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Abstract—Given a static plant described by a differen-
tiable input-output function, which is completely unknown,
but whose Jacobian takes values in a known polytope in
the matrix space, this paper considers the problem of tun-
ing (i.e., driving to a desired value) the output, by suitably
choosing the input. It is shown that, if the polytope is ro-
bustly nonsingular (or has full rank, in the nonsquare case),
then a suitable tuning scheme drives the output to the de-
sired point. The proof exploits a Lyapunov-like function and
applies a well-known game-theoretic result, concerning the
existence of a saddle point for a min-max zero-sum game.
When the plant output is represented in an implicit form, it is
shown that the same result can be obtained, resorting to a
different Lyapunov-like function. The case in which proper
input or output constraints must be enforced during the
transient is considered as well. Some application examples
are proposed to show the effectiveness of the approach.

Index Terms—Lyapunov methods, min-max theorem,
robust control, uncertain systems.

I. INTRODUCTION

FOR several types of systems with a large number of inputs
and outputs (such as electrical networks, power genera-

tion systems, electronic circuits, systems for heat generation
and transmission, flow networks in general), stability is not a
critical issue, while steady-state tuning is very important and, at
the same time, difficult to achieve. In fact, often the plant model
is unknown, hence plant tuning requires a frustrating trial-and-
error approach: when attempting to set an output to the desired
value, the unknown interactions among the variables can unpre-
dictably drive the other outputs out of tune.

In a large electrical network, e.g., the voltages provided by
the generators can be controlled so as to guarantee that some
target nodes have the appropriate voltage level. The number of
generators corresponds to the number of degrees of freedom:
if it is not smaller than the number of the target nodes, then
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the desired voltage levels can be straightforwardly obtained by
setting the generators at the proper voltage. Or, better, they could
be straightforwardly obtained, if the network parameters were
known. However, most often, the network parameters (such as
impedances) depend on the load, which in general is not exactly
known and is subject to unpredictable variations.

This paper considers the problem of tuning a static plant,
described by a system of nonlinear equations: the inputs of the
plant need to be chosen so as to drive the outputs to the desired
level, yet the system equations are unknown and only qualitative
information on the system Jacobian is available.

The main result shows that the robust tuning problem can be
solved by means of a proper tuning law, provided that: i) the
Jacobian matrix of the input-output function is included in a
compact and convex set of matrices (the case of the inclusion in
a polytope of matrices is especially considered), and ii) all the
elements of this set are either right invertible, in the nonsquare
case, or nonsingular, in the square case.

The proposed robust, model-free approach to plant tuning is
obtained based on a Lyapunov approach and on the well-known
min-max theorem [27]. This game-theoretic result has already
been exploited in the context of robust control via Lyapunov
methods [23], [24] (see also [8], [14], [21], [30]). However, the
problem faced here is different, since a static plant is considered
and the devised control law is actually a tuning law.

More precisely, consider the unknown function y = g(u) and
assume the only available information is that its Jacobian Gu

belongs to a polytope (or, more in general, to any convex and
compact set) of matrices. In order to drive y to zero, a tuning
scheme can be adopted based on an auxiliary control variable
v = u̇, the derivative of the original control u. Hence, u is the
time integral of the new decision variable v: this ensures both
continuity of u, which is fundamental in the proposed tuning
setup, and zero steady-state error.

The state of the tuning system is then the control variable
itself. Robust tuning is ensured, since the solution is devised
based on a Lyapunov-like function. The technique relies on the
existence of a saddle point of a suitable min-max problem, which
has to be solved on-line to determine the control action.

The considered problem is related to other methods previ-
ously adopted for parameter tuning [4], [20] in which the goal is
optimizing the performance and/or identifying the parameters.
Here performance is not a concern: the only aim is to reach the
target output.

Also, it is worth mentioning the iterative learning control
technique [2], [15], which is specifically aimed at determin-
ing the input function of a dynamic system so that the output
function matches a desired reference. In principle, the scheme

1



2624 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 6, JUNE 2017

proposed here could be seen as an iterative (continuous-time)
learning process for a static nonlinear plant.

The problem could also be approached, in principle, by means
of multidimensional extremum-seeking techniques [31], [26],
[29]; indeed the goal is achieved when ‖g(u)‖2 = 0, hence the
problem could admit an extremum-seeking formulation. Indeed,
there are interesting connections with robust optimization (see
[9] for an extensive survey).

The substantial novelty of the proposed method with respect
to the existing techniques is that, based on a Lyapunov approach
[21], [30], it exploits the robust nonsingularity of the Jacobian of
g to ensure convergence. We therefore believe that the method
has potential future development in the previously mentioned
areas of robust optimization and learning.

The contributions of the paper are the following.
1) An automatic tuning strategy based on an auxiliary con-

trol variable is proposed; this auxiliary control variable is
the derivative of the original control (hence, the state of
the system is the control variable itself).

2) Assuming, without restriction, y = 0 as the target, a
Lyapunov-like positive-definite function of the output
variable is considered. If the Jacobian takes values in
a robustly nonsingular polytope (or, more generally, in
any convex and compact set) of matrices, the proposed
robust control strategy drives the Lyapunov-like function
to 0.

3) The control, based on a min-max principle, requires the
solution of a convex optimization problem on-line.

4) When bounds on the output variables need to be consid-
ered during the transient, a suitably adapted Lyapunov-
like function can be employed, whose sublevel sets are
tailored to match the shape of the constraint set.

5) When bounds on the input variables need to be considered
(both during the transient and at steady state), the problem
can be solved by means of a suitable reparametrization.

6) In some important cases, the (unknown) input-output
function has an implicit form and the polytopic bounds on
the Jacobian are available for the inverse transformation
only. This problem can be solved as well by exploit-
ing an integral formula [25] and considering a different
Lyapunov-like positive-definite function.

7) A maximum tuning speed can be assigned by constraining
the norm of the auxiliary control signal. Under suitable
choices of such a norm, the convex optimization problem
amounts to Quadratic Programming (Euclidean norm) or
Linear Programming (∞-norm).

8) Examples are provided to illustrate the technique, both in
the explicit and in the implicit case.

Some of the results proposed here have been preliminarily
presented in the conference paper [10], where only the case of
plants given in an explicit form has been considered.

II. MOTIVATING EXAMPLES

Explicit Case: Consider the flow network represented in
Fig. 1, where there is no buffer capacity at the nodes. Vec-
tor y = [y1 y2 y3 y4 ]� represents the relative output flow
at the four nodes, with respect to the flow reference r̄; the

Fig. 1. The flow network problem.

Fig. 2. The automatic tuning scheme.

Fig. 3. The thermal regulation problem.

flow corresponding to each link is operated by a variable uk ,
u = [u1 u2 u3 u4 u5 u6 ]�, and its value is given by an unknown
function φk (uk ). It is only known that φk (uk ) are increasing for
all k = 1, . . . , 6. This situation is typical in channel (or pipe)
networks, in which the flows are regulated by locks (or valves):
the control variable is then the lock opening fraction, while the
corresponding flow is not known exactly; however, it is abso-
lutely reasonable to assume that the flow functions φk (·) are
strictly increasing. Given the flow reference r̄, the correspond-
ing model output is

y = Bφ(u) − r̄,

where B is the incidence matrix of the network graph. In the
case of Fig. 1, the incidence matrix is

B =

⎡
⎢⎢⎢⎣

1 −1 −1 −1 0 0
0 1 0 0 −1 0
0 0 0 1 0 −1
0 0 1 0 1 1

⎤
⎥⎥⎥⎦ .

For such a system, in order to drive y to zero, a robust tuner
of the form represented in Fig. 2 is sought. The only available
information is given by upper and lower bounds on the deriva-
tives of the functions φk (·), no matter how “conservative”: any
bound of the form ε ≤ φ′k (·) ≤ μ, with small ε and large μ, is
suitable.

Implicit Case: In some cases, the unknown input-output map
cannot be characterized in an explicit form. Consider, e.g., the
thermal regulation problem in Fig. 3. The flow qk along each
of the three branches is a strictly increasing function of both
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the valve opening fraction ak and the input pressure p at the
branching point:

qk = φk (p, ak ), k = 1, 2, 3.

The pressure p itself is a function of the overall flow: typically,

p = p0 − Ψ(q1 + q2 + q3).

Therefore, ensuing an attempt to increase the flow in pipe 1, p
automatically decreases, hence the flows in pipes 2 and 3 de-
crease as well. So, if the automatic tuning system is required to
regulate the flows qk to desired values q̄k , no explicit relation
is available between the flows qk and the valve opening frac-
tions ak . However, an implicit representation can be derived as
follows. Note that ak can be expressed as

ak = ψk (p, qk ), k = 1, 2, 3,

where ψk (p, qk ) is strictly decreasing in the first argument and
increasing in the second. Then, if the expression for the pressure
is replaced, a function

ak = ψk (p0 − Ψ(q1 + q2 + q3), qk )

is achieved, which is increasing in qk for all k = 1, 2, 3. The pre-
vious reasoning can be generalized to the case of N branching
pipes, obtaining the functions

ak = ψk

(
p0 − Ψ

(
N∑
i=1

qi

)
, qk

)
, k = 1, . . . , N.

Again, the only available information consists in bounds on the
derivatives: ε ≤ ψ′

k (·) ≤ μ.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. A Saddle-Point Theorem for Min-Max Games

Here some well-established results from game theory are re-
called. Consider a polytope of matrices, i.e., a set

M =
{
M =

r∑
k=1

Mkαk ,
r∑

k=1

αk = 1, αk ≥ 0,

Mk ∈ Rp×m , ∀ k = 1, . . . , r
}
. (1)

Then, given a vector y ∈ Rp and a convex and compact set
V ⊂ Rm , the two problems

ν− .= max
M ∈M

min
v∈V

y�Mv, (2)

ν+ .= min
v∈V

max
M ∈M

y�Mv (3)

have a game-theoretic interpretation [5], [7]. Two players, the
Maximizer and the Minimizer, respectively chooseM ∈ M and
v ∈ V , with the conflicting goals of maximizing and minimizing
(respectively) the expression y�Mv. In version (2) (“the Maxi-
mizer plays first”), the decision of the Minimizer is based on the
knowledge of the decision of the Maximizer, while in version
(3) (“the Minimizer plays first”), the decision of the Maximizer
takes into account the decision of the Minimizer (see, e.g., [17,
Ch. 9, pp. 271–272]). In general, playing first is a disadvantage

(due to the absence of knowledge about the opponent’s choice),
hence

ν− ≤ ν+ .

The following well-known result holds.
Theorem 1: If M and V are compact and convex sets, then

there exist v∗ ∈ V and M ∗ ∈ M such that

ν− = ν+ = ν∗ = y�M ∗v∗. (4)

A proof can be found in [27].
The pair (M ∗, v∗) ∈ M× V , called a saddle point of the

min-max game, might not be unique in general, while the value
ν∗ is unique [5], [7].

Since both M ∗ and v∗ depend on y, the following functions
can be defined:

Φ(y) = v∗ the minimizer value in (4), (5)

Ψ(y) = M ∗ the maximizer value in (4). (6)

When M ∗ and v∗ are not unique, the ambiguity can be resolved
by taking the minimum-Euclidean-norm element.

B. Problem Statement

Consider the following problem.
Problem 1: Given the static plant

y = g(u), (7)

where g : Rm → Rp , p ≤ m, assume that g(ū) = 0 for some
unknown ū and that the following inclusion holds:

Gu
.=
[
∂g

∂u

]
∈ M, (8)

where Gu is the Jacobian of g and M is a known polytope
(or any convex and compact set) of matrices. Find a dynamic
algorithm such that, as t→ ∞,

y(t) → 0, (9)

u(t) → ū, (10)

where ū solves the equation

0 = g(u). (11)



IV. PROBLEM SOLUTION

To solve the tuning problem, remember that condition (8) is
the only available information for control purposes. First of all,
consider Problem 1 under the assumption that there are as many
outputs as inputs, hence p = m.

A. Case p = m

The next definition is fundamental [6].
Definition 1 Robust Nonsingularity: The polytope M is ro-

bustly nonsingular if any matrix in M is nonsingular. 
The following standing assumption is considered.
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Assumption 1: The family M is robustly nonsingular. 
Section VI-A will illustrate how this condition can be

checked, under suitable assumptions on the matrix structure.
Consider a control scheme of the form

u̇(t) = v(t), (12)

v(t) = Φ(y(t)), (13)

y(t) = measured output. (14)

For both technical and practical reasons, the control derivative
is deliberately bounded as follows:

v(t) ∈ V = {v : ‖v‖ ≤ ξ}, (15)

where ξ > 0 and ‖ · ‖ is any norm.
The main result is the following.
Theorem 2: Under Assumption 1, Problem 1 can be solved

by means of a control scheme of the form (12)–(14), with v
bounded as in (15). �

The constructive proof is reported in the following subsection.

B. Proof of Theorem 2

Pretend, for the moment, that the Jacobian Gu is available to
the controller; hence, instead of the control action (13), assume
to be able to implement a control v(t) = Φ(y(t), Gu ).

Consider the Lyapunov-like positive definite function

V (y) =
1
2
y�y,

whose Lyapunov derivative is

V̇ = y�ẏ = y�Guu̇ = y�Guv. (16)

Then, being Gu invertible, take the “pseudo” control

v = −γ(y)G−1
u y, (17)

where γ(y) > 0 is a suitable continuous scalar function, to get

V̇ = −γ(y)y�y < 0, for y �= 0. (18)

The continuous function γ(·) can be chosen so as to ensure

‖v‖ = ‖γ(y)G−1
u y‖ ≤ ξ, (19)

therefore achieving the following preliminary result.
Proposition 1: The “pseudo” control (17) satisfies (15) and

asymptotically drives y(t) to 0. �
The existence of control (17) which satisfies (15) (or, equiv-

alently, (19)) implies that the following result holds.
Proposition 2: Given y ∈ Rp , for all Gu ∈ M there exists

v, ‖v‖ ≤ ξ, such that V̇ ≤ −γ(y)y�y. �
This is equivalent to writing

max
Gu ∈M

min
‖v‖≤ξ

y�Guv ≤ −γ(y)y�y.

In view of Theorem 1, being the two sets compact and convex,
it is also true that

min
‖v‖≤ξ

max
Gu ∈M

y�Guv ≤ −γ(y)y�y.

Hence, Proposition 2 is equivalent to the following.

Proposition 3: Given y ∈ Rp , there exists v, ‖v‖ ≤ ξ, such
that, for all Gu ∈ M, V̇ ≤ −γ(y)y�y. �

The control vector can be taken as in (5), v∗ = Φ(y), to
achieve the “true” discontinuous control law

v(t) = Φ(y(t)),

as in (13). Then, for all Gu

V̇ = y�GuΦ(y) = y�Guv
∗(y) ≤ −γ(y)y�y. (20)

This ensures exponential convergence, since

V̇

V
≤ −2γ(y), (21)

with a continuous γ(y) > 0.
Therefore, if Φ(y) in (13) is taken as in (5), the control (12)–

(14) guarantees that y(t) → 0, and (9) is proved.
Sinceu is the integral function of v, it is a continuous function.

Moreover, being y = g(u) invertible, u(t) → ū, where ū is the
solution of g(ū) = 0, which proves (10).

Hence, Theorem 2 is proved. �
The following corollary shows that the control v can be scaled.

It will be useful for considerations reported later, in Sections IV-
C and VI-C.

Corollary 1: The control v in (15) can be equivalently
scaled as ‖v‖ ≤ ξ(y), where ξ(·) is any positive definite func-
tion of y, and the result in Theorem 2 follows without any
modification. �

Proof: The min-max problem can be restated for each y as
follows

min
‖v‖≤ξ(y )

max
Gu ∈M

y�Guv. (22)

Function γ(y) should still satisfy the condition (19), which now
becomes ‖γ(y)G−1

u y‖ ≤ ξ(y). The inequality (21) still holds
for the new γ(y). �

Remark 1: The dynamics of the output y can be described by
ẏ = Guv. If invertibility of g is assumed, so that u = g−1(y), y
is represented by a driftless system [16], [18], for which several
stabilizability results are available; these results, however, do
not apply to the present case, since the model is assumed to be
completely unknown. Yet, there are some analogies: also the
strategy proposed here resorts to a discontinuous control, as it
must be done for driftless systems [16], [18]. 

C. Case p < m

If the number of outputs is lesser than the number of inputs,
Assumption 1 needs to be changed as follows.

Definition 2 Robust right invertibility: The polytope M
is robustly right invertible if any matrix in M is right
invertible. 

Assumption 2: The family M is robustly right invertible. 
Then, (17) can be modified by simply replacing the inverse

with the pseudo inverse:

v = −γ(y)G⊥
u y. (23)

Along the same reasoning as in the previous subsection, the
same conclusions can be reached. It is worth underlining that,
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in this case, there are in general multiple solutions to g(u) = 0
and the final value u will depend on the initialization.

There is only one issue here, concerning the boundedness
of u. Due to the lack of invertibility, the set of solutions u of
y = g(u) = 0 may be unbounded, as in the case of the “un-
known” function y = a1u1 + a2u2 + b.1 To fix the problem,
take γ(y) = γ = const and ξ0 > γ‖G⊥

u ‖, for allGu ∈ M. Then
ξ(y), defined in Corollary 1, can be taken as ξ(y) = ξ0‖y‖.

Proposition 4: According to Corollary 1, let v∗ be the mini-
mizer strategy in (22), such that

‖v∗‖ ≤ ξ(y) = ξ0‖y‖. (24)

Then u(t) is bounded and has a finite limit ū = limt→∞ u(t).
Proof: Condition (21) becomes V̇ ≤ −2γV and implies ex-

ponential convergence of y(t) to zero. Due to (24), v(t) con-
verges to 0 exponentially as well. Then

u(t) = u(0) +
∫ t

0
v(τ)dτ

is bounded and has a finite limit. �
Remark 2: The problematic case in which the number of

outputs is greater than the number of inputs has been excluded
from the formulation of Problem 1, because, if p > m, a solution
to g(u) = 0 does not exist in general. Typically, in this case, it is
possible to choose a suitable function h(y) of y and drive h(y)
to zero. 

D. Existence of a Stationary Point, Local Convergence,
and Constraints

Local Convergence: Requiring that the condition Gu ∈
M, where M is robustly invertible, holds globally can be too
demanding in some cases. Yet, such a condition may be assured
locally. For instance, given ρ > 0, one can consider the closed
set

Uρ = {u : ‖g(u)‖ ≤ ρ},
including in its interior the point ū for which g(ū) = 0. Since the
Lyapunov-like function V (y) = y�y/2 = ‖g(u)‖2/2 is nonin-
creasing, Uρ is positively invariant.

The assumptions can be weakened by requiring Gu ∈ M in
this set. Convergence u(t) → ū is then guaranteed for all initial
conditions u(0) ∈ Uρ .

Existence of a Stationary Point: The existence of ū
such that g(ū) = 0 has been assumed. However, if Uρ is com-
pact, the existence of ū ∈ Uρ is granted. To get a proof (for
m = p) consider the “pseudo” control (17), to get

u̇ = −γ(g(u))G−1
u g(u).

The set Uρ is compact, positively invariant, and isomorphic to
the closed ball ‖y‖ ≤ ρ, hence it includes a stationary point ū
(see for instance [12]) for which −γ(g(ū))G−1

u g(ū) = 0, which
implies g(ū) = 0 (being G−1

u nonsingular).
Also, the global assumption Gu ∈ M (with M robustly in-

vertible) implies that ‖g(u)‖ is radially unbounded; hence, the

1Given a particular solution [ū1 ū2 ]�, the set of all the solutions has the form
[ū1 ū2 ]� + θ[−a2 a1 ]�, for an arbitrary θ.

Fig. 4. The constraint setY = {−5 ≤ y1 ≤ 10, −8 ≤ y2 ≤ 6} (red) and
the 1-level sets of V2q (y), with q = 4 (blue) and q = 20 (green).

Hadamard-Caccioppoli theorem (see [1]) guarantees the exis-
tence of a stationary point ū and its uniqueness.

Output Constraints: The flexibility offered by the choice
of the Lyapunov-like function may be exploited to handle the
presence of output constraint of the form

y(t) ∈ Y = {y ∈ Rp : y− ≤ y ≤ y+},
where vectors y− < 0 and y+ > 0 componentwise. The con-
straints are satisfied if u(0) ∈ Uρ , where g(Uρ) ⊆ Y .

This can be quite a small portion of Y . However, the smooth
function V2q : Rp → R can be adopted [13]:

V2q (y) = q

√√√√
p∑
i=1

[
σ2q

(
yi
y−i

)
+ σ2q

(
yi

y+
i

)]

where

σ2q (ξ) =

{
0 if ξ ≤ 0
ξ2q if ξ > 0

This function is smooth, positively homogeneous of the second
order (V2q (λy) = λ2V2q (y)) and its 1-level set, N [V2q , 1] =
{y ∈ Rp : V2q (y) ≤ 1}, converges to Y for large q (as is appar-
ent in Fig. 4; see [12] , [13] for details).

Input Constraints: It is also possible to consider in-
put constraints, such as, for instance, positivity constraints
u(t) ≥ 0 (componentwise), assuming that g(ū) = 0 for some
positive ū. A first “brutal” approach is that of saturating the
derivative vi when ui becomes zero: namely, if ui = 0, then
vi := max{0, vi}. However, it is well known that this saturation
introduces chattering, which would be absolutely undesirable in
a tuning context.

Alternatively, the problem can be reparameterized as

ui = ω(wi), (25)

where ω : R → R is a strictly increasing function with
limwi→−∞ ω(wi) = 0 and limwi→+∞ ω(wi) = +∞. A typi-
cal example is the exponential function. The new parameter
w = [w1 . . . wm ]� is then the new control action and

y = g(ω(w)),

where ω(w) has to be intended componentwise, has Jacobian
Gw = GuΩ(w), where Ω(w) = diag{ω′(w1), . . . , ω′(wm )}.

5



2628 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 6, JUNE 2017

Local convergence can be assured, with the only difference
that the min-max problem has to be restated by considering,
instead of Gu ∈ M, the new constraint

Gw ∈ (MΩ(w)) = {MΩ(w) : M ∈ M}.
Note that the new constraint depends on w. Nonsingularity is
locally assured, since matrix M ∈ M (nonsingular by assump-
tion) is being multiplied by a positive diagonal matrix.

A similar approach can be pursued when dealing with both
upper and lower bounds on the input, such as 0 ≤ u ≤ û. In this
case, the reparametrization can be achieved by a function of the
form

ω(wi) =
ûi
π

[
arctan(wi) +

π

2

]
,

such that limwi→−∞ ω(wi) = 0 and limwi→+∞ ω(wi) = ûi .

V. THE IMPLICIT VERSION OF THE PROBLEM

In several cases, information is available exclusively on the
Jacobian of the inverse function. This means that, although the
decision variable is u and the output is y = h−1(u), the only
available information is on the function h(·). Assuming that
p = m, the implicit invertible map is

h(y) = u (26)

and its Jacobian Hy is known to be of the form

Hy
.=
[
∂h

∂y

]
∈ H, (27)

where H is a polytope (or any convex and compact set) of
matrices. Again, the goal is to drive y to 0.

Remark 3: Given a polytope of matrices, the family of their
inverses is not, in general, a polytope, and it may even be non-
convex. For instance, take 0 ≤ α ≤ 1 and consider the polytopic
family of matrices H and their inverses:

H(α) =
[

1 α
−α 1

]
, H−1(α) =

1
1 + α2

[
1 −α
α 1

]

The familyH−1(α), 0 ≤ α ≤ 1, is not convex. Hence, attempt-
ing to solve the problem by inverting the Jacobian and ap-
plying the strategy described in the previous section may be
infeasible. 

To solve the problem directly, without inversion, a different
Lyapunov-like function can be adopted and the following rela-
tion [25, Exercise 3.9, p. 156] can be exploited:

h(y) − h(0) =
[∫ 1

0

∂h

∂y
(σy)dσ

]
y
.= H̄y y. (28)

Proposition 5: The inclusion (27) of the Jacobian Hy in H
implies that matrix H̄y in (28) belongs to H as well. �

Proof: Define the finite sum (with increment 1/m)

Σm
.=

m∑
k=1

1
m

∂h

∂y

(
ky

m

)
.

This is a convex combination of elements ∂h
∂y ( kym ) ∈ H, with

coefficients 1/m. Hence Σm ∈ H, because H is convex. By

definition, the integral is the limit:

H̄y =
∫ 1

0

∂h

∂y
(σy)dσ = lim

m→∞Σm ∈ H,

because H is closed. �
Consider the following Lyapunov-like function

V (y) = ‖h(y) − h(0)‖2/2,

which is not available for control implementation, because h(0)
is not known. Its derivative is

V̇ = [h(y) − h(0)]�
∂h

∂y
ẏ. (29)

Unfortunately, it is possible to decideu only, and not y. However,
if (26) is differentiated,

∂h

∂y
ẏ = u̇,

then, denoting as before u̇ = v,

V̇ = [h(y) − h(0)]�v.

As mentioned earlier, h(0) is unknown. However, from (28) it
follows that

V̇ = y�H̄�
y v. (30)

Since Proposition 5 assures that H̄y ∈ H, a polytopic set, this
is exactly the same situation as in the previous case. Hence, the
previous saddle-point considerations hold likewise: it is enough
to consider any Hy ∈ H instead of Gu ∈ M.

Now, if

Φ(y) .= v∗ (31)

is the saddle-point decision of the minimizer,

min
v∈V

max
Hy ∈H

y�H�
y v = max

Hy ∈H
min
v∈V

y�H�
y v = y�(H∗

y )
�v∗, (32)

the control scheme is

u̇(t) = v(t), (33)

v(t) = Φ(y(t)), (34)

y(t) = measured output, (35)

where y and u are related by h(y) = u.
Theorem 3: If p = m, h(y) = u andHy ∈ H, robustly non-

singular, then Problem 1, with (8) replaced by (27), can be solved
with a control scheme of the form (33)–(35), with v bounded as
in (15) and Φ defined as in (31). �

Proof: Almost identical to that of Theorem 2. �
Remark 4: In the implicit version of the problem, the case

p < m is not quite significant. Consider, e.g., p = 1 andm = 2.
It would be h1(y) = u1 and h2(y) = u2 . The only reasonable
possibility is that h1 = h2 and u1 = u2 , otherwise there would
be an inconsistency. Hence, the problem can be reduced to the
case p = m by just throwing h2 away. 

6
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VI. IMPLEMENTATION OF THE SCHEME

For implementing the scheme, two steps are required.
1) Off-line Checking the robust nonsingularity (or rank

completeness) of the polytope of matrices.
2) On-line Computing the tuning law.

A. Checking Robust Nonsingularity (or Rank
Completeness)

In the case p = m, before implementing the tuning scheme
it is necessary to make sure that the given polytope of matrices
M is robustly nonsingular.

Checking nonsingularity is a hard problem in general [6],
especially for high-dimensional systems. For reasonable in-
stances, however, this task can be computationally tractable and
noteworthy solutions are available, as shown next.

Proposition 6 [11], [22] Rank One Generating Matrices: If

M =
r∑
i=1

diMi, d−i ≤ di ≤ d+
i ,

where Mi are rank-one matrices, then robust nonsingularity is
equivalent to all the vertex determinants having the same sign:

det

⎡
⎣∑
i(±)

d±i Mi

⎤
⎦> 0 (or < 0),

where the sum means, with an abuse of notation, that the coef-
ficients di are taken on the extrema of their intervals, obtaining
2r possible combinations.2 �

Proposition 7 Interval Matrices: Consider an interval ma-
trix M , having entries

M−
ij ≤Mij ≤M+

ij .

Then robust nonsingularity is equivalent to all the vertex deter-
minants having the same sign. �

Conversely, for p �= m, in general it is necessary to check
that all the matrices of the family have full rank. One obvious
possibility is checking if there is at least one full size square
nonsingular submatrix.

For particular systems, nonsingularity can be inferred from
the structure. Consider, for instance, flow systems, such as that
in Fig. 1, where g(u) = Bφ(u). The Jacobian matrix is Gu =
Bdiag{φ′1(u1), φ′2(u2), . . . , φ′m (um )}, with φ′k strictly positive
for all k = 1, . . . ,m. Since the incidence matrix of a connected
graph with at least one external connection has full row rank,
Gu has full rank, or is nonsingular in the case p = m.

B. Computing the Tuning Law Φ

The control law is implemented by computing v as in (13)
and then computing the input u by means of an integrator:
u(t) =

∫ t
0 v(τ)dτ . The continuity of u, fundamental for the

tuning problem, is ensured even if v = Φ(y) is not continuous.
The scheme needs the measure of the output y only.

2For instance, if r = 2 : (d−1 , d
−
2 ), (d+

1 , d
−
2 ), (d−1 , d

+
2 ), (d+

1 , d
+
2 ).

To compute the control law (13), it is necessary to solve the
min-max problem (2)–(3) and then derive the control by means
of (5)–(6). To derive the control strategy, the problem is analyzed
from the point of view of the maximizer, i.e., it is investigated
Ψ(y) as defined in (6), under the assumption that v ∈ V = Sξ ,
the ξ-ball of the Euclidean norm ‖ · ‖2 .

Proposition 8: Assume that v ∈ V = Sξ . Then the saddle
point decisionM ∗ ∈ M in (6), maximizing (4), can be obtained
by solving the optimization problem

M ∗ ∈ arg min
M ∈M

‖y�M‖2 . (36)

�
Proof: It follows from the game-theoretic interpretation of

the min-max problem. The existence of a saddle point (v∗,M ∗)
implies that the maximizer M ∈ M can choose its action as-
suming that the decision of the minimizer v will be based on
the knowledge of its choice. For any given M chosen by the
maximizer, the minimizer will select v(M) ∈ Sξ in order to
minimize the scalar product y�Mv:

v(M) = arg min
‖v‖2 ≤ξ

y�Mv = − arg max
‖v‖2 ≤ξ

y�Mv,

which is the vector of length ξ in the opposite direction of y�M ,
namely

v(M) = −ξ M�y
‖M�y‖2

.

Then

y�Mv(M) = −ξ y
�MM�y
‖M�y‖2

= −ξ‖M�y‖2 .

Hence, in view of the “−” sign, the best strategy for the maxi-
mizer is minimizing the norm ‖M�y‖2 .

Remark 5: The minimizer in (36) can be nonunique for some
y. For instance, consider the family

M =

[
1 1
−α 1

]
, 1 ≤ α ≤ 2,

and y� = [1 0]. Quite interestingly, however, the quantity y�M ∗

is unique, given y, as will be seen later. 
Proposition 8 can be extended to the case of any norm. Given

a norm ‖ · ‖, define ‖ · ‖∗, the dual norm, as [27]

‖x‖∗ = max
‖z‖≤1

z�x.

For instance, ‖ · ‖∞ has dual ‖ · ‖1 , while the dual of ‖ · ‖2 is
‖ · ‖2 itself.

Proposition 9: Assume that v ∈ V , where V is the ξ-ball
of any norm. Then a saddle point decision M ∗ ∈ M in (6),
maximizing (4), can be obtained by solving the optimization
problem

M ∗ ∈ arg min
M ∈M

‖y�M‖∗. (37)

�

7
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Proof: Again, for any givenM chosen by the maximizer, the
minimizer will select

v(M) ∈ arg min
‖v‖≤ξ

y�Mv = − arg max
‖v‖≤ξ

y�Mv.

Hence, again, the best strategy for the maximizer is minimizing
the norm ‖M�y‖∗. �

Once the saddle-point strategy M ∗ for the maximizer has
been established, the control strategy is decided as

v∗ = Φ(y) ∈ − arg max
‖v‖≤ξ

y�M ∗v.

C. Computational Issues

A polytope of matrices has elements of the form

M =
r∑

k=1

Mkαk

with Mk ∈ Rp×m for all k = 1, . . . , r and

α ∈ A =

{
α̂ :

r∑
k=1

α̂k = 1, α̂k ≥ 0

}
.

In general, it may be assumed that vector α ∈ A, where A is a
polytope. Some relevant cases might be of interest.

1) If the control is bounded by the Euclidean norm, then
problem (36) is a standard minimum-Euclidean-norm
problem.

2) If the control is bounded by the ∞ norm, then problem
(37) is a linear programming problem (in fact, ‖ · ‖∗ is
‖ · ‖1).

In the Euclidean norm case,

α∗(y) ∈ arg min
α∈A

∥∥∥∥∥
r∑

k=1

αky
�Mk

∥∥∥∥∥
2

(38)

must be computed and then, denoting by zk (y)
.= M�

k y,

Φ(y) = v(α∗) = −ξ
∑r

k=1 α
∗
k zk (y)

‖∑r
k=1 α

∗
k zk (y)‖2

. (39)

This control is not continuous at y = 0, and introduces chat-
tering on v (though not on u). Yet, a sampled data implemen-
tation may introduce ripples on u. To face this issue, how-
ever, the bound ξ > 0 introduced before can be rediscussed.
Indeed, it is possible to consider a set Vy , function of y, given
by ‖v‖2 ≤ ξ(y), where ξ(y) > 0 converges to zero as y → 0 (as
in Corollary 1). In particular, taking

ξ(y) = ζ

∥∥∥∥∥
r∑

k=1

α∗
k zk (y)

∥∥∥∥∥
2

, (40)

for some positive ζ, provides

Φ(y) = v(α∗) = −ζ
r∑

k=1

α∗
kM

�
k y. (41)

This choice introduces regularity in the system. Indeed, Φ is
continuous at y = 0 (Φ(0) = 0). As can be seen in simulations,
this control introduces a nice “smooth” behavior. Finally, note

thatα∗
k zk (y) is the smallest Euclidean norm in a polytope, hence

Φ(y) = v(α∗) is uniquely defined [19].
In the infinity norm case, (37) is considered, which becomes

α∗(y) ∈ arg min
α∈A

∥∥∥∥∥
r∑

k=1

αky
�Mk

∥∥∥∥∥
1

.

This problem can be solved via linear programming

min
α

1̄�z+ + 1̄�z−

s.t.
r∑

k=1

αky
�Mk = z+ − z−,

z+ ≥ 0, z− ≥ 0 (componentwise),

where 1̄� = [1 1 . . . 1].
In the case of linear programming, α∗ might be nonunique.

To solve ambiguities, the minimum-Euclidean-norm α inside
the set of optimal values can be taken. Assuming ‖v‖∞ ≤ ξ, the
minimizer decision is

v(α∗) = −ξsign

[
r∑

k=1

α∗
k z

�
k (y)

]
, (42)

where vector sign[·] is the componentwise sign function.
Remark 6: Function v(t) is not continuous in general (al-

though continuity of its integral value u(t) is assured anyway).
The resulting differential equations have discontinuous right
hand side and their solutions can be defined in the frame of
differential inclusions [3]. In the case of the ∞-norm, the pro-
posed control (42) produces a bang-bang type of strategy. This
may be of interest in some practical situations, for instance in
the case of fluid valves or locks. Valves are often actuated at a
constant opening speed v ∈ {−ξ, 0, ξ}, and this fits nicely with
the suggested control. 

VII. STATIC VERSUS DYNAMIC PLANTS

The proposed technique has been applied to static plants. If
the plant is dynamic, e.g., of the form

ẋ(t) = A[−x(t) + g(u(t))], y(t) = x(t),

with matrix A representing the dynamics, then the problem
of driving x to 0 could be faced in principle by means of a
static state-feedback control u = Φ(x), without the considered
integral action u̇ = v and v = Φ(x).

However, this control would not solve the considered tuning
problem. Indeed, since g(u) is unknown, a robust control func-
tion Φ would not be continuous in general [23], [24], [8], [21],
[30], [14]. The condition x(t) → 0 can be achieved because
the dynamics of the plant regularizes the signal, producing a
continuous x (roughly, because the transfer function from the
input g to x is strictly proper). Unfortunately, the main tuning
goal (i.e., driving u(t) to ū such that g(ū) = 0) would not be
accomplished if Φ is discontinuous.

In the case of static plants, the situation is even worse. The
min-max strategy requires a pure integrator. For instance, a

8
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proportional-integral action would not be suitable, because it
would introduce discontinuities in both u and y.

In addition, an integrator is necessary to have a zero steady-
state error (even for an affine plant y = Gu+ r with unknown
matrix G ∈ M nonsingular and unknown r).

On the other hand, introducing the integrator might be trou-
blesome if the plant approximately modeled as a static one is
actually dynamic (for instance, a singularly perturbed system
[21], [30]): the coupling between the integrator and the plant
dynamics might produce oscillations and even instability. In
this case, to preserve closed-loop stability, the scheme needs to
be “slow enough” compared with the plant dynamics, so that a
suitable time-scale separation between the tuner and the plant
dynamics is ensured. In practice, this is achieved by taking the
scaling function ξ(y) in Corollary 1 sufficiently small, which
means that the tuning speed is slow enough and the plant dy-
namics is not excited. A possible choice is

‖v‖ ≤ ξ(y) = ξ0‖y‖, (43)

with ξ0 > 0 small enough. We conjecture that taking ξ0 small
compared to the system time constants can ensure stability,
although we do not have a general proof so far (and we believe
it would not be a trivial achievement).

The conjecture is supported by the analysis of the scalar case.
In view of Proposition 3, under nonsingularity assumptions,
the proposed scheme would assure convergence to 0 of the
system ẏ = G(t)v for arbitrary time-varying G(t) ∈ M, since
the derivative (20) is negative. Assume that the scalar plant has
dynamics

τ ẏ = −y + g(u), (44)

with time constant τ > 0, and g is an unknown sector-bounded
scalar function g : R → R with derivative bounded as

g′(u) = D(1 + Δ), |Δ| ≤ η < 1,

which assures nonsingularity. In this simple case, it is not diffi-
cult to see that the min-max control subject to (43) is

v∗ = ξ0 |y|(−sign(y)) = −ξ0y.
Writing the derivative of (44) and assuming u̇ = v = v∗ yields

τ ÿ + ẏ − g′(u)v = τ ÿ + ẏ + ξ0D(1 + Δ)y = 0.

According to the theory of absolute stability for sector-bounded
nonlinearities [25, Ch. 10], this expression is equivalent to the
loop between the linear time invariant system having transfer
function

y =
ξ0D

τs2 + s+ ξ0D
ν
.= F (s)ν

and the operator ν = −Δ(t)y with |Δ| ≤ η. Stability holds if
the H∞ norm of the transfer function is bounded as

sup
ω≥0

|F (jω)| < 1
η
,

where j =
√−1. Note that 1/η > 1, so |F (j0)| = 1 < 1/η.

The condition is fulfilled at all frequencies ω > 0 (i.e., there are

no resonance peaks) provided that

ξ0 <
1

2Dτ
, (45)

because in this case the modulus |F (jω)| is decreasing. Hence,
condition (45) ensures absolute stability.

The application of this technique requires the knowledge of
an upper bound of the time constant τ . It is so far unclear how
to generalize this result, extending (45) to the multidimensional
case.

VIII. EXAMPLES

A. The Flow Problem

Reconsider the flow problem of Fig. 1, whose equations are

y = Bφ(u) − r̄,

where φ(u) is a vector of strictly increasing smooth functions
φ(u) = [φ1(u1) φ2(u2) . . . , φ6(u6)]�. The Jacobian is

Bdiag{φ′1(u1), φ′2(u2), . . . , φ′6(u6)} = BD

where D is a diagonal matrix with positive diagonal entries,
hence BD has full rank. The bounds on the derivatives are

0.5 ≤ Di ≤ 5, i = 1, . . . , 6.

The min-max strategy is very simple. For each y, consider

min
0.5≤Di≤5

‖y�BD‖ = min
0.5≤Di≤5

√√√√ 6∑
i=1

[y�B]2i D
2
i .

The minimum is clearly achieved at Di = 0.5 for all i:

y�BD∗ = 0.5y�B.

For simulation purposes, functions of the form

φi(ui) = αiui + βi arctan(ui)

have been considered, but any strictly increasing function would
work. The coefficients are

i 1 2 3 4 5 6
αi 12 8 6 6 5 5
βi 0.8 0.5 0.4 0.3 0.2 0.4

The target flow is

r̄ = [ 5 5 5 5 ].

The initial control value is

u(0) = [ 2 1 1 1 1 1 ]�,

which corresponds to the initial relative flow

y(0) = [ −1.0568 − 1.7644 − 4.0785 11.7854 ]�.

The transient achieved by adopting the strategy (42), with ξ = 5,
is represented in Fig. 5. The transient obtained by adopting
strategy (41), with ζ = 5, is reported in Fig. 6 and is smoother.
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Fig. 5. The transients of the relative flow y (top) and of the control u
(bottom) obtained by applying strategy (42).

Fig. 6. The transients of the relative flow y (top) and of the control u
(bottom) obtained by applying strategy (41).

B. The Heating System

Reconsider now the system in Fig. 3. As discussed, a quali-
tative implicit model of the form

uk = ψk (p, yk )

must be handled, whereuk = ak and yk = qk , k = 1, 2, 3. Func-
tionsψk (·, ·) are decreasing in p and increasing in yk . Moreover,

p = p0 − Ψ

(
3∑
i=1

yi

)
,

with Ψ increasing. The Jacobian of this inverse relation is of the
form

H(α, β, γ, δ, μ, ν) =

⎡
⎢⎣
α+ β α α

μ μ+ ν μ

γ γ γ + δ

⎤
⎥⎦ ,

where Greek letters denote positive quantities: α = − ∂ψ1
∂p Ψ′,

β = ∂ψ1
∂y1

, μ = − ∂ψ2
∂p Ψ′, ν = ∂ψ2

∂y2
, γ = − ∂ψ3

∂p Ψ′, δ = ∂ψ3
∂y3

.
Assuming a lower and an upper bound on all these variables,

0 < bl < bu , the Jacobian is robustly non singular. The mini-
mum norm problem for the maximizer is min ‖y�H�‖:

min
bl≤α,β ,γ ,δ,μ,ν≤bu

[α(y1 + y2 + y3) + βy1 ]
2

+ [μ(y1 + y2 + y3) + νy2 ]
2 + [γ(y1 + y2 + y3) + δy3)]

2 .

(46)

This is a standard linear-quadratic constrained problem. Once
the optimal is found, H∗ = H(α∗, β∗, γ∗, δ∗, μ∗, ν∗), the two
strategies can be simulated: (39), such that v = −ξ H ∗y

‖H ∗y‖ , and
the “more gentle” (41), such that v = −ζH∗y.

The reported simulations are based on the following assump-
tions and data. The input pressure p0 is constant and equal to
2.5 · 105 Pa. The output pressure p1 is constant as well and equal
to 1.1 · 105Pa. The pressure drop in the first pipe is modeled as

p0 − p = 2ρ
L

D
fV 2 = 2ρ

L

D
f

(
y1 + y2 + y3

S

)2

(47)

where ρ = 103 Kg/m3 is the fluid density, L = 5 m is the length
of the pipe,D = 0.03 m its diameter, f = 2.5 · 10−3 is a friction
coefficient, V is the fluid velocity, and S is the cross sectional
area of the pipe. The cross sectional areas of the three branches

are taken as S1 = S2 = S3 =
S

3
(thus yk = VkS/3) and the

pressure drop in each of the branches is assumed to be due to
the valve only (thus, the drop due to the friction in the pipes is
neglected). More precisely:

p− p1

ρ
=

1
2
σ

uk
V 2
k =

9
2S2

σ

uk
y2
k (48)

where 0 < uk ≤ 1 is the valve opening fraction and σ = 0.15
is a valve flow coefficient that models the pressure drop due to
the fully opened valve. From the (48), it follows that

uk =
9

2S2 σy
2
k

ρ

p− p1
=̇ψk (p, yk ) (49)

and from (47)

p = p0 − 2ρ
L

D
f

(
y1 + y2 + y3

S

)2

=̇p0 − Ψ

(
3∑
i=1

yi

)
.

By taking bl = 5 · 10−1 and bu = 5 · 103 , plant tuning amounts
to finding the minimizer H∗ of (46) for each measured out-
put vector y(t) = [y1(t) y2(t) y3(t)]� and applying the con-
trol (12), where v is chosen according to (39) or (41). The
valve opening fraction at time t = 0 is set as u1(0) = 0.8,
u2(0) = 0.1 and u3(0) = 0.3. The target flows for the three
pipes were set as q̄1 = 2.5 · 10−3m3/s, q̄2 = 4.1 · 10−3m3/s
and q̄3 = 1.5 · 10−3m3/s. Note that, if the target point is shifted
to zero, the actual output variables become yk (t) = qk (t) − q̄k .

The flow transients and the input (i.e., the valve opening
fractions) transients achieved by adopting the strategy (39), with
ξ = 2 · 10−3 , are represented in Fig. 7. The flow transients and
the input (i.e., the valve opening fractions) transients obtained

10
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Fig. 7. Heating system: the transients of the flows (top) and of the valve
opening fractions (bottom) obtained by applying strategy (39).

Fig. 8. Heating system: the transients of the flows (top) and of the valve
opening fractions (bottom) obtained by applying strategy (41).

by applying (41) with ζ = 10 are reported in Fig. 8. In both
cases, a transient of 800 s of the ZOH sampled system, with
sampling time of 0.1 s, is reported.

IX. CONCLUDING DISCUSSION

Plant tuning is often a frustrating operation because, due to the
lack of reliable models, it requires trial-and-error procedures. It
has been shown that, under suitable assumption on the Jacobian
of the unknown plant model, tuning can be performed by means
of an automatic procedure. Both an explicit and an implicit
model representation have been considered; in both cases, the
robust solution is based on a Lyapunov approach and exploits a
well known saddle point result for min-max games. It has been
also shown that constraints on both the input and the output vari-
ables can be easily dealt with, by means of a reparametrization
of the problem (in the case of input constraints) or by adopting
a different Lyapunov-like function, tailored so that its 1-level
set is arbitrarily close to the constraint set (in the case of output
constraints).

The case in which the Jacobian of the static function is in-
cluded in a known polytope has been mainly considered. How-
ever, cases of unstructured (norm-bounded) uncertainties can be
dealt with as well, by considering classes of convex bounding
sets more general than polytopes.

It is worth underlining that the proposed method can be
adopted, in general, for the solution of systems of nonlinear
equations, g(u) = 0, with guaranteed convergence. The simu-
lations proposed in the example section certify this fact, since
the value of u assuring the desired output was unknown before
running the simulation and has been found by means of the
proposed procedure. Clearly, global convergence is assured be-
cause a bound is known for the Jacobian, which is not in general
true when solving nonlinear equations.

The digital implementation of the scheme deserves further
investigation. Other interesting problems, not considered so far,
include the case in which the set M is either dependent on u,
M(u), or y, M(y), or can change due to different working
conditions or failures.

Since the problem can be formulated in terms of linear and
quadratic programming problems, having an efficient numeri-
cal solution, the problem dimensionality does not seem a cru-
cial issue. Hence, the proposed approach can tackle systems of
a very large scale, where automatic tuning can be a big deal.
We believe that the results of this paper can be applied to sev-
eral tuning problems, concerning for instance nonlinear flow
networks, power networks, and industrial plants. In fact, numer-
ical simulations have evidenced that the method can be applied
to larger plants (in terms of number of inputs and outputs) than
those presented here to illustrate the technique.3 Numerical tests
have also revealed that, sometimes, numerical issues may arise
due to ill-conditioning: although nonsingularity is ensured, the
Jacobian bounding polytope includes matrices that are close
to singularity. Such a phenomenon seems more likely to occur

3See http://users.dimi.uniud.it/˜franco.blanchini/plantuning.zip for testing
codes available on-line.
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when the number of inputs is equal to the number of outputs.
This issue is left as a future research direction.
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