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Featured Application: Cryo-nano tomography of biological samples with no landmarks in view.

Abstract: The high resolution of synchrotron cryo-nano tomography can be easily undermined by
setup instabilities and sample stage deficiencies such as runout or backlash. At the cost of limiting the
sample visibility, especially in the case of bio-specimens, high contrast nano-beads are often added to
the solution to provide a set of landmarks for a manual alignment. However, the spatial distribution
of these reference points within the sample is difficult to control, resulting in many datasets without a
sufficient amount of such critical features for tracking. Fast automatic methods based on tomography
consistency are thus desirable, especially for biological samples, where regular, high contrast features
can be scarce. Current off-the-shelf implementations of such classes of algorithms are slow if used on
a real-world high-resolution dataset. In this paper, we present a fast implementation of a consistency-
based alignment algorithm especially tailored to a multi-GPU system. Our implementation is released
as open-source.

Keywords: soft X-rays; cryo-nano tomography; image alignment; tomography alignment; biological
sample; computational methods; GPU computing

1. Introduction

Soft X-ray cryo-nano tomography is an effective imaging tool that allows one to analyse
biological samples in their native environment, providing ultrastructural three-dimensional
information of cells [1]; indeed, the high resolution of this technique, typically in the tens
of nanometres [2], is paired not only to a profitable contrast behaviour in a specific range of
energy, the water window, but also permits imaging in the hydrated state without staining,
as the sample preparation requires only vitrification of water via a cryo-fixation process [3].
Phase contrast techniques [4] are especially used in the hard-X-ray regime, as the contrast
due to phase shift is typically three orders of magnitude larger than the corresponding
absorption [4].

To obtain a reconstruction from a series of 2D projections, tomography relies on a
corpus of a priori information which constitutes an image formation model [5]. In its
simplest form, the rotation axis is fixed in the 3D space, and its 2D projection lays in the
central column (or row) of the detector, which is also fixed and locked to the source; a pure
rotation is what describes the relative motion of the sample with respect to the detector.

Appl. Sci. 2021, 11, 7598. https://doi.org/10.3390/app11167598 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0578-0846
https://orcid.org/0000-0002-2457-3618
https://orcid.org/0000-0003-1044-7263
https://orcid.org/0000-0002-3235-8950
https://orcid.org/0000-0001-8839-1461
https://doi.org/10.3390/app11167598
https://doi.org/10.3390/app11167598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167598
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167598?type=check_update&version=1


Appl. Sci. 2021, 11, 7598 2 of 13

1.1. Projection Misalignment Problem

If any of the previous assumptions is not met, a dataset acquired under these condi-
tions is defined as misaligned, and exploiting the ideal model introduced earlier produces
several artefacts in the reconstruction. While for a constant systematic error [6] the mis-
alignment can be corrected by a relatively easy determination of the rotation centre [7,8]
(this can be typically sufficient for µ-CT, e.g., in [9]), the mechanical imperfections of the
setup become clearly detectable, especially at the nanoscale [10]: temperature-dependent
asynchronous errors [6] can be unpredictable for each projection angle. The physical cause
of this issue is due to backlash and non-constant roundness in the bearings used for the
sample stage, leading to eccentricity [11], runout, or spindle errors [2,6,12]. At the detector,
the main observable effect of these misalignments is a jitter in x, y [12,13], which are the
coordinate axes of the detector. Without proper correction, a dataset acquired under these
circumstances is completely unusable, as a severe point spread function [14] is introduced
in the reconstruction, jointly with a peculiar artefact [13]. Even if in some cases the error
component can be measured and corrected [15] (also with interferometric encoding of
the specimen position [11]), this is not the case of special setups, such as the one employ-
ing cryo-stages [12,16], for which even more advanced opto-mechanical outbreaks than
the ones described in [17] are required to reach a sub-10 nm resolution. Post-acquisition
alignment is thus usually necessary [12].

1.2. Post-Acquisition Alignment

Marker-based alignment methods are a common solution to the problem, especially
in the case of biological samples which exhibit low absorption contrast and/or not well-
defined features; at the cost of decreasing the sample visibility (this is the measure of
how critical this step is), gold nano-beads are added to the sample solutions before
cryo-fixation [2] and are tracked in a post-acquisition procedure among each projection.
IMOD [18–20] and many other software frameworks [14,21–26] reviewed in, e.g., [27] are
used to manage this delicate pre-processing step. However, this approach is questionable,
as for many biological specimens, it is extremely difficult to control the spatial distribu-
tion of such fiducials. Large areas of the sample can be completely void of markers, or,
conversely, the distribution can be so dense that many different beads agglomerate one to
another, determining no reliable tracking information. Automatic feature-based approaches
are proven to work only in the presence of high quality images [28].

Tomography self-consistency or bootstrap methods [29,30] instead try to infer the align-
ment parameters while reconstructing the volume (Section 2). Paired with coarse align-
ment [31], these methods are usually the best choice to solve the misalignment problem.
While in great part automatic, these techniques are for their nature extremely demand-
ing from a computational point of view and can require both commercial software and
highly experienced users [16]. The rapid projection alignment method presented in [12]
belongs to this class of algorithms, is implemented in the advanced Tomopy [7] software
framework, and can be simply introduced in the pipeline by just invoking one line of code.
Unfortunately, the implementation can be slow on high-resolution datasets such as the one
acquired with newer setups [4], undermining its use as a fast method.

1.3. Proposed Solution

Here, we propose a solution to improve the speed of the algorithm [12] by an order
of magnitude by extensively exploiting the parallel approach in the entire processing
pipeline. The algorithm is structured with a modular approach, allowing us to separately
use each accelerated component (e.g., the tomography reconstruction/synthesis module)
through an API. The proposed solution which is tailored for parallel beam geometry has
also been implemented on a multi-GPU system and is tested against a multi-GPU-ready
version of Tomopy. In Section 2, the method is described, while Section 3 presents the
results by showing the acceleration capability for each module. Our software (provided
as open source at [32]) has been tested on artificially misaligned µ-CT data but also on a
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real high-resolution dataset acquired at MISTRAL, the soft X-ray transmission microscopy
beamline at the ALBA synchrotron light source (Barcelona, Spain) [1–3].

2. Computational Methods

The main idea of reconstruction “self-consistency” [33] is that at the convergence, from
a reconstructed volume, one can simulate a set of projections which are virtually indistin-
guishable from the original dataset. This is exactly what is sought during a reconstruction
in a deterministic iterative algorithm (MSE based) [5,13,34].

The setup parameters Θ may be made to concur with the object x to reduce the total
reconstruction error; this is a recurring theme in many computational imaging techniques
(e.g., in [28,34]). Indeed, in [13], an optimisation problem is cast involving the 2D detector
offset and tilt for each projection. At the cost of increased complexity, more complete
correction can be employed in the algorithms as described in [16,33].

2.1. Joint Reconstruction-Reprojection Method

Including many parameters directly within the optimisation pool can sometimes be
detrimental, as the solution space is filled with local minima (the curse of dimensionality [35]),
where the solution may stagnate [36].

When only the detector shift parameters are of interest [12], a different path is pos-
sible [29]: after having reconstructed an object with a conventional algorithm, a set of
synthetic projections is generated by employing the reconstructed volume; these reprojec-
tions are then registered with the actual tomography dataset (Figure 1). The procedure is
iterated until the shift parameters are nullified. The actual alignment is retrieved by using
the phase-correlation [37] as a meaningful similarity metric for the two sets.

Figure 1. Illustration of the reprojection algorithm concept: a real projection (A) is affected by a
severe misalignment in the x axis. A tomography reconstruction (not shown) will exhibit blurred
details due to this defect. The synthesised projection (B) calculated for the same projection angle of
(A) will be severely blurred but centred. A similarity measure is used to infer the parameters of the
geometry transform which realigns (A) on (B), iteratively producing an aligned dataset.
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2.2. Implementation Details

In recent times, faster execution of an algorithm is mainly achieved not by increasing
the performance per processing unit, but by enlarging the number of executioners [38–40].
In a highly parallelisable problem such as parallel-beam tomography [41], the typical
approach consists of exploiting the inherent data parallelism [40], meaning that the whole
computation can be divided into many smaller problems which can be solved concur-
rently [38]. Not all computational imaging techniques are so blessed. Massively parallel
accelerators such as GPUs are currently extensively used, thanks to a plethora of GPU-ready
available algorithms (e.g., [42–44]) that in turn are implemented in several reconstruction
frameworks such as [7,42,45].

From the analysis of the alignment algorithm [12], we detected three main areas for the
global acceleration (Figure 2): (1) a tomography reconstruction and projection component
is required to gather the volume estimate and the synthetic projections; (2) a motion
estimation procedure is employed to check for the registration parameters; and (3) a warp
interpolator is used to generate the new registered dataset. While for the two latter modules
we also studied a CPU-only parallel solution (Figure 2), for the CT component, it was
already clear that a GPU implementation would have been the only viable option.

Figure 2. Structure of the algorithm [12]; for each block, we studied the acceleration method shown
in the boxes. The composition of the green boxes creates the proposed fastest method.

In this work, we deconstructed the algorithm by implementing each step with a
highly parallelised version of each computational block; this is crucial to utilise all the
computational resources at hand. The result is a modular structure that can be used to solve
not only the tomography alignment problem as a whole, but each module can be used
separately in any image-processing pipeline (e.g., Hough transform for pattern matching
and computer vision applications, image registration, etc.).

2.3. Tomography Module

Even if in the literature several multi-GPU algorithms are proposed [45–50], off-the-
shelf, ready-to-be-used alternatives are currently scarce. This is especially true for iterative
algorithms such as SIRT [51] which are essential in the case of cryo-nano tomography,
as both the missing wedge problem [52] and the angle under-sampling can be severe.
We released a simplistic but effective CT module (Figure 3) that allows the distribution
of both the tomography forward and backward operators among n GPUs. The custom
implementation is realised on top of the advanced ASTRA Toolbox framework [13,42] and
consists of n CT servers which are configured to accept commands from an easy-to-use
Python API; the API automatically slices the dataset in n portions along the row axis and
uses a memory mapped array for the entire data scattering procedure, and each portion is
processed concurrently. The results of each executer are gathered and finally composed on
the row axis to produce the entire output (Figure 3). Through the ASTRA Toolbox, two 3D
iterative reconstruction algorithms are available: SIRT3D_CUDA and CGLS3D_CUDA.
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Figure 3. The tomography module: a large dataset is automatically sliced among n = 4 GPUs. Both
reconstruction and projections are allowed.

2.4. Motion Estimation Module

As said before, a similarity metric is required to estimate the registration parameters.
Even if an iterative alignment algorithm has been initially taken into consideration [53], a
one-shot procedure such as phase-correlation is desirable as a component of a fast method;
for each iteration, only three DFTs and an element-wise multiplication are required, at
least for its coarse-scale version. DFTs are surely expensive operations, but accelerated
algorithms are currently pervasive. Still, sub-pixel information is crucial, as hundreds of
iterations of the entire algorithm [12] are likely to be performed: the procedure indeed
cumulates the story of the shift to producing the current registration value to warp the
dataset. In this way, the frame information is not progressively lost iteration by iteration
due to padding. The use of the particular methodology presented in [37] is thus essential
to obtain at a reasonable speed for this fine-grained information.

The motion estimation procedure is carried out on each projection pair (acquired,
synthesised); thus, this entire computational block can be implemented again with the data
parallelism concepts in mind by splitting the whole problem as per-angle sub-procedures.
We thus implemented two different pathways to achieve the algorithm acceleration: an
accelerated CPU-only version is written by encapsulating the implementation of [37]
already present in Scikit-Image [54] in a multi-threaded pipeline. The second solution
instead consists of writing the sub-pixel phase correlation algorithm [37] in PyTorch [55],
which here is used not as a deep learning tool but as an easy path for GPU programming.
Similar to the previous case, a dispatcher splits the problem on n GPUs for concurrent
execution. As it will be shown in Section 3, the acceleration is large even in the case of the
CPU-only multi-threaded solution.
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2.5. Warp Module

The warp module is used to transform the dataset applying an affine transform on
each projection. As the problem can again be split into several independent problems, we
can accelerate the algorithm both by moving the computation to the GPU and exploiting the
data parallelism concept; the tuple composed of (projection, parameters) thus represents
the input for each subroutine, which is automatically dispatched among the available
executioners, which can be CPU cores or GPU cards. The GPU implementation is written
in the PyTorch Python dialect and makes use of a parametrisable grid generator and grid
sampler, which are the essential components initially developed for the 2D interpolator of
a spatial transformer network [56]. In the results section, we will discuss the effects of the
data transfer to the GPU.

3. Results and Discussion

To measure the algorithm acceleration, we benchmarked each module against the
corresponding block in the algorithm implementation [12] in Tomopy [7]. The system used
for the testing is an HPC node, whose hardware and software configuration is summarised
in Table 1.

Table 1. System configuration for the algorithm testing.

CPU Intel(R) Xeon(R) CPU E5-2643 v4 @ 3.40 GHz
24 hyper-threading core, 20 available (virtualisation)

GPU 2× Nvidia Tesla k80, 4 available processors

Virtualisation system proxmox-ve: 6.1-2 (kernel: 5.3.13-1-pve)

Virtual machine OS Ubuntu 18.04 LTS (kernel 5.0.0-29-generic)

Python 3.9.5 Anaconda

CUDA 11.1

PyTorch [55] 1.9

Scikit-Image [54] 0.18.1

ASTRA Toolbox [42] 1.9.9-dev1

TomoPy [7] 1.10.1

Reconstruction Baseline

While initially Tomopy offered GPU reconstruction algorithms solely through inter-
faces [47,50] to a single-GPU solution, in a very recent version, a native 3D multi-GPU
reconstruction algorithm can be invoked during the alignment procedure. However, no
other parts of the algorithm are currently parallelised. The recent scenario represents the
baseline configuration we used in our manuscript.

Observation Variables

To verify the working principle of our method, it is crucial to check for a reduction in
the execution time of each step of the proposed algorithm; this is done trough benchmarks.
As we mentioned, to generate an aligned dataset, the procedure requires the steps described
in Section 2 (see Figure 2: the reconstruction, the motion estimation, and the frame warp.
That is why this section is divided into (1) “CT module benchmark”; (2) “Motion estimation
benchmark”; and finally, (3) “Warp Module benchmark”. Due to the complexity of the
inner working, as the CT module will be difficult to use by calling the RAW functions, an
easy-to-import API has been written to ease the import into a custom code; a test code will
be presented.
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If no further processing is required (e.g., beads removal, deconvolution, etc.), even-
tually the reconstruction generated by the method (as a by-product of the alignment
procedure) can be considered final.

As we are devoted primarily to the speed of execution and considering that our
implementation is working in a numerically accurate manner that follows the original
algorithm [12], our results are mainly based on speed comparisons only.

3.1. CT Module Benchmark

Figure 4 shows the speed performance of the proposed solution (panel a) tested against
the reference Tomopy multi-GPU setup (panel b). We reconstructed a set of projections
with size 1024 × 1024 each; each curve represents the time required to reconstruct a dataset
with 57, 113, 225, or 450 angles and thus the same number of images. By looking at the
highest number of angles (blue curve), it can be seen how the proposed solution is faster
by a factor close to one order of magnitude.

Figure 4. Tomography module (SciCompCT) processing time is measured against the multi-GPU solution
in Tomopy [7]; a large dataset of (angles × 1024 × 1024) is automatically sliced among n = 4 GPUs.

As our solution is modular, it has to be noted that our parallel CT module can be
used as a stand-alone program which uses n GPUs. To embed it in a custom code is quite
straightforward: with the CT servers running (Section 2), a simple API can be called within
a Python program, such as shown in Listing 1.

3.2. Motion Estimation Module Benchmark

The motion estimation module has been tested by varying the number of projections
in the dataset (x-axis on each panel of Figure 5), parametrising the curve on the size of each
projection image. Considering the baseline configuration (panel a), the performance gain is
still large even for the multi-thread and CPU-only solution (panel b), but it can be improved
even further by dispatching the load on the four GPUs (panel c). In the present case, we can
effectively measure a speed improvement by switching towards a GPU computation only
due to the fact that the actual computation is effectively computationally intensive (DFTs,
elementwise multiplications, and matrix multiplications [37,54]) and parallelisable [38],
despite the additional latency that is introduced in the system by moving large arrays from
the central memory to the GPU RAM.
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# common requirements

import numpy as np

angles = np.arange(0,np.pi, np.pi/180)

# a 3D array of projections [angles, height, width]

prjs = np.random.randn(len(angles),300,600)

# load the SciCompCT API

from ct_server_lib_reinit import parallel_gpu_recon,

prepare_angle,

parallel_gpu_proj

# angles array in memory mapped I/O

basemempath = '/storage/fast/tmp_ct_server/'

anglepath = prepare_angle(angles, basemempath=basemempath)

# To generate projections from a 3D array

out = parallel_gpu_proj(rec, anglepath, nserv=4)

...

# To reconstruct a projection dataset

outrec, recerr = parallel_gpu_recon(prjs, angles,

iterat=20, nserv=4,

anglepath=anglepath

basemempath=basemempath)

Listing 1. SciCompCT module API usage example.

Figure 5. Performance comparison for the registration module, shown for single-thread (first
column), 20 threads (center column) and a multi-GPU implementation (third column). The
performance gain in terms of speed is large even for the CPU-only multi-threaded solution.

Warp Module benchmark225

Fig. 6 shows the speed gain that can be obtained by accelerating the warping procedure.226

Similarly to the previous case, panel a shows the baseline configuration, while panel227

b and c show respectively the speed of a parallel CPU only implementation and the228

multi-GPU approach. Here the latency associated to the GPU implementation is even229

larger, due to the results gathering; indeed, this operation involves the copy of the results230

from the GPU to main memory. Despite that, we can still measure a considerable231

performance gain, as the computation of an affine transform is again computationally232

intensive, especially for a large number of high-resolution projections.233

Entire Algorithm test234

To test for the algorithm working we used an old µ-CT dataset acquired at the Syrmep235

beamline of the Elettra synchrotron facility [9,21]. The CCD resolution of each image236

is of 600x300 pixels and the dataset contains 450 projections of a mouse femur that237

span a [0, 180°] angular range, acquired with a parallel-beam setup.To simulate the238

Listing 1. SciCompCT module API usage example.

Figure 5. Performance comparison for the registration module, shown for single-thread (first column), 20 threads (centre
column), and a multi-GPU implementation (third column). The performance gain in terms of speed is large even for the
CPU-only multi-threaded solution.

3.3. Warp Module Benchmark

Figure 6 shows the speed gain that can be obtained by accelerating the warping
procedure. Similar to the previous case, panel a shows the baseline configuration, while
panels b and c show, respectively, the speed of a parallel CPU-only implementation and
the multi-GPU approach. Here the latency associated with the GPU implementation is
even larger, due to the results gathering; indeed, this operation involves the copy of the
results from the GPU to the main memory. Despite this, we can still measure a considerable
performance gain, as the computation of an affine transform is again computationally
intensive, especially for a large number of high-resolution projections.
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Figure 6. Performance comparison for the warp module, shown for single-thread (first column), 20 threads (centre column),
and a multi-GPU implementation (third column). The performance gain in terms of speed is large even for the CPU-only
multi-threaded solution.

3.4. Entire Algorithm Test

To test for the algorithm working, we used an old µ-CT dataset acquired at the Syrmep
beamline of the Elettra synchrotron facility [9,21]. The CCD resolution of each image is of
600 × 300 pixels, and the dataset contains 450 projections of a mouse femur that span a
[0, 180◦] angular range, acquired with a parallel-beam setup. To simulate the misalignment,
we added a random x, y jitter in each projection with a standard deviation of 10 pixels,
obtaining a severely misaligned dataset, as can be seen in Figure 7 panel a; the use of the
alignment algorithm allows correcting for the jitter, producing the aligned dataset in panel
b. An off-axis feature seems completely missed in panel (a), but it is simply faint; by using
the alignment procedure, it becomes quite evident within the sinogram.

Figure 7. A real µ-CT dataset is artificially deteriorated by randomly shifting the projection in
x, y. In the misaligned dataset (a), the faint trace of an off-axis feature becomes evident with the
post-acquisition alignment (panel (b)).

3.5. Nanotomography Data

Figure 8 shows a real cryo-nano tomography dataset acquired at the MISTRAL beam-
line of the ALBA synchrotron facility; a biological sample of eukaryotic cell debris has been
cryo-fixated on a gold grid and imaged at 900 eV [2]. Although the condenser optics of
the soft X-ray microscope focuses the beam onto the sample, it is typical for this setup to
assume a simplified geometry with an incoming parallel beam [1,2]. The objective Fresnel
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zone plate lens (FZP) collects the transmitted beam, producing a magnified image (×1000)
at the back-illuminated CCD detector (Princeton Pixis XO, pixel size of 13 µm) [2]. The
resulting dataset is a set of 121 images, acquired at a resolution of 1024 × 1024 pixels and at
an angle of [−60◦, 60◦]. The rotation run-out is about 300 nm, which is currently the state
of the art [2], but due to the extremely complex setup and the large magnification factor (ef-
fective pixel size of 13 nm), a severe misalignment problem is inevitably present (Section 1).
As can be seen in panel a, the sinogram of a particular off-axis feature is extremely jittered,
and no “sine” can be recognized. Conversely, in panel b, the alignment makes it heavily
pronounced. The effect of the correction is more evident at the border by observing how
each line is shifted along the axis; the black part is the result of the padding operation,
whose effects are reduced by employing a shift-cumulation procedure. The alignment
process in Figure 8 has been performed by exploiting a multi-scale approach, aligning the
dataset iteratively at a different scale. The reconstruction is re-initialised after each change
of scale and starts by employing the set of projections aligned at the previous one. This
kind of correction is completely unfeasible on the reference software configuration, as the
required time would have increased even further.

Figure 8. Alignment of a real nano-tomography dataset; raw data (panel (a)) and their aligned
version (panel (b)), where a high-contrast feature effectively creates a recognisable sinogram. Note
the effect of the shift, which inevitably creates zero-padded areas.

4. Conclusions

In this paper, we proposed a modular framework for (nano)tomography alignment.
Often, in biological samples, regular, high-contrast features can be scarce, and this rep-
resents a problem if nano-beads are also not in view. If no robust trackable features
are present, the dataset is useless. Thus, an automatic alignment algorithm, such as the
bootstrap method, becomes extremely useful. A well-known and well-performing CT
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bootstrap-based algorithm [12] has been analysed and deconstructed to isolate and de-
termine its three essential components. This algorithm provides good results, but it can
be slow, as its implementation is sequential and CPU-based. The entire algorithm has
then been re-implemented: the modular approach we designed allows us to adapt the
parallelisation paradigms both for a multi-thread CPU implementation and a multi-GPU
solution. As a result, the entire algorithm is globally accelerated. For each module, the
benchmarks reported a performance gain that is close to one order of magnitude, allowing
for a rapid correction on high-resolution datasets. The correction can be even more accurate,
as a multi-scale approach is now feasible. The software is released as open-source and can
be downloaded from [32]. Thanks to its modular structure, each component can eventually
be incorporated easily in a custom code. As a by-product, we provide “SciCompCT”,
a ready-to-be-used solution for a parallel beam multi-GPU SIRT algorithm. We believe
that the proposed approach could be particularly useful for low-density matrices such as
biological samples.
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16. Odstrčil, M.; Holler, M.; Raabe, J.; Guizar-Sicairos, M. Alignment methods for nanotomography with deep subpixel accuracy.
Opt. Express 2019, 27, 36637–36652. [CrossRef]

17. De Andrade, V.; Nikitin, V.; Wojcik, M.; Deriy, A.; Bean, S.; Shu, D.; Mooney, T.; Peterson, K.; Kc, P.; Li, K.; et al. Fast X-ray
Nanotomography with Sub-10 nm Resolution as a Powerful Imaging Tool for Nanotechnology and Energy Storage Applications.
Adv. Mater. 2021, 33, 2008653. [CrossRef]

18. Kremer, J.R.; Mastronarde, D.N.; McIntosh, J. Computer Visualization of Three-Dimensional Image Data Using IMOD. J. Struct.
Biol. 1996, 116, 71–76. [CrossRef]

19. Mastronarde, D.N.; Held, S.R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 2017,
197, 102–113. [CrossRef]

20. Mastronarde, D.N. Dual-Axis Tomography: An Approach with Alignment Methods That Preserve Resolution. J. Struct. Biol.
1997, 120, 343–352. [CrossRef]

21. Brun, F.; Pacilè, S.; Accardo, A.; Kourousias, G.; Dreossi, D.; Mancini, L.; Tromba, G.; Pugliese, R. Enhanced and Flexible Software Tools
for X-ray Computed Tomography at the Italian Synchrotron Radiation Facility Elettra. Fundam. Inform. 2015, 141, 233–243. [CrossRef]

22. Brun, F.; Massimi, L.; Fratini, M.; Dreossi, D.; Billé, F.; Accardo, A.; Pugliese, R.; Cedola, A. SYRMEP Tomo Project: A graphical
user interface for customizing CT reconstruction workflows. Adv. Struct. Chem. Imaging 2017, 3, 4. [CrossRef]

23. Nickell, S.; Förster, F.; Linaroudis, A.; Net, W.D.; Beck, F.; Hegerl, R.; Baumeister, W.; Plitzko, J.M. TOM software toolbox:
Acquisition and analysis for electron tomography. J. Struct. Biol. 2005, 149, 227–234. [CrossRef]

24. Heymann, J.B.; Belnap, D.M. Bsoft: Image processing and molecular modeling for electron microscopy. J. Struct. Biol. 2007,
157, 3–18. [CrossRef] [PubMed]

25. Winkler, H.; Taylor, K.A. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt
series in electron tomography. Ultramicroscopy 2006, 106, 240–254. [CrossRef]

26. Zheng, S.Q.; Keszthelyi, B.; Branlund, E.; Lyle, J.M.; Braunfeld, M.B.; Sedat, J.W.; Agard, D.A. UCSF tomography: An integrated
software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. J. Struct. Biol. 2007,
157, 138–147. [CrossRef]

27. Pyle, E.; Zanetti, G. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem. J.
2021, 478, 1827–1845. [CrossRef]

28. Guarnieri, G.; Fontani, M.; Guzzi, F.; Carrato, S.; Jerian, M. Perspective registration and multi-frame super-resolution of license
plates in surveillance videos. Forensic Sci. Int. Digit. Investig. 2021, 36, 301087. [CrossRef]

29. Cop, M.; Dengler, J. A multi-resolution approach to the 3D reconstruction of a 50S ribosome from an EM-tilt series solving the
alignment problem without gold particles. In Proceedings of the International Conference on Pattern Recognition, Atlantic City,
NJ, USA, 16–21 June 1990; Volume 1, pp. 733–737.

http://dx.doi.org/10.3390/app11094120
http://dx.doi.org/10.1016/j.precisioneng.2004.05.003
http://dx.doi.org/10.1107/S1600577514013939
http://www.ncbi.nlm.nih.gov/pubmed/25178011
http://dx.doi.org/10.1107/S1600577516020117
http://dx.doi.org/10.1107/S1600577519005502
http://www.ncbi.nlm.nih.gov/pubmed/31274463
http://dx.doi.org/10.1107/S1600577518013929
http://www.ncbi.nlm.nih.gov/pubmed/30407194
http://dx.doi.org/10.1364/OE.25.023424
http://www.ncbi.nlm.nih.gov/pubmed/29041643
http://dx.doi.org/10.1038/s41598-017-12141-9
http://dx.doi.org/10.1364/OE.24.025129
http://dx.doi.org/10.1016/j.jsb.2017.07.008
http://dx.doi.org/10.1364/OE.27.036637
http://dx.doi.org/10.1002/adma.202008653
http://dx.doi.org/10.1006/jsbi.1996.0013
http://dx.doi.org/10.1016/j.jsb.2016.07.011
http://dx.doi.org/10.1006/jsbi.1997.3919
http://dx.doi.org/10.3233/FI-2015-1273
http://dx.doi.org/10.1186/s40679-016-0036-8
http://dx.doi.org/10.1016/j.jsb.2004.10.006
http://dx.doi.org/10.1016/j.jsb.2006.06.006
http://www.ncbi.nlm.nih.gov/pubmed/17011211
http://dx.doi.org/10.1016/j.ultramic.2005.07.007
http://dx.doi.org/10.1016/j.jsb.2006.06.005
http://dx.doi.org/10.1042/BCJ20200715
http://dx.doi.org/10.1016/j.fsidi.2020.301087


Appl. Sci. 2021, 11, 7598 13 of 13

30. Latham, S.J.; Kingston, A.M.; Recur, B.; Myers, G.R.; Sheppard, A.P. Multi-resolution radiograph alignment for motion correction
in x-ray micro-tomography. Dev. X-ray Tomogr. X 2016, 9967, 996710.

31. Zhang, J.; Hu, J.; Jiang, Z.; Zhang, K.; Liu, P.; Wang, C.; Yuan, Q.; Pianetta, P.; Liu, Y. Automatic 3D image registration for
nano-resolution chemical mapping using synchrotron spectro-tomography. J. Synchrotron Radiat. 2021, 28, 278–282. [CrossRef]

32. Guzzi, F.; Kourousias, G.; Gianoncelli, A.; Pascolo, L.; Sorrentino, A.; Billè, F.; Carrato, S. Material Concerning a Publication
on an Autograd-Based Method for Ptychography, Implemented within the SciComPty Suite. 2021. Available online: https:
//doi.org/10.5281/zenodo.5113938 (accessed on 19 July 2021).

33. Han, R.; Bao, Z.; Zeng, X.; Niu, T.; Zhang, F.; Xu, M.; Gao, X. A joint method for marker-free alignment of tilt series in electron
tomography. Bioinformatics 2019, 35, i249–i259. [CrossRef]

34. Guzzi, F.; Kourousias, G.; Billè, F.; Pugliese, R.; Gianoncelli, A.; Carrato, S. A parameter refinement method for Ptychography
based on Deep Learning concepts. arXiv 2021, arXiv:2105.08058.

35. Donoho, D.L. The Curses and Blessings of Dimensionality. In Proceedings of the American Math, Society Lecture-Math
Challenges of the 21st Century, Los Angeles, CA, USA, 7–12 August 2000; pp. 1–33.

36. Guizar-Sicairos, M.; Fienup, J.R. Phase retrieval with transverse translation diversity: A nonlinear optimization approach. Opt.
Express 2008, 16, 7264. [CrossRef]

37. Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158.
[CrossRef] [PubMed]

38. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU Computing. Proc. IEEE 2008, 96, 879–899. [CrossRef]
39. Nickolls, J.; Dally, W.J. The GPU Computing Era. IEEE Micro 2010, 30, 56–69. [CrossRef]
40. Pratx, G.; Xing, L. GPU computing in medical physics: A review. Med. Phys. 2011, 38, 2685–2697. [CrossRef]
41. Palenstijn, W.J.; Bédorf, J.; Sijbers, J.; Batenburg, K.J. A distributed ASTRA toolbox. Adv. Struct. Chem. Imaging 2016, 2, 19. [CrossRef]
42. van Aarle, W.; Palenstijn, W.J.; De Beenhouwer, J.; Altantzis, T.; Bals, S.; Batenburg, K.J.; Sijbers, J. The ASTRA Toolbox: A

platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015, 157, 35–47. [CrossRef]
43. Matenine, D.; Goussard, Y.; Després, P. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT. Med.

Phys. 2015, 42, 1505–1517. [CrossRef]
44. Vogelgesang, M.; Chilingaryan, S.; Rolo, T.d.; Kopmann, A. UFO: A Scalable GPU-based Image Processing Framework for

On-line Monitoring. In Proceedings of the 2012 IEEE 14th International Conference on High Performance Computing and
Communication 2012 IEEE 9th International Conference on Embedded Software and Systems, Liverpool, UK, 25–27 June 2012;
pp. 824–829.

45. Biguri, A.; Lindroos, R.; Bryll, R.; Towsyfyan, H.; Deyhle, H.; khalil Harrane, I.E.; Boardman, R.; Mavrogordato, M.; Dosanjh, M.;
Hancock, S.; et al. Arbitrarily large tomography with iterative algorithms on multiple GPUs using the TIGRE toolbox. J. Parallel
Distrib. Comput. 2020, 146, 52–63. [CrossRef]

46. Palenstijn, W.; Batenburg, K.; Sijbers, J. Performance improvements for iterative electron tomography reconstruction using
graphics processing units (GPUs). J. Struct. Biol. 2011, 176, 250–253. [CrossRef]

47. Pelt, D.M.; Gürsoy, D.; Palenstijn, W.J.; Sijbers, J.; De Carlo, F.; Batenburg, K.J. Integration of TomoPy and the ASTRA toolbox for
advanced processing and reconstruction of tomographic synchrotron data. J. Synchrotron Radiat. 2016, 23, 842–849. [CrossRef]

48. Chghaf, M.; Gac, N. Student Session: Data distribution on a multi-GPU node for TomoBayes CT reconstruction. In Proceedings
of the 2020 IEEE 26th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
Gangnueng, Korea, 19–21 August 2020; pp. 1–2.

49. Palenstijn, W.J.; Bédorf, J.; Batenburg, J. A distributed SIRT implementation for the ASTRA Toolbox. In Proceedings of the 13th
International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine 2015 (Fully3D 1),
Newport, RI, USA, 31 May–4 June 2015; pp. 166–169.

50. Gürsoy, D.; De Carlo, F.; Xiao, X.; Jacobsen, C. Tomopgy GPU Notes. 2021. Available online: https://tomopy.readthedocs.io/en/
latest/faq.html#do-tomopy-astra-and-ufo-support-all-gpus (accessed on 9 July 2021).

51. Gregor, J.; Benson, T. Computational Analysis and Improvement of SIRT. IEEE Trans. Med. Imaging 2008, 27, 918–924. [CrossRef]
52. Luu, M.B.; Van Riessen, G.A.; Abbey, B.; Jones, M.W.; Phillips, N.W.; Elgass, K.; Junker, M.D.; Vine, D.J.; McNulty, I.; Cadenazzi, G.; et al.

Fresnel coherent diffractive imaging tomography of whole cells in capillaries. New J. Phys. 2014, 16, 1–14. [CrossRef]
53. Evangelidis, G.D.; Psarakis, E.Z. Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization. IEEE Trans.

Pattern Anal. Mach. Intell. 2008, 30, 1858–1865. [CrossRef]
54. van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image

processing in Python. PeerJ 2014, 2, e453. [CrossRef]
55. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems 32: NeurIPS 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

56. Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial Transformer Networks. In Proceedings of the Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, QC,
Canada, 7–12 December 2015; pp. 2017–2025.

http://dx.doi.org/10.1107/S1600577520014691
https://doi.org/10.5281/zenodo.5113938
https://doi.org/10.5281/zenodo.5113938
http://dx.doi.org/10.1093/bioinformatics/btz323
http://dx.doi.org/10.1364/OE.16.007264
http://dx.doi.org/10.1364/OL.33.000156
http://www.ncbi.nlm.nih.gov/pubmed/18197224
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/MM.2010.41
http://dx.doi.org/10.1118/1.3578605
http://dx.doi.org/10.1186/s40679-016-0032-z
http://dx.doi.org/10.1016/j.ultramic.2015.05.002
http://dx.doi.org/10.1118/1.4914143
http://dx.doi.org/10.1016/j.jpdc.2020.07.004
http://dx.doi.org/10.1016/j.jsb.2011.07.017
http://dx.doi.org/10.1107/S1600577516005658
https://tomopy.readthedocs.io/en/latest/faq.html#do-tomopy-astra-and-ufo-support-all-gpus
https://tomopy.readthedocs.io/en/latest/faq.html#do-tomopy-astra-and-ufo-support-all-gpus
http://dx.doi.org/10.1109/TMI.2008.923696
http://dx.doi.org/10.1088/1367-2630/16/9/093012
http://dx.doi.org/10.1109/TPAMI.2008.113
http://dx.doi.org/10.7717/peerj.453

	Introduction
	Projection Misalignment Problem
	Post-Acquisition Alignment
	Proposed Solution

	Computational Methods
	Joint Reconstruction-Reprojection Method
	Implementation Details
	Tomography Module
	Motion Estimation Module
	Warp Module

	Results and Discussion
	CT Module Benchmark
	Motion Estimation Module Benchmark
	Warp Module Benchmark
	Entire Algorithm Test
	Nanotomography Data

	Conclusions
	References

