and SN
Ia rates (Popovic et al. 2021, Wiseman et al. 2021). For peculiar
SNe Ia, we apply the same SN rate model used for normal SNe Ia
with some variations. 91bg-like SNe Ia primarily explode in E/S0
galaxies (Howell 2001; L11), while SNe Iax are rarely found in
early-type galaxies (Takaro et al. 2020). Therefore, we set the rate
of 91bg-like (SNe Iax) to be zero in star-forming (passive) galaxies.
In our analysis, a galaxy is defined as passive if its specific star
formation rate (sSFR; the star-formation rate per unit stellar mass) is
smaller than 10−11.5 yr−1 (Fig. 7).

4.5.2 Simulating host galaxies of core-collapse SNe

Core-collapse SNe occur almost exclusively in star-forming galaxies
(L11; Kelly & Kirshner 2012; Graur et al. 2017). Graur et al. (2017)
measured the core-collapse SN rate as a function of galaxy properties
for stripped-envelope SNe and SNe II, respectively. These rates are
calculated using core-collapse SNe in the LOSS sample and are
presented as a function of M∗, which is correlated with SFR for star-
forming galaxies. Following these measurements, we model core-

collapse SN rates as

RIbc/II = 0 in passive galaxies

RIbc(M∗) ∝ (M∗/M�)0.36

RII(M∗) ∝ (M∗/M�)0.16. (6)

Graur et al. (2017) show that SNe II have a shallower dependence
on M∗ compared to stripped-envelope SNe, and this result has a
statistical significance of >2σ . This difference implies that the
ratio between stripped-envelope SNe and SNe II (that on average
is roughly 0.435; see Shivvers et al. 2017) varies depending on the
host galaxy M∗; stripped-envelope SNe are 10 times less common
than SNe II in low-mass galaxies, but almost one-third of the SN II
rate in high-mass galaxies. At higher redshifts, the DES photometric
SN sample is biased towards brighter and more massive galaxies as
they are more likely to get a spectroscopic redshift. This bias affects
the composition of core-collapse SN contamination as a function of
redshift and is modelled in our simulations.

4.5.3 Host galaxy association in simulations

Following Smith et al. (2020b), we select SN host galaxies from
a HOSTLIB (Section 4.1) generated from the DES SV data. This
catalogue includes ∼380 000 galaxies for which quantities like
redshift (spectroscopic or photometric), galactic coordinates, mag-
nitudes, and Sérsic profiles (Sérsic 1963) have been measured. For
each HOSTLIB galaxy, M∗ and SFR are measured using the method
presented by Smith et al. (2020b) (see section 2.2.2).

The completeness of the DES SV HOSTLIB is >99 per cent for
mhost

i < 23.8 mag and 50 per cent for mhost
i < 24.75 mag. Analysing

the SNLS spectroscopic SN Ia sample (Sullivan et al. 2010), the
fraction of SNe Ia in galaxies fainter than 23.8 is less than 15 per
cent for z < 0.8 and approximately 30 per cent at z = 1. This fraction
is likely to be higher for core-collapse SNe that on average explode
in fainter galaxies. The depth of the DES SV HOSTLIB is one of
the limiting factors in our analysis and may result in an overestimate
of SNe at higher redshifts. We will explore the implementation of
deeper HOSTLIB catalogues in future articles.

In our simulations, the SN-to-galaxy association is implemented
as follows (see Fig. 6 for a schematic illustration). For an SN event
simulated at redshift z, we select all HOSTLIB galaxies within the
interval z ± 0.002. Each galaxy within this redshift interval is then
weighted by the SN rate (Sections 4.5.1 and 4.5.2), so that high-
mass galaxies are favoured and the large fraction of faint, low-mass
galaxies are given lower weight. The host is then randomly selected
from the weighted list of galaxies. We identify the location of the SN
within a host assuming that the distribution of SNe within their host
galaxies follows the galaxy light profile (Kelly, Kirshner & Pahre
2008). For each epoch, the simulation computes the host galaxy flux
within the 2σ PSF radius aperture from the location of the SN and this
Poisson variance is added to the flux variance. This galaxy variance
affects the signal-to-noise of the SN flux and its likelihood of being
detected. Finally, given the mhost

r and g − r colour of the selected
host galaxy, as well as the year of discovery of the simulated SN, we
apply the efficiency εzspec (Section 3) to determine whether a redshift
is measured.

Our method for the simulation of SN host galaxies is a significant
improvement over earlier work. Our approach accounts for the fact
that SNe of different astrophysical origins occur in different types of
galaxies with different rates. Using our baseline simulation, we show
in Fig. 7 how simulated host galaxies of different types of SNe have
different distributions in terms of simulated M∗ and SFR. Compared

MNRAS 505, 2819–2839 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2819/6284776 by U
niversita degli Studi di Trieste user on 13 August 2021



Selection efficiency and CC SN simulations 2829

to published samples of SNe Ia and core-collapse SNe (L11; Perley
et al. 2020; Wiseman et al. 2020), our simulations reproduce the
observed host galaxy properties: The population of SN Ia hosts is
significantly skewed towards high-mass galaxies, with a significant
fraction of events found in passive environments, while core-collapse
SNe are preferentially hosted in star-forming galaxies with a larger
fraction of events found in lower mass galaxies.

5 C OMPARISON BETWEEN SIMULATIONS
AND THE D ES PHOTOMETRIC SAMPLE

In Section 4, we presented the Baseline framework of our simulation,
the goal of which is to produce a simulation that matches the
observed SN populations and properties of the DES photometric
SN sample. In this section, we compare our Baseline simulation
with the DES photometric SN sample presented in Section 2.4. This
comparison constitutes the core of this paper, and is essential to test
the astrophysical assumptions used in our simulations.

We present the simulation versus data comparisons for distribu-
tions of SN redshift, SALT2-fitted SN parameters, and Hubble resid-
uals as described in Section 2.4. To first order, the Hubble residual
distribution of SNe Ia can be modelled as a symmetric Gaussian, with
a mean of zero and a standard deviation equal to the combination of
intrinsic scatter of the SN Ia sample and observational noise. Due
to the presence of core-collapse SN contamination, however, the
Hubble residual distribution of a sample of photometrically classified
SNe Ia will typically have an asymmetrical positive tail (Campbell
et al. 2013; Jones et al. 2017).6 core-collapse SNe have, on average,
fainter intrinsic brightnesses than SNe Ia, and are not standardizable
using equation (1). Applying the same equation to an intrinsically
fainter SN (like a core-collapse SN) leads to an overestimate of the
SN distance modulus and thus positive Hubble residual (equation 2).

In Figs 8 and 9, we present a comparison between our Baseline
simulation and the DES photometric SN sample for the distributions
of SALT2 parameters (mB, x1, c, and t0) and their uncertainties,
redshift, maximum observed SNR, and Hubble residuals. In Fig. 10,
the same comparison is presented for mhost

r and host galaxy observed g
− r colour. We present results for deep and shallow fields separately,
using the set of loose SALT2 cuts described in Section 2.4. We
combine 25 realizations of the Baseline simulation (total of 60 000
simulated SNe) and normalize each histogram so that the total
number of SNe in the simulation is equal to the total number of
observed SNe (for deep and shallow fields separately). We evaluate
the level of agreement between data and simulation by calculating the
reduced chi-square χ2

ν (the χ2 per degree of freedom) as described
by Brout et al. (2019b, section 3.7.3). We report the χ2

ν in each figure
panel.

Qualitatively, the simulation reproduces the DES SN sample well.
This is a remarkable result considering the various assumptions that
underpin the simulation (e.g. the SN rates, host galaxy properties,
and SN templates), and considering that the inputs to the simulation
have not been tuned to match the data. In detail, in Figs 8 and 9, we
observe the following:

(i) In the x1 distribution, both data and simulation contain a tail of
high-x1 events. This is caused by highly energetic stripped-envelope
SNe (SNe Ic, SNe Ic-BL), often characterized by slowly evolving

6Lensing magnification can also introduce an asymmetrical negative tail in
the Hubble residual distribution. However, this effect is significantly smaller
than the one introduced by core-collapse contamination and it is not discussed
in this analysis.

light curves, and by faster declining SNe II compared to the general
SN II population, but which are still slower than SNe Ia.

(ii) In the c distribution, data and simulations show tails at bluer
and redder colours. The bluer tail is caused by SNe II, similar to hot
blackbodies at peak and thus with bluer colours than SNe Ia. The
redder tail is mainly due to SNe Iax and stripped-envelope SNe (see
Figs 4 and 12 for a visualization of where stripped-envelope SNe and
SNe II lie in colour space compared to SNe Ia).

(iii) The distribution of simulated tpeak matches the data well,
suggesting that the time dependence of the spectroscopic redshift
efficiency presented in Section 3.2.3 is well modelled.

(iv) The faint tail in the Hubble residuals, the clearest feature of
the presence of contamination in the data, is also well reproduced.
The ratio between the number of SNe with large Hubble residuals
(>0.5, i.e. likely contaminants) and the number of SNe with small
Hubble residuals (<0.5, i.e. likely SNe Ia) is 0.20 in data and 0.21
in simulations for the shallow fields. For deep fields, these numbers
are 0.34 and 0.30, respectively. In photometric SN sample analyses,
this is the first time that the contamination observed in the Hubble
diagram is explained and almost fully reproduced by a simulation,
without the requirement of significant fine-tuning of our assumptions
and therefore lifting doubts on whether our knowledge of bright core-
collapse SNe at high redshift presents substantial gaps. The only
minor discrepancy we observe is that our simulation underestimates
the contamination in the deep fields by about 10 per cent. The
χ2

ν is larger than that expected from statistical fluctuations, with
probability-to-exceed values lower than 10−8 and 0.02 for the shallow
and deep fields, respectively. The excess is mainly driven by the bulk
population of SNe Ia at small Hubble residuals. These discrepancies
arise because the Hubble residuals are measured assuming values of
the nuisance parameters α, β, andMB , and assuming a cosmological
model.

The fact that our simulation reproduces the main features that
can be considered signatures of core-collapse contamination is
promising. None the less, some discrepancies between simulations
and observations should be noted.

(i) In the redshift distributions in Fig. 8, we note an underestimate
of SN events at high redshift in the shallow fields, and in the deep
fields we highlight that the sharp dip observed at a redshift (z) of
∼0.5 is not correctly modelled by simulations;

(ii) The observed and simulated x1 distributions agree well in
the shallow fields but not in the deep fields. Shallow and deep
fields probe slightly different redshift ranges and therefore different
galaxy populations. SALT2 x1 is known to be correlated with galaxy
properties such as galaxy stellar mass, and this discrepancy suggests
that our modelling of host mass–x1 correlations and/or the HOSTLIB
implemented needs to be improved;

(iii) The distribution of maximum SNR shows some discrepan-
cies at lower values, which calls for further improvements in the
modelling of flux uncertainties.

These discrepancies are unlikely to be solely due to an incorrect
modelling of core-collapse SNe, as they occur in regions of the
parameter space that are primarily dominated by SNe Ia (e.g. high
redshift in the shallow fields, or near-zero Hubble residual in the deep
fields). Further improvements in the modelling of flux uncertainties
and selection effects in the DES data may be required, as well as the
implementation of a deeper and more completeHOSTLIB that at high
redshift will affect the fraction of SNe simulated in faint hosts, i.e.
that are unlikely to have a spectroscopic redshift. Further revision of
the modelling of SN Ia intrinsic properties (the intrinsic distributions
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2830 M. Vincenzi et al.

Figure 8. Various comparisons of our ‘Baseline’ simulations and data. The simulations include ∼60 000 SNe (25 realizations of the DES photometric SN
sample) and the histograms are scaled to match the total number of events in the DES photometric sample. Top panels (from left to right): redshift, SN x1 and SN
c; central panels: SN mB, MJD of peak brightness, and maximum observed SNR; lower panels (from left to right): uncertainties in the SALT2-fitted parameters
mB, x1, and c. We compare data (black points), all simulated SNe (SNe Ia, peculiar SNe Ia, and core-collapse SNe combined; grey filled histogram), all non-Ia
SNe (solid red line), SNe II (dark red filled histogram), SNe Ibc (stacked orange filled histogram), and peculiar SNe Ia only (stacked blue filled histogram).
Results are presented for the shallow and deep fields separately. The χ2

ν is reported in each panel.
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Selection efficiency and CC SN simulations 2831

Figure 9. As Fig. 8 but for Hubble residuals.

of x1 and c and the intrinsic scatter) may also be needed. These
are all complex aspects of the analysis and we anticipate continued
improvements in future analyses.

Finally, Fig. 10(b) shows that the observed distribution of mhost
r

is well reproduced by simulations. This agreement suggests that
the measurement of spectroscopic efficiency presented in Section 3
is robust, and that the implemented SN rate models (Section 4.5)
adequately describe the data.

The importance of implementing a galaxy-dependent selection in
our simulations is demonstrated in Fig. 10(a), the distribution of mhost

r

from a simulation using the same inputs as the Baseline simulation,
but with the exception that host galaxies are assigned randomly (i.e.

Table 3. True fraction of core-collapse SNe for different SALT2-based cuts.

Cut Fraction of non-Ia SNe (per cent)
Only this cut Exclude cut

Loose SALT2 cuts 22.5 – –
|x1|<3 18.7 18.7 9.7
|c|<0.3 13.2 16.3 12.9
σx1 < 1 and σtpeak <2 10.9 18.6 10.8
Fit prob > 0.001 8.2 19.6 10.9
Fit prob > 0.01 6.6 17.3 10.9

every galaxy has an equal probability of hosting an SN). Since the
HOSTLIB implemented in our simulations is complete to mr �
23.8 mag, at redshifts lower than 0.4–0.5 it is dominated by faint
and low-mass galaxies. As a consequence, a large fraction of SNe is
simulated in faint galaxies and are rejected as the OzDES selection
function is applied. We note that small discrepancies are observed
in the distribution of g − r observed colours in the shallow fields,
with a fraction of the red galaxies (mostly passive environments,
primarily populated by SNe Ia) missing from simulations. This will
be further investigated by implementing deeper and higher quality
galaxy catalogues in the simulations.

From the Baseline simulation, we can predict the expected core-
collapse SN contamination in the DES SN Ia sample. Table 3
summarizes how this contamination depends on the different SALT2
and light-curve cuts that can be applied. For the loose SALT2 cuts,
we predict the fraction of non-Ia SNe to be around 22.5 per cent (2.6
per cent arising from peculiar SNe Ia, 5.7 per cent from SNe Ibc, and
14.2 per cent from SNe II), and for the Betoule et al. (2014) SALT2
cuts, the fraction decreases to 8.2 per cent (2.0 per cent from peculiar
SNe Ia, 1.7 per cent from SNe Ibc, and 4.5 per cent from SNe II).
We highlight that the SALT2 c and fit probability cuts remove the
largest fraction of contamination.

SNe II are the largest source of contamination as they are the
most common type of core-collapse SN, and the brightest SNe II are
faster declining and therefore photometrically more similar to SNe Ia
than the generally fainter plateauing SNe II. However, examining the
Hubble residual distributions in Fig. 9 in detail we note that even

(a) (b)

Figure 10. Same as Fig. 8, but for host galaxy mhost
r (left-hand panels) and host galaxy observed g − r colours (right-hand panels). Panel (a) is for an incorrect

implementation where host galaxies are assigned randomly to simulated SNe, while panel (b) uses our Baseline simulation.
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Table 4. Summary of alternative simulations for core-collapse SNe.

Label Template library Luminosity functions Dust model

Baseline V19 Revised L11, Gaussian NAa

Skewed LFs V19 Revised L11, skewed Gaussian NA
LFs + Offset V19 Revised L11 + offset NA
LFs z-evolving V19 Revised L11 + z evolution NA
Dust (H98) Dereddened V19 Revised L11, Gaussian Hatano, Branch & Deaton (1998)
Dust (R14) Dereddened V19 Revised L11, Gaussian Rodney et al. (2014)
Dust z-evolving Dereddened V19 Revised L11, Gaussian Hatano et al. (1998) +z evolution
J17 J17 Adjusted LFs from L11 NA
PLAsTiCC PLAsTiCC PLAsTiCC NA

aN/A: not applicable – simulations with core-collapse SN templates that are not corrected for host dust extinction; additional
extinction is not included.

though SNe Ibc are not the primary source of contamination, they
have on average Hubble residuals closer to zero. In the next section,
we discuss how the contamination fraction predicted in the Baseline
simulation varies as different assumptions, modelling choices, and
templates library are used.

6 TESTING A LTERNATIVE C ORE-COLLAPSE
SN SIMULATIONS

We next analyse how changing the assumptions and modelling
choices discussed in Section 4.4 affects the results of this analysis and
in particular the predicted fraction of core-collapse SN contamination
in the DES sample. We use eight additional core-collapse SN
simulations generated by adjusting the luminosity functions, the
host galaxy dust extinction, and the SN colour dispersion, and
using different libraries of core-collapse SN SED templates. The
simulations are summarized in Table 4.

6.1 Luminosity functions

Luminosity functions, describing the distribution of absolute bright-
ness of the SNe, are a critical element of uncertainty in our analysis.
Due to the relative faintness of core-collapse SNe and thus the
Malmquist biases inherent in SN surveys, luminosity functions are
difficult to measure accurately and they depend on whether dust ex-
tinction corrections are applied (L11; Richardson et al. 2014). These
corrections are generally uncertain, and it is difficult to disentangle
the distribution of intrinsic brightness and the distribution of dust
extinction. Currently, published measurements of core-collapse SN
luminosity functions are based on local SNe (i.e. <100 Mpc). This
low-redshift measurement adds further uncertainty as the properties
of core-collapse SNe may evolve with redshift.

In our analysis, we model luminosity functions based on the
volume-limited LOSS sample (Leaman et al. 2011; L11), taking
into account the revised classification published by Shivvers et al.
(2017). We explore different parametrizations, which we summarize
in Table 5:

(i) We assume that the luminosity functions are described by
a Gaussian distribution, corresponding to the Baseline simulation
presented in Section 4.4;

(ii) We assume that the luminosity functions are described by
a skewed Gaussian distribution (‘Skewed LFs’). Table 5 shows the
parameters from skewed luminosity function fits to the revised LOSS
sample: mean standard deviation and skewness. For all sub-types, we
find a positive skewness, i.e. a larger tail on the fainter side of the

Table 5. Luminosity functions from L11 with revised classification from
Shivvers et al. (2017).

SN type Revised LFs from L11
Gaussian fit a Skewed Gaussian fit b

IIc −15.97(1.31) −17.51 (2.01, 3.18)
IIn −17.90(0.95) −19.13 (1.53, 6.83)
IIb −16.69(1.38) −18.30 (2.03, 7.40)
Ic −16.75(0.97) −17.51 (1.24, 1.22)
Ib −16.07(1.34) −17.71 (2.11, 7.15)
Ic/Ic-pec/Ic-BL −16.79(0.95) −17.74 (1.35, 2.06)

aGaussian fit (mean with standard deviation in parenthesis) of the distributions
of R-band absolute magnitudes for the bias-corrected LOSS sample. We use
the Shivvers et al. (2017) classifications. Host extinction corrections are not
applied.
bSkewed Gaussian fit (mean with standard deviation and skewness in
parenthesis) of the distributions of R-band absolute magnitudes for the bias-
corrected LOSS sample. We use the Shivvers et al. (2017) classifications.
Host extinction corrections are not applied.
cFollowing the classification scheme introduced by Anderson et al. (2014)
and applied by Shivvers et al. (2017), faster declining SNe II (often referred
as SNe IIL) and slower SNe II (often referred as SNe IIP) are combined into
a single SN II class.

luminosity distribution, compatible with the interpretation of dust
extinction as the origin.

(iii) We apply a redshift-independent offset to the mean of each
Gaussian luminosity function measured from the LOSS SN sample
(‘LFs + Offset’). The uncertainty on the mean for the LOSS lumi-
nosity functions is typically 0.2–0.4 mag, and therefore adjustments
within this range are consistent with the baseline values. However,
Jones et al. (2017, hereafter J17) claim that the original LOSS
luminosity functions need to be shifted by approximately −1 mag in
order to match core-collapse SN contamination in the PanSTARRS
SN sample. Here, we test the choice of an intermediate magnitude
shift of −0.5 mag.

(iv) We introduce a redshift-dependent drift to the mean of the
Gaussian luminosity functions (‘LF z-evolving’). This magnitude
shift is �m = −0.5z mag and corresponds to a magnitude offset of
−0.5 mag at z = 1.

In addition to the four alternative luminosity functions, we include
luminosity functions implemented by J17 and in the PLAsTICC
simulations (these simulations are discussed in Section 6.3), with a
total of six luminosity functions tested in this work. These luminosity
functions are presented in Fig. 11 as distributions of Bessell R-
band peak absolute magnitudes (for consistency with the luminosity
functions presented by L11). The distributions are estimated as
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(a) (b) (c)

Figure 11. Distributions of simulated R-band absolute magnitudes at peak for various types of SNe. This series of panels summarizes the different core-collapse
luminosity functions tested in this work. For visualization purposes, we also show the luminosity distribution of SNe Ia. The relative normalization between
SNe Ia and core-collapse SNe is arbitrary, while the relative rate between stripped-envelope SNe (SNe Ibc) and hydrogen-rich SNe (SNe II) is preserved (roughly
0.435; see Shivvers et al. 2017). In panel (a), we use the luminosity functions presented by L11 and revised by V19. We present luminosity distributions derived
using both the Gaussian parametrization (Baseline, solid line) and the skewed Gaussian parametrization (Skewed LFs, dotted lines). The analytical forms of the
revised L11 luminosity functions are summarized in Table 5. The inset in the plot highlights differences in the brightest tail between the two parametrizations.
In panel (b), we show luminosity distribution from the J17 core-collapse simulations; in panel (c), we show luminosity distributions estimated from simulations
generated using the PLAsTICC models (see Section 6.3).

follows. We consider the same input luminosity functions and
templates designed for the DES core-collapse SN simulations tested
in this work, and estimate the R-band peak absolute magnitudes from
a set of 10 000 SN light curves and examine the distributions. These
represent the effective underlying luminosity distributions used in
each core-collapse SN simulation and allow a direct comparison
between different luminosity functions. The distributions presented
in the first panel of Fig. 11 match the analytical forms presented in
Table 5.

6.2 Host galaxy extinction

The star-forming hosts of core-collapse SNe will typically contain
high abundances of gas and dust and thus dust extinction within the
host galaxy will be astrophysically important in our simulations. Two
sets of V19 templates are available: one not corrected for host dust
extinction (i.e. implicitly containing some extinction as observed
in the SNe) and one corrected for dust extinction (see appendix
A of V19, for more details). This allows two implementations of
host galaxy extinction and two methods of matching simulated core-
collapse SNe to luminosity functions. In the first approach, core-
collapse SN events are simulated with their original host reddening,
and the simulated luminosity function is adjusted to match the revised
L11 luminosity functions. In the second approach, simulated core-
collapse light-curves are synthesized from the unreddened SED mod-
els and applying arbitrary extinction models (thus augmenting the
diversity; see Fig. 12). The luminosity distribution of the simulated
events is matched to the revised L11 luminosity functions only after
the extinction is applied.

We test both approaches and investigate different implementations
of host dust extinction:

(i) We assume that the host extincted V19 templates are repre-
sentative of the core-collapse SN population in terms of extinction
properties at all redshifts. In other words, we apply no further host
extinction. This is our Baseline approach.

(ii) We use the set of de-reddened V19 SEDs and apply the host
extinction distribution predicted by Hatano et al. (1998) [‘Dust
(H98)’]. The distribution of B-band extinction (AB) presented by
Hatano et al. (1998) is converted into AV and fitted with the sum of
an exponential distribution, exp (−AV/τ ), and a normal distribution

N (μ, σ ); we find τ = 0.05, σ = 0.5, and μ = 0.45. Fig. 13 shows
the resulting distribution of simulated AV. For this model, the median
simulated extinction AV is 0.35 mag.

(iii) We use the de-reddened V19 SEDs and the host extinction
distribution used by Rodney et al. (2014) [‘Dust (R14)’]. This
distribution is approximated with the same expression adopted for
Hatano et al. (1998) but assuming τ = 1.7, σ = 0.6, and μ = 0.
Fig. 13 shows the resulting distribution of simulated AV. The choice
of this distribution results in higher values of extinction, with median
simulated AV of 0.49 mag. This choice is motivated by the fact that
other compilations of core-collapse SNe from untargeted surveys (i.e.
surveys not primarily based on monitoring bright and typically dust-
rich galaxies) seem to have larger mean extinction values (Prentice
et al. 2016).

(iv) We use the de-reddened V19 SEDs and the host extinction
distribution of Hatano et al. (1998), introducing a redshift dependence
in the dust extinction. The dust content of a galaxy correlates with its
SFR (Santini et al. 2014). Since the cosmic star formation increases
by �0.5 dex between redshifts 0 and 1 (Madau & Dickinson 2014),
we assume that the median simulated extinction AV linearly increases
by a factor of 3 to z = 1 (‘Dust z-evolving’) and apply a shift to the
mean of the Gaussian component μ of �μ = 0.4z mag.

Figs 4(c) and 12(a) show the simulated g − r colours at peak
brightness for different approaches: the Baseline approach, and the
approach where the distribution of dust from Hatano et al. (1998) is
applied on the de-reddened templates [‘Dust (H98)’]. In the second
case, the diversity of SN events simulated is significantly increased.

6.3 Comparing different libraries of templates

The most widely used library to date is that of the SNPhotCC
(Kessler et al. 2010a, b), built from publicly available composite
spectral time series7 adjusted to match multiband photometry for 41
well-observed, spectroscopically confirmed core-collapse SNe from
various nearby photometric surveys. J17 augmented this library with
additional templates of SNe IIb and 91bg-like SNe Ia.

In Fig. 11(b), we show the distribution of R-band absolute
magnitudes derived from the J17 core-collapse SN simulations.

7https://c3.lbl.gov/nugent/nugent templates.html
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(a) (b) (c)

Figure 12. Simulated g − r colour at peak brightness versus redshift for different SN types and templates. SNe Ia are generated as described in Section 4.2.
Panel (a) is as panel (c) in Fig. 4, but using the V19 templates and a dust extinction distribution from Hatano et al. (1998). In panel (b), core-collapse SNe are
simulated using the J17 set of templates and adjusted luminosity function. Panel (c): using PLAsTICC models generated using MOSFIT for stripped-envelope
SNe and non-negative matrix factorization for SNe II (see Section 6.3). We also show the g − r colour measured from blackbody SEDs at temperatures of 5000,
10 000, and 50 000 K.

Figure 13. Simulated AV extinction in Dust(H98) simulation (host dust
extinction distribution from Hatano et al. 1998) and Dust(R14) simulation
(host dust extinction distribution from Rodney et al. 2014); see Section 6.2
for more details. Dashed vertical lines show the median simulated AV for each
distribution.

J17 simulate SNe IIb from a set of six SED templates without
applying dispersion to the SED brightness, leading to the spikes
in the luminosity function, and assume for SNe Ib a luminosity
function with the functional form N (−18.26, 0.15), explaining the
brightest peak in the SN Ibc distribution. The bimodality for SNe II
is due to SNe IIP and SNe IIL being modelled separately, following
the rates and luminosity functions originally presented by L11. We
note that the J17 templates lack a robust extension into the UV, and
therefore at higher redshifts the simulation does not generate g-band
observations (see Fig. 12b)

Kessler et al. (2019a) released a new library of core-collapse
SN templates developed for PLAsTiCC, including two innovative
approaches for simulating core-collapse SNe. For stripped-envelope
SNe and SNe IIn, SED templates have been generated using the
Modular Open-Source Fitter for Transients (MOSFIT; Guillochon
et al. 2018) parametrization and following the theoretical models
of Villar et al. (2017) for these two classes of transients. For SNe II,
synthetic light curves were built applying dimensionality reduction
techniques to a large sample of SN II multiband light curves. These
techniques enable an order of magnitude increase in the number
of SEDs generated (384 templates for SNe II, 836 for SNe IIn
and stripped-envelope SNe). In Figs 11(c) and 12(c), we compare
luminosity distributions and colour properties of core-collapse SNe
generated using PLAsTiCC templates with other core-collapse SN

libraries. We note significant differences both in the distribution of
simulated absolute magnitudes and in the colour evolution compared
to simulations generated with V19 and J17 templates, especially
for SNe II. In PLAsTiCC, the luminosity distribution of SNe II
simulated light curves appears narrower than that expected from
other measured luminosity functions, and drops to zero at –18 mag
(although there are several fast-declining SNe II that have been
observed to be brighter; Richardson et al. 2002; L11). Moreover,
the simulated peak colour of these events is significantly bluer
than that expected assuming a blackbody SED. This suggests that
a revision of the SN II models implemented in PLAsTiCC may be
required.

6.4 Analysis of Hubble residuals distributions

In Fig. 14, we present the simulated and observed Hubble residuals
(equation 2) for each simulation (Table 4) and for the different
SALT2 cuts (Section 2.4). Table 6 presents the predicted fraction
of contamination from 91bg-like, SNe Iax, SNe Ibc, and SNe II,
and the total contamination, for shallow and deep fields separately.
Finally, Table 7 presents the χ2

ν of Hubble residual distributions. χ2
ν

are estimated both for Hubble residuals <0.5 (the ‘SN Ia-dominated’
region) and >0.5 (the ‘core-collapse SN-dominated’ region).

Generally, the agreement is good. As noted for the Baseline
simulation, the largest discrepancies are found at zero and negative
Hubble residuals where the contamination is small (Fig. 14), and
this drives the large value of χ2

ν (Table 7). When loose SALT2
cuts are applied, more significant discrepancies are found in the
core-collapse SN simulations where the luminosity functions are
artificially brightened (‘LFs z-evolving’ and ‘LFs + Offset’). These
simulations overestimate the number of SNe with Hubble residuals
>0.5 by approximately 20–25 per cent, disfavouring such adjust-
ments. Simulations where larger host extinctions are applied [‘Dust
(R14)’ and ‘Dust z-evolving’] underestimate the number of SNe with
Hubble residuals <0.5 by 10 per cent.

When the cuts from Betoule et al. (2014) are applied, the simu-
lations accurately predict the number of events with large Hubble
residuals (HR > 0.5), with χ2

ν values between 0.7 to 1.2 (Table 6).
The large discrepancies observed when applying only loose SALT2-
based cuts in simulations (LFs + Offset and LFs z-evolving) appear
to be partially resolved when tighter SALT2 cuts are applied. This
suggests that understanding how SALT2-based cuts affect core-
collapse contamination is an important aspect in this type of analysis.
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Figure 14. Distributions of observed and simulated Hubble residuals for the full range of simulations. Distributions are presented for the data (shallow and
deep fields combined, black symbols) and for the nine simulations summarized in Table 4 (see Section 6): Both SNe Ia and core-collapse SNe are combined in
the darker lines, and only simulated core-collapse SNe are shown in the partially transparent lines. Left: Sample selected applying loose SALT2-based cuts (x1

∈ [−4.9, 4.9] and SALT2 c ∈ [−0.49, 0.49]). The fraction of core-collapse SNe for each simulation is reported in Table 6 and is approximately a fourth of the
sample. Right: SALT2-based cuts from Betoule et al. (2014) are applied. The fraction of core-collapse SNe in the simulations is reported in Table 6.

Table 6. True fraction of contamination (averaged over 25 realizations).

Loose SALT2 cuts SALT2 cuts following Betoule et al. (2014)
Non-Ia fraction Fraction of Non-Ia fraction in Non-Ia fraction Fraction of Non-Ia fraction in

(per cent) 91bg, Iax, Ibc, II (per cent) shallow and deep (per cent) (per cent) Iax, Ibc, IIa (per cent) shallow and deep (per cent)

Baseline 22.5 0.1, 2.5, 5.7, 14.2 21.6, 24.5 8.2 2.0, 1.7, 4.5 7.9, 8.8
Skewed LFs 20.4 0.1, 2.6, 4.4, 13.2 19.5, 22.5 7.5 2.0, 1.4, 4.1 7.2, 8.2
LFs z-evolving 27.5 0.1, 2.4, 7.1, 17.8 26.4, 30.0 9.9 2.0, 2.3, 5.7 9.5, 11.0
LFs + Offset 31.7 0.1, 2.2, 8.6, 20.7 30.8, 33.6 11.7 1.9, 3.0, 6.7 11.4, 12.6
Dust(H98) 22.0 0.1, 2.6, 6.1, 13.2 21.1, 24.1 8.5 2.0, 2.2, 4.2 8.1, 9.4
Dust(R14) 21.6 0.1, 2.6, 5.6, 13.3 20.8, 23.6 8.4 2.0, 1.9, 4.5 7.9, 9.6
Dust z-evolving 18.6 0.1, 2.7, 4.9, 10.9 17.8, 20.4 7.2 2.0, 1.6, 3.6 6.8, 8.0
J17 (PanSTARRS) 28.5 0.1, 2.4, 11.5, 14.5 27.3, 31.2 8.7 2.0, 3.5, 3.1 8.1, 10.1
PLAsTiCC 24.6 0.1, 2.5, 7.3, 14.3 23.1, 27.9 7.0 2.0, 2.1, 2.8 6.5, 8.1
aAfter SALT2-based cuts following Betoule et al. (2014) are applied, the predicted fraction of 91bg-like SNe Ia is less than 0.1 per cent.

Table 7. χ2
ν between observed and simulated events for different Hubble

residual ranges.

Loose SALT2 cuts Betoule et al. (2014)
SALT2 cuts

χ2
ν χ2

ν

HR < 0.5 HR > 0.5 HR < 0.5 HR > 0.5

SNe Ia only 5.3 60.3 4.3 22.6
Peculiar Ia onlya 5.0 29.3 4.3 7.5
Baseline 4.2 1.9 4.1 1.0
Skewed LFs 4.9 1.5 4.2 1.0
LFs z-evolving 3.9 1.8 4.0 1.2
LFs + Offset 4.1 1.8 4.1 1.3
Dust(H98) 4.0 1.7 4.1 1.2
Dust(R14) 4.0 2.4 4.0 1.4
Dust z-evolving 4.2 2.0 4.1 1.3
J17 (PanSTARRS) 6.6 3.1 4.8 1.4
PLAsTiCC 5.5 10.3 4.5 2.0
aSimulation generated including only SNe Ia and peculiar SNe Ia, SNe Iax, and 91bg-like
SNe Ia.

The ‘Skewed LFs’ simulation predicts one of the lowest values of
core-collapse SN contamination. As shown in Fig. 11, a skewed
Gaussian parametrization of the luminosity functions produces
less bright events compared to a Gaussian parametrization of the
luminosity functions. This shows that simulation of core-collapse
SNe is sensitive to how the brighter tails of the luminosity functions
are modelled. Finally, we note that the PLAsTiCC simulation shows

poor agreement with the data, both before and after SALT2-based
cuts. We suggest that the main cause of this disagreement is an
incomplete modelling of SNe II (see Section 6.3).

Overall, the range of contamination predicted by our simulations
is small, with a minimum of 7.2 per cent of contamination predicted
from the ‘Dust z-evolving LFs’ simulation (excluding PLAsTiCC
simulation) to a maximum of 11.7 per cent contamination in the
‘LFs + Offset’ simulation. The average contamination among the
different tested scenarios is 8.8 per cent, and the r.m.s is 1.1 per
cent. We note that this is the contamination expected in the photo-
metric DES SN sample prior to the application of any photometric
classification algorithm. After photometric classification, the typical
contamination expected is likely to decrease substantially (Möller &
de Boissière 2020, Vincenzi et al., in preparation).

7 SU M M A RY A N D F U T U R E WO R K

We have presented a set of simulations designed to reproduce the DES
photometric SN sample. The DES photometric SN sample includes
more than 2500 SNe with high-quality multiband photometry and
spectroscopic redshifts from the identified SN host galaxies. It is the
largest sample of photometrically identified SNe Ia to date and in
this work we described how the sample has been collected and what
are the relevant cuts we applied to filter non-SN transients.
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Our focus in this paper has been to model and reproduce with
simulations the population of contaminants observed in the DES
photometric sample, where we define as contaminants transients that
are photometrically similar to SNe Ia but are not standardizable
candles, i.e. peculiar SNe Ia and core-collapse SNe. The simulations
presented in this work are a significant improvement compared to
previously published mock catalogues of photometric SN samples.
The principal advances are as follows:

(i) We use core-collapse SNe that are synthesized from high-
quality templates. We explore different methods for implementing
host galaxy dust extinction and different luminosity functions, and
we demonstrate that the diversity and quality of the simulated core-
collapse SN light curves are significantly improved;

(ii) We use a host-galaxy spectroscopic redshift efficiency that is
modelled as a three-dimensional function of host galaxy brightness,
observed colours, and year of SN discovery. This efficiency function
has been measured by analysing the sample of galaxies that hosted
DES SN candidates and comparing those for which a spectroscopic
redshift was obtained and those for which it was not;

(iii) We simulate SN host galaxies using published SN rates and
their dependence on host galaxy properties. This ensures that each
sub-type of transient is associated with a physically meaningful
population of galaxies. This, combined with our measured efficiency
function, enables us to accurately model selection effects for every
type of transient, every type of galaxy, and every redshift range.

The ultimate test to verify whether our simulations are realistic and
physically accurate is to compare the simulated samples with the
real data. We find excellent agreement between our simulations and
the DES SN sample, when both loose and cosmology-like SALT2-
based cuts are applied. From our baseline simulation, we predict the
fraction of core-collapse SN contamination in the DES SN sample
to be 8.2 per cent after applying SALT2-based cuts similar to those
in the cosmological analysis from Betoule et al. (2014).

We additionally explore alternative template libraries, luminosity
functions, and host galaxy dust extinction models. We consider
nine core-collapse SN scenarios, designed to span a wide range of
modelling choices. We analyse this set of simulations and find that the
majority reproduce observed contamination well (with measured χ2

ν

between 1. and 1.4 for large Hubble residuals) and that the predicted
core-collapse contamination varies between 7.2 and 11.7 per cent,
with an average of 8.8 and an r.m.s. of 1.1. This suggests that,
although our knowledge of the global properties of core-collapse
SNe remains incomplete, core-collapse SN contamination in the DES
photometric SN sample can be well constrained.

While the agreement between data and simulations is already good,
some discrepancies remain and we anticipate improvements from
future analyses. Different ways of increasing the depth of the galaxy
library implemented in our simulations will be explored, either using
observations (i.e. deep coadds published by Wiseman et al. 2020) or
simulations (SkyPy Collaboration 2020). Additionally, the modelling
of SN Ia intrinsic properties and contribution of the host galaxy to
the observational noise will be studied.

This work lays the foundation for several analyses central to
the cosmological analysis of the DES photometric SN survey. The
cosmological constraints obtained will depend more on our ability to
validate the true contamination rather than obtaining the smallest
prediction for that contamination. In future papers, we will use
the simulations presented here to train and test the photometric
classifiers that will be implemented in the cosmological analysis of
the DES SN sample. We will also measure systematic uncertainties
and potential biases in cosmological measurements due to core-

collapse SN contamination. Finally, the methods and techniques used
in this work constitute a powerful tool to predict core-collapse SN
contamination in future cosmological SN Ia samples and can be
applied to simulate SNe in time-domain surveys like the 10-yr LSST
(Ivezić et al. 2019) and surveys with the Nancy Grace Roman Space
Telescope (Hounsell et al. 2018).
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19Departamento de Fı́sica Matemática, Instituto de Fı́sica, Universidade de
São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
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