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1 Introduction

In a well known work Brezis [5] proved the following result.
Theorem 1.1. Letg > 1.Ifu € L;’o C(]RN) is a distributional solution of
Aus|u/Tlu on RN, (1.1

thenu <0 a.e.inR".
In particular this implies.

Theorem 1.2. Letq > 1.Ifu e L (RN) is a distributional solution of

loc
Au=uT'u onR", (1.2)

thenu =0 a.e.in RV,

The interesting point here, besides the quite general functional framework, is that no assumptions on the be-
havior nor on the sign of the possible solutions of (1.2) are made. Brezis’s technique is based on the following
form of Kato inequality (see [5, Lemma A.1]),

u,f € Lj,o(Q) such that Au=f, then Au® > sign*(u)f,

and on a construction of a suitable barrier function. These tools are typically second order in nature, so,
in general it is hopeless to use them when dealing with problems of order higher than two. Comprehensive
results in the Brezis’ spirit for quasilinear elliptic inequalities of second order on RY have been obtained in a
series of papers by Farina and Serrin [15, 16] and the Authors [10-12]. In addition these results are also studied
in the subelliptic framework [12, 13] and in the Riemannian setting [4].

These results suggest a general natural problem for higher order elliptic equations and inequalities.
General problem: What are the necessary conditions that guarantee the existence of non trivial solutions for
higher order nonlinear elliptic coercive® problems on RN?

The results for the second order case cited above, altogether are proved in the spirit of [27]. For higher
order problem the beneficial of a systematic approach for studying coercive elliptic problems is still missing.
The aim of this paper is to give a contribution to develop a possible unitary method for higher order elliptic
equation and inequalities of coercive type and it represents a first step in this direction.

In concrete situations for fourth order semilinear elliptic equations with simple power nonlinearities, the
problem is connected to find a so called critical exponent. Here, by critical exponent we mean the existence of
q"(N) > 1, depending on the dimension N such that there are no non trivial solutions for g < ¢"(N) and there
exist non trivial solutions for g > g"(N). Then from Theorem 1.2 we can say that for equation (1.2) the critical
exponent is g"(N) = oo,

Let us consider the fourth order analogue of (1.2), that is

-Au=uT'u onR"Y, g>1. (1.3)

It is well known that these kind of problems have strong connections with differential geometry [7, 8],
higher order Schrédinger equations [20, 24, 31] and models for suspension bridges [17]. In this regard see [19]
for further results on related applications of polyharmonic elliptic equations.

Looking at solutions of (1.3) in the natural global space H? (RN), it is clear that for g < %—’_’Z‘ the only
solution u is given by u = 0 a.e. in RM. of course, the interesting problem is when u does not belong to the
global space H? (RN), so there is no a priori knowledge of the behavior at infinity of the solutions.

1 We call a problem coercive if its formal Euler-Lagrange functional is coercive in its natural functional framework.
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Notice that if in (1.3) we have g = 1, it is easy to see that the equation admits nontrivial solutions in
dimension N = 1, and hence in any dimension.

It is well known that the literature on nonlinear higher order coercive equations is far from complete.
However there exist notable results due to Bernis [2] that for some particular biharmonic problem reads as
follows.

Theorem 1.3. Letu € HIZOC(RN) N LT Y RY) be a solution of (1.3). I g(N - 4) < N + 4, thenu = O a.e. in R".

loc

A first immediate observation is that from [2] it appears that for (1.3) the Sobolev exponent 11:%2 is critical (in

our sense) when N > 4. However, and this is the main motivation to write this paper, this is not true.

Even if our main interest is in possible changing sign solution of (1.3), we present here a simple result
concerning solutions of (1.3) which do not change sign. Its proof relies on our integral representation results
obtained in [6] and it serves as a motivation to focus our attention on the possible sign changing solutions.

Theorem 1.4. Letu < L?O C(RN) be a distributional solution of (1.3). If u does not change sign, then u = 0 a.e.
inRN,

More generally we have the following unexpected result for the equation (1.3).

Theorem 1.5. Letu € L{ Cl (R") be a distributional solution of (1.3). If

N=1,...,7, and g>1,
or (1.4)
N=8 and 1<q=<gqy,

where
N?+2N-28+4V4—-2N+2 N2
N2 - 10N + 20 ’

qn = (1.5)

thenu = 0 a.e.inR".

The above result shows that within the class of distributional solutions, if N < 7 then there is no critical
exponent (i.e. g"(N) = o0), while if N > 7 we have gy > %—fﬁ We believe that the value of gy is not sharp and
it can be improved. Indeed we can state the following conjecture.

Conjecture. For any N > 1 and q > 1 the only solution of (1.3) is given by u = O a.e. in RN,

The methods used in this paper apply to more general problems than (1.3). More precisely, some of our
results are still valid for distributional solutions of the double inequality

gw) > -A%u=>f(u), on RY, (cPf).
where f, g € 4(R). Throughout this paper we shall denote by H the following function

f(Het, fort=0,
H(t) := (1.6)
g(Ot, fort<oO.

In what follows we shall deal with the autonomous case. The non-autonomous one, thatis f = f(x, u) and
g = g(x, u) can be studied in similar way. However, for sake of simplicity we limit ourselves to the autonomous
case.

We have the following result.

Theorem 1.6. Let f, g € G(R) and let H be defined by (1.6). Assume that

H(t) > cymin{|t|7*?, |tP*'}, Vte R, forsome g=p>1 1.7)
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with cy > 0. Let u be a distributional solution of (sPs) such that u € L?OC(]RN ),2 < s < +ooand f(u), g(u) €
s’ N
loc(R )

IfFN=1,...,70orN=>8and1 < q < qy with qy defined in (1.5), thenu = 0 a.e. in RN,

Notice that (1.7) is an assumption on the behavior of f and g for nonnegative and nonpositive values of the
independent variable, respectively. No assumptions are required on f and g for negative and nonpositive
values of the independent variable.

Hypothesis (1.7) allows us to handle nonlinearities that behave differently for positive and negative values
of the independent variable or behave differently at the origin and at infinity.

Theorem 1.6 contains several Liouville results for the equation

-A’u=f(u) on RN,

For instance if f(t) = |t 1t + |t|P‘tforany p > 1 = 5 > 0, or f(t) = tel'l, or f(t) = sinh(t), then the above prob-
lem has only the trivial solution. Notice that as byproduct, we can deduce that the defocusing Schrédinger
equation

ive+A%v+v|Tlu =0,

has no nontrivial standing wave solutions of the form v(¢, x) = e"""ztu(x) with w € R. See [31] and reference
therein for further results on this equation, and its connection with several models from physics.

A common feature of the above results is that we do not require any assumption on the behavior of the
solutions at infinity. We also point out that for higher order coercive problems Kato’s inequality does not hold
and in general is not possible to use comparison principles. Thus the main idea to study problems like (1.3)
is first to obtain suitable a priori bounds on the various quantities involved in the analysis. These estimates
yield a Liouville result for g running in the range of values of Bernis’ resulti.e. 1 < g < %—fz

To improve this result, i.e. going above the Sobolev exponent for equation (1.3), we develop some ma-
chinery by demonstrating functional inequalities related to some quadratic forms. By using the positivity of
a particular quadratic form along the solutions of our problems, and taking into account of suitable a priori
estimates, we are able to achieve our goal. The involved argument is quite intricate and this is the reason why
we begin illustrating the method for the second order prototype equation (1.2) in Section 2.

In Section 3 we study inequalities related to (1.3), obtaining some information on the sign of the possible
solution of (1.3). For analogous results see also Section 7.2.

In Section 4 we discuss the different notions of solutions and justify why the study of solutions of (sPy)
is reduced to the study of

—uA’u=h, on RN, (Pp)

where h € L}, (R").

In Section 5 we develop a number of functional inequalities and positive quadratic forms.

Section 6 is devoted to prove some a priori estimates on the solutions of our problems, which combined
with the results of Section 5 yields the Liouville theorems.

Section 7 contains some applications of the results obtained in the preceding sections. In Section 7.1 we
prove a special representation formula of u?, being u a possible solutions of (P). Section 7.2 deals with some
results on the sign of possible solutions of the problem under consideration and their Laplacian. In Section 7.3
we apply our Liouville theorems to the uniqueness problem.

Appendix A recalls a known result on the integral representation of the solutions of some higher order
elliptic equation.

Notation. By will denote the Euclidean ball of radius R centered at the origin By := {|x| < R}. By wy we
denote the measure of the unit Euclidean ball, wy = |B1|.

Throughout this paper ¢p; : R — [0, +oo[ stands for a standard cut off function, that is ¢; is a smooth
function on R such that ¢p;(t) = 1 for |t| < 1, ¢1(t) = 0 fot |t| = 2 and O = ¢4 (t) < 1. We set

$r() := P1(]x| /R), (1.8)
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the support of ¢y is contained in B,z = {|x| < 2R}, while the support of any derivative of ¢ is contained in
Ag :={R < |x| < 2R}.

Furthermore without loss of generality we shall assume that ¢y is an admissible test function, that is for a
fixed p > 1 there exists ¢; > 0 such that

Vil A1 [P VA, P
P h ¢y

Indeed if ¢; is not admissible, then it follows that for large v, ¢] is admissible.

Finally, in what follows c stands for a positive constant which can vary from line to line and it is indepen-
dent from the solution u and R. Writing c; we always mean a positive constant depending only on the test
function ¢4, thatis c; = c1(¢b1).

For N > 4, by Cy we denote the normalization positive constant in the relation

<C1,

<cq, <cq.

LS LS S

A% [x|*N = Cybo, (1.9)

thatis Cy := %F(#)H’N”.
Finally, in what follows an integral without the indication of the domain of integration, is understood on
the whole space RY.

2 A detour on the second order case: the quadratic form approach

The purpose of this section is to illustrate a specific method for handling nonexistence theorems for a class
of second order coercive equations on R". For simplicity we restrict our attention to smooth solutions and to
the simple prototype equation

Au=u""u, on R

The general scheme of our method develops in several steps.

Step 1: Functional identity

Lemma?2.1. Letu € %I(RN), Qe %”02 (RN) andv € %”Z(RN). We have

/ (Vu - V(uve)) =/\Vu\zwp—%/uZAV(;HE(uZ,v, ), (2.1

where 1
EW?,v, @) :=—/u2 (Vv-V(p)—E/uzvmp.

S0

In particular if ¢ = ¢g, with ¢y defined in (1.8), and for k = 0, 1, < cyR* Nk holds on A, then

[E62,v, 9| < cvc1(¢1)R“"2]£\u|2. 22)

R

Proof. By computation, we get

/Vu-V(uv<p)=/\Vu|2v<p+/(Vu-Vv) u(p+/(Vu-V(p) uv.

Next an integrating by parts gives,

Vu-Vvyup=- [ (Vu-Vv) up - uzAwp— uz(Vv-Wp),
/ / Jreave-|
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that is 1 1
/(Vu-Vv) uq)=—i/u2Aqu—j/u2(Vv-V<p).

Analogously we obtain
1 2 1 2
/(Vu-Vgo) uv=—§/u A(pv—i/u (Vv-Vo).

Gluing together these identities, we deduce (2.1).
In order to prove (2.2), we first observe that the domain of integration of the functional E is given by
supp(Vg) = Ag. Next by using the hypotheses on v, we get

1
‘E(uz, Vv, Q) s/u2 [Vv| || + 5 /u2 lv||Ap|
AR AR
sc‘,R“’N’lclR’l/u2 + %CVR”"NclR’Z/uZ.
AR AR

O

We notice that as direct consequence of Lemma 2.1 we deduce that if v € %Z(RN) is nonnegative and
superharmonic, then for any nonnegative ¢ € ‘502 RM), the quadratic form,

ue € RY) — / (Vu- V(uve)) - EW?,v, ),
is positive.
Step 2: A functional inequality

In what follows we set r := |x| and for € > O,

Te i= (6'2 + |X|2)1/2 _ (62 " r2)1/2,
and for x € RN, €>0anda € R, we define
1 a-N
Ve(X) = ve(|x]) = ve(r) = ————7 =1¢ .

(€2 +12)"5"

We have that -Ave = 0 for N > a = 2. Hence, by choosing v = v¢ in Lemma 2.1, we obtain.

Lemma2.2. LetN > a= 2. Letu € € (RY), and let Qe % (RY) be nonnegative. We have

/(Vu-v(u rN(’i"‘)) 2/\Vu|2 rNi_a +E(u2,r2’N,<p), (2.3)
€ €

and for ¢ = ¢y, the estimate (2.2) holds.

Remark 2.3. Ifu ¢ ‘Kol(RN), then taking @ = ¢y with R large enough, it follows that E(u?, v, ¢) = 0. In
addition for any N = a = 2 the quadratic form

ME%OI(RN)H/<VM'V Al,{a)
Te

is positive.

Step 3: A priori estimate on the solutions
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Lemma2.4. Letq > 1 andletu c CKZ(IRN) be a solution of

Au=ul"tu, on RY.

1/2 1/q+1 ,
(][ uz) < (][ |u|q+1) < cR @1, (2.4)
BR BR

Proof. Multiplying the equation by u¢y and using Young inequality we obtain,

[ u == [ (vu-Stp) == [ 10 r - [u(Tu-ven

2
s—/|Vu|2¢R+§/\Vu|2¢R+i/u2|v$§| .

By Holder inequality with exponent x := (g + 1)/2, it follows that

/| 7 ¢ 5,/ |V¢R\ </| W )1/x </WR|2X/>1/XI
ﬁ/—l ’

which in turn implies

Then

/‘u‘qﬂ /|u|q+1 < 2—x |V¢R| ClRN—Zx"

A simple application of Jensen inequality gives (2.4). O

Step 4: A Liouville theorem

Theorem 2.5. Letq > 1 andletu € % *(RY) be a solution of
Au=u/u, onRY.

Thenu = 0 a.e. in R".

Proof. Let N = a = 2 and ¢ = ¢pg. Multiplying the equation by U,N%» from (2.3) we obtain

o2 [ of - [ (v vufo) @s)

/\vm B 1N, )

Choosing a = 2, from (2.4) and (2.2) it follows that )E(uz, r& N, (p)‘ — 0as R — oo. Therefore by letting
R — +o0in (2.5), we obtain

1 1
02_/|u|4+1m=/(Vu-V(urN ) /\Vu| e =0
€ €

This last inequality implies the claim. |

3 Some simple results on biharmonic problems

Theorem3.1. Let g > 1 andletu € L;IO C(]RN) be a distributional solution of

~Auzxul? onRM. (1)
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1. Ifg(N-4)<N,thenu=0ae.inR".
2. Ifuis nontrivial, then u < 0 a.e. in RY and Au = 0 in distributional sense.

Theorem 3.2, Letq > 1 andletu e L?O C(RN) be a distributional solution of
~Au=1|u? onRM. (3.2)

Ifgq(N-4)< N, thenu=0a.e.in RM.

Ifue L%(Cq"l)/l*(RN) and1 < q < §*4, thenu = 0 a.e. in RY.

Ifuis nontrivial then u < 0 a.e. and Au = 0 in distributional sense.

Ifg > N 7» then (3.2) has nontrivial solutions (which is negative and subharmonic) in RN,

Ifg> %—j then (3.2) has nontrivial smooth solutions (which is negative and subharmonic).

IR

Notice that the above theorems imply that problems (3.1) and (3.2) do not admit nontrivial nonnegative solu-
tions.
From Theorem 3.1 and Theorem 1.1 we can conjecture that if u is a solution of

“Auzu? 'y onRY (3.3)

then u < 0 a.e. in R". However this conjecture is false as the following simple example shows. Let u :=
1- xl/ 24. The function u changes sign, it is superharmonic and -A%u = 1. Let ¢ > 1 and considering the
function f(t) = |¢|7° Lt.Since 1 = u and f is increasing, we get that -A%u = 1 > |u|q"1 u. This example shows
that the conjecture is false even if we assume a sign on the Laplacian of the solution. Moreover, the above
example also shows that a Kato inequality of the type

u,f € L,.(Q) such that —A’u=f, then —A’u* > sign*(wf, (3.4)

in distributional sense, cannot hold. Indeed if (3.4) holds, then u* solves (3.1), and by Theorem 3.1 we obtain
= 0, and this contradicts our counterexample.
Further remarks on the sign of the solutions of biharmonic inequalities and on the sign of their Laplacian
will be considered in Section 7.2.
Proof of Theorem 3.1. Let u be a distributional solution of (3.1). Multiplying by a test function ¢z as in (1.8),

we have
/\u\q¢R<—/uA dr < /\uHA or| </|u|¢1/q|A 1¢/’§|

1
7

/ ulgp 14°¢gI” "’R' / uliy | R4V (3.5)
AR R

<
o
Q=

Therefore, we have
/ ul? < c; R4, (.6)

][BR ul < (][BR |u|‘1) " <R, (.7)

Proof of 1. If N < 4, from (3.6), by letting R — +oo it follows that u = O a.e. in RY.LetN > 4and q < N/(N-4).
From (3.6) by letting R — +eo, we deduce [pn [u|? < ¢y < oo. This implies that

lim/ \u|q =0
R
AR

which in turn implies that
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which plugged into (3.5) yields |u|? = 0 a.e. in R".

Proof of 2. Let N > 4 and let u be a nontrivial solution of (3.1). By translation invariance from (3.7) we have,

P | _ N
l}lgir;f RN / |u(y)|dy =0 for any x e R". (3.8)
R<|x-y|<2R

Hence, by Theorem A.1 applied to v := —u, it follows that

s L[ )
u00= oy | oy

dy, for any x ¢ RY, (3.9)
where Cy is defined by (1.9). Clearly this implies that —u is superharmonic in distributional sense in RY. o

Proof of Theorem 3.2. Since (3.2) is a particular case of (3.1), statements 1. and 3. are a direct consequence
of Theorem 3.1.

Arguing as in the proof of Theorem 3.1, it follows that the solutions of (3.2) can be represented by (3.9)
with the equality sign. Therefore the function v := —u is a nonnegative superharmonic solution of

A%v=v" onR", (3.10)
and of the integral equation

1 v(y)?
V)= ] ke

dy, for any x € RY. (3.11)
Proof of 2. Since v € Lf(’)(c‘"l)/ 4(IRN) and1<gqgc< %, from Theorem 1.4 in [21], it follows that v = O a.e. in RM.
Proof of 4. Equation (3.10) admits singular solutions of the form v(x) = ¢ |x|"4/ @1 for a suitable ¢ > 0.

Proof of 5. From [32] it follows that there exist infinitely many nontrivial radial positive smooth solutions of
(3.10) (see also [18]), which yields our claim. m]

Similar results of those of Theorems 3.1 and Theorem 3.2 (1., - - -, 4.) with the same proofs, can be proved
for higher order problems of the type

~(-A)™u=u? onRY, (3.12)

and
~(-0)™u=u? onR". (3.13)

Let us to emphasize that for problems (3.12) and (3.13), the corresponding point 2. of Theorem 3.1 (and a for-
tiori, point 3. of Theorem 3.2) can be written as

(—A)iu <0 indistributional sense, fori=0,...,m.

The existence result for (3.13) for m > 3, like in 5. of Theorem 3.2, that is for g > %f%ﬁ is an open problem.

4 On the notion of solution: other related problems

In this paper we are mainly interested to the study possible solutions of the prototype equation
—Au=[uT 'y, onRY

which is, clearly a special case of the double inequality

gw) > -A%u=>f(u), on RY (cPf)
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where f, g : R — R are given functions satisfying suitable assumptions. We emphasize that the methods that
we are going to develop can be fruitfully used to study the solution of the one side inequality
—ulu=h onRY. (Pp)
We begin noticing thatif u € %A(RN) is a solution of (¢Pf), then u solves
g’ - fu = —uluzfwu -gwu onRY, (4.0)

where u” and u~ are the positive and negative part of u respectively. Indeed multiplying (;P;) by u* and -u",
we have

gwu = -A2uut = fut,

—f@u = -Au(-u) =-gu .

Summing these last two inequalities we obtain (4.1). Therefore, in what follow we shall study also possible
solutions of the inequality (Py,).
Having in mind that in our main Liouville Theorems we are going to assume that

f,.gc ), ft=0, g)t=0, for any tek, (fo)

we see that h = H(u) = f(u)u* - g(u)u™ > 0. However, it will be useful to study (P;,) without any assumption
onthesignofh € Lllo C(RN). This extra generality, beside the fact that is interesting in itself, it will be essential
when studying the distributional solutions of (¢Py).

Definition 4.1. A functionu € L}OC(RN) is a distributional solution of (¢Py), if f(u), g(u) € L}OC(RN) and
/g(u)(p > —/ qu(p > /f(u)(p,
for any nonnegative ¢ € €, (RY).

A function u € H}, (R") is a weak solution of (Py), if h € L (R") and
/—AuA(u(p) 2 /h(p, (4.2)

for any nonnegative ¢ < %02 ®RY).
Analogously, u € H>_(R") is a weak solution of (4.1), if f(w)u, g(wu € L}OC(RN) and

loc
/(g(u)u+ -fu)e = - /AuA(ufp) > /(f(u)u+ -gwu)e,

for any nonnegative ¢ < %02 ®RY).

Theorem 4.2. Letf,g € %(RN) and let u c HIZDC(RN) be a distributional solution of (gPf) such that u e
s (]RN), 2<s<ooandf(u),gu) e Ls (RN). Then u is a weak solution of (4.1).

loc loc

Proof. Let (my),>0 be a family of standard mollifier cutoff functions. Let u* and u™ be the positive and negative
part of u respectively. Then setting

Uy :=u*my, Uy i= (U )y == u" *my, Uy := U )y :=u" *my,

we have that uy — uin HIZOC(RN), Uy — U, Uy — u', uy — U in LfOC(RN) and a.e. in R".
Now using @uy and @u; as test functions in (gPy) we get

/g(u)uz(p 2 —/AuA(u;(p) 2 /f(u)u;'l(p,
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/g(u)u5<p > —/AuA(u,](p) > /f(u)u,"l(p,

hence

/(g(u)u:l - f(Wuy)e = —/AuA((uZ - uy)o) 2/(f(u)u:l - gWuy)e.

Since uy = uy - uy; — uin HIZOC(]RN), we have [ AuA((uy - uy)$) — [ AuA(ug). On the other hand, we know
that [ f@upe — [fu e, [ f@uye — [fu @, [ gWuze — [gWu*pand [ gWuyep — [gu ¢,
yielding . ‘

/(g(u)u+ - fu)e = - /AuA(ufp) 2 /(f(u)u+ -gWu e,

which is the claim. O

Remark 4.3. From the above theorem we easily deduce that if u € HIZOC(RN) is a weak solution of (¢Py) with

f,ge %(RN), then u is a weak solution of (4.1) provided one of the following conditions is satisfied

1. ue H,ZOC(RN)QL?;;(RN) and C1t7 2 g(t) = f(t) 2 0fort =2 0,0 = g(t) = f(t) = —C,|t|? for t < 0, with suitable
Cq1,Cy > 0;

2. gu)=f)=|u"uue HIOC(R”) NLETRY);

3 fwe L?;C(RN) gu) € L?;C(R ) for some p1, ps = s

4. ueHY R NnLz (RY).

Remark 4.4. When studying distributional solutions u & L}OC(RN) of (¢Ps), we encounter several difficulties
that can be overcome by analyzing the general problem (Py) without the extra assumption on the sign of h.

5 Asymptotic Hardy-Rellich type inequalities

In order to develop the scheme described in Section 2 to our fourth order problem, we need to prove the
counterpart of inequality (2.3). To this end an important step is to obtain some inequalities that we name
Asymptotic Hardy-Rellich type inequalities. Let us point out why we call these inequalities asymptotic. It well
known that for u € €5°(RY), N > 4, the following inequalities

2
/|Au|2 N(N 4)° /||7, and /|Au\>—/| 2i|

holds (see for instance [30], [33]). Usually, in the literature the above inequalities hold for compactly sup-
ported functions u and are known as Rellich type inequalities. If u has not compact support and does not
belong to some appropriate function space, say D, the above inequalities are not necessarily valid. However
a version of these inequalities are satisfied by localization and by adding an error term, say E;(u). The latter
may vanishes under suitable conditions.

The precise relation between the vanishing property of our error E;(u) and the fact that the function u
belongs to a suitable space D is an interesting problem however we will not investigate this question in this
paper.

Now we present some general inequalities that can be useful for further investigation. To the best of our
knowledge the results in this section are new.

From the definition of weak solution (4.2) it is clear that we need to develop some estimates for integrals
of the type

/ Aud(ug).

To this end we observe that from Corollary 2.1 in [25] we deduce the following.
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Lemma5.1. Let Q ¢ RY be an open set, u € €XQ),H = H,...,HY) ¢ €' (Q;RY) withu or H having
compact support in Q. Then

/Au(H Vu)—/dlv(H)|Vu| ‘ZZ OH du du

6)(,- aXi an ’
l]—
Q

Lemma5.2. Let Q c RY bean openset, u,v € ‘52(()), peb 1(Q) with v and ¢ radial functions with at least
one of them having compact support contained in Q. Then

/Au(Vu V) = /|Vu| Av<p+/ Vul>ve' (5.1)
o 0
3 % ZV/
—2/ <Vu )v' "+ <V ) < —)— .
{ ) )" (74 5 ) e 7 e
o
Proof. Choose H := ¢ Vv in Lemma 5.1. O

Our first main result is the following.

Theorem 5.3. Let Q c RY be an openset. Letv € ¢* (Q) be a radial function such that " e LY(Q). For any
uecéQ), for any nonnegative radial ¢ ¢ CKO (Q), and 6 > 0, we have

2 / 2 2
2 X 2\.n vV 67V
Q/Au| Vi = Q/(Vu m) 26 [v 2 —M] 0} (5.2)

_ /
+262 / [Vuf? {% * |v7|} ¢ +28°E1(Vu, V', ¢),
Q

Ei(Vu,V,¢') := (Vu ) |vul?v'e'. (5.3)
(w23

In particular if ¢ = ¢, with ¢y defined in (1.8), and the estimate ‘v } < cyR¥N"1 holds on Ay, then

where

Ey(Vu, v, ¢1)] < cver (@R / Vul? . (5.4)

Moreover, if in addition —Av + 2V’ [|x| = 0, then

2 S X 2 - — - 2V”
[ vio= [ (vu |x|) o |-t - o 55)
Q 0]

+28%E1(Vu, vV, ¢").

Proof. By Cauchy-Schwarz inequality we have

x \° v?
/Au(Vu-Vv)(p < /|Au|2 Ve /(Vum) R4
0 )

Q
1 ) 52 x \2 V"2
52—62./\Au| v<p+7/<Vu m) T(p,
Q Q

which plugged into (5.1) yields the inequality (5.2).
From the estimate

[E1(Vu, V', ¢)| < %/\wf V] e'| = B/Wu\quR V| |pk|
o) AR

(NI
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we deduce (5.4).
Finally, since -Av + 2V s 0, the inequality

x|
\2
|Vul? > (Vu . —) ,
x|

combined with (5.2) yields inequality (5.5). O
For compactly supported function we have the following

Corollary 5.4. Letv ¢ %Z(RN) be a radial function such that % € L}OC(RN). Foranyu ¢ C502(]RN), and 6 > 0,
we have

2 ’ 2.2
[1a i (Vui) 262 {w_L_iL}
/ AN EEAT
R R
(5.6)
" /
+262/ |Vul? {ﬂ+v—}
/ 2 i
R

Moreover, if in addition -Av + 2V |x| = 0, then

2 / 12
2 X 2| NV 2V
/|Au\ V| 2/(Vu 7|x|> ) {v (N 1)—|X| ) —M]. (5.7)
RN

RN

Proof. Let u € %OZ(RN). We choose ¢ = ¢ with R large enough such that the support of u is contained in
the ball of radius R. With this choice of ¢, the term E; which appears in (5.2) and (5.5) vanishes. Taking into
account that ¢ = 1 on the support of u, the claim follows. O

Remark 5.5. Since in Theorem 5.3 and Corollary 5.4 there is no assumption on the sign of v, we notice that if

!
-Av + 2V— <0,
x|

then (5.5) and (5.7) still hold replacing v by —v (as well as its derivatives).

In what follows we deal with a particular weight v, that we are going to define below. From now on we set
r:=|x|, and fore >0, re:= (e’ + |x|2)1/2 = (2 + )2, (5.8)

and define )
_ _ o _ ,a-N
ve(x) = ve(|x]) = ve(r) : @i)E re (5.9)
where a € R. A simple computation gives
9,2 2
a) (a-2)r* + Ne

N-a+4 2

~Ave = -Ar*N = (N -

(€2+1r2) =2
A%ve = AN - (N - a)(N +2 - a)x (5.10)
la=2)a- 4)r* + 2(a - 4)(N + 2)e?r? + N(N + 2)e*
(€2 + r2)" 5" ’
IN-a|r

VVe|= ——mMmF—.
| €| (62 + rZ)Nﬂzﬁz

Therefore, by choosing N > a = 4, it follows that v is a positive super-biharmonic function namely, -Av¢ > 0,
A?ve > 0. Furthermore on Ag = B,y \ By the following estimates hold

ve(x) < x|V, |Vve()| < N - a x|
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|AV€(X)| < C\x\“'Z_N, ‘VAvg(x){ < C|X|a—3—N’

where ¢ = ¢(N, a) > 0 is a suitable positive constant independent of €.
As particular case of Theorem 5.3 we have the following.

DE GRUYTER

Theorem 5.6. Let N > 1 and a € R. Forany u € Hi, (R"), t € R, € > 0, and a radial nonnegative function

Qe GoHRY), we have

2 2
X r
/|Au|2 rlg)_a > tQ2N-2a+4- t)/ (Vu . |7|) O Nawd
€ €
RV RV

2
r
+t(0( - 4) / |Vu\2 (pm
RV ¢

1
+t(N - 2)e? / |Vul? (pieram
RN ¢
r
—2tE1(Vu, W, (p/).
€

In particularif 2N > « 2 4 or N = 1 and 4 > a > 2, we have

2 2 2
2N -« X r
Aulr @, LA -
1w ,N( - ) /(V“ \x\) Y e
RY RY

r ’
—(ZN— a)El(Vu, W’ @ )a

2
2 2 r r
/|Au| rlgj’iu zHa/|Vu| 0 e —ZtaEl(Vu,rIev_mz,(p/),
RN

RN
where .
ty := 7’“’
if2N>a22N+8,then “ 2 SN2
Ha = ta(ZN—a— ta) = (72 ) )
..2N+8 ta :=2(N+2-a),
i >a>4, then
f 3 Hy :=ta2N-a-tg) =2(N+2-a)a-4).

Moreover, if ¢ = ¢% then

Ey(Vu, o ¢

<
- |X|N—a+1 ’

r
Ei(VU, =25 9"
ré‘

A version of the above inequalities for singular weight is contained in the following.

< c1(p)R™ ]/A vl .

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

Theorem 5.7. Let N > 1and a € R. Letu € %Z(RN), t e R,andlet ¢ € ‘Kol(RN) be a radial nonnegative

function. If one of the following cases holds
1. u=0or¢@ =0inaneighborhoodofO,N=21,a c R, t € R,
2. N22,a>2,t=0,

then we have

\

2
2 @ X L4
/ \Au| |X|N’a = t(ZN— 2a+ 4 — t) / (Vu . m) W
RY RY

1
+t(a—4)/|Vu\2 d _ZtEl(vu’ | |N70(+l’(p/)'
X

RN |X|N—a+2

(5.17)
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In particular if 2N > a > 4, then

2 2
2N -a X ()]
i s (259 (o X)
[' | |X\N_a P A IX| |X|N—a+2
R R

1
-(2N - @)E1(Vu, W, §0/)y

(5.18)

2 P 2 1 1 ,
/ U ZHa/W’” P - 2taE1(Vu, e ? ), (5.19)
RN

RN

where Hy and tq are defined in (5.14) and (5.15).
Moreover, if ¢ = ¢% then (5.16) holds.

For radial functions we have the following.

Corollary 5.8. Let 2N > a > 2. For any radial u € %Z(RN), the inequality (5.18) holds.

Proof. Since (Vu IX\) = |Vu\2, and N > 2 from (5.17), for t > 0, we have
1
/|Au\2 ® 2t@eN-a- t)/|Vu|2 |X|N"fa+2 — 2tE1(Vu, Pt o).

The conclusion follows by choosing t = (2N - a)/2. m|

Dealing with compactly supported functions we have the following.

Corollary5.9. LetN=>2,a>2,t>0.Foranyu c %OZ(RN), we have

/ Au?
RN

2
LS tON-2a+4- t)/(Vu I§\> HN% (5.20)
X

1
+t(a—4)/‘vulzw
T

In particular if 2N > a > 4, then

2N -« 2 x 2 1
( 2 ) {(W'MO FLETE (5.21)
/‘ Ix |N— 2 /| X |N —Neai2’ (5.22)

where Hy is defined in (5.14) and (5.15).
If2N>a>2andu € %”02 (]RN) is radial, then (5.21) holds.

The proof is similar to the proof of Corollary 5.4.

Remark 5.10. Observe thatif 2N > a = (2N +8)/3, then Hy = (2N - a)?/4 and (5.13) = (5.12), (5.19) => (5.18),
and (5.22) = (5.21).

Remark 5.11. In [33, Theorems 1.7 and 6.4] the authors prove that the inequality

/' Ix \N“ ” /‘ Na+2’ vue @Y, (5.23)
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holds for N = a > 4, where the best constant Bg is given by Ba = (21\;—’“)2 whenever

while 0 < Bg < (ZNz—a)zfom <o < AND-2YNTNGT

From (5.21), and the fact that |Vu|2 > (Vu . L), we deduce that for 4 < a < % VNZ’N”, the minimiz-

[x

_2+/N2—
4(N+1) 23 N2-N+1 <a<N,

ing sequence related to (5.23) is not radial.

We observe that the range 2N > a > N has not been considered in [33]. However, inequalities (5.21) and
(5.22) are still valid in that range.

It seems an interesting problem to study the sharpness of the constant appearing in (5.21).

Proof of Theorems 5.6 and 5.7. We begin proving the results for u € %Z(RN) and for @ # N. The results
follows from Theorem 5.3 by choosing v = yve where v, is defined in (5.9) and v can assume only two values,
~ =1 or v = —1. With this choice, we have

r2

v 52 v/z 52
/1 =(N—0()7(N—(X+2—77(N—(1))W,
€

ro2

-Av vV (N-a)a-4) r? J(N-a)y(N-2) 1
2 + T 2 rN-a+4 te 2 rN-a+a :
Plugging these quantity in (5.2), setting t := §2(N — a)y we deduce (5.11) for any ¢t # O (since 8 runs on all
positive numbers and v can be choose in {-1, 1}). The case t = 0 is trivial. The case a = N follows by letting
a — Nin (5.11).
With the choice t = ZNT‘“ in (5.11), since t(a - 4) = 0, t(N - 2) > 0 and taking into account that

2
|Vul® > (Vu . %) , (5.24)

we deduce (5.12).
In order to prove (5.13), we use (5.11) by choosing t = tq with t4 as defined in (5.14) or in (5.15). With this

2
choice, the coefficient of the integral involving (Vu . i) is nonpositive, t4(2N - 2a + 4 — tg) < 0, and by

[x
(5.24) we obtain the claim.

The inequalities in Theorem 5.7 follow by letting € — 0 in (5.11), (5.12) and (5.13). To this end, we notice

that in the case a = 4 the term containing the weight rzN*** is too singular when € — 0, however taking into

account that it is nonnegative, it can be ignored.
Finally, the estimate (5.16), easily follows from the definition of E;.
The case u € H, IZOC(RN) in Theorem 5.6 follows by a regularization argument. o

5.1 Anintegral identity
Lemma5.12. Letu € HIZOC(RN), Qe G (RY) and v € €*(RY). We have
/AuA(uwp) = /(Au)2v<p+ %/ uzAZV(p—/Wu\zAwp
+2/Au p(Vv, Vu)+%/u2AvAgo+/u2(VAv,pr) (5.25)
+ /Au uvAp+2 /Au u(Vv,ve)+2 /Au v(Vu, Vo).

Furthermore if ¢ and v are assumed to be radial, then

2
/AuA(uV(p) =/(Au)2wp + %/MZAZV(,D - 2/ <Vu . ‘%) Vo (5.26)

-2 \Vu|2v—/ +2 Vu- X zv—/ - 2E.(Vu,V, o)+ E>(u, v, @)
|X‘(p |X| |X|§0 1 ’ ’(p 2\U, ’QD
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where E1 is defined in (5.3) and E is defined as

E>(u,v, @) :=/u2AvA(p+/u2(VAv, V(p)+/AuuvA(p

(5.27)
+2/Auu(Vv-Vg0)+ Z/Auv(Vu-Vgo).
In particular if ¢ = ¢, with g defined in (1.8), and
for k=0,1,2,3, ‘v(k) < cyRENkK (5.28)
holds on Ag, then
|E2(u, v, @)| < cver ()R (5.29)

x [R“Z{qusﬂ ; (][ARAu|2¢R)% (R‘*][AR|u|2¢R)%
(ften) (s (su- 2) ')

Proof. We prove the claim for u ¢ %Z(RN). The general case follows by a regularization argument. Let ¢ €
%y (RY)and v € €*(R"). We have
/AuA(uwp)
=/(Au)2v<p+/Au uAv<p+/AuuvA(p+ (5.30)
+2 /Au u(Vv,ve)+2 /Au v(Vu,ve)+2 /Au o(Vv, Vu).

By using the identity
Au?® = 2ulu + 2 |Vul*,

the second term in right hand side of (5.30) can be rewritten as
1 2 2
AuuAV(p—j Au)Av o - | |[Vu|~Ave
=%/u2A(AV(p)—/\Vu|2AV(p
= %/u2A2v<p+%/u2AvA<p+/u2(VAv, V(p)—/|Vu|2Avgo.

Hence, (5.30) can be rewritten as in the claim.

Taking into account the identity in Lemma 5.1, from (5.25) we get (5.26).

The estimate (5.29) can be proved by Cauchy-Schwarz inequality and by using the estimates (5.28) and
the estimates on the derivatives of ¢z. For instance, since

[A¢%| = [40%Adk + 1207 VRl | < c1(1)grR

(we have used the fact that ¢1’§ < ¢ for any k = 1), we have

<c / |Au| prR7? |u| cyR*N

1 1

2 2

sclcv(R“ |Au|2¢R) (R“*‘*][ |u\2¢>R) .
AR AR

The other terms can be estimated in a similar way. ad

’/Auuvﬁ\q,’)ﬁ

Choosing v = v¢ in the above Lemma and arguing as in the proof of Proposition 5.6, it follows that
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Proposition 5.13. Let N > 4, a > 4, and u € € *(R"). For any radial ¢ € €, (R"), we have

/AuA(u - /( u)2

g
2(N-a)(N+2- a)/(Vu m) W
+(N - a)(N + 2 - Q)P(u’ @, a)

2(N—a)/|Vu|2|X|N¢ja+2 (531)

1 _
+2(N - a)E1(Vu, W, (P/) +E(u, |X|a N , QU)

where E1 and E, are defined respectively in (5.3) and (5.32) and P is defined as

(a- 2)(a 4) fu x |N -, if a> 4,
P(u2<p, Q) := (5.32)

where Cy > 0 is the positive constant defined in (1.9).

5.2 Some functional weighted quadratic inequalities
Gluing the identity (5.26) and the inequality (5.2) we deduce an inequality for the bilinear form
ue FARY) — /AuA(uV(p)

for a general radial nonnegative weight v € ¢ ®RM).

Theorem 5.14. Letu € € *(R"). Let ¢ € €5 R"), v € €“(RY) be radial nonnegative functions and & > 0 be
such that

/ / /2
82(-Av + z|"7|) - z% >0, V7 e Ll ®Y). (5.33)
Then
/AuA(uV(p) > %/MZAZV(p (5.34)

f (s ﬁ) 2t (v Sav- 50 ) <o

+2(8% - 1)E.(Vu, V', @') + Ex(u, v, @).

Proof. Gluing the identity (5.26) and the inequality (5.2) we obtain

/AuA(uvgo) > %/uzAzwp
/(Vu )2 {262 (v”— v 62V’2> —2v”+2vl}
|x] x| 2 v |x|
/ 2{252( Lavs ) zq
+ [ |Vu -2—
[Vl xI) "2l ¢

+2(6% - 1)E{(Vu, V' , @)+ Ex(u,v, @).

hS]

By using the hypothesis (5.33) together with (5.24), we get the claim. O



DE GRUYTER Lorenzo D’Ambrosio and Enzo Mitidieri, Entire solutions of fourth order elliptic problems =—— 803

Theorem 5.15. Let N > 4and N+ VN2 - 4N > a > N-+N2-4N.Letu € HfOC(IRN) and let r, re be as in (5.8).
Forany ¢ € ‘504(RN), radial and nonnegative functions, we have

/AuA(u

e / uzAz(r?*Nﬂp (5.35)

C(N a) r?
|X| rN—a+4 ¢

+—((2N QN - 2) + 4(N - @) / Vul? N1a+4<p
RN
r / a-N
-aE1(Vu, Nai o)+ Ex(u,re ", @)
where
C(N,a) := -7a* + 42 + 3N)a - 4N(N + 2), (5.36)

and E1, and E; are defined in (5.3) and (5.27) respectively.

Remark 5.16. Let us analyze the positivity of some terms appearing in (5.35).
i) Let
2

=2 (3N+2- V22 -N+2)),

) (5.37)
a = <3N+2+ 2(N2—N+2)),

be the two roots of C(N, a). Clearly, the constant C(N, ) is non negative for a, < a < a>.
ii) The coefficient & ((ZN a)(N 2) + 4(N - a)) is nonnegative for a < 12\17]1;
iii) From (5.10), we have A%r%N is nonnegative provided a = 4 and (N - a)(N + 2 - @) = 0.

iv) For N > 4, we have
2
N - N2—4N<a1<N<a2<A2,lZ2 <N+ VN2 -4N,

with4 < ay for N>8and a; < 4 for N =5,6,7.

Therefore for N = a = max{4, a1}, it follows C(N, a) is nonnegative as well as the coefficient & ((2N a)(N -
2) + 4(N - a)) and the integral involving A>r&N. This remark allow us to establish the positivity of the quadratic
formu — [ AuA(u r,f, -) under suitable conditions. See Section 5.2.1 below.

Specializing Theorem 5.14 with the weight v = ve and 62 = zz(%:g) , we can deduce (5.35) of Theorem 5.15 under

a more restrictive hypothesis on the parameter a. This is the reason why we do not deduce Theorem 5.15 as a
consequence of Theorem 5.14.

Proof of Theorem 5.15. We prove the claim for u € %Z(RN). The general case follows by a regularization
argument. By choosing v = v, in (5.26), and plugging in (5.11), we obtain

¢ 2 ’ r’
/AuA(urN_a)z /<|Vu| pl(t)+(Vu X |> pz(t)> <Pr1€\,_m

+€(t(N - 2) + 2(N - a))/|Vu| Va7 +1/u2A2(rg_N)g0

2
+2(N-a-t)E1(Vu, m, @)+ Ex(u, r{N, ®),
€

for any t € R, where

p1(t) =2(N-a)+tla—-4), pr(t):=tRN-2a+4-t)-2(N-a)(N-a+2).

Choosing t = tq := 2M-% we get p;(ta) = O (since the hypothesis on a). By using (5.24) we complete the proof
by taking into account that p1(ta) + p>(ta) = C(N, a)/ 4. |
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The analog of Theorem 5.15 for singular weight is the following.

Theorem 5.17. Let N > 4 and % > a2 4thenforanyu c %Z(RN), and any nonnegative radial ¢ € ‘504 (}RN ),

we have
¢ C(N a) 9
/AuA(ulxlN 2) 2 / ( |x|) |x|N v (5.38)

+(N - a)(N + 2 - a)P(u? o, a)

1 _
-aE{(Vu, W, ® ) +E(u, ‘X‘a N ’ (P)

where C(N, @), E1, E, and P are defined in (5.36), (5.3), (5.27), and (5.32) respectively.

Proof. Since a < %’ we have €2((2N - a)(N - 2) + 4(N — a)) = 0, and from (5.35) we obtain

@ 1 222/, a-N
/AuA(urlev—_a) > E/u A (i) (5.39)
C(N ) r?
|X‘ rN—a+4g0
-aE1(Vu, N_a+2,(P)+E2(ll e, ).
Letting € — 0, we conclude the proof. |

5.2.1 Some results on functional positive quadratic forms

The topic of this section is a brief detour from our main scope: namely the positivity of certain integral
quadratic forms. From Theorem 5.17 we can deduce that

Vue 6y ®RY): /AuA ‘ |‘1‘V_a 20,
b
formax{4,a;} <a < Nor N +2 < a < a,. It remains to consider the case N < a < N + 2. In order to fill this
gap, we need an extra argument based on the following asymptotic Hardy inequality.
In what follow, for brevity, we give only a sketch of the proofs of the results and we consider only smooth
functions.

Theorem 5.18. Letyc R, u ¢ & ®RM). For any € > 0, t € R and a nonnegative radial function ¢ ¢ CoHRY),

we have
2 2 2
X r r
/(V“ |x|> FZ““N‘”‘Z‘”/“Z 7Y (540)
€ 5.40
+€e’t(N - t)/ +4go+tE3(u,ﬂ+2,§0)
and
X \2
/<W'|X|) FASE z_t)/ ”l‘(p (5.41)
r / .
+ € tN r,y+2a(p))
where

r r X
E3(?, —5,¢) = / W — (Wp-f). (5.42)
re re x|



DE GRUYTER Lorenzo D’Ambrosio and Enzo Mitidieri, Entire solutions of fourth order elliptic problems = 805
In particular, if N - v - 2 2 0, we have

2
x\°1 _ (N-~v-2?% [, 1 New-2. ., 1
") s — 5.43
/(Vu |X|> S Pz 4 /u 2Pt 5 E3(u,ﬂ+1,<p). (5.43)

Finally, if p = ¢4, we have that

< i (@p)RV ][ w2 .

AR

2 r
EB(U * 520 QU/)
r€

The proof of the above theorem is based on an application of the vector field method (see [26]).
Proof. Let t # 0 and set s := sign(t). Let H be the vector field defined by H(x) := sr;”'zx. Since

0= /div(Hu2 Q) = /div(H)u2g0+/u2(H-V(p)+2/u(p(H-Vu),

by computation we have

2
r 1 r X
s(N—fy—Z)/u2 7+4(p+62Ns/u2 ,Y+4<p+s/u2 o (V(p.m) (5.44)
rE r€ r€
r p% 1 x\? r
_ r . X 2 (.2 -2 X\
= Zs/u(pry2 <Vu \X|) s&/u r2+2(P+6 /(Vu |x|> rz+2(p. (5.45)
Since 5 5
A _r €

2 ’
r;y+ r'€y+4 r'€y+4

by choosing 6% = ts = |t|, from (5.44), (5.45) and (5.42) we deduce (5.40).
The proof of (5.41) is similar to the proof of (5.40). Indeed, from the left hand side of (5.45) it follows that

2 2
r X 2 2 T -2 X 1
—Zs/u<pﬂ+2 (Vu-—m) <6 /u ﬂ+4<p+5 /(Vu-—m) ﬁ(p.
€ €

So we can proceed as above.

For t > 0, since the coefficient €*tN is nonnegative, in (5.41) we can ignore the term containing it, and

hence by choosing t = ¥-2=2 and letting € — 0 in (5.41), we obtain (5.43). |
2

Theorem 5.19. Let u € %Z(RN ), N > 4 and max{4,a,} < a < a,. For any nonnegative radial function
NS €5 (RN, we have

¢ Di [ > ¢ 1 /
/AuA(u )2 6/ W - aE;(Vu, W,q)) (5.46)

x|
N CIN, a)(a-4)
8

2 1 /
E3(u ’ ‘X|N_a+3 ’ (P )’

+Ex(u, [x|*N, p)
where
Dy :=Di(N,a) := ala — 4)2N - a)2N - a - 4),

and for any € > 0 we have

1 Dyr* + Dy€e*r? + D3e*
/AuA(urNi_a) 2 E/MZ(I, 1 r;_ms 3 (5.47)
€ €

r _
~QEy(VU, g 0+ B2, 17, )
€

. C(N, a;(a - 4)

r ’
yN-a+4? ® )
€

E3(u?,

2
+S- (2N - )N - 2) + 4(N - @)EE3 (4, rN% ¢,
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where t € R and

D; :=2(a - 4)[NC(N, @) + 8(N - @)(N + 2 - a)(N +2)]
+8((2N - a) - 2a)(a - 6 - B)t,

D3 :=C\N,a)(a-4)2N-a+4)+8IN -a)(N+2-a)N(N +2)
+8((2N - a) - 2a)Nt.

Proof. Since C(N, a) = 0, by choosing v = N — a + 2 and plugging (5.43) in (5.38), we easily obtain (5.46).
Next we prove (5.47). Again, since C(N, a) = 0, and €?((2N - a)(N - 2) + 4(N - @)) = 0, by inserting (5.40)

in (5.35) withy = N-a + 2 and t = (a - 4)/2, and (5.41) in (5.35) with the choicey = N-a + 4 and t € R, we

obtain (5.47). O

For compactly supported functions we have the following.

Corollary 5.20. Let N=5and 4 < a < 6,0r N = 6 and max{4, a,} < a < ay. Then we have

vue CERY) / Audu—L )so. (5.48)

|X‘N—a

Moreoverif N=5and4<a<6,N=6and4<a<8,0rN=7andmax{4,a1} <a < a,

1

] vz) > 0. (5.49)

Yue %OZ(RN) u#0: /AuA(u

Proof. Let u ¢ ‘502 (RN) and let R > 0 be large enough such that the support of u is contained in By. Let
¢ = ¢g. With this choice, it follows that E;, E, and E5 in (5.46) vanish. This implies that

1 D1 u2
/AuA(u |X|N—Dt) 2 16 |X‘N—a+4 :

Now, if N = 6, we have max{4,a;} < a < a; < 2N - 4 < 2N and this implies that D; =
a(a — 4)(2N - @)(2N - a - 4) is nonnegative. Analogously, if N = 5 and 4 < a < 6 < a;, we conclude again
that D; > 0 and (5.48) holds.

In order to show the strict inequality in (5.49), we argue as follows. If D; > 0 the conclusion is obvious. It
remains to analyze only the case when a = 4, and hence N = 5, 6, 7. In this situation it follows that C(N, 4) > 0
and then, the claim follows from Theorem 5.17. |

For a non singular weight we have the following.

Corollary 5.21. Let N=5and 4 < a < 6,0r N = 6 and max{4, a,} < a < a,. Then we have

1
rN-a

VueCARY) us0: /AuA(u )> 0. (5.50)

Proof. Let u € ‘502 (RN), by using the same argument used in the proof of Corollary 5.20, from (5.47) we are
reduced to study

1 Dir* +2D,€e?r? + D3e*

/AuA(urgﬁa)zR/uz 1 rlevzﬁ(“8 EC
and hence to establish that D;r* + 2D,€?r? + D3€* is positive for some ¢t € R. We note that the case a = N is
trivial. Furthermore, from Remark 5.16 it follows that it is enough to perform the analysis only for N < a < N+2
when N =z 6 and for 5 < a < 6 when N = 5.

We begin analyzing the case N = 7. In this case the choice t = 0 assures that D1, D,, D3 > 0 and our claim
is proved.

Let N = 6 and 6 < a < 8. Even in this case the choice t = 0 implies that D;, D,, D3 > 0 and our claim
holds. For the case a = 8, we have D1 = 0 and D,, D3 > O for t > 0 small enough (0 < t < a — 6) which implies
(5.50).
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Let N = 5. By the change of variable « = N + x, we have to check the positivity of D; =
(x+5)(x+1)1-x)(5-x), D; = 42x> - 202x* + 6x + 250 + 8t*(7x—15) - 8 (7x* - 22x +15)t, and
D3 = 7x* - 54x> +176x* - 378 x + 225 - 40t(7 x - 15), for 0 < x < 1 and for some t € R. The choice
t = 1/8 accomplishes the claim. We leave the detailed computations to the interested reader. O

Remark 5.22. From the proof of (5.48)—(5.50), we can deduce the positivity of those quadratic forms, and that
they can be controlled from below by quadratic integrals depending on u. For instance, if u € %OZ(RN) and
u #0,ifD; >0and max{4,a;} < a < ay. we have

1 D1 uz
/AuA(uch“) > 16/|X|N“+4 >0,

while for N > a > 4 and a > a4, we have

1 C(N, ) x\° 1
/AuA(u|X|N_a)z 4 /(Vu m) W >0

We leave the analysis of the remaining cases to the interested reader.

The results on the positivity of the quadratic form in Corollary 5.20 and 5.21 can be extended relaxing the
request that the functions have compact support. The idea is to assume that for the functions u the quantities
E1(Vu, x|V, @), Ex(u, x|V, ¢g) and E3(u?, |x|*V3, ¢%) vanish as R — +oo. A sample of these kind
of results is the following.

Theorem 5.23. Let N=5and4 <a<6,orN=6and4 <a < 8,or N =7 and max{4,a,} < a < ay. For any
uc€*®RY), u 0 such that

2
4 l:,f: e L'RY), limsupR"‘][ |Au|? < oo
IX] Rovvee (5.51)
lim R* 2]/ |Vul® =0, lim R*“*4 u’=0,
R—+o00 Ag R—r+c0 Agr
then X
u A“u u
AuA dx = dx > 0. (5.52)
/ |X|N—a |X|N—a
In particular, if (5.51) holds with a = 4,and N = 5, 6, 7, then
u Ay u
AuA dx = / dx > 0. (5.53)
/ x| ™

Theorem 5.23 extends a result of [22] where the inequality (5.53) is proved for compactly supported functions.
Indeed in [22] the author proves that (5.53) holds for u € CKOM(RN) and N = 5, 6, 7, while in dimension N > 8,
the inequality (5.53) is not satisfied. See also [23] for further extension to the higher order case.

6 A priori estimates and Liouville theorems

6.1 A priori estimates

In this section we deduce some a priori estimates on the solution of the inequality (P;,), that we remind for
reader convenience
—uA*uzxh, onRY, P,)

whose definition of weak solution is given in (4.2). The following results refines some estimates obtaind earlier
in [2].
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Theorem 6.1. For any d < 1 there exists c; = c(d) > O such that forany h LllO C(]RN) (without any assumption
on its sign), for any weak solution u ¢ H 120 C(RN) of (Py,) and any nonnegative ¢ € ‘502 (RN), we have

2 4
/hgo+d/(Au)2<pscd /uzM+/u2 +/u2\V(p| . (6.0
RN RN v

AlVel
3
RY RY RN v

In particular if ¢ = ¢, an admissible test function as in (1.8), there exists c1(d) = ¢1(¢1, d) > O constant, and
we have

/ hg +d / Q) < c1 (DR / 2, ©6.2)
RY RY AR
/|Vu\2¢R < clR_Z/uz
RY Ag
1/2 1/2 (6.3)
. /u2¢R id cl(d)R"’/uz— /hqu ,
2R AR Bar
/|Vu|2 <cR? / u? (6.4)
AR Agrj2UA2R
1/2 1/2
2 1 4 2
+ u — | c1(d)R /u —/h .
/ Nz 1(d) DR
ri2UARUAZR Aar Bur
Ifh = 0 on B,y for some R > 0, then
d/(Au)2 < /h¢R +d/(Au)2¢R < clR_4/u2, (6.5)
Bg Bg RN AR
/\Vu|2 < clR’z/uz, (6.6)
Br Br
/\Vu|2 < R / u’. (6.7)
Ap AR/ZUARUAzR

In particular if h = ¢y, |u|9** for some c;, > 0 and q > 1, then there exists ¢ = c1(cy, q) > O such that for

anyu € H IZOC(]RN) weak solution of (Py,) and any R > 0 there holds

g+l
2 +
Ch <][ \u\z) < ch][ lu|?*! < ][ h+ (Au)? < clR"‘*%, (6.8)
Br Br Br Br

][ \Vu|2 < clR_z%i. (6.9)
Br

Remark 6.2. Notice that the constant c, in the above theorem, does not depend on u nor on R, and the quantity
cqR™ [ " u’ - |, 5, R is nonnegative for any R and any u.

The following Lemma contains an H7, . version of the identity

AD? = 20AD + 2 |V . (6.10)
Lemma 6.3. Let @ € Hy,.(Q). Forany ¢ € €5 (Q), we have

/cb2 A(p=2/<DA(D(p+2/|V(D\2(p, (6.11)
0] Q Q
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and
1/2

1/2
[Ivoress [o2ap- (/<D2 |<o) (/ a0 |<o) . (6.12)
Q Q Q Q

Proof. Let (mn)rz>0 be a family of standard mollifier cutoff functions. Setting
url =Q* mn,

we have that uy, — @, Vuy — V@ and Auy — A in LIDC(RN). Hence for any ¢ € %OZ(RN) we have

2/unAu,,<p+2/|Vun\2<p=/Au§go=/uflA(p.
o o} Q Q

Letting 1 — O identity (6.11) follows.
Inequality (6.12) can be deduced by applying Cauchy-Schwarz inequality to the identity (6.11). a

Proof of Theorem 6.1.
Proof of estimate (6.1). By choosing v = 1 in the identity (5.25), we obtain

/h<p+/(Au)2<p < —/AuA(u(p)+/(Au)2go
—/AuuA(p—Z/Au(Vu,V(p) =1 +1.

Next, by Young inequality with € > 0, we have

€’ 2 1 2|4g?
|I1|s7/(Au) (p+27€2/u o
Analogously for any 6 > O we have

Vol*
| <68 /(Au)2 + / vul? | .
1A 0+ g | IVl =

For simplicity we denote by 6 the quantity 6 := ‘V(z’ I . Using the identity (6.11) with @ = u, integrating by
parts and by Young’s inequality, we obtain

/(Au)2<p+ 5= /|Vu|2@
_ /(Au)2<p+ 5 /A(uz)@—ﬁ/ué\u@
, /(Au)2<p+ 252/ ZAQ—ﬁ/uAu@

2 2 2 2 20°
6 /(Au)(p+252/u |A@|+252/(Au)(p+2 262/11 o

A suitable choice of the parameter €, § and v gives the estimate (6.1).

IN

2]

IN

Proof of (6.2). We begin noticing that each term in the right hand side of (6.1) has the form

/ u? |y, (6.13)

Vol IWJ\

where 1 stands for one of the functions ‘Ag‘ A or
Taking ¢ := ¢p = ¢1(]x| /R) an admissible test functlon the function, || has support in Ag and can be
estimate as || < c;R™*. This concludes the proof of (6.2).
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Proof of (6.3). From (6.12) with @ = u, ¢ = ¢, and from the estimate of |Au|?, that can be deduced from (6.2),

we have
frstne fsn ([ o) (fmo)”

1/2 1/2
<c,R? /u2+ /u2¢R % ci(dR™ /uz— /hd)R ,
AR 2R AR BZR

that is the claim.

In order to prove estimate (6.4) we use (6.12) with @ = u and as test function @(x) = pr(|x|) := por(t) - P/, (1).
The support of pg is G := Ag/, U Ag U Ayr. We have

/\vmz < /\wﬁpR
AR ]RN

1/2 1/2
<[ wien+| [utor| | [1autpn
AgjpUAoR Gr Gr
1/2 1/2
< ¢R? / u® + /u2 /\Au\zd)m
AgjaUAoR Gr 4R
< C1R_2 / uz
Agj2UAar
1/2 1/2
2 1 -4 2
+ u — | c1(d)R /u —/h ,
/ e $or
GRr AdR Bur

where in the last inequality we have used the estimate (6.2), obtaining the claim.
Estimates (6.5), (6.6) and (6.7) are an immediate consequence of (6.2), (6.3) (6.4) and the hypothesis h > 0.

Finally, to prove the missing inequalities (6.8) and (6.9) arguing again as in the proof of (6.2), and with the
same notation, we notice that each term in the right hand side of (6.1) has the form (6.13). By using Holder
and Young inequalities, with exponent x = qT*l, we obtain

2 a ) ([, e L[
/u |¢‘ < (/lulq (P) ( ¢x’1> < a/hq)"'xlex/ (px/,l' (6.14)

Taking ¢ := ¢g = ¢$1(]x| /R) the term [ (‘p‘/i,‘xl behaves as RN-4X' = RN-4%7 Using (6.14) in (6.1), with a suitable
choice of the parameter d and € we get

/h + /(Au)2 < cRV-4T and |Vu|2 < cR"Zg, (6.15)
Br
Bg

Bg

which in turn, by our assumption h > cj, [u|?*! and Holder inequality, yields (6.8). The inequality (6.9) is a
consequence of the estimates (6.8) and (6.6). O

6.2 Some glimpses on Liouville theorems: weak solutions

In this section we continue to study some Liouville theorems for weak solutions of the inequality,

—uA*us=h, onRY, (Pp)
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where h = O or h > |u|?*L.
In our first result we consider the homogeneous case.

Theorem 6.4. Letu € H _(R") be a solution of
—uA’u=0, onRV.

Assume that either,
N=1,...,7, and lim][|u|2=0,
AR

R—o0

or

N=8, and R*™* |u|2 < C, for any R large,
AR

where a1 = % (3N +2-+4/2(N2-N+ 2)) is defined in (5.37), then u = O a.e. in RN,

— 811

(6.16)

(6.17)

(6.18)

A first consequence of the above theorem is the following corollary which is reminiscent of a result proved by

Ambrosio and Cabré (see [1] for details and applications).

Corollary 6.5. Letu € H IZOC(RN) be a solution of (6.16) with N > 5. If for any R large
/ |u|2 < cR%,
AR

with c independent of R, then u = 0 a.e. in RN,
Proof of Corollary 6.5. From the hypothesis (6.19), we have that

][ [u* <cR*Y 5 0asR — oo.
J Ag

(6.19)

It is enough to check that the assumptions of Theorem 6.4 hold. Indeed, if N = 5, 6, 7, then the hypothesis

(6.17) is verified. While, for N > 8, since a; < N it follows that
R“l’l‘][ lul*> < cRY™* N _, 0as R — oo,
AR

and (6.18) holds.

O

A further consequence of Theorem 6.4, under the stronger assumption of global integrability of the solu-
tions of (6.16), is the following Liouville theorem that can be obtained directly by using the Hélder inequality.

Corollary 6.6. Letu € HIZOC(RN) N LS(RN \ B1) be a solution of (6.16).If N=1,...,7and2 <s<co0orN=8

N
and2 <s< 2, thenu=0ae. inR".

Notice that the expression

2N 3N?-12N+NV2NZ-2N+4

ay—4 N2 - 10N +20 ’

as function of N is decreasing and converges to 3 + v/2 as N — +oo.
An essential ingredient of the proof of Theorem 6.4 is the following.

Lemma 6.7. Let u be an harmonic function in RY. Then the following inequality holds

][BR u - u(O){2 < c][ARuz,

where ¢ > 0 does not depend on u nor R.

(6.20)
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In particular if
liminf § u®=0, (6.21)
R—o0 AR
thenu = 0inRY.
Proof. Let ¢o; be defined in (1.8). Since u is harmonic, from (6.10), we have
/\Vu|2 s/\Vu|2¢R = %/uzmpR < clR_z/uz. (6.22)
Bgr Ap
Next by Poincaré inequality, setting ug, = JCBR u. we have
/}u—uBRyz < ch/\Vu|2 < c/uz.
Bg Bg AR
Now by using the fact that u has the mean value property, that is u(0) = JCBR u, we obtain (6.20).
Next, we observe that for an harmonic function u, for any x € RN, we have
u(x) = ][ u.
Bor(x)\Bg(x)
Indeed, by the mean value property, we have
B = amew | [ [
Bar(0\Br() wNyRV(2N -1)
br()  Br(x)
_ v ][ oL ][ u
N -1/ pp 2V -1/ By
N
= 215_ I u(x) - 2N1_ I u(x) = u(x).
Next, from the inequalities
1/2
|u(0)f = ‘][ u s][ Ju| < (][ |u|2> :
AR AR AR
and (6.21), we deduce that u(0) = 0. Finally, from (6.20) and (6.21), we have
][ uzsc][ u? 5 0asR — oo.
BR AR
Now since u? is subharmonic, we know that
][ u’ 2 supu2 as R — oo,
Br RN
and we deduce u? = 0. o
Proof of of Theorem 6.4. Let u be a solution of (6.16). Seta := 4if N=1,...,7 and a := a; in the remaining
cases N = 8.
We begin proving the claim under the hypothesis
lim R*™* ][ lul®> = 0. (6.23)
R—oo AR

First we examine the cases N = 1, 2, 3, 4. From (6.2) it follows that

/(Au)quR < CR"‘/u2 = CRN%][A u.
R

Ag
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Since @ = 4, by our assumption (6.23) it follows that by letting R — oo, we deduce that u is an harmonic
function and Lemma 6.7 applies.
Next we consider the cases N > 5. An application of (5.38), taking into account that C(N, a) > 0, yields

N o . C(N @) ( ) 9
0> / a5 2 / W) e (6.24)

+(N - )(N + 2 - )P(u? ®,a)

1 i
~aE1(Vu, s @)+ Ex(u, XN, ).

By using (6.23) in (6.7) and (6.5), we deduce

lim R”‘"z][ Vul?=0 and lim R“][ |Au|? =
Ag R—oo  Jag

R— o0

Next by choosing ¢ = ¢f§ as in (1.8), from estimate (5.4) and (5.29) we deduce that E; — 0 and E, — 0 as
R — oo.

Since P(uzq.')j‘e, a) is nonnegative and non decreasing with respect to R, by the monotone convergence
theorem we obtain P(u?¢3, @) — P(u?, @) > 0 as R — oo. Finally, from (6.24) we have

0> /Auﬂ(ulli]a)

: C(N ® < \x|) ||N1a+2 +(N - (N +2 - ))P(?, ) 2 0,

hence

/AuA(u \x\i - ( Ix\) \x\Nl‘“” - P =0

In the case & = a; > 4, from the definition of P in (5.32), it follows that u?> = 0. This complete the proof in
the case a; > 4.
Next we consider the case a = 4. Since C(N, 4) > 0 we get

x\’ 1
A . S,
/ (vu |X|) |X|N—a+2

thatis (Vu . ﬁ) = 0on RY. Therefore u is a constant function whose mean vanishes at infinity, thatisu = 0.
Finally we consider the cases when N > 8 and (6.18) holds. Arguing as above, using (6.18) in (6.7) and
(6.5), we deduce that

R“"Z][ |Vul><C and R‘“][ |Au)? < C.
AR AR

By choosing ¢ = ¢} as in (1.8), from estimate (5.4) and (5.29) it follows that |E;| < ¢ and |E;| < ¢ for some
constant ¢ > 0. Since C(N, a;) = 0, from (5.46) we have

> /AuA(u| TI\%_Q) >(N-a)(N+2-)Pu’p3, ar),
X

and by letting R — oo, we obtain

(a1 - 2)(a; - 4) , 1
> P(u? =
€= (u ’ al) 2 | u |X|N—a1+4

that is W‘,‘% e LY(RY).
Therefore,

RM~ 4][ u? <C/ P a1+4_>0’ as R — oo,
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That is u satisfies the stronger assumption (6.23), and the claim follows. a

One of the main result of this paper within the class of weak solutions is the following.

Theorem 6.8. Letu € H IZOC(RN) N LT Y(RY) be a solution of

loc

—uf?uzclu™' onRM.

If
N=1,...,7, and g>1
or (6.25)
N=28 and 1<q=<qy
where
q _1+4 3N+16-vV4-2N+2N?
YUa -4 3N-12-V4-2N+2N? 6.26)
_N?2+2N-28+4V4—-2N+2N?
- N2 10N +20 ’
thenu =0 a.e.in RV,
Proof. We distinguish various cases. Let N = 1, ..., 4. Under this assumption the claim follows directly form

(6.8). Indeed, we have
[+ [@ur < RV 0 asR - ven
Br Br

Next we consider the case N = 5. From (6.8), we deduce that

Ra—4][ |2 < RO4ET
Ag

Nowif N =5, 6, 7, the choice a = 4 is admissible in Theorem 6.4 and since 4—43%} < 0, the claim follows.
Let N > 8. In this case, a = a; > 4 is an admissible choice in Theorem 6.4 and since a; — 43%} <0, we
conclude the proof. O
6.3 Weighted a priori estimates
In this section we shall prove some a priori estimates for solutions of
~uA’u=h, onR". (Pp)

These estimates will be useful in the study of distributional solutions of the fourth order problem (ng). Notice
that there is no hypothesis on the sign of the function h.

Theorem 6.9. Letu ¢ €“(R") and h € L3> (R") satisfy (Py). Let a > 4, N > 4.

loc
For any nonnegative and radial function ¢ € CKOA (]RN), we have

. 2
X [0 / P
2IN-a)(N+2-a Vu- = > [ h 6.27
( )( )/ ( Ix‘) ‘X|N7(X+2 |X|N—a ( )
Jr/(z\u)2 IXI(f"“ + 2(N—a)/|Vu\2 |X|N"fm2

+(N-a)(N+2- a)P(uqu, a)
1

W, (P/) +Es(u, ‘X‘a_N , (P),

+2(N - a)E{(Vu,
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and for N + VNZ — 4N > a > 4, for any € > O by setting r := |x|, re := (€2 + |x|*)Y/2, we have,

C(Na) r? 1 [ 2.2 aN
/herX ( |X|) rN—a+4§D+§/uA (r? )(P

—aEl(Vu,m,(p)+E2(u,r€ N ). (6.28)
€

Furthermore, for any § > 0, let ¢ be an admissible test function, then there exists c; = c(¢1, 6) such that for
any R large, by setting ¢ = ¢}l§ we have

Ei(Vu, ﬁ < c1(6)R“’4][ u2¢R + c1(6)R“’4][ u? (6.29)
Te Bar AR
-8°R°4  hop,
Bor
r a-4 2 2 pa
El(Vu, Noai2 < C1(6)R ][ u--6°R h¢2R, (630)
Te ApjyUARUA R J Byr
’Ez(u, 2N o) < 61(6)R“’4][ u’ g + c1(6)R“’4][ u? (6.31)
Byr Ar
-8°R°4  hop,
Bor
Ea(u, 127, )] < ca(BR ][ 2 - 6B hepop, 6.32)
AgjaUARUA R Bur

and the involved constants do not depend on € nor on u.

Proof. We begin by observing that if u solves (Pj), then for any nonnegative test function ¢, we have

/—AuA(uvg(p) 2 /hve(p.

where v is defined in (5.9). Now letting € — 0, an application of the identity (5.31) yields (6.27), while from
the inequality (5.35) we deduce (6.28).

In order to estimate E;, from (5.4), it suffices to estimate R*~2 fAR |Vu|? ¢g. To this end from the estimate
(6.3) with d = 1/2, and by Young’s inequality, we deduce

R‘2][ \Vu|2¢Rsc1R_4][ u?
RV A

1/2 1/2
+ (R"‘][ uzd)R) V2 (clR’[‘][ u? —][ hq,')R)
Bar Ap Bar
< clR’l‘][ u?
Ar
+ LR ][ g+ c16°R™ ][ 2-6{ hop, 633)
26 Bor Ag Bar

that is the estimate (6.29). The estimate (6.30) follows similarly from (6.4).
To estimate E, it suffices to estimate the terms in (5.29) containing Au and Vu. Arguing as before, by
Young’s inequality and the estimate (6.2) with d = 1/2, we have

<]£Rﬂu|2¢R)%( ][\u\ ) <7][ |Au/? P+ 557 ][Iu\

The last term in the estimate (5.29) of E>, can be controlled similarly by using (6.33) where 6 is replaced by 1,

obtaining
1 1
2 > (52 2 2
(f murge)” (R f 1vuP ¢a) =
AR AR
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s ][ 10Ul g+~ R f Vul? g
2 A 26 A

<8%cR™ u2—62][h +LR"4][
1 AR| | ¢R 452n2 5

1+n% 4 2 N
+Cq 552 R ][ARu 557 BZRh¢>R.

uPr (6.35)

2

Now, choosing n? = 26*, gluing together the estimates (5.29), (6.34) and (6.35) and rescaling § we get the
estimate (6.31). Similarly we deduce (6.32), concluding the proof. O

Corollary 6.10. Let N > 4 and a = 4 such that C(N, a) = 0. Then for any § > 0 and any admissible function ¢+,
there exists c1(6) > 0 such that for any u € %A(RN) andh € L (RN) satisfying (Py,), and any R large, we have

loc

c1(6)R“'4][ ul g + c1(6)R“'4][ u?

BZR - AR

> 6°R® hor + / h| T)Ifa +(N-a)(N+2- a)P(uzdﬁ*g, a),
J Bag X

where ¢ is defined as in (1.8).

Notice that the last inequality is an estimate on the possible solutions of (P;,) which does not involve the
derivatives of u. This will be useful when dealing with distributional solutions.

6.4 Distributional solutions: a priori estimates
The a priori estimates contained in the following result will play a crucial role in what follows.

Theorem 6.11. Assume that f, g : R — R are continuous functions satisfying
fOt=0, g(t)t=0, forallteRR, (fo)

and set H as in (1.6), that is
f()t, fort=0,
H(t) :=
g(tt, fort<O.

LetueL§ (RN) be such that f(u), g(u) € L (RN) with 2 < s < +oo, and let u be a distributional solution of

loc loc

g(w) = -Auzfu) onRM. (cPy)
Then,
1. For any R we have
/H(u) < cR"l‘/uz. (6.36)
BR AR
2. LetN > a = 4 be such that C(N, a) = 0, we have that \x\“"N H(u) € L}OC(RN), and for any R, we have
/H(u) Nl_a + %/uzAz(r?_N) < CR“_4][ u?, (6.37)
B r€ B AR/ZUARUAZR
R R
/ H(u)% < cR*™ ][ u?, (6.38)
B |x] AgjaUARUA R

/ H(u)—~— < cR™™ ][ . (639)
I x| Bar
R



DE GRUYTER Lorenzo D’Ambrosio and Enzo Mitidieri, Entire solutions of fourth order elliptic problems =— 817

3. IfH(t) = cq |t|7*" for some q > 1 and cq > 0, we have

H(u) < cR™4$5, ][ u? < cR° 71, (6.40)
BR BR

Hence, if N > a = 4 and C(N, a) = 0, it follows that

2

/H(u)% + 1 /uzAz(rg’N) < R4 (6.41)
r
BR € BR

(where ¢ > 0 is independent of u and R).

Proof. Let (mn),>o be a family of standard radial mollifier. By using mn(x - -) as test function for (ng), and
setting
Un = U* My, fn 3=f(u)*mn’ 8n :=g(u)*mn,

we shall deal with a sequence of functions un, fn and gn satisfying the following properties
Up —>u in LfOC(RN) n LIZOC(RN) and a.e. asn — +oo
fo—fw), gn—g) in Li;c(]RN) and a.e. asn — +oo.
Since the functions t — t" and t — ¢~ are Lipschitz functions we have (up to a subsequence) that
uh s ut inLy RM)NLL RY) and a.e. asn — +oo.
Therefore uy is a smooth functions satisfying
gn>-Aun=fa, on RV,
Multiplying by uj, then by —uj,, and then adding the inequalities we have
gnliy — falln = ~UnA’Un = folty; - gnliy.
That is, setting hn := fauy — gnuy, it follows that uy is a smooth solution of
—unA’un = hn, (6.42)
and hence all the a priori estimates of the previous sections apply. Before to going on, let us to notice that
hn = fwu* - gwu™ = Hw) in L}OC(RN) and a.e.,
and furthermore, since g(u)(-u~) = 0 we get that
hn — Hw) = fwu* - glwu™ = 0. (6.43)

Applying Theorem (6.1) to inequality (6.42), from (6.2) with d = 1/2,, we deduce that,
/hn¢R <cR™ / up. (6.44)
RN Ag

Letting n — +oo, and taking into account (6.43) we have (6.36).
Next, since C(N, a) = 0, from (6.28) we have

1 _
/hn P, 5/uiaz(rg! M b

Te

(6.45)
<a

r
E1(Vun, W; (MQ)
€

+ ’Ez(un, rsN dp)|.
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By using the estimates (6.30) and (6.32) with § = 1 we have

/mq +(/2A(SM¢R<

< (N + 1) C1Ra74][ u% - ZRa hn¢’2R .
A UARUA R Bur

Letting n — oo, and taking into account (6.43), we deduce

1 1 _
/H(u)ﬂ"'j/uzﬂz(rg N)¢R
e
Br

<(N+1) (clR‘H*f u? — R% H(U)¢2R>
A

rRi2UARUAZR Bur

< cRY* ][ u?,
ApjnUARUA R

that is (6.37). Estimate (6.38) follows taking into account that A%(r¢~N) = 0, and by the monotone convergence
theorem by letting € — 0.
The proof of (6.39) follows similarly to (6.37), from (6.45), by using estimates (6.29) and (6.31) with § = 1,

obtaining
/hn / nA (re N) br

<s(N+1) (clR“"l‘][ u% -R*® hn¢zR,> s
J Byr J Byr

and concluding again by letting, first n — oo, and then € — 0.
Proof of (6.40). Applying Theorem (6.1) to (6.42), from (6.1) we deduce that

/hnq) <c {/ ul \A<p| /uﬁ +/u3,v(pq;|4} . (6.46)

By letting n — oo, we have

/H(u)(psc[/uzm((g'z+/u2 ’ +/u2vq:g|4}. (6.47)
o [t < [ He,

arguing as in the proof of Theorem 6.1, and using the same chain of inequalities (6.14), we get the estimates
(6.40).
Plugging the second estimate of (6.40) in (6.37), we obtain (6.41), concluding the proof. |

2
AlVel
¢

Now, since

6.5 Liouville theorems: distributional solutions

In this section we shall prove some Liouville theorems within the class of distributional solutions for the
problem (gPy).

Theorem 6.12. Assume that f, g : R — R are continuous functions satisfying
f(Ht=0, g()t=0, forallteR. (fo)
Let u be a distributional solution of

gw)>-A%u=>fw) on RN, (cPf)
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such that u € L3, (RY), 2 < s < +o0 and g(u), f(u) € L5, (R™).
Assume that

N=5,6,7 and lim][\u\2=0,
R—oo AR
or
N=8 and R"“"‘][ lu|® < C, for any R large, (6.48)
Ag

where a, is defined in (5.37), then u = 0 a.e. in RN,

Proof. We shall argue as in the proof of Theorem 6.4. Set a := 4if N = 5, 6,7 and a := @ in the remaining
cases N = 8.
Step 1. We begin proving the claim under the hypothesis

lim R*™* ][ lu®> = 0. (6.49)
R—co AR
From (6.37), it follows that
1 / W02 (r2N) < cRO ][ 2. (6.50)
2 ARleARUAzR

Bg

Hence, by letting R — +oo we get [pn u?A?(r&™N) = 0, thatis u = O a.e.in RY.
Step 2. If (6.48) holds, from (6.50) by letting R — +oo we have,

/uZAZ(r?‘N) < oo,
RN
which implies
lim [ u?A%(%N)=o.
R—+00

AR

Now, since in this case & = a; > 4, and A2(r&N) = cr®*N > cR**N on Ag, the hypotheses (6.49) holds and
the claim follows from Step 1. |

Remark 6.13. IfN = 1, 2, 3, 4, Theorem 6.12 still holds provided

f(t)=0 if andonly if g(t)=0,

lim ][ luj? = 0.
R—oo AR

and

Indeed from (6.36), we have

/H(u)scRN"‘][ u?> =0, asR — oo.
Ar
Br

Hence f(u)u = 0 a.e. whenever u > 0 and g(u)u = 0O a.e. for u < 0. Therefore g(u) = f(u) = 0 whenever u # 0,
and since f and g are continuous we deduce that g(u) = f(u) = 0 a.e. Since u solves (¢Py) it follows that A>u =0
in distributional sense. Hence by a standard argument u is smooth. Now by using Theorem 6.4 we achieve the
claim.

Theorem 6.14. Assume that f, g : R — R are continuous functions satisfying
fOt=0, g(t)t=0, forallteR. (fo)
Let H be defined as (1.6) and assume that

H(t) > cq |t|7", forallte R, and for some q > 1,cq > O. (6.51)
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Let u be a distributional solution of
g(w) 2 -Auzfu) onRY, (cPy)

such thatu € L;"‘OC(RN), 2 <s < +oo, and f(u), g(u) € L%C(RN).
IfFN=1,...,7and g > 1or
N=8and1<qz=qy,

where qy is defined in (6.26), then u = 0 a.e. in RY.

Proof. The proof is similar to the proof of Theorem 6.8. Let N = 1, ..., 4. The claim in this case follows directly
form (6.40). Indeed we have,

4t
/|u\q+1 <CRN™#T 50 asR — +oo.
Br

Let N > 5. From the a priori estimate (6.40) we deduce that
Ra—4][ uf? < =
Ag

If N =5,6, 7, the choice a = 4 is admissible for an the application of Theorem 6.12 and since 4 — 4% <0
the claim follows.

Let N > 8. In this case, a = a1 > 4 is admissible in Theorem 6.12 and since a; - 43%1 < 0 we conclude the
proof. a
Remark 6.15. Notice that if instead of the double inequality (sPs) we deal with the one side inequality

“Auzuf 'y onRY, (6.52)

it is easy to see that (6.52) admits the non trivial solution u(x) = 1 - x}/24 for any q > 0.
This example can be extended to the more general case of the one side inequality

-A’u=>f(u) on RN, (6.53)
with f € E(R) satisfying the following assumption: there exists k > O such that
f(®) < f(k), vt<k. (6.54)

Indeed (6.53) admits the solution u(x) = k - ¢ |x|* with ¢ > 0 such that 8N(N + 2)c > f(k). Examples of functions
satisfying (6.54) are the nondecreasing functions, f(t) = |t|7 1t +~sintforq > 0and v € Ror f(t) = |t|? *tsint
forgq > 0.

Corollary 6.16. Let f, g : R — R are continuous functions. Assume that H satisfies

H({t) > 0 fort#0,

.. H( .
llltrl)lglftT > 0 (possibly + o),
lim inf& > 0 (possibly +o0) forsomep > 1.

torsoo |EPHT

Let u is a distributional solution of (¢Py) such that u € L}, C(RN ),2<s <+ooand f(u), glu) € L%C(RN).
Thenu = 0 a.e.in R",

Proof. Let g > 1 be such that g < min{p, gy} if N> 8, whileq:=pforN=1,...,7.
From the hypotheses on H, it follows that H(t) > cq |t|7*! for any ¢ € R and a suitable ¢4 > 0. An applica-
tion of Theorem 6.14 completes the proof. O
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Example 6.17. When dealing with the equation
-A%u=f@) on ]RN,

we have that g = f and H(t) = f(t)t. Examples of functions f such that the corresponding function H satisfies

(6.51) are the following.

o f(u)=Au+A; \u\p’l u with Ay, A, > 0. In this case f satisfies (6.51) with any 1 < q < p, and Corollary 6.16
applies.

o Letp > 1andA > 0, the function f(u) := u + sin(u) + A, |u|P~* u, satisfies (6.51) with any 1 < q < p.

o LetO<pi<p;<p3 A,y >0,and u € R. The functions fy(u) := Ay [ufP* Y u+ pufP* u+ A, > u,
and f>(u) := Aq [ulP* P u + pjufP? + Ay JulP>t u, satisfy (6.51) with any p, < q < ps, provided p is small
enough. In particular if 0 < p; < 1 < ps, then Corollary 6.16 applies.

6.6 A generalization

Results similar to Theorem 6.14 can be formulated for more general nonlinearities f and g. For instance when
the nonlinearity f and g behave differently for positive and negative values of the independent variable, that
is when
ci|ul?t, if t=0,
H(t) 2
c; [uP*t, if t<o,

with c¢1, ¢c; > 0. More generally we have.

Theorem 6.18. Letf, g : R — R be continuous functions. Assume that H satisfies
H(t) = cymin{|t|7, [tP*!}, Vte R, forsome qzp > 1, (6.55)

with cg > 0. Let u is a distributional solution of (¢Pf) such that u LfOC(RN), 2 < s < +ooand f(u), g(u) €
L (RY).

Then for large R > 0, (6.40) and (6.41) hold.
Moreover,if N=1,...,70orN=>8and 1< q < qy, thenu =0 a.e. inRY.

Proof. Let
|7t if Jul<1,
h(u) := min{|u|7, [uP*t} =
Pt if ful > 1.

Arguing as in the proof of Theorem 6.11 we obtain inequality (6.47), which in turn yields

cy | h(we < /H(u)(p <c {/uzmég'z+/u2 +/u2|v¢|4}. (6.56)
RN

4)3
Next denoting with y; and y, the characteristic functions of Q; := {x : ]u(x)| <1}and Q; := {x: |u(x)| >1}
respectively, we have h(u) = [u|7 x; + [u[P** x,. Arguing as in the proof of (6.2), and with the same notation,
we observe that each term in the right hand side of (6.56) has the form (6.13). By using Holder and Young
inequalities, with exponents x = %1 andy = ’%1 and parameter € and 6, we have

[Heezc [wxiipi+ [wrlw
J

AR Ag

([urae) (J35)  (Frrne) (/ 25)

2
2lVel
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X
1 1 s 1 1 IlPIy
< ;/Iul‘” X9+ e | o /I ulP" xap + Vi
1 Pl 1 4
2 [ Hag+ s | o
Taking ¢ := ¢ = ¢1(|x| /R), and with a suitable choice of € and 8, since g = p, we have
/H we < cRV4E5 4 cRN-455 < cRN- “ﬂ (6.57)
RN

which is the first estimate in (6.40). To obtain the second estimate in (6.40), by Holder inequality and estimate

(6.57), we argue as follows
1/2 1/2
(f, o)+ (f,0)
BR BR

r 1/2
< u2>
Bg
1 1

(][BR |u|q+1)(1) i <][BR Iulwl)(z) "
(2 f, 7)™ (2 f, )

_4 g+l 41
CR 41+cR 191 < cR™

IN

IN

IN

IN

Finally, the claim follows arguing as in the proof of Theorem 6.14. O

7 Further remarks and results on the solutions

The main purpose of this Section is to show further qualitative properties on the possible solutions of our
prototype equation (1.3) and for more general problems. In order to simplify the presentation we consider
only smooth solutions.

7.1 Representation formula for u?

Theorem 7.1. Let h € 6(R") and u € € *(RY) be such that -uA?u = h. Let x € RY.
The representation formula

g - /thzv_4dy /|Au 0 4y
RN

Yl
vul® V) 4
2(N - 4) / vl y) dy
[x-y[2
2
~2(N - 4)(N - 2)/M v, (7.1)
-y
holds? provided one of the following assumptions is satisfied
1. h=0,
lim u’(y)dy =0, (7.2)

R J R<|x-y|<2R

2 Cy is the normalization constant defined in (1.9).
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and 5
vu (
7.3)
2. (7.2) holds and
2
T |(xA|u) e / < o

3. —A%u = f(u) with f(uu = cq [u|?*! for some g > 1 and cq > 0.
Moreover, if one of claims 1., 2. or 3. holds, then all the integrals in the representation formula (7.1) are finite.

Proof. By translation, it suffices to prove the claim for x = 0. From (5.31) of Proposition 5.13 with & = 4 and

@ = @r = ¢}, we have
h 2 PR
/lXN 4(pR /(Au) |X|N—4+

+ %uz(omR(O)

X 2
= 2(N-4)(N-2) / (Vu ) Pr (75)

x| ) |x]N-2

“2(N - DE,(Vu, [xP™N, o) - Ex(u, [x|*™N, g).

The representation (7.1) will follows letting R — oo and showing that E;(Vu, \X\B_N ,9r) — 0 and
Ex(u, [x|*™, pr) = 0.

1. Estimates (6.30) and (6.32), by hypothesis (72) and h > 0, assure that E;(Vu, \XP’N ,9r) — 0 and
E>(u, |X|4'N ,Pr) — 0as R — oc. Furthermore, all the integrals in (7.5) have a limit as R — oo by mono-
tone convergence theorem. All the integrals are finite since all of them are nonnegative and the integral in
right hand side of (7.5) is convergent because of (7.3).

2. From the hypotheses, we deduce
limRz][ |Vul? =0, and 1imR‘*][ |Au|® =
R AR R AR

Plugging this information in (5.4) and (5.29), we deduce respectively that E; — 0 and E, — 0, concluding the
proof.

3. Arguing as in the case 1. from the estimates in Theorem 6.1 we deduce that E; — 0 and E; — 0, and the
representation (7.1) holds. It remains to prove that the integrals are finite.
Plugging the estimate (6.40) in (6.7), we obtain

R2][ |Vul? < CR"%,
Ar

which in turn yields

2
[Vu| < a)N(ZN - 1)R? \Vu|2 < ch(ZN - 1)R’%.
x|V Ar

Bor\Br

Let k > 1, we have

o vut |Vul " |vuf?
|X|N—2 N-2 + Z N-2
B,kn1 By ]:OBZj+1\B j
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. 2 k )
5 ves @
V2

B,

By letting k — oo, it follows that (7.3) holds. O
The following Lemma, which we believe is interesting in itself, provides a sufficient condition for the
validity of (7.4).

Lemma7.2. Leth ¢ L}OC(RN) be a nonnegative function and let u HIZOC(RN) be a solution of (Py). Assume

that there exist 0 :]0, +oo[—]0, +oo[ be such that for R > 0 large there holds
][ u? < 6(R) forR large. (7.6)
Ar

Iy 0(2) < oo, then

h (Au)?  |Vul?

—4° —4° — eLl(RN\Bl). (7,7)
N-4 |X|N 4 ‘X'N 2

x|
Moreover
1. Ifh e L., we have IX\%’ e LY(RY).

loc?

2. Ifue € *(RY), then the functions in (7.7) belong to LYRY).

Remark 7.3. Special cases of solutions of (Py,) that fulfill the hypotheses of the above Lemma are the following.
1. By simple computation it is easy to see that if there exist c, o > O such that

][ u? < cR°, (7.8)
AR

then Lemma 7.2 applies and (7.7) holds.
2. From the a priori estimates in Theorem (6.8) and (6.9), it is immediate to verify thatif h = c |u|
‘u‘l]+1 1 N
€ L*'(R™).

1+|x| N4

1 withq > 1

and c > 0, then Lemma 7.2 applies and (7.7) holds and

Proof. Let us prove that MLN,Q € LY(R" \ B,). The proofs of the other claims follow similarly.

Since \XIL”"* is nonnegative it is enough to show that R — / is bounded for a subsequence

1+ \x|N—4
Br\B1
Rk —r OO,
To this end we choose R, := 2¥*1. We have,
k
/ h Z / h
|X|N—4 — |X|N—4 :
Bg, \B1 = B,j:1\B,;

Now, since by using (6.5) and the assumption (7.6) each addendum of the right hand side of the above identity

can be estimate as
h (l)[\]R4 / f 2
< h<wycy u® < c6(2R),
/ x|V 4 |B2r| Aog

BZR\BR BZR\BR

it follows that

k oo
h ) )
/ o Y co@ e 0@ < oo,
Bg, \B1 j=0 =0

This completes the proof of the first claim in (7.7).

The proof of other cases follows by using similar argument and the estimates (6.5) and (6.7). ]
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7.2 Remarks on the sign of the solutions

Theorem 7.4. Letu c ‘54(RN) be a solution of (¢Pf) with f, g continuous functions and H defined as in (1.6)
and satisfying (6.55). If one of the following condition holds

1. u has asign;

2. Au has a sign;

3. udAu has a sign;

thenu = 0in RY,

Proof. Clearly the interesting cases occour for N > 8. From Theorem 6.18, we know that (6.40) holds. Plugging
(6.40) in (6.2) and since the problem is invariant by translation, we deduce

lim |u|2 =0, and lim (Au)* =0, foranyx e R. (7.9)
R J B0 R J B0

Which in turns implies

lim inf lu| = 0. (710)
R J Bro

The above limits will play a crucial role to get information on the sign of the solutions.

1. Without loss of generality we may assume that u = 0. In this case u solves
-A%*u > f(u) > cymin{|u|?, [ulP} = 0.

Arguing as in the proof of Theorem 3.1, since —u satisfies the ring condition (7.10), from the representation
formula of Theorem A.1, it follows that u < 0 < u. Hence u = 0 in RY.
In the case u < 0 we deduce that —u solves

~A%(-u) > -g(w) > cy min{|u|?, |u’} > 0,
which by the same argument above yields —u < 0.

2. Without loss of generality we assume that —Au = 0. Since u is superharmonic and satisfies the ring condition
(7.10), arguing as in the proof of Theorem 3.1, by the representation formula of Theorem A.1, it follows that u
is nonnegative and by point 1. we get the claim (the case Au = 0 can be handled similarly).

3. First we consider the case uAu = 0. Indeed, by (6.10) with @ = u we have that Au? > 0. Since u? satisfies
(7.9), by the representation formula of Theorem A.1, we obtain that u? < 0 and hence the claim.

Assume that —uAu > 0. Observing that —u, —f(u), —g(u) and A?u have the same sign, we deduce that
A?u Au = 0. Therefore from (6.10) with @ = Au we have that A(Au)? = 0. Since (Au)? satisfies the ring condition
(7.9), again by the the representation formula of Theorem A.1, we deduce Au = 0 that is u is harmonic, which
implies that u = 0 because u satisfies the ring condition (7.10). a

The statements 1. and 2. of Theorem 7.4 and their proofs still hold for the higher order problem
AD)™u+u/ u=0 onR", (7.11)

as well as for its generalizations in the same spirit of (ng).

7.3 Uniqueness

Theorem 7.5. Let f € G(R) be a continuous function such that

(FO-fENE-8)2cr|t-sT", Vi seR, (712)
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Fig. 1: f(t) in continuous line, c|¢t|971¢ in dotted line.

forsome q > 1 andcs > 0. Let k € HARY) and let u € €“(R") be a solution of
-A%u=f(u)+kon RN,

IfFN=1,...,70rN=>8and1 < q < qy, where qy is defined in (6.26), then u is unique.

Proof. Let u and v be solutions of (713) and set w := u — v. We have that w solves the problem

-2 ww = ((-4°W) - (-8%V)) @=v) = (F) - f¥) (=)
2cpJu—v| = cp jw|T.

From Theorem 6.8 we get the claim.

DE GRUYTER

(7.13)

Remark 7.6. Condition (7.12) implies that f is increasing. Without the increasing property of f, the uniqueness

results is in general false. Indeed, let f be defined as

S, if 0<t<9,
o) 101t 10| 1(t-10), if 9<t<11,
' 9+ (t-11)4, if t>11,

-|t]9, if t<0,
where q is any number q > 1. See Figure 1. Clearly this f is not increasing and hence (7.12) does not hold, while
f satisfies

f(Ot=cq|t|T, vteR, andcg >0 sufficiently small.

The problem

~Au=f()-10, onRY, N> 4,

admits the constants solution u(x) = 10 as well as the function

C

vix) =10+ —————
(€2 +[x))7"

for suitable €, ¢ > 0 (namely, c8 N9 = (N - 4)(N? - 4)Ne* and €* > (N - 4)(N? - 4)N).
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Remark 7.7 (On the symmetry preserving property). As usual the uniqueness result implies several symmetry

properties on the solutions of (713). For instance, assuming that f satisfies the hypotheses in the uniqueness

result Theorem 7.5, we have

o ifke %”(RN) is a radial function, then the solution of (713) is radial;

e ifke %(RN) is even is some direction, then the solution of (7.13) shares the same symmetry;

e ifkc %(]RN) depends only on j < N variables, say X1, . . ., Xj, then also the solution of (7.13) depends only
Orle,...,Xj.

Remark 7.8 (On the sign preserving property). The prototype case related to (7.13) for the second order case
is
Au=|u/T u-k.

In this case the problem present a sign preserving property, namely, if k is nonnegative then also the solution is
nonnegative. See for instance [9] where a discussion of the quasilinear case is presented.

For the higher order case this property cannot be expected (in general the maximum principle fails and a
Kato’s inequality does not hold). Indeed, for instance, consider the problem

-A%u=|uT -k, (714)

and for simplicity consider the 1-dimensional case N = 1 (by a lifting argument our examples are still valid in
higher dimension). Choosing k(x) = 1, the only solution of (7.14) is the constant function u(x) = 1, which has the
same sign of k. While by choosing k(x) = |x* - 1|1971(x* - 1) + 24, which is positive, it follows that (7.14) is solved
by the changing sign function u(x) = x* - 1.

A Representation formula

Here we state some results from [6] for the reader convenience. The main equation is
(-A)™u =pu on RY, (AD)
where y is a positive Radon measure.

Theorem A.1. Let m = 1 be an integer and N > 2m. Let u be a positive Radon measure on RY and 1 € R. The
following statements are equivalent:
a) uis a distributional solution of (A.1) and for a.e. x € RY,

R+ RN
R<|x-y|<2R

liminf L / luy) - 1| dy = .

b) uis a distributional solution of (A.1), essinfu = | and u is weakly superharmonic.
c) ue L}OC(RN) and we have

u(x)=1+c(2m) / % a.e.x e RY,
o Ix-yl

N-a
where, for general a > OwithO < a < N, c(a) := %
2

Moreover, ifa), b) or ¢) holds, then fori = 1, . .., m the distribution (-A)!u is a positive Radon measure and can
be represented by

RN

(D)= [uCp = cam-i) [ o [ ax.
RN RN
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