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Abstract— In this communication, a very simple and extremely fast
algorithm is proposed for the pencil beam synthesis of linear sparse arrays
having uniform distribution of the excitations. The key idea is that of
selecting, as a desired pattern, a Gaussian function having small standard
deviation, so as to obtain a narrow beam. This immediately provides the
excitation density of the corresponding continuous array of infinite length.
Starting from this result and considering a linear array of length L with
N elements having equal excitations, an extremely fast and accurate
algorithm based on a density tapering approach is proposed that yields
suitable positions of the elements, in such a way as to provide an array
factor that well approximates the desired pattern. Numerical examples
are presented to show the effectiveness of the developed procedure, also
when compared with state-of-the-art algorithms. The proposed approach
does not consider the mutual coupling between the array elements,
but it is numerically shown that this effect produces quite acceptable
degradation on the synthesized patterns. Finally, it is shown that also
problems involving thousands of elements can be solved in a very accurate
way in few milliseconds.

Index Terms— Density tapering, Gaussian distribution, geometrical
synthesis, pencil beams, sparse antenna arrays.

I. INTRODUCTION

From the very beginning of the antenna history, the idea has
arisen of improving the radiation characteristics of a single radiator
through the use of a collection of identical elements, suitably located
and suitably fed. Soon, the theory of antenna arrays has gained
attention thanks to the increased awareness in the great advantages
they can provide [1]. A great number of synthesis techniques have
been devised for arrays of assigned geometry, based on both deter-
ministic and stochastic approaches [1]–[5]. Since the sixties of last
century, attention has been devoted to the problem of calculating the
optimal positions of the array elements [6]–[8]. It is clear, in fact,
that the possibility of modifying the element positions (geometrical
synthesis [9]) offers more degrees of freedom compared with the case
where the array geometry is assigned [2]. Thus, when synthesizing
also the element positions along with their excitations, fewer elements
are needed to achieve the same performances, or better performances
can be achieved with the same number of elements [10]. Of course,
in applications that require a uniform distribution of the excitations,
the only degrees of freedom available to the designer are those
concerning the element positions. However, this may be sufficient to
produce quite satisfactory performances, and allows a simpler feed-
ing network. For example, nonuniformly spaced linear arrays with
uniform distribution can reduce the maximum sidelobe level even
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much below the −13.46 dB threshold that characterizes uniformly
spaced uniformly fed linear arrays. Despite its remote origin, the
geometrical synthesis of linear arrays with uniform distribution of
the excitations is still a hot topic in the antenna community, and
many synthesis algorithms have been developed in the last years,
based either on stochastic procedures [11]–[14] or on deterministic
approaches [15]–[17].

In this communication, the problem of synthesizing a pencil beam
with a linear sparse array of uniformly fed elements is addressed.
To this aim, the so-called density tapering technique [15] is used
in conjunction with an original and clever choice of the function
representing the desired pencil beam, which is selected as a Gaussian
function whose standard deviation controls the beamwidth. It is
precisely thanks to this choice that convenient element positions are
determined in a very easy closed form, and the synthesis problem is
solved in a very easy, fast, and accurate way.

This communication is organized as follows. In Section II, the
formulation of the problem is presented, and the synthesis algorithm
is described in detail. Section III shows some numerical examples,
which validate the proposed approach also in comparison with
state-of-the-art algorithms. Finally, the conclusions are summarized
in Section IV.

II. FORMULATION OF THE PROBLEM

Given a Cartesian system O(x, y, z), consider a linear array of N
elements located at the positions z1, . . . , zN on the z-axis. The array
factor is given by

F(a; u) =
N∑

n=1

an exp( juzn) (1)

where a = [a1, . . . , aN ]T is the column vector of the complex exci-
tations, and u = k sin ϑ where k = 2π/λ, with λ the wavelength and
ϑ the angle from broadside (i.e., the elevation angle). As usual, in (1),
the variable u takes all real values. However, since −π/2≤ϑ≤π/2,
the values of u in the interval −k≤u≤k specify the visible pattern,
while the values |u|>k specify the invisible pattern.

The aim of this communication is that of solving the following
problem: given a linear array of assigned length La and consisting
of a given number N of elements having uniform excitation, find the
element positions in such a way that the corresponding array factor
[see (1), with an = 1, n = 1, . . . , N] be a pencil beam having a given
width. The proposed approach moves from the well-known possibility
of extending (1) to represent the radiation pattern of a linear antenna
of length L , characterized by an excitation density a(z), (|z| ≤ L/2),
obtaining

F(a; u) =
∫ L/2

−L/2
a(z) exp( juz)dz. (2)

The proposed solving procedure starts introducing a suitable desired
pattern Fd (u), representing a pencil beam with the prescribed
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width. Then, the procedure develops in the following three steps:
1) an excitation density a(z) is determined for −∞<z<+∞
[i.e., L = +∞ in (2)], which exactly produces the pencil beam
Fd (u) [i.e., F(a; u) = Fd (u)]; 2) from the assigned array length La ,
a finite “equivalent length” L(>La) to be used in (2) is determined
for the “continuous” array; and 3) the density tapering technique [15]
is applied to a(z) to determine the optimal positions zn of the array
elements. Due to our Gaussian choice, the positions zn resulted to
belong to the assigned interval [−La/2, La/2], as required, and
are calculated in closed form. This allows a dramatic reduction
of the computational burden. This innovative Gaussian approach is
described in detail in Sections II-A and II-B, and is summarized
in Section II-C.

A. Gaussian Approach

The key idea of this communication is that of using, as the desired
pattern Fd (u), a Gaussian function. The reasons are twofold: 1) by
selecting a sufficiently small standard deviation, it represents a pencil
beam of arbitrarily small width and 2) the Fourier transform of a
Gaussian function is another Gaussian function (up to a multiplica-
tive constant), having reciprocal standard deviation. This allows to
calculate immediately, and in closed form, the excitation density in
an array of infinite length that produces the required pencil beam.
In the sequel, it is shown that, thanks to this Gaussian choice, the
proposed synthesis procedure yields the optimal element positions in
closed form, and in an extremely fast, simple, and accurate way.

A Gaussian function of mean value 0 and mean-square deviation
σ is defined as f (u) = (1/σ

√
2π) exp(−u2/2σ 2). This function is

here normalized and used to represent the desired array factor as

Fd (u) = exp

(
− u2

2σ 2

)
. (3)

The mean-square deviation σ is used to control the “width” of Fd (u),
which is small for low values of σ . Precisely, imposing that the b-dB
beamwidth be BWdeg (degrees), using (3), σ must be

σ = k

√
10

b ln 10
sin

(
πBWdeg

360

)
. (4)

Equation (4) yields σ , and therefore specifies the desired pattern
in (3). Now, the excitation density a(z) defined for −∞<z<+∞
that (exactly) produces Fd (u) can be immediately calculated. In fact,
2πa(z) is the Fourier transform of Fd (u), that is, 2πa(z) =∫ ∞
−∞ Fd (u) exp(− j zu)du [3], and the Fourier transform of a

Gaussian function is a Gaussian function with reciprocal standard
deviation, up to a multiplicative constant. Precisely, it results

a(z) = σ√
2π

exp

(
−σ 2z2

2

)
. (5)

Therefore, substituting (5) into (2) with L = +∞ yields exactly
Fd (u), that is

Fd (u) =
∫ +∞
−∞

σ√
2π

exp

(
−σ 2z2

2

)
exp( juz)dz. (6)

Instead, assuming a finite length L , (2) yields the pattern

FL (u) =
∫ L/2

−L/2

σ√
2π

exp

(
−σ 2z2

2

)
exp( juz)dz (7)

which approximates Fd (u). On the other hand, the aim of this com-
munication is that of finding the optimal positions of a finite number
N of elements belonging to an array of assigned length La , rather
than an excitation density defined in a “continuous” array of length L .

However, the proposed algorithm determines the N optimal positions
z1, . . . , zN as functions of L within the interval [−L/2, L/2] (see
below). Thus, the length L is selected in such a way that these
positions belong to the interval [−La/2, La/2]. More precisely, L is
selected in such a way that z1= −La/2 and zN =La/2, and thus
zN −z1=La<L . In the Appendix, two relations [(16) and (19)] are
obtained between L and La , in correspondence of two different
criteria of choice of the element positions. Such relations allow
to easily calculate the appropriate value of L corresponding to an
assigned value of La in a very fast and accurate way. Once L is
calculated, the optimal positions zn are determined by the procedure
described in the next section.

B. Density Tapering Approach and Gaussian Distribution

Given a suitable finite length L for the excitation density
in (5), (7) provides an approximation of the desired pattern Fd (u).
In order to synthesize an antenna array of N elements, the interval
−L/2≤z≤L/2 is divided into N subintervals In = [sn−1, sn],
n = 1, . . . , N , where s0 = −L/2 and sN = L/2. The pattern FL (u)

in (7) can be expressed as follows:

FL (u) =
N∑

n=1

∫ sn

sn−1

a(z) exp( juz)dz (8)

where a(z) is given by (5). In order to approximate (8) with the
array factor in (1), the nth integral in (8) is approximated by the
term an exp( juzn) in (1). To do so, the variables an and zn need to
be suitably selected. Here, the following choices have been adopted:

an =
∫ sn

sn−1

a(z)dz (9a)

zn = 1

an

∫ sn

sn−1

a(z)zdz. (9b)

The choice (9b) for the positions zn is that suggested in [15] for
uniform distribution of the excitations. Note that, with this choice,
zn is the abscissa of the barycenter of the area located between
the diagram of a(z) and the interval In . The choice in (9b) can be
replaced by the simpler one

zn = sn−1 + sn

2
(9c)

which yields the middle point zn of In . The numerical results
in Section III have been obtained with the choice in (9b). Using
the choice in (9c), the results were essentially the same, so they are
not shown.

In order to obtain a sparse array with uniform distribution of the
excitations, we here adopt the so-called density taper (or space taper)
approach [7], [15]. Precisely, the points sn in (9a) are calculated
in such a way that all of the excitations an be equal to the area
A = ∫ L/2

−L/2 a(z)dz divided by N , that is, using (5)

an = a0 = 1

N

∫ L/2

−L/2
a(z)dz = 1

N
erf

[
σ L

2
√

2

]
(10)

where erf(x) = (2/
√

π)
∫ x

0 exp(−t2)dt is the error function. So, the
area of the region between the diagram of a(z) and the interval In
must be the same for all intervals. This area, equal to a0, is assumed
as the common value of all excitations.

With this approach, recalling (5) and (10), the points sn in (9a)
must satisfy the condition

σ√
2π

∫ sn

−L/2
exp

(
−σ 2z2

2

)
dz

= 1

2

[
erf

(
σ sn√

2

)
+ erf

(
σ L

2
√

2

)]
= na0. (11)
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Solving (11) for sn yields, recalling (10)

sn =
√

2

σ
erf−1

[(
2n

N
− 1

)
erf

(
σ L

2
√

2

)]
(12)

where erf−1 is the inverse of the error function. Adopting the
choice (9b) for the positions zn of the N array elements and using (5),
after some manipulations, one obtains

zn = N

σ
√

2π erf
[

σ L
2
√

2

]
[

exp

(
−σ 2s2

n−1

2

)
− exp

(
−σ 2s2

n
2

)]
. (13)

So, once the points sn have been calculated by (12), the required
positions zn can be found by (13) or, as stated above, by using the
simpler choice (9c), and the array factor can be calculated by (1).
Note that the quantities sn can be determined in closed form by (12)
thanks to the Gaussian choice in (3). With a different choice, the
computation of sn would require a much more complicated procedure
(see [16] for example), and therefore a much higher CPU time. It is
also to be noted that, due to the adoption of a finite length L for
the “continuous” array, and to the successive discretization of the
problem, the resulting beamwidth is expected to be larger than that
of Fd (u), which is controlled by the mean-square deviation σ . This
beam widening is negligible for large arrays (see the first example
in Section III), but has to be taken into account for smaller arrays
(second to fifth examples in Section III). Thus, in the latter cases,
the choice of σ by (4) is critical. However, it has been heuristically
found that introducing in (4) a 3 dB beamwidth BWdeg equal to the
desired one divided by 2 produces a pencil beam with the desired
beamwidth. That is, in (4), it can be set BWdeg = BWdesired

deg /2 with
b = 3. This simple rule of thumb has been adopted for Examples
2–5 and has provided the patterns in Figs. 3–6.

C. Algorithm

To conclude, the problem and the synthesis algorithm can be
summarized as follows. Given the b dB beamwidth BWdesired

deg of
a desired pencil beam, the number N of the array elements, and the
assigned length La of the array, the developed synthesis procedure
consists in evaluating σ with (4), finding the length L by solving
(16) or (19) in the Appendix, calculating the points sn with (12), and
calculating the positions zn , n = 1, . . . , N , with (13) or (9c).

The next section presents five numerical examples which prove the
validity of the proposed algorithm.

III. NUMERICAL EXAMPLES

In this section, some numerical examples are presented, to validate
the proposed synthesis algorithm. First, a sparse array composed by
a great number of elements is synthesized, which radiates a very
narrow pencil beam. This represents the setup for which the proposed
approach has been thought. Arrays involving a great number of
elements (of the order of hundreds) can have satellite applications,
and are expected to be used in future 5G communication networks.
Then, after an accurate analysis of the previous literature concerning
the methods of pencil-beam synthesis of sparse arrays with uniform
amplitude distribution, the most significant examples have been
selected. For each example, the algorithm presented in Section II
has been applied setting the parameters b and BWdeg in such a way
as to obtain the same beamwidth of the reference pattern, and an
array with the same number of elements N and the same assigned
length La has been considered. The pattern synthesized with the
presented algorithm exhibited slightly lower maximum sidelobe levels
in most of these comparison examples, being equal the beamwidth,
the array length, and the number of elements. Moreover, it is also

Fig. 1. First example: synthesis of a very narrow beam pattern. Magnification
in the window illustrates the pattern behavior for 0° ≤ ϑ ≤ 5°.

Fig. 2. First example: element positions on the z-axis (red dots) and density
distribution a(z), z ≥ 0 (continuous line).

to be noted that in certain cases (Figs. 4 and 6) the pattern behavior
in the entire sidelobe region was considerably improved with the
use of the presented algorithm. Another major advantage offered
by the proposed algorithm, with respect to the reference ones, is
its simplicity, which allows to perform the synthesis essentially in
closed form, and in a dramatically low computational time. On the
other hand, the developed procedure is suitable for synthesizing only
pencil beams and in its present form cannot be used to shape the
beam or to control the sidelobe pattern.

Although the proposed method has been developed for the array
factor in an ideal environment, an accurate analysis of the mutual
coupling effects has been carried out supposing to use half-wave
dipoles orthogonal to the z-axis and located at the positions zn .
In each of the considered examples, the simulated radiation pattern
in the presence of mutual coupling has some differences with respect
to the ideal case. However, such differences are significant only near
the mainbeam direction.

A. First Example: Narrow Beam

Consider the synthesis of a linear sparse array with N = 1001
elements and length La = 500λ. The standard deviation σ of the
desired pattern Fd (u) is chosen in such a way as to obtain a −20 dB
beamwidth of 0.5°. Equation (4) with b = 20 and BWdeg = 0.5
yields σ = 0.0128 rad/m. The synthesized array factor is shown
in Fig. 1. The element positions and the excitation density a(z) are
shown in Fig. 2. Note the typical elements’ distribution produced
by the density taper approach, with the elements more densely
packed where the excitation density is higher, that is, in the central
part of the array. The mean distance between adjacent elements is
0.50λ, with minimum value of 0.20λ (for the more central elements)
and maximum value of 21.95λ (for the outermost elements). This
problem has been solved in 3.6 ms on a laptop with 8 GB of RAM.
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Fig. 3. Second example: synthesized array factor with the proposed Gaussian
approach for a 10-element array, in comparison with the results of three
previous methods and of the case involving the mutual coupling.

The same narrow beam has also been synthesized by using the
method in [16], but using the proposed Gaussian function as the
objective array factor mask. This has allowed to solve in [16, eq. (16)]
in closed form, instead of using the combined technique proposed
in [16], which is based on the Gauss–Kronrod quadrature formula
and the Newton–Raphson root-finding method. This has allowed to
dramatically reduce the computational burden and the computational
time without modifying the results. Fig. 1 shows that, in the two
cases, the obtained patterns exhibit essentially the same sidelobe level
and beamwidth. The array synthesized with the method in [16] is
slightly larger (La = 515.18λ, with mean distance between adjacent
elements of 0.51λ, minimum and maximum value of 0.20λ and
25.26λ for the more central elements and for the outermost elements,
respectively). The computational time is 39.2 ms on the same laptop,
against the 3.6 ms of the presented algorithm. In this regard, it is
interesting to note that the method in [16] has been declared to
be faster than the global optimization technique developed in [18]
and considerably faster than an evolutionary procedure based on the
genetic algorithms [19].

B. Comparisons With Examples From Previous Literature

In the following, since the optimal element positions zn are
symmetrically placed with respect to the array center, only the
positions with positive abscissas are reported, and are indicated by pn
(the complete set of abscissas zn is immediately found by symmetry).

1) Second Example: In [20], a particle swarm optimization (PSO)
algorithm was used to synthesize a 10-element linear array of length
La = 4.3λ, with suppressed sidelobes in the regions [−90°, −8°]
and [8°, 90°]. The results were compared with those obtained with
the quadratic programming method (QPM). The obtained array
geometries were given in [20, Table I] and are not reported here. The
obtained array factors are shown in Fig. 3 for comparison purposes.
The same numerical example was also solved in [13] with an ant
colony optimization (ACO) algorithm, obtaining the array factor in
Fig. 3 (and the positions listed [13, Table II]). According to the
rule introduced at the end of Section II-B, the value of σ has been
evaluated by setting in (4) b = 3 and BWdeg = 7.8, which is half the
desired beamwidth. The following positions (normalized to λ) were
obtained: p1 = 0.1979, p2 = 0.6023, p3 = 1.0351, p4 = 1.5278,
and p5 = 2.1500 (with minimum and maximum distance between
adjacent elements of 0.4044λ and 0.6222λ, respectively). The array
factor is shown in Fig. 3 in red. Table I compares the maximum

TABLE I

SECOND EXAMPLE: MAXIMUM SIDELOBE LEVELS (IN DECIBELS)
OF THE ARRAY FACTORS IN FIG. 3

TABLE II

THIRD EXAMPLE: SYNTHESIZED ELEMENT POSITIONS (NORMALIZED

TO λ) FOR THE 32-ELEMENT ARRAY (PROPOSED METHOD)

Fig. 4. Third example: comparison of the normalized array factors obtained
with the proposed Gaussian approach and with the ACO algorithm in [13],
for a 32-element linear array.

sidelobe levels obtained with the four methods. All the above patterns
are ideal array factors. Fig. 3 also shows the radiation pattern (red
dotted line) obtained by accurately taking into account the mutual
coupling effects, for an array of equally fed half-wave dipoles located
at the synthesized positions and orthogonal to the z-axis.

2) Third Example: The third example is directly taken from [13],
where the ACO algorithm was used to synthesize a 32-element linear
array of length La = 16.3λ. The positions obtained by using the
proposed method, with b = 3 and BWdeg = 2.1, are listed in Table II
(and resulted in a minimum and a maximum distance between
adjacent elements of 0.4326λ and 0.7719λ, respectively), while those
obtained with the ACO algorithm are listed in [13, Table 5]. Both
the corresponding array factors are shown in Fig. 4, and exhibit
a maximum sidelobe level of −18.10 dB (proposed method) and
−17.53 dB (ACO). Thus, in this example, the proposed approach
gave a slightly better performance in terms of maximum sidelobe
level, but a considerable pattern improvement in the entire sidelobe
region.

3) Fourth Example: The fourth example refers to the problem of
synthesizing a 31-element array of length La = 9λ. This problem was
solved in [21] with a Legendre series expansion, and in [11] using the
differential evolution algorithm (DEA). Reference [11, Table 2] lists
the element positions obtained with both methods, whereas Table III
gives the positions obtained with the approach proposed in this com-
munication, applied setting b = 3 and BWdeg = 2.08. The minimum
and the maximum distances between adjacent elements were 0.4768λ

and 0.9485λ, respectively. Fig. 5 shows the three normalized array
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TABLE III

FOURTH EXAMPLE: SYNTHESIZED ELEMENT POSITIONS (NORMALIZED
TO λ) FOR THE 31-ELEMENT ARRAY (PROPOSED METHOD)

Fig. 5. Fourth example: comparison of the normalized array factors obtained
with the proposed Gaussian approach, the algorithm proposed in [21], and the
DEA algorithm proposed in [11], for a 31-element linear array.

TABLE IV

FIFTH EXAMPLE: SYNTHESIZED ELEMENT POSITIONS (NORMALIZED

TO λ) FOR THE 24-ELEMENT ARRAY (PROPOSED METHOD)

factors. With regard to these patterns, it is interesting to note that,
although the maximum sidelobe levels obtained with the Gaussian
approach (−18.89 dB) and with the DEA algorithm (−18.75 dB)
are similar (a higher value of −16.88 dB was obtained in [21]),
the Gaussian approach exhibits its higher sidelobes near the end-fire
direction. However, when a suitable element pattern is adopted, the
sidelobes near the end-fire direction can be lowered, thus resulting
in a substantial improvement of the power pattern synthesized with
the proposed method.

4) Fifth Example: The fifth example is taken from [16], where an
analytical approach based on the concept of auxiliary array factor
was developed. Reference [16, Table 1] lists the element positions
obtained for a 24-element uniformly fed aperiodic array of length
La = 9.725λ, giving the array factor in Fig. 6, which also shows the
normalized array factor obtained with the here proposed Gaussian
approach, applied setting b = 3 and BWdeg = 3.9. The maximum
sidelobe levels were −19.84 dB (method in [16]) and −19.71 dB
(proposed method). However, the global behavior of the sidelobe
pattern is considerably improved when using the proposed approach.
Table IV lists the optimized element positions. The minimum and
the maximum distances between adjacent elements were 0.3342λ

and 0.6606λ, respectively.

Fig. 6. Fifth example: comparison of the normalized array factors obtained
with the proposed Gaussian approach and with the algorithm proposed in [16].

IV. CONCLUSION

In this communication, a fully deterministic method was presented
for the synthesis of uniformly fed and nonuniformly spaced linear
arrays radiating pencil beams. The proposed synthesis procedure uses
a density tapering approach in conjunction with a proper choice of the
function representing the desired pencil beam. The main novelty with
respect to previous literature is that this function is a Gaussian dis-
tribution whose standard deviation is used to control the beamwidth.
It is this choice that allows to keep the synthesis procedure extremely
simple. As a further advantage, all of the synthesis steps can be
implemented in closed form. The only exception is the solution
of (16) and (19), which required an iterative technique (we used the
bisection method). However, also these equations are solved in real
time with extreme accuracy. As a result, the computational times are
extremely low (of the order of milliseconds), also when thousands
of array elements are involved. Some significant numerical examples
showed the improvement that the presented method can provide in
comparison with state-of-the art results. As an important remark, it is
to be observed that the proposed method yields its best performances
for antenna arrays composed by a very great number of elements
which radiates very narrow beams, which are typical in satellite
applications and are expected to be used in future 5G communication
networks. Finally, the results showed that the synthesized patterns
provided by the presented method are not strongly affected by the
mutual coupling effects.

APPENDIX

DETERMINATION OF L FROM La

A. Case of Array Elements in the Barycenters

With the choice (9b), the position z1 of the first element is given
by (13) for n = 1. On the other hand, we impose the condition
z1= −La/2 (see Section II-A) and s0 = −L/2 (see Section II-B).
Substituting the latter two relations into (13) with n = 1 yields the
following relation between L and La :

La = 2N

σ
√

2π erf
[

σ L
2
√

2

]
[

exp

(
−σ 2s2

1
2

)
− exp

(
−σ 2L2

8

)]
. (14)

On the other hand, setting n = 1 in (12) yields

s1 = −
√

2

σ
erf−1

{(
1 − 2

N

)
erf

[
σ L

2
√

2

]}
. (15)
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Note in (15) that s1<0, as it is assumed that N>2. Substituting (15)
into (14) yields

La = 2N

σ
√

2π erf
[

σ L
2
√

2

] ·
[
exp

(
−

{
erf−1

[(
1− 2

N

)
erf

[
σ L

2
√

2

]]}2
)

− exp

(
−σ 2L2

8

)]
. (16)

Before solving (16) for L , it is necessary to show some helpful
properties of it. Precisely, let us denote with g(L) the right-hand
side of (16). It can be shown that, for any (positive) σ and N , the
function g(L) is increasing and bounded above. In fact, the following
can be verified.

1) For any L > 0, g(L) yields the length La= −2z1, where z1 is
given by (13).

2) z1 is the abscissa of the barycenter of the region V1
located between the diagram of a(z) in (5) and the interval
I1 = [−L/2, s1], where s1 is given by (15).

By (15), the derivative of s1 with respect to L is given by

ds1

d L
=−

(
1− 2

N

)
exp

(
−σ 2 L2

8

)

2 exp

{
−

(
erf−1

[(
1− 2

N

)
erf

(
σ L
2
√

2

)])2
} <0. (17)

Thus, when L increases, the quantity s1(<0) decreases. So, both
extreme points of the integration interval I1 decrease, that is, they
move toward left along the z-axis. As a consequence, the region V1
moves toward left while remaining below the diagram of a(z). Hence,
the abscissa z1 of the barycenter of V1 decreases, and therefore
the length La = −2z1 increases. We can conclude that g(L) is an
increasing function. Furthermore, for L → +∞, g(L) converges to

(La)sup = 2N

σ
√

2π
exp

{
−

[
erf−1

(
1 − 2

N

)]2
}

(18)

which therefore is the minimum upper bound of g(L). From the
above demonstration, the right-hand side of (16) takes all values in
the interval [0, (La)sup[. As a consequence, given any value of La
such that 0<La<(La)sup, (16) has a unique solution, which can be
accurately evaluated numerically. Many numerical tests showed that,
by using the bisection method, the solution L of (16) is found in real
time with excellent accuracy.

B. Case of Array Elements in the Middle Points

With the choice (9c), the position of the first element is
z1 = (−L/2 + s1)/2, and since z1 = −La/2, it results
s1 = −La + L/2. Substituting the latter in (12) for n = 1, after some
manipulations, the following equation is obtained in the unknown L :

L = 2
√

2

σ
erf−1

{
N

2 − N
erf

[
σ√

2
(−La + L/2)

]}
. (19)

This equation has a unique solution. In fact, since the function erf(x)

assumes all values in the interval (−1, 1), the argument in brace
in (19) must belong to such interval, and consequently

Lmin < L < Lmax (20)

where

Lmin = 2La − 2
√

2

σ
erf−1

(
N − 2

N

)
(21a)

Lmax = 2La + 2
√

2

σ
erf−1

(
N − 2

N

)
(21b)

with N>2. On the other hand, since the function erf(x) is increasing,
so is its inverse erf−1(x). But, being N/(2 − N) < 0, the argument

of erf−1 in (19) is decreasing, and hence also the right-hand side
of (19) is decreasing as a function of L . Moreover, it tends to +∞
when L → L+

min and to −∞ when L → L−
max. Instead, the left-hand

side in (19) (L) is trivially increasing. Thus, (19) admits a unique
solution. Again, we numerically verified that a possible, very fast,
very accurate, and easy way to evaluate such a solution is that of
using the bisection method.
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