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1. Introduction and main result

In this paper we study periodic solutions of a weakly coupled parametrized
system of second order differential equations.

The study of existence of periodic solutions for scalar second order d-
ifferential equations presents a wide literature: we refer to the survey by
Mawhin [24] and the references therein for an overview on this topic. In partic-
ular, we focus our attention on the classical result of Lazer and McKenna [23]
dated 1987 and its generalizations due to Del Pino et al. [6] in 1992 and Fonda
and Ghirardelli [9] in 2010. We also refer to [3,10,17,27] for related results
and to [28,30] and references therein for a comprehensive introduction to this
topic.

Let us quote here, for the reader’s convenience [6, Theorem 1.2].

Theorem 1.1. (Del Pino et al. [6]) Consider the differential equation u′′ +
g(u) = s(1 + h(t)), where g : R → R is of class C1, h : R → R is continuous
and 2π-periodic and s is a real parameter. Assume the existence of the limits
ν = limx→−∞ g′(x) and μ = limx→+∞ g′(x) satisfying

(k − 1)2 < ν < k2 ≤ m2 < μ < (m + 1)2 (1)
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for some positive integers k and m. Moreover μ and ν are such that

χ = 2
√

μν√
μ +

√
ν

is not an integer. (2)

Denote by n the integer part of χ. Then, there exist two positive constants
h0 and s0 such that if ‖h‖∞ ≤ h0 and |s| > s0 then the equation has at least
2(m−n)+1 solutions for positive s, and 2(n−k+1)+1 solutions for negative s.

In this paper we are interested in possible extensions of this multiplicity
result to the case of a system of differential equations: we have in mind in
particular the physical model of coupled oscillators, see e.g. [1,2,4,22,25,26,29]
and references therein. In our main result, Theorem 1.3 below, we prove the
existence of “many” periodic solutions if some non-resonance hypotheses hold.
In the trivial case of a system consisting of a unique equation we will recover
Theorem 1.1 and its generalization due to Fonda and Ghirardelli [9, Theorem 2]
for continuous nonlinearities. More in detail, we investigate periodic solutions
of systems in R

N of the type
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′
1 + g1(t, x1, . . . , xN ) = sw1(t),

x′′
2 + g2(t, x1, . . . , xN ) = sw2(t),

...
x′′

N + gN (t, x1, . . . , xN ) = swN (t),

(S)

where g : R × R
N → R

N and w : R → R
N are continuous functions and s is

a real parameter. Such functions are T -periodic in the time variable. In the
following we will denote by x ∈ R

N the vector x = (x1, . . . , xN ).
In the proof of our main result, we apply the higher dimensional Poincaré–

Birkhoff theorem proved by Fonda and Ureña in [18]. In [19] a simplified version
of such a theorem is presented for smooth functions, see also [11]. Recently,
some applications of the results of Fonda and Ureña to systems of ordinary
differential equations have been presented in [8,15,16].

We underline that the main results of [18] have been obtained without
assuming the uniqueness of solutions to the Cauchy problems. For this reason
we can drop Lipschitz regularity assumptions on the function g, which we will
assume to be merely continuous. A more general framework can be treated
introducing Carathéodory type of regularity, cf. Remark 1.7 below.

We collect here for convenience all the assumptions of Theorem 1.3. At
first, notice that Poincaré–Birkhoff theorem applies for area-preserving maps,
so that we ask a Hamiltonian structure for system (S). Hence, we assume the
following.

(H0) There is a continuous function H : R × R
N → R, continuously differen-

tiable in x, satisfying

gi(t, x) =
∂

∂xi
H(t, x),

for every index i.
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The previous assumption permits to rewrite system (S) as

x′′ + ∇xH(t, x) = sw(t). (S’)

In addition, we assume that the following set of hypotheses holds for every
index i = 1, . . . , N . Here and in the sequel, given x ∈ R

N we denote by x̌i

the vector (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ R
N−1, obtained removing the i-th

component.
(H1i) There are positive numbers νi

1, ν
i
2 such that

νi
1 ≤ lim inf

xi→−∞
gi(t, x)

xi
≤ lim sup

xi→−∞
gi(t, x)

xi
≤ νi

2

uniformly for every t ∈ [0, T ] and x̌i ∈ R
N−1.

(H2i) There is a function ai(t) such that

lim
xi→+∞

gi(t, x)
xi

= ai(t)

uniformly for every t ∈ [0, T ] and x̌i ∈ R
N−1.

(H3i) There are positive numbers μi
1, μ

i
2 and an integer mi ≥ 0 such that,

for every t ∈ [0, T ],
(

2πmi

T

)2

< μi
1 ≤ ai(t) ≤ μi

2 <

(
2π(mi + 1)

T

)2

. (3)

Moreover, the only solution of the scalar differential equation
{

ζ ′′ + ai(t)ζ = wi(t),
ζ(0) = ζ(T ), ζ ′(0) = ζ ′(T )

(4)

is strictly positive.
(H4i) There is an integer ni ≥ 0 such that

T

ni + 1
<

π
√

μi
2

+
π

√
νi
2

≤ π
√

μi
1

+
π

√
νi
1

<
T

ni
. (5)

Notice that, by convention, we set T
0 = ∞ in (5).

Remark 1.2. Assumptions (H1i) and (H2i) are fulfilled if gi(t, x) = ǧi(t, xi) +
pi(t, x) where ǧi satisfies the inequalities in (H1i) and (H2i), and pi is any
bounded function. Assumption (H3i) holds if ai(t) ≡ ai ∈ R satisfies (3) and
wi(t) � 1.

The assumptions in (3) and (5) are known as non-resonance conditions.
In particular assumption (3), which is related to (1) in Theorem 1.1, is the
typical non-resonance condition for the Hill’s equation x′′ + ai(t)x = e(t)
and (5), which is related to (2) in Theorem 1.1, is the typical non-resonance
condition for asymmetric nonlinearities. It is well-known that a scalar second
order differential equation with a nonlinearity satisfying this type of conditions
admits at least one periodic solution and the results date back to the pioneering
works by Dolph [5], Dancer [7] and Fuč́ık [20,21]. See [13,24] for details. An
extension to weakly coupled systems has been recently provided by Fonda and
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the second author in [14]. We will need [14, Theorem 2.4] in order to prove the
following theorem, which is our main result:

Theorem 1.3. Assume the validity of (H0) and (H1i)–(H4i), for every index
i = 1, . . . , N . Then, there exists s0 > 0 such that, for every s ≥ s0, the
Hamiltonian system (S) has at least

1 +

[

(N + 1)
N∏

i=1

|mi − ni|
]

(6)

periodic solutions.

We state here our result only for positive s for clarity. Let us stress that a
corresponding result for negative value of s can be achieved adding two condi-
tions analogous to (H2i)–(H3i) concerning the behavior of g at −∞. Moreover
we can consider different parameters s1, . . . , sN in each component. We will
explain briefly such possibilities in Sect. 4, see in particular Theorem 4.1.

Let us now sketch the structure of the proof of Theorem 1.3. We first
prove, for large values of the parameter s, the existence of a pivot solution.
A crucial property of such a solution is that all its components are positive.
Then by a change of coordinates we find a system equivalent to (S) having
a twist-structure. This allows us to apply the higher dimensional Poincaré–
Birkhoff theorem. In particular we find other periodic solutions by estimating
the rotation number of the components of every solution to (S), when such
components have either large amplitude or are near the components of the pivot
solution. Unfortunately, such a procedure does not allow us to give additional
informations on nodal properties of these solutions.

Remark 1.4. Notice that, in the scalar case N = 1, Theorem 1.3 leads to the
existence of 1 + 2|m1 − n1| periodic solutions, cf. [9, Theorem 2].

Remark 1.5. In [18], for Hamiltonian system (S′) in R
2N , the higher dimen-

sional Poincaré–Birkhoff theorem gives a better result when the Hamiltonian
function H is twice continuously differentiable with respect to x and the T -
periodic solutions are known to be non-degenerate a priori: in this case we
find at least 2N (instead of N + 1) T -periodic solutions. Such a condition is
not easy to be verified in general; by the way, adding such an assumption we
would find 1 +

[
2N

∏N
i=1 |mi − ni|

]
T -periodic solutions.

Remark 1.6. In [10, Theorem 1.1] the corresponding result of [9, Theorem 2]
for general Hamiltonian systems in the plane is provided. Following [10] one
can generalize Theorem 1.3 to a Hamiltonian system in R

2N = (R2)N studying
the behavior of the solutions in every planar component. We do not enter in
details to avoid technicalities.

We conclude with the following remark on the possibility of treating
Carathéodory functions in (S).
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Remark 1.7. In the applications, nonlinearities which are discontinuous in
time are sometimes treated. We wish to underline that our main result ap-
plies also for nonlinearities having a Lr-Carathéodory regularity (with r > 1).
In fact, the higher dimensional Poincaré–Birkhoff theorem can be applied also
in this setting, cf. [18, Section 8].

The paper is organized as follows: in Sect. 2 we introduce some prelimi-
nary lemmas which are necessary in order to prove our main result in Sect. 3.
Then in Sect. 4 we present some possible variants and improvements of our
main theorem with some examples.

2. Some preliminary lemmas

In this section we provide some preliminary lemmas needed to prove our main
theorem. We follow the main ideas of [9] and sometimes we will take advantage
of some computations just proved there. We will always implicitly assume the
hypotheses of Theorem 1.3 to be satisfied.

The following lemma is a direct consequence of (H3i) and follows easily
by the continuation principle. We omit the proof referring to [30, Theorem 2.1]
or [9, Lemma 1] for details.

Lemma 2.1. There are three positive constants ε0, c0 and C0 such that, for
every index i ∈ {1, . . . , N}, if η, γ : [0, T ] → R satisfy ‖η‖∞ ≤ ε0 and ‖γ −
ai‖∞ ≤ ε0, then the scalar linear problem

{
ζ ′′ + γ(t)ζ = wi(t) + η(t),
ζ(0) = ζ(T ), ζ ′(0) = ζ ′(T )

(7)

has a unique solution ζ such that c0 ≤ ζ(t) ≤ C0 for every t ∈ [0, T ].

From now on, we will assume without loss of generality that, for all the
indexes i,

T

ni + 1
<

π
√

μi
2 + ε0

+
π

√
νi
2 + ε0

≤ π
√

μi
1 − ε0

+
π

√
νi
1 − ε0

<
T

ni
,

(
2πmi

T

)2

< μi
1 − ε0 ≤ μi

2 + ε0 <

(
2π(mi + 1)

T

)2

,

and νi
1 − ε0 > 0 hold, where ε0 is given by Lemma 2.1.

Remark 2.2. Let ε0 be as above. Each component gi, i = 1, . . . , N , can be
written as follows, cf. [9, Lemma 2]:

gi(t, x) = ãi(t, x)x+
i − bi(t, x)x−

i + ri(t, x),

where ã, b, r : [0, T ] × R
N → R

N are continuous functions such that, for every
t ∈ [0, T ], all x ∈ R

N and i = 1, . . . , N ,

ai(t) − ε0 ≤ ãi(t, x) ≤ ai(t) + ε0,

νi
1(t) − ε0 ≤ bi(t, x) ≤ νi

2(t) + ε0

and there is r̃ ∈ R such that |ri(t, x)| ≤ r̃.

5
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Following [9], we introduce in (S) the variable z = (z1, . . . , zN ) as z = x/s
thus obtaining the equivalent system

⎧
⎨

⎩

z′′
i +

gi(t, sz)
s

= wi(t), i = 1, . . . , N,

z(0) = z(T ), z′(0) = z′(T ).
(8)

Lemma 2.3. There is a s̄ > 1 such that, for every s ≥ s̄, problem (8) has
a solution z = z(s, ·) whose components satisfy c0 ≤ zi(s, t) ≤ C0 for every
t ∈ [0, T ] and i ∈ {1, . . . , N}, where c0, C0 are the positive constants given by
Lemma 2.1.

Proof. By Remark 2.2, we can write the differential equations in system (8)
as

z′′
i + ãi(t, sz)z+i − bi(t, sz)z−

i = wi(t) − ri(t, sz)
s

, i = 1, . . . , N. (9)

In particular, if z : R → R
N , satisfies zi > 0 for every i, then it solves (9) if

and only if it solves

z′′
i + ãi(t, sz)zi = wi(t) − ri(t, sz)

s
, i = 1, . . . , N. (10)

Notice that the inequalities
(

2πmi

T

)2

< μi
1 − εo ≤ ãi(t, sz) ≤ μi

2 + ε0 <

(
2π(mi + 1)

T

)2

(11)

hold for every t ∈ [0, T ], all s ≥ 1, z ∈ R
N and i ∈ {1, . . . , N}.

The non-resonance condition (11) permits us to apply successfully [14,
Theorem 2.4] (cf. [14, Corollary 5.1]) yielding to the existence of a T -periodic
solution z = z(s, ·) for system (10) for any s ≥ 1.

We show now that, for s sufficiently large, such a periodic solution z(s, ·)
must have positive components. In particular z(s, ·) solves (8), in view of the
above equivalence.

We fix a component i ∈ {1, . . . , N} and put ζ = zi(s, ·). Then, ζ solves
the scalar linear equation

ζ ′′ + ãi(t, sz(s, t))ζ = wi(t) − ri(t, sz(s, t))
s

. (12)

Let s̄ = r̃/ε0, then setting γ = ãi(·, sz(s, ·)) and η = 1
sri(·, sz(s, ·)) we have

‖γ − ai‖∞ ≤ ε0 and ‖η‖1 ≤ ε0, for every s ≥ s̄. Applying Lemma 2.1, for
s ≥ s̄, the scalar equation (12) has a unique T -periodic solution ζ, which is
positive. Thus, zi(s, ·) is positive, and the assertion follows. �

In the previous lemma we have proved the existence of the pivot solution
z = z(s, ·) which, in turn, gives the previously mentioned pivot solution x =
x(s, ·) = sz(s, ·) of system (S). Observe that x(s, ·) is also positive in every
component. We now introduce the variable y = (y1, . . . , yN ) as y = z − z(s, ·).
We obtain the system

{
y′′

i + g̃i(s, t, y) = 0, i = 1, . . . , N,

y(0) = y(T ), y′(0) = y′(T ),
(13)

6
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where, for every index i,

g̃i(s, t, y) =
gi(t, s(y + z(s, t))) − gi(t, sz(s, t))

s
. (14)

In this way, the pivot solution corresponds to the trivial solution y ≡ 0 of (13).

Lemma 2.4. For i ∈ {1, . . . , N}, the limit

lim
s→+∞ g̃i(s, t, y) = ai(t)yi

exists uniformly for every t ∈ [0, T ] and y ∈ R
N with |yi| ≤ 1

2c0.

Proof. Fix i ∈ {1, . . . , N}. Being c0 ≤ zi(s, t) ≤ C0, by (H2i), we can find for
every ε > 0 the following estimate for s sufficiently large

|g̃i(s, t, y) − ai(t)yi| =
∣
∣
∣
∣
gi(t, s(y + z(s, t))) − gi(t, sz(s, t))

s
− ai(t)yi

∣
∣
∣
∣

≤
∣
∣
∣
∣
gi(t, s(y+z(s, t)))−ai(t) s(yi + zi(s, t))

s(yi + zi(s, t))

∣
∣
∣
∣ · |yi+zi(s, t)|

+
∣
∣
∣
∣
gi(t, sz(s, t)) − ai(t) szi(s, t)

szi(s, t)

∣
∣
∣
∣ · |zi(s, t)|

≤ ε(c0/2 + C0) + εC0,

for every t ∈ [0, T ] and y ∈ R
N with |yi| ≤ 1

2c0. The assertion follows. �
For i ∈ {1, . . . , N} we set

ãi(s, t, y) = ãi(t, s(y + z(s, t))), bi(s, t, y) = bi(t, s(y + z(s, t))),

and we define

ri(s, t, y) = g̃i(s, t, y) − ãi(s, t, y)y+
i + bi(s, t, y)y−

i .

As a straightforward consequence of Remark 2.2 we have

ai(t) − ε0 ≤ ãi(s, t, y) ≤ ai(t) + ε0, νi
1 − ε0 ≤ bi(s, t, y) ≤ νi

2 + ε0 (15)

for every t ∈ [0, T ], all y ∈ R
N and every index i. We can find also an upper

bound on ri(s, ·, ·):
|ri(s, t, y)| = |ãi(s, t, y)[(yi + zi(s, t))+−y+

i ] − bi(s, t, y)[(yi + zi(s, t))−−y−
i ]

−ãi(t, sz(s, t))zi(s, t) +
1
s
[ri(t, s(y + z(s, t))) − ri(t, sz(s, t))]|

≤ (μi + 2ε0)C0 + (νi + 2ε0)C0 + (μi + 2ε0)C0 + 2r̃ ≤ C̃,

independently of s ≥ 1, for every t ∈ [0, T ], all y ∈ R
N and i ∈ {1, . . . , N} for

a suitable C̃ ∈ R. In particular, for s ≥ 1 we have, for every index i,

‖g̃i(s, t, y)‖∞ ≤ C‖y‖∞ + C̃, (16)

for every t ∈ [0, T ] and all y ∈ R
N , where C = maxi=1,...,N{μi

2, ν
i
2} + ε0.

Let us consider, for every (α, β) ∈ R
2N , the Cauchy problem

{
y′′

i + g̃i(s, t, y) = 0, i = 1, . . . , N,

y(0) = α, y′(0) = β.
(17)

7
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Observe in particular that, by (16), all the solutions of (17) are globally
defined, even if the uniqueness of the solutions is not guaranteed. Given a
solution of (17) such that, for some i, we have (yi(t), y′

i(t)) �= (0, 0) for every
t ∈ [0, T ], we can introduce polar coordinates in the i-th component

(yi(t), y′
i(t)) = ρi(t)(cos θi(t), sin θi(t)),

thus obtaining the following equations for the radial and angular velocities of
the i-th component

ρ′
i = ρi cos θi sin θi − g̃i(s, t, ρi cos θi, y̌

i) sin θi,
−θ′

i = g̃i(s, t, ρi cos θi, y̌
i) cos θi/ρi + sin2 θi.

(18)

Lemma 2.5. It is possible to find δ,R1, s0, with 0 < δ < R1 < 1
2c0 and s0 > s̄,

where c0 and s̄ are given by Lemma 2.3, with the following property: for every
s ≥ s0, if y is a solution of (17), with (α, β) ∈ R

2N satisfying α2
i + β2

i = R2
1

for a certain index i, then one has δ ≤ ρi(t) ≤ 1
2c0 for every t ∈ [0, T ].

Proof. Set R1 = 1
8c0 e−(1+‖a‖∞)T < 1

2c0, δ = 1
4R1e−(1+‖a‖∞)T and ε ≤ R1/T .

Consider (α, β) as in the statement. Suppose that there exists t̄ ∈ [0, T ] such
that ρi(t̄) = 1

2c0 and ρi(t) < 1
2c0 for every t ∈ [0, t̄). By Lemma 2.4 we can

find sε > s̄ such that |g̃i(s, t, y) − ai(t)yi| ≤ ε for every s > sε, t ∈ [0, T ]
and y ∈ R

N with |yi| ≤ 1
2c0. By (18) we find |ρ′

i| ≤ (1 + ‖a‖∞)ρi + ε so
that by a Gronwall argument we have ρi(t) ≤ (R1 + εt̄ )e(1+‖a‖∞)t thus giving
ρi(t̄) ≤ 2R1e(1+‖a‖∞)T ≤ 1

4c0. We get a contradiction. Arguing similarly as
above we can also prove that ρi(t) > δ for every t ∈ [0, T ]. �

As a consequence of the previous lemma, it follows that all the solutions
of (17), such that α2

i +β2
i ≥ R2

1 for every index i, can be parametrized in polar
coordinates (ρi, θi) in every component. For such solutions it will be crucial to
estimate the rotation number of the i-th component.

Let us recall that, given a solution y to (17) such that, for some i, we
have (yi(t), y′

i(t)) �= (0, 0) for every t ∈ [0, T ], the rotation number of its i-th
component yi is given by

roti(y) = −θi(T ) − θi(0)
2π

.

We now provide some estimates on the rotation number. Let (α, β) ∈ R
2N

be such that α2
i +β2

i = R2
1 for a certain index i. Then, for every s ≥ s0 Lemma

2.5 above guarantees that the solution ys to (17) can be expressed in polar
coordinates (ρs

i , θ
s
i ) in the i-th component. By Lemma 2.4, using the estimate

of the angular velocity in (18), we have

lim
s→∞ θs

i (t) = ϑi(t),

where ϑi satisfies −ϑ′
i(t) = ai(t) cos2 ϑi(t) + sin2 ϑi(t) and ϑi(0) = θs

i (0). By a
standard non-resonance argument, assumption (H3i) provides (cf. e.g. [7,9,12–
14] and the references therein)

mi < −ϑi(T ) − ϑi(0)
2π

< mi + 1,

8
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thus giving mi < roti(ys) < mi + 1 for s sufficiently large. We have thus
proved, enlarging s0 if necessary, the following.

Lemma 2.6. For every s ≥ s0, any solution to the Cauchy problem (17) asso-
ciated to an initial datum (α, β) such that α2

i + β2
i = R2

1 for a certain index i,
satisfies mi < roti(y) < mi + 1.

Arguing similarly as in the proof of Lemma 2.5 we can prove the following.

Lemma 2.7. For every χ > 0 there exists Rχ > χ with the following property:
every solution of (17) with s ≥ 1 and (α, β) such that α2

i + β2
i = Rχ, for a

certain index i, satisfies ρi(t) > χ, for every t ∈ [0, T ].

Proof. The proof is similar to the one of Lemma 2.5. In this case, by (16), we
get the estimate |ρ′

i| ≤ (1 + C)ρi + C̃, then again by a Gronwall argument the
proof easily follows. �

Now, by a standard non-resonance argument, we can prove that there
exists χ0 > 0 large enough to guarantee that every solution to (17), such that
ρi(t) > χ0 for every t ∈ [0, T ] and a certain index i, satisfies ni < roti(y) <
ni + 1.

In fact, if we fix an index i, by (18) we have −θ′
i = Θi(s, t, ρi, θi, y̌i) with

Θi(s, t, �, ϑ, y̌i)

=

(

ãi(s, t, υ)(cos ϑ)+ − bi(s, t, υ)(cos ϑ)− +
ri(s, t, υ)

�

)

cos ϑ + sin2 ϑ,

where y̌i = (y1, . . . , yi−1, yi+1, . . . , yN )
and υ = (y1, . . . , yi−1, � cos ϑ, yi+1, . . . , yN ).

Following, for example, the main ideas of the proof of [14, Theorem 4.1] (see
also [13, Theorem 3.10], or [9] for an alternative proof) we define

ψi,1(ϑ) =

{
(μi

1 − ε) cos2 ϑ + sin2 ϑ ϑ ∈ [−π/2, π/2],
(νi

1 − ε) cos2 ϑ + sin2 ϑ ϑ ∈ [π/2, 3π/2],

ψi,2(ϑ) =

{
(μi

2 + ε) cos2 ϑ + sin2 ϑ ϑ ∈ [−π/2, π/2],
(νi

2 + ε) cos2 ϑ + sin2 ϑ ϑ ∈ [π/2, 3π/2].

By (15), we have

ψi,1(ϑ) ≤ lim inf
�→∞ Θi(s, t, �, ϑ, y̌i) ≤ lim sup

�→∞
Θi(s, t, �, ϑ, y̌i) ≤ ψi,2(ϑ),

uniformly in t ∈ [0, T ], s ≥ 1, y̌i ∈ R
N−1. Then, by a simple computation

we get, by (H4i), ni < roti(y) < ni + 1 if ρi(t) > χ0 for every t ∈ [0, T ],
with χ0 large enough. As an immediate consequence, setting R2 = Rχ0 , given
by Lemma 2.7, we have the following lemma.

Lemma 2.8. For every s > 1, there exists R2 > 0 such that all the solutions to
the Cauchy problem (17) associated to the initial data (α, β) with α2

i +β2
i = R2

2

for a certain index i, satisfy ni < roti(y) < ni + 1.

9
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3. Proof of the main result

The proof of Theorem 1.3 follows from the application of Theorem 3.1 below.
This is a simplified version of a higher dimensional version of the Poincaré–
Birkhoff theorem, recently obtained by Fonda and Ureña. We refer in particular
to [18, Theorem 1.2].

Let R2 > R1 > 0 be given. We denote by Ω =
(
BR2\BR1

)N
the N -

annulus in R
2N , where Br is the ball in R

2 of radius r, centered at the origin.

Theorem 3.1. Assume that every solution y of the Cauchy problem (17), de-
parting from (α, β) ∈ ∂Ω, is defined on [0, T ] and, using its polar coordinates,
satisfies

ρi(t) > 0, for every t ∈ [0, T ] and i = 1, . . . , N. (19)

Assume moreover that there are positive integers l1, . . . , lN such that, for each
index i,

roti(y) < li if ρi(0) = R1, and roti(y) > li if ρi(0) = R2. (20)

Then, the problem (13) has at least N +1 distinct T -periodic solutions y, with
y(0) ∈ Ω, such that roti(y) = li, for every i = 1, . . . , N .

Proof of Theorem 1.3. If mi = ni for a certain index i then Theorem 1.3
easily follows: the pivot solution is the only required solution, cf. (6). Hence,
we suppose mi �= ni for every index i. In order to prove the existence of the
required number of solutions, we apply many times Theorem 3.1 by choosing
different values of l1, . . . , lN satisfying (20). For every s ≥ s0, Lemma 2.5
ensures the validity of the non-vanishing condition (19), while Lemmas 2.6
and 2.8 give the validity of (20) in the following way: we can choose for every
index i an integer li ∈ Li = {mi + 1, . . . , ni} if mi < ni, or li ∈ Li =
{ni + 1, . . . ,mi} if mi > ni, where mi and ni are provided respectively by
(H3i) and (H4i). The number of possible choices of the values l1, . . . , lN is
given by the number of elements of L = L1 ×· · ·×LN which is

∏N
i=1 |mi −ni|.

Hence, we can apply Theorem 3.1 for every element (l1, . . . , lN ) ∈ L, so that we
obtain (N + 1)

∏N
i=1 |mi − ni| periodic solutions, which, together to the pivot

solution, provide the required number of periodic solutions (6). Theorem 1.3
is thus proved. �

4. Further results and applications

Following [6,9] we introduce the change of coordinates x̂i = −xi, thus obtain-
ing the following assumptions specular to (H1i)–(H4i):

(J1i) There are positive numbers μi
1, μ

i
2 such that

μi
1 ≤ lim inf

xi→+∞
gi(t, x)

xi
≤ lim sup

xi→+∞
gi(t, x)

xi
≤ μi

2

uniformly for every t ∈ [0, T ] and x̌i ∈ R
N−1.

10
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(J2i) There is a function bi(t) such that

lim
xi→−∞

gi(t, x)
xi

= bi(t)

uniformly for every t ∈ [0, T ] and x̌i ∈ R
N−1.

(J3i) There are positive numbers νi
1, ν

i
2 and an integer mi ≥ 0 such that,

for every t ∈ [0, T ],

(
2πmi

T

)2

< νi
1 ≤ bi(t) ≤ νi

2 <

(
2π(mi + 1)

T

)2

. (21)

Moreover, the only solution of the scalar differential equation
{

ζ ′′ + bi(t)ζ = wi(t),
ζ(0) = ζ(T ), ζ ′(0) = ζ ′(T )

(22)

is strictly positive.
(J4i) There is an integer ni ≥ 0 such that

T

ni + 1
<

π
√

μi
2

+
π

√
νi
2

≤ π
√

μi
1

+
π

√
νi
1

<
T

ni
. (23)

Replacing assumptions (H1i)–(H4i) with (J1i)–(J4i) in Theorem 1.3 we
obtain a multiplicity result of periodic solutions for negative values of the
parameter s.

Moreover, we stress that the proofs of the lemmas in Sect. 2 work by
components so that the statements of such lemmas can be relaxed: e.g., in
Lemma 2.3 we can find positive s̄1, s̄2, . . . , s̄N such that the conclusion follows
for every s1, s2, . . . , sN satisfying si ≥ s̄i for every i. Similarly, instead of the
values δ,R1, s0 introduced in Lemma 2.5 one can find for every index i different
values δi, Ri

1, s
i
0. Again a similar remark is valid for Lemma 2.7. Consequently,

it is possible to apply a slightly more general version of Theorem 3.1, that
is the higher dimensional Poincaré–Birkhoff theorem on N -annuli of the type
∏N

i=1(BRi
2
\BRi

1
). We have chosen to not enter in such details in the previous

sections for the clarity of the proofs. We observe that, for a general nonlinearity,
it might be difficult to evaluate all these constants: we can only guarantee their
existence.

Taking into account all the previous remarks we can state a slightly more
general version of our main theorem, which can be proved along the line of
Theorem 1.3.

Theorem 4.1. Assume (H0) and, for every index i = 1, . . . , N , suppose that
either conditions (H1i)–(H4i) or (J1i)–(J4i) hold. Then, there exists s0 =
(s10, . . . , s

N
0 ) ∈ R

N with si
0 > 0 for every index i, such that for every s =

(s1, . . . , sN ) ∈ R
N , satisfying either sj ≥ sj

0 if we have supposed (H1j)–(H4j)

11
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or sj ≤ −sj
0 if we have supposed (J1j)–(J4j), the Hamiltonian system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′′
1 + g1(t, x1, . . . , xN ) = s1w1(t),

x′′
2 + g2(t, x1, . . . , xN ) = s2w2(t),

...
x′′

N + gN (t, x1, . . . , xN ) = sNwN (t),

(24)

has at least

1 +

[

(N + 1)
N∏

i=1

|mi − ni|
]

periodic solutions.

Observe that, in this framework, the pivot solution is positive for those
components satisfying (H1j)–(H4j), negative if (J1j)–(J4j) holds for them.

Finally, we can also consider nonlinearities satisfying both (J1i)–(J4i)
and (H1i)–(H4i), with different constants mi and ni, thus permitting us to
apply many times Theorem 4.1. Let us give an example of application.

Example 4.2. Consider the 2π-periodic system
{

x′′
1 + 20x+

1 − 200x−
1 + cos(t + x1 + x2) = s1,

x′′
2 + 50x+

2 − 500x−
2 + cos(t + x1 + x2) = s2.

Notice that the system is already written in the form given by Remark 2.2.
Let us show the existence of s0 > 0 such that there exist at least

19 2π-periodic solutions for s1 > s0 and s2 > s0,
73 2π-periodic solutions for s1 > s0 and s2 < −s0,
73 2π-periodic solutions for s1 < −s0 and s2 > s0,
289 2π-periodic solutions for s1 < −s0 and s2 < −s0.

In fact, in the notation of the previous sections, we have a1(t) ≡ 20, b1(t) ≡
200, a2(t) ≡ 50, b2(t) ≡ 500. Hence,

(H11)−(H41) holds with m1 = 4, n1 = 6, |m1 − n1| = 2,
(J11)−(J41) holds with m1 = 14, n1 = 6, |m1 − n1| = 8,

(H12)−(H42) holds with m2 = 7, n2 = 10, |m2 − n2| = 3,
(J12)−(J42) holds with m2 = 22, n2 = 10, |m2 − n2| = 12,

so that Theorem 4.1 applies four times giving

(H11)−(H41), (H12) − (H42) ⇒ 1 + 3 · 2 · 3 = 19 solutions,
(H11)−(H41), (J12) − (J42) ⇒ 1 + 3 · 2 · 12 = 73 solutions,
(J11)−(J41), (H12) − (H42) ⇒ 1 + 3 · 8 · 3 = 73 solutions,
(J11)−(J41), (J12) − (J42) ⇒ 1 + 3 · 8 · 12 = 289 solutions.

Notice that we can consider other bounded functions instead of cos(t+x1+x2),
but preserving the Hamiltonian structure of the system, cf. Example 4.4 below.

12



NoDEA Multiplicity of periodic solutions for systems. . . Page 13 of 17 4

We are going now to discuss the number of solutions provided by The-
orem 1.3. For a system which is totally uncoupled, that is, gi(t, x) = gi(t, xi)
for every index i, we expect to find

∏N
i=1(1 + 2di) periodic solutions, where

di = |mi − ni|, simply applying N times the corresponding scalar result, e.g.
Theorem 1.1, see also [9,23]. Now, by the distributive property we have

N∏

i=1

(1 + 2di) =
∑

σ∈{0,1}N

N∏

i=1

(2di)σi =
∑

σ∈{0,1}N

2�(σ)
N∏

i=1

dσi
i , (25)

where, given σ ∈ {0, 1}N , we set �(σ) =
∑N

i=1 σi. Notice in particular that
the choice σ = (0, . . . , 0) corresponds to 2�(σ)

∏N
i=1 dσi

i = 1, while the choice
σ = (1, . . . , 1) gives 2�(σ)

∏N
i=1 dσi

i = 2N
∏N

i=1 |mi − ni|. Hence, Theorem 1.3
provides the number of periodic solutions corresponding to these two choices of
σ ∈ {0, 1}N , if they are a priori known to be non-degenerate, cf. Remark 1.5.
Under our assumptions (H1i)–(H4i), we cannot obtain necessarily a better
result because we do not have, in (13), for every index i,

g̃i(s, t, y) = 0, for every s ≥ s0 and t ∈ [0, T ],
for every y ∈ R

N such that yi = 0.
(26)

For pure academic purpose let us assume the validity of (26), that is an
“extremely weak coupling condition”. Let us show that, following the proce-
dure adopted in [15], we can recover all the expected periodic solutions. In
fact, for every σ ∈ {0, 1}N , we can consider the system of equations

{
y′′

i + g̃i(s, t, y) = 0, if σi = 1,

yi ≡ 0, if σi = 0,
i = 1, . . . , N ; (27)

which is essentially a �(σ)-dimensional system. Notice that a T -periodic solu-
tion of (27) is a solution of (13) too, and so it corresponds to a T -periodic
solution of (S) such that its i-th component coincides with the i-th compo-
nent of the pivot solution, for every index satisfying σi = 0. Fix σ ∈ {0, 1}N :
repeating the reasoning of the proof of Theorem 1.3, we can choose, for ev-
ery index i, a value li ∈ Li, where now we set Li = {0} if σi = 0. So,
L = L1 × · · · × LN has

∏N
i=1 dσi

i elements (where 00 = 1 by convention). The
application of Theorem 3.1 in dimension �(σ) gives the existence of 2�(σ) pe-
riodic solutions of (27)—if they are a priori known to be non-degenerate—(in
fact we have to consider only nontrivial coordinates in order to determine the
rotation number). Hence we find, for every σ ∈ {0, 1}N , at least 2�(σ)

∏N
i=1 dσi

i

periodic solutions.
Summing up we have the following result.

Corollary 4.3. Let the assumptions of Theorem 1.3 hold. Assume moreover (26)
for every index i, and that all the periodic solutions of (S) are a priori known
to be non-degenerate. Then the system (S) admits the number (25) of periodic
solutions expected for a totally uncoupled system.

13
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We conclude with an example of a weakly coupled system satisfying (26)
for some particular values of the parameter s. In correspondence of such values
one can find more periodic solutions.

Example 4.4. Consider the 2π-periodic Hamiltonian system
{

x′′
1 + 20x+

1 − 200x−
1 + 20 sin(20x1) cos(50x2)p(t) = s1,

x′′
2 + 50x+

2 − 500x−
2 + 50 cos(20x1) sin(50x2)p(t) = s2.

In this system, we have different parameters s1 and s2. In such a situation
the change of coordinates z = x/s is replaced by z1 = x1/|s1| and z2 = x2/|s2|.
In particular condition (26) has to be rewritten as

g̃i(s1, s2, t, y1, y2) = 0, for every |s1| ≥ s0, |s2| ≥ s0 and t ∈ [0, T ],
for every y ∈ R

N such that yi = 0,
(28)

where (14) is replaced by

g̃i(s1, s2, t, y1, y2) :=
1

|si| [gi(t, |s1|(y1 + z1(s1, s2, t)), |s2|(y2 + z2(s1, s2, t)))

−gi(t, |s1|z1(s1, s2, t), |s2|z2(s1, s2, t))]. (29)

If we fix s1, s2 ∈ πZ, then there exists a constant solution (x1, x2) where
x1 = s1/20 if s1 > 0 or x1 = s1/200 if s1 < 0, and x2 = s2/50 if s2 > 0 or
x2 = s2/500 if s2 < 0. Let us provide explicitly the computation only for the
case s1, s2 > 0: by (29), we obtain

g̃1(s1, s2, t, y1, y2) =
1
s1

[

20
(
s1y1 +

s1
20

)+

− 200
(
s1y1 +

s1
20

)−

+ 20 sin
(
20

(
s1y1 +

s1
20

))
cos

(
50

(
s2y2 +

s2
50

))
p(t)

− 20
( s1

20

)
− 20 sin

(
20

( s1
20

))
cos

(
50

( s2
50

))
p(t)

]
.

Hence we have g̃1(kπ, s2, t, 0, y2) = 0 for every k > 0, s2 > 0, t ∈ [0, 2π] and
y2 ∈ R. Arguing similarly we can compute that g̃1(kπ, s2, t, 0, y2) = 0 for every
k ∈ Z, s2 ∈ R, t ∈ [0, 2π] and y2 ∈ R. Similarly we get g̃2(s1, kπ, t, y1, 0) = 0
for every k ∈ Z, s1 ∈ R, t ∈ [0, 2π] and y1 ∈ R. Hence, (28) holds if we
require s1, s2 ∈ πZ. In correspondence of such values we get a larger number
of periodic solutions:

∑

σ∈{0,1}2

(�(σ) + 1)|m1 − n1|σ1 |m2 − n2|σ2

= 1 + 2|m1 − n1| + 2|m2 − n2| + 3|m1 − n1||m2 − n2|
(we cannot replace (�(σ)+ 1) with 2�(σ), as in (25), because we do not know if
such solutions are non-degenerate). So, arguing as in Example 4.2, there exists
s0 > 0 large enough such that, taking s1, s2 ∈ πZ, we have the existence of at
least

14
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29 = 1+4+6+18 2π-periodic solutions if s1 > s0 and s2 > s0,
101 = 1+4+24+72 2π-periodic solutions if s1 > s0 and s2 < −s0,
95 = 1+16+6+72 2π-periodic solutions if s1 < −s0 and s2 > s0,
329 = 1+16+24+288 2π-periodic solutions if s1 < −s0 and s2 < −s0.
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doi:10.1016/j.anihpc.2016.04.002

[19] Fonda, A., Ureña, A.J.: A higher-dimensional Poincaré–Birkhoff theorem with-
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