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Abstract— Continuous and reliable cardiac 

function monitoring could improve medication 
adherence in patients at risk of heart failure. This work 
presents an innovative implantable Fiber Bragg 
Grating-based soft sensor designed to sense 
mechanical cardiac activity. The sensor was tested in 
an isolated beating ovine heart platform,  with 3 
different hearts operated in wide-ranging conditions. 
In order to investigate the sensor capability to track 
the ventricular beats in real-time, two causal algorithms were proposed for detecting the beats from sensor data and 
to discriminate artifacts. The first based on dynamic thresholds while the second is a hybrid convolutional and 
recurrent Neural Network. An error of 2.7 ± 0.7 beats per minute was achieved in tracking the heart rate. Finally, we 
have confirmed the sensor reliability in monitoring the heart activity of healthy adult minipig with an error 
systematically lower than 1 Bpm. 
 

Index Terms—Fiber Bragg Grating, Heart monitoring, Neural Networks  
 

I. INTRODUCTION 
eart failure (HF) is a condition in which the heart is not 
able to pump enough blood to meet the needs of the body. 

It is a major health and economic challenge in both developing 
and developed countries [1]. Therefore, the continuous and 
reliable monitoring of cardiac activity remains a desirable foal 
in order to improve patient medication adherence, quality of 
medical care and to reduce costs due to outpatient visits and 
hospitalizations [2]. Its effectiveness has already been shown in 
chronic heart failure patients, whose hospitalizations can be 
reduced in a cost-effective manner [3], [4]. So far, continuous 
monitoring can provide a timely detection of major adverse 
cardiac events like malignant ventricular arrythmia [5] or 
myocardial infarction [6], which would improve clinical 
outcomes [7].  

A. Heart activity monitoring 
One of the main physiological parameters used to assess the 
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heart status is the ventricular beat or contraction frequency, 
defined as heart rate. It represents a mechanism for regulating 
cardiac output and its value should fall in an appropriate range, 
outside of which further evaluation could be needed in order to 
assess the need of therapeutic intervention [8]. Nevertheless, its 
patterns can reveal more information, for example, its 
acceleration can be used to predict ventricular tachyarrhythmia 
[9], its abnormal recovery after exercise is correlated to 
coronary artery disease [10], and the sequence of R-R interval 
values used to detect atrial fibrillation [11]. 

Heart rate variability has been gaining an increased attention 
for its relationship with the autonomic nervous system and its 
prognostic value in a plethora of heart disease signs. It can be 
used to predict ventricular arrhythmias [12], [13] or the risk of 
heart decompensation days before hospital admission [14]. 

These parameters can be measured in a non-invasive manner, 
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by means of electrodes, stethoscopes or LEDs placed on the 
skin surface — respectively used in electrocardiogram (ECG), 
phonocardiogram (PCG) and photoplethysmogram (PPG) 
monitors. ECG detects heart electrical activity, and it is 
commonly used to evaluate the heart rhythm. PCG detects heart 
sounds and has high potential to detect valvular and important 
cardiovascular diseases. PPG measures the blood volume 
variation in blood vessels, therefore providing less information 
about the heart. These systems are affected by different artifacts 
due to movements and other kind of physical interferences, 
such as electrical or from ambient light. Moreover, in the case 
of non-invasive ECG, the electrodes are not suitable for long-
term continuous use [15]. 

While non-invasive solutions are useful for monitoring the 
healthy population, implantable systems can be mandatory in 
patients who are more exposed to adverse events in the long-
term out-of-hospital care, like those undergoing cardiac surgery 
or heart transplantation [16], [17]. Invasive solutions to track 
cardiac function [18], [19], like the one we propose in this 
study, can be more accurate and effective in detecting 
pathological changes and assessing the progression of diseases 
thanks to their direct access to left ventricular wall. As an 
example, this advantage can be seen in implantable 
hemodynamic monitors in heart failure patients, whose 
impending hospitalization can be predicted weeks before by 
measuring increasing filling pressures [4]. Invasive ECG 
measurement can provide a long-term continuous monitoring, 
but  the electrical activity is only indirectly coupled to 
mechanical one. Indeed, in some circumstances ECG may not 
refer to the cardiac mechanical function such as in 
electromechanical dissociation leading to cardiac arrest [20]. 

B. Heart strain sensing 
The usage of ventricular strain from magnetic resonance and 

ultrasound imaging is a very active area of research in the field 
of cardiovascular translational medicine [21], [22]. The strain 
depends on many variables in the cardiovascular system. For 
example, myocardial contractile force and excitation-
contraction coupling, or the hemodynamic preload and 
systemic vascular resistance (afterload). The strain rate can be 
used as a measure of cardiac contractility. Both can change in a 
plethora of diseases, which highlights the tight link to the 
cardiovascular system health. For example, reduced strain 
combined to higher myocardial stiffness is a hallmark of 
cardiomyopathy development towards heart failure [23], and it 
is a predictor of major cardiac adverse events leading to 
disability and mortality in an hospital setting [24]. 

The previously mentioned imaging systems are unwieldy and 
bound to the time of an operator-driven investigation, thus they 
are confined to a hospital setting. In contrast, an implantable, 
soft, miniaturized and sensitive strain sensing device would 
allow longer monitoring of the abovementioned parameters in 
every-day settings in order to detect the onset of major cardiac 
adverse events even at home. Moreover, it could provide a real-
time monitoring of the cardiac response to medications in order 
to develop a personalized therapy. 

C. Objectives of the study and structure of the 
manuscript 

In this study we present a soft implantable strain sensor, 
together with two complementary algorithms to track the heart 
rate, with the objective of monitoring the heart by means of 
continuous and reliable data on its mechanical activity. Our 
sensor uses a Fiber Bragg Grating (FBG) transducer to measure 

 
 
Fig. 1.  a) top and bottom view of the realized sensor. b) FBG working principle applied to this case study: when the heart is contracted (above) the 
sensor is in a resting position and the peak wavelength of the reflected light spectrum at its minimum; after heart expansion (below) the sensor is 
stretched, thus the peak wavelength increases. 
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the strain of the ventricular region onto which it is attached. 
While the mentioned imaging techniques give us a global 
overview of the heart deformation pattern, but struggle in time 
and spatial sensitivity, FBG strain sensing offers excellent 
temporal resolution, spatial acuity and measurement accuracy 
[25], [26]. We test our sensor in an isolated ovine heart setup, 
under wide-ranging conditions, and in anesthetized minipig. 

In section II.A, the sensor design and its working principle 
are presented. Then, the experimental setup and the processing 
of the gathered data are described in section II.B. In section 
II.C, we propose an algorithm based on dynamic thresholds and 
a neural network to detect the beats from sensor data. The 
validation procedure is discussed in section II.D and II.E. The 
in-vivo testing setup is described in section II.F. 

The results of both the algorithms, on both ex- and in-vivo 
data are presented and discussed in section III. Finally, section 
IV presents the conclusion and next steps. 

II. MATERIALS AND METHODS 

A. Working principle and sensing device 
The developed sensor consists of an optical fiber housing one 

single FBG grating (FEMTOPlus Grating; FemtoFiberTec 
GmbH, Berlin, Germany) embedded into a soft material 
(Dragon Skin 30, Smooth-on, USA). The sensor is composed 
of two elastic in-series elements divided by three rigid 
aluminum parts (Fig. 1). The sensor is intended to be sutured to 
the epicardial surface of the left ventricle (LV), through the 
holes within the metallic parts. In order to ensure proper 
mechanical stability, the sensor could be anchored in at least 
two different points. 

The broader elastic part acts as a spring absorbing most of 
the strain and therefore avoiding damage to the fiber. The 
thinner polymer part encapsulates the optical fiber, it is 
responsible to transmit the strain to the sensing element (FBG) 
and to limit its bending which could be harmful if excessive. 
Two glues were used to bond the elements of the sensors: i) Sil-
poxy (Smooth-on, USA) to glue the polymer to the metallic 
parts and ii) UV glue (Loctite, USA) for bonding the optical 
fiber with the metal plates. The realized sensor has an overall 
length of 41 mm, 3 mm thickness and a width of 7 mm and 15 
mm for the thin and broad polymers part, respectively. The 

embedded optical fiber was laterally centered in the middle of 
the thin polymer part and was aligned with the longitudinal axis. 

An FBG is a micro resonant structure that reflects a defined 
wavelength, the so-called Bragg wavelength λB, when a 
broadband light source is fed through the optical fiber. The 
specific wavelength that is reflected-back is described by the 
grating period (ΔB) and the effective refraction index (ηeff) as 
highlighted in (1):  

 
𝜆𝜆B =  2 𝜂𝜂eff 𝛥𝛥B (1) 

Strain suffered by the optical fiber leads to variation of λB. In 
the sensor, we embedded a grating that has a length of 5 mm, 
an unstrained Bragg wavelength of either 1565 nm or 1545 nm 
and a strain sensitivity of 1.21 pm/με. The sensor was sutured 
onto the epicardium wall to measure the heart rate by tracking 
the λB of the FBG grating. Fig. 1 explains the FBG transduction 
principle applied to our case study. During the cardiac cycle, all 
the heart chambers are involved in a contraction phase (systole) 
and a relaxion phase (diastole). During this transition, the heart 
elongates the attached sensor, thus passing from an unstrained 
condition (systole) to a strained condition (diastole). Systole 
and diastole represent, respectively, the cases with maximum 
and minimum heart deformation and hence maximum and 
minimum wavelength shift of the λB. 

The fiber is plug into an optical interrogator which reads the 
reflected light spectrum and extracts the peak wavelength.  

B. Experimental setup and data collection 
The experimental setup, shown in Fig. 2, consists of the 

isolated heart, the devices needed to operate it, the probes 
needed to extract the heart cycle data, the interrogator and the 
FBG sensor, which is sutured on the inferior lateral wall of the 
LV, considered to be an area of high strain. 

Three sheep hearts were harvested similar to cardiac 
transplantation with administration of cardioplegia and ice 
cooling in the operating room. The hearts were then connected 
to the isolated heart apparatus and a Ventricular Assist Device 
(VAD) (HVAD, Medtronic Inc.) implanted at the ventricular 
apex. Using first the Langendorff perfusion, the hearts were 
rewarmed and restarted beating. Then using a working-heart 
mode (i.e. the heart operates as in the in-vivo setting) different 

 
Fig. 2.  a) Left part: setup for isolated heart activity support and control (WM: working mode clamp). Right part: extracted variables and processing 
needed to compute the heart rate (HR). b) Image of the isolated heart setup. 
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hemodynamic conditions were investigated [27]. 
Ventricular Assist Device pump speed, pacing, cardiac 

output, preload and adrenergic stimulation were gradually 
varied across the ranges indicated in TABLE I, each one in an 
independent experiment where only one variable was 
controlled, thus obtaining a consistent amount of data (around 
95 minutes, sampled at 200 Hz for a total of 1.14 million 
individual samples). 

 
The heart phases used for reference were computed by 

processing the left ventricular and aortic pressure. In order to 
extract the peaks of the ventricular pressure, the baseline was 
removed by subtracting the mobile median, and a lowpass 
Butterworth filter (second order with cut-off frequency of 2.5 
Hz) was applied. Small ventricular contractions which did not 
lead to an aortic pressure increase were removed. Finally, for 
each remaining peak of the ventricular pressure, the time 
segmentation of each systole was computed by finding the 
maximum and minimum of the first derivative. Thereby 
obtained reference peaks were used to evaluate the performance 
of the algorithms (Fig. 2, right part of panel a), and the systole 

segmentation was used as ground-truth for training a Neural 
Network (NN). 

The interrogator (SmartScan; Smart Fibres Ltd, Bracknell, 
UK) reads the reflected peak wavelength with a resolution < 1 
pm. The peak wavelength tracking is operated directly by the 
FBG interrogator, whereas the unstrained peak wavelength is 
subtracted from the sensor output to obtain the peak wavelength 
change. 

C. Heart beats extraction algorithms 
The sensor capability of monitoring the heart rate was 

validated in an isolated sheep heart by means of: i) a dynamic 
thresholds (DT) algorithm and ii) a NN. Both algorithms 
receive the peak wavelength change, output the times at which 
the beats occur and are meant to work in an online setting. 
1) Dynamic Thresholds algorithm 

The DT algorithm is lightweight, easy to implement and its 
parameters are not learned but calibrated with pilot trials. Fig. 3 
displays how the DT algorithm operates. This algorithm uses a 
2 s time window, updated every 100 ms, to dynamically 
compute the 0.4 and 0.6 quantiles of the signal. These values 
are used as thresholds to segment the heart cycle into peak, 
median and trough areas. The trough areas shorter than 120 ms 
and peak areas shorter than 50 ms are removed. Finally, a beat 
is counted when the passage from a peak to a trough area is 
detected. Its timestamp is the center of the last peak area.  
2) Neural Network architecture 

The NN is a Temporal Convolution Network (TCN) [28] 
followed by a Long Short-Term Memory (LSTM) [29] layer 
which features a total of 66k weights. There are 6 residual 

TABLE I  
VARIABLES CONTROLLED IN INDIVIDUAL EXPERIMENTS. 

Controlled variable Explored ranges 

Pacing 80-180 Bpm (slow and fast rate of change) 

Left Atrial Pressure 
(Preload) 3-13 mmHg 

VAD pump speed 2400-3200 Rpm 
Cardiac Output 1-5 l/m 
Adrenergic stimulation 0.5-1ml Dobutamine, 0.2-2.5mg Epinephrine 

 

 

 
Fig. 3.  Graphical illustration of the processing step of the Dynamic Thresholds algorithm. 

TABLE II 
NEURAL NETWORK STRUCTURE. 

Layer Kernel size Dilation Output Channels Under-sampling Activation 
Input   1 1x  
TCN Block 1 6 1 24* 1x ReLU 
TCN Block 2 6 4 24 1x ReLU 
Max pooling 4  24 4x  
TCN Block 3 4 1 34* 4x ReLU 
TCN Block 4 4 2 34 4x ReLU 
Max pooling 2  34 8x  
TCN Block 5 2 1 48* 8x ReLU 
TCN Block 6 2 2 48 8x ReLU 
Max pooling 2  48 16x  
LSTM   48 16x Tanh 
Layer normalization   48 16x  
1D Convolution 1 1 1 16x Sigmoid 

*the skip connection features a matching convolution, since there is a change in the number of channels 
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blocks with a Max Pooling operation every two blocks. Each 
residual block is composed of two consecutive 1D causal 
dilated convolutions with ReLU activation, (i.e., their output 
depends only on previous time values and the inputs are spaced 
to increase the receptive field). In the residual blocks the output 
is obtained by summing the result of the last convolution 
directly to the block input. In case they have a different number 
of channels a lightweight channel-wise dense layer (i.e., a 
convolution with kernel size equal to one) is used to match 
them. Finally, an LSTM layer with layer normalization 
produces an embedding of 48 values every 16 timesteps and the 
network output is computed with a channel-wise dense layer 
with sigmoid activation. TABLE II shows the exact parameters 
used in each block and the progressive under-sampling due to 
max pooling. Each TCN block aggregates information from a 
number of timesteps equal to the kernel size times the dilation.  

The NN target is the systole mask (1 when the heart is in 
systole phase, 0 otherwise) which changes its value at the very 
start of pressure increase. The loss used is binary cross-entropy 
for each timestep. The large convolution kernels, the dilations 
and the max pooling grant the aggregation of information from 
a wide receptive field of almost 0.5 s. Even if there is no long-
term dependence between the signal and the output, an LSTM 
was used because of its dynamic expressiveness [30], which is 
useful to a task like this in which the network learns to switch 
state at the systole boundaries. The network is trained with 
stochastic gradient descent with 0.9 Nesterov momentum and a 
0.005 learning rate with cosine decay schedule and restarts 
(with alpha equal to 0 and 50 decay steps, multiplied by 2 at 
each restart). Input sequences of 15 s duration are grouped with 
batch size of 15 and used as training inputs. Furthermore, data 
augmentation is performed by extracting them dynamically at 
random positions from longer continuous sequences of training 
data. The NN does not directly outputs the individual beats, but 
a time series of value between 0 and 1. First, a centered mobile 
mean filter with window width equal to 3 is used to smoothen 
the output. A beat is detected every time the unfiltered output is 
above a 0.5 threshold and a peak above 0.5 follows in the 
smoothed one. The computation time of a single output is 
estimated on an Intel i5 10th-gen processor running at 3.3GHz 
with 16GB RAM, disabling parallelism to employ only one 
core. The evaluation is run on a long sequence and the total time 
is divided by the number of outputs. Finally, the computation 
time results are averaged over 100 trials. 

D. Heart rate (HR) error computation 
Once the beat timing is obtained, an HR value is retrieved for 

each second of the signal by using the mean beat interval in a 6 

s window. Sampling at fixed intervals and making the HR 
smoother allows for a better one to one comparison. Since the 
HR is the reciprocal of the time interval between two detected 
beats, its value can be very sensitive to small positioning errors, 
i.e., its error distribution tends to have a heavy tail. For this 
reason, the mean absolute error (MAE) was computed, having 
a sensitivity to outliers halfway between the root mean square 
error and the median absolute error. The network under-
sampling introduces a baseline error due to the inability to 
precisely express the beat timing (an expected error even with 
perfect beat detection). The HR filtering window width 
decreases the effect of such an error but a trade-off should be 
operated in order to dynamically track increasing or decreasing 
HR. We studied the optimal balance by using simulations on 
real data to assess the under-sampling baseline error and 
simulation on HR ramps to assess the following error. We found 
a 6 s width to be a good trade-off, with an expected 0.75 Bpm 
error due to temporal discretization. 

E. Performance validation methods for heart beats 
extraction algorithms 

During data collection the isolated heart was stressed beyond 
normal working conditions. To fairly assess the algorithms 
performance, we split the dataset into normal and high heart rate 
variability (HRV) sequences. The HRV was measured with the 
root mean square of successive RR interval differences 
(RMSSD) and a value of 130 ms has been selected as a 
threshold for splitting data (values up to 1000 ms were 
measured). The resulting normal and high variability datasets 
contain respectively 60% and 40% of data, approximately. 
Moreover, the expected error and the variation (mean absolute 
deviation) was computed with 10-fold cross validation, both for 
the NN and for the DT algorithm – which does not learn based 
on data, but was tested in the same manner for comparison. In 
order to perform early stop, before each NN training a 
validation fold, separate from test fold, was extracted from 
training data. 

F. In-vivo validation 
To further assess the proposed sensor and algorithms, an in-

vivo experiment with a porcine heart was performed.  An adult 
male mini-pig (40kg body weight) was anesthetized (isoflurane 
1.0-1.5%) and mechanically ventilated under monitoring of 
vital parameters in accord with previous study [18]. Body 
temperature was maintained at 36.5°–39°C. The left femoral 
artery was surgically exposed, cannulated and connected to a 
P23ID strain-gauge transducer to allow continuous 
measurement of the arterial blood pressure. A median 
sternotomy was performed to open the chest and the beating 
heart was exposed after anterior pericardiectomy. The FBG 
sensor was sutured to the epicardium of the mid-anterior region 
of the left ventricular wall by two stitches (Prolene 6-0). The 
direction of the optical fiber was approximately parallel to the 
long axis of the ventricle. Fig. 4 shows the sensor position during 
the experiment.  

As a reference, physiological parameters like respiratory 
rate, heart rate, and cardiac rhythm were monitored. Moreover, 
hemodynamic signals were recorded on an eight-channel Gould 
polygraph recorder (model 5900; Gould Inc., Cleveland, OH, 
USA). The signals were recorded through an analog-digital 

 
Fig. 4. Position of the FBG sensor on the LV during the in-vivo 

experiment. 
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converter (AD Instruments). Mean femoral artery blood 
pressure was measured because it reliably reproduces central 
aortic pressure during cardiac surgery [31]. Pulse pressure is a 
widely used as surrogate of stroke volume in hospital setting 
and it was computed as the difference between systolic and 
diastolic arterial pressure [32]. Cardiac output was estimated on 
a Windkessel model, it was calculated as the product of pulse 
pressure and heart rate, divided by 1000 [33]. Systemic vascular 
resistance was calculated as the ratio between mean arterial 
pressure and cardiac output, multiplied by a correction factor of 
79.9 [34]. Finally, rate pressure product was calculated as the 
product of systolic arterial pressure and heart rate. It is a reliable 
indirect index of myocardial oxygen consumption during 
general anesthesia and cardiac surgery [35].  

In-vivo FBG data were acquired through an optical 
interrogator (FBG-Scan 904; FBGS, Geel, BE) with a 10 pm 
resolution over a 5 minutes period. Leveraging on the same 
algorithms (i.e., DT and NN), without any further training on 
this data, we explored the capabilities of the sensor to properly 
measure the heart rate of the animal. 

III. RESULTS AND DISCUSSION 
Within this work, we presented a soft sensor embedding one 

FBG and tested its capability in tracking the heart activity in 
real time by ex-vivo and in-vivo studies in large mammals. 

To have a well-rounded assessment of the sensor capabilities, 
the isolated hearts were stressed in wide-ranging conditions 
reflecting realistic physio-pathologic conditions. In particular, 
the obtained samples display normal and high heart rate 
variability, this latter due to increased arrhythmic activity. 

A sample from the dataset and the relative reference and 
output heart rates can be seen in Fig. 5a, also displaying the 
correlation between the heart phase (systole in red) and the 
sensor response. Fig. 5b shows a sample of in-vivo data. TABLE 
III compares the obtained results on normal, high variability data 
and on the whole dataset. TABLE IV sums up the error 
distribution, which can be fully evaluated in Fig. 6, showing the 
Bland-Altman plots of the two algorithms on the whole dataset.  

 
 

 
The DT algorithm accurately detects the HR in two thirds of 

the dataset, as shown in TABLE IV. Though, since its parameters 
are fixed and the algorithm does not adapt itself on data, it fails 
to display the same accuracy when the isolated hearts are put in 
severe stress condition. Indeed, Fig. 6a, referring to DT 
algorithm, shows an error bias and a heavy tail. 

On the contrary, the NN features a more balanced, less biased 
error, beside a higher overall accuracy, which can be seen in Fig. 
6b. It should however be noted that the computational workload 
is much higher with the neural network than with the dynamic 
thresholds algorithm: 7.3 MFLOPs vs 50 kFLOPs, 
approximately, resulting in a two order of magnitudes difference. 
Despite this, we estimated the computation time of a single NN 
output on an Intel i5 CPU core to be 0.07 ms ± 0.01 ms out of an 
80 ms interval between consecutive outputs. As a consequence, 
we can assert that real-time deployment on the edge of both the 
DT and the NN algorithms is feasible. Moreover, dedicated 
hardware such as FPGA accelerators have been reported to 
achieve sub-ms execution of recurrent NNs with a bigger 
computational footprint than ours [36]. 

We also report the cross-validated accuracy, recall and 
precision on the test folds, respectively: 93.3% ± 1.0%, 93.2% ± 
0.9% and 93.3% ± 1.3%. These metrics are computed on the raw 
output mask and indicate a successful NN training. Due to the 
under-sampling and the way the target is used to train the NN, the 
timing of the predicted beats is not as precise as the data would 
allow. When computing the HR, we still have a precise 
estimation since we use multiple beats; though, this hinders the 

TABLE III 
COMPARISON OF THE RESULTS OF THE TWO ALGORITHMS ON THE WHOLE 

DATASET AND ITS SUBSETS. 

Heart rate MAE [Bpm] Normal 
variability 

High 
variability All dataset 

Dynamic Thresholds 9.9 ± 2.4 12.9 ± 4.6 11.2 ± 2.5 
Neural Network 2.7 ± 0.7 4.6 ± 1.2 3.4 ± 0.7 

 

TABLE IV 
MAXIMUM ABSOLUTE HEART RATE ERROR IN DATASET SUBSETS. 

Dataset percentage Dynamic Thresholds Neural Network 
50% < 1 Bpm < 1 Bpm 
66% < 5 Bpm < 1.6 Bpm 
83% < 22 Bpm < 5 Bpm 

 

 
Fig. 5. Examples of sensor output with the reference systole mask (above) and the corresponding filtered heart rates (below) from a) the isolated 
heart setup and b) the  in-vivo setup. 
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potential to accurately measure indicators like the HRV. This 
problem could be solved by adapting methods from the field of 
object detection and image segmentation, e.g., Yolo [37] or Unet 
[38]. Still, our approach, which uses an LSTM and a simple post-
processing strategy, allows an easy-to-train NN for real-time 
detection of the beats. 

The in-vivo experiment features a healthy heart of a 
hemodynamically stable anesthetized minipig. Both algorithms 
(tuned in the isolated heart setting) show excellent transfer 
capability to the in-vivo setting and perform with error close to 
zero, 0.1 Bpm and 0.6 Bpm for DT and NN, respectively. The 
hemodynamic values measured during the experiment show a 
healthy minipig heart and suggest that our soft sensor does not 
interfere with heart dynamics (TABLE V). 

 

 

IV. CONCLUSION AND FUTURE PERSPECTIVES 
We demonstrated that the presented strain sensor has a 

strongly versatile ability to detect the frequency of the heart 
beats resulting from proper cardiac electro-mechanical coupling. 
We proposed two algorithms to this aim: the DT algorithm which 
is lightweight but less effective in challenging conditions; and the 
accurate, robust, but computationally heavier NN. We envision a 
usage in embedded settings in which they complement each 
other. Given the relationship between strain and several 

cardiovascular diseases, we believe our sensor has the potential 
to advance the state of the art in heart monitoring, allowing to 
detect more promptly the dysfunctions arising in patients with 
severe conditions at risk of adverse cardiac events. 

Future work will be aimed at reducing the sensor 
invasiveness by means of a smaller size, using a biocompatible 
polymer, optimized shapes and simpler standardized 
positioning procedures. Moreover, although our goal is to avoid 
reactive materials, we cannot exclude fibrotic response at the 
implantation site as already observed in humans receiving 
pacemaker and defibrillator leads or heart valve prostheses. Anti-
fibrotic coatings of surfaces may be used in future chronic 
applications to reduce the risk of a fibrotic response, which varies 
with the individual and may affect the sensitivity of the sensor. 
These progresses will be followed-up by a study dedicated to the 
long-term influence of the device presence on the tissues nearby. 
In addition to that, an imaging-based simulation method could be 
developed to identify the optimal positioning and direction of the 
sensor onto the ventricle according to the specific heart condition. 
We will also continue assessing the sensor capabilities by 
gathering in-vivo data related to pathological conditions and 
employ it with the aim of measuring additional clinically 
relevant variables, like heart rate variability, other strain-
derived parameters and myocardial stiffness. Additionally, our 
sensor can measure the cardiac electro-mechanical coupling, 
when coupled to ECG. 

Our sensor includes a single sensing element, but the FBG 
technology allows the use of multiple gratings inside a single 
sensor fiber, leveraging on wavelength multiplexing 
capabilities [39]. Implementing such a feature would grant the 
ability to sense the strain in multiple locations without 
additional wiring encumbrance, which can be a crucial aspect 
in such scenarios [40]. Moreover, in the present study 
temperature was not varied within each experimental session, 
however temperature changes should be rejected in the 
perspective of future chronic use: possible solutions include 
filtering operations, since mechanical and thermal effects have 
different characteristic timing, and the integration of an 
additional dummy FBG positioned so to be sensitive to 
temperature changes but not to myocardial strain. 

TABLE V 
HEMODYNAMIC VALUES MEASURED AND CALCULATED DURING ASSESSMENT 
OF FBG-BASED SENSOR IN ANESTHETIZED MINIPIG AT 1, 3 AND 5 MINUTES. 

Variable 1 minute 3 minutes 5 minutes 
Heart Rate (Bpm) 108 110 108 
Systolic Pressure (mmHg) 83 81 80 
Diastolic Pressure (mmHg) 52 50 51 
Mean Arterial Pressure 
(mmHg) 

62.3 60.3 60.7 

Pulse Pressure (mmHg) 31 31 29 
Cardiac Output (L/min) 3.35 3.41 3.13 
Systemic Vascular Resistance 
(dyn-s/cm5) 

1487 1413 1549 

Rate Pressure Product 8964 8910 8640 

 

 
Fig. 6. Bland-Altman plots of the filtered HR measurement error of a) the DT algorithm and b) the NN on the whole dataset. On the side the error 
distribution is shown. For a clear visualization, only the mean of the errors of each 15 seconds-long test sample is displayed. 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

Both the isolated heart and the in-vivo animal experimental 
setups allowed to successfully use a wired external photonic 
interrogator . Our aim, indeed, was to perform an acute testing 
of the feasibility of the developed sensor to monitor the heart 
biomechanical activity. Acute testing does not strictly require 
wireless communication, and transcutaneous links may be 
successfully used also in experimental trials lasting some 
months [41]. However, to have implantable telemetry 
electronics will be fundamental in order to achieve chronic 
implants applied clinically. The long term roadmap includes the 
future integration of our sensor inside a fully implanted device. 
FBGs are soft, flexible, compatible with magnetic resonance 
imaging [42] and have minimal power requirements. The main 
challenge thus remains the bulkiness of state of the art 
commercial interrogators: this is part of the long term strategy 
of this project, and miniaturized solutions for FBG interrogators 
are nowadays emerging both commercially and in research 
studies [43], [44]. 
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