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Abstract—This paper presents a droop-based distributed
control strategy for multithree-phase machines that pro-
vides augmented controllability during power sharing
transients. The proposed strategy is able to mitigate the
mutual interactions among different sets of windings with-
out controlling any subspace variable, also offering a
modular and redundant design. On the contrary, in a cen-
tralized configuration, subspaces would be controlled us-
ing the vector space decomposition, but fault tolerance
and reliability levels required by the stricter regulations
and policies expected in future transportation systems
would not be satisfied. The proposed method is analyti-
cally compared against the state-of-the-art power sharing
technique and equivalent models and control design proce-
dures have been derived and considered in the comparison.
Uncontrolled power sharing transients and their effects on
mutual couplings among isolated sets of windings have
been compared against the proposed regulated ones. Ex-
perimental results on a 22-kW nine-phase multithree-phase
synchronous machine rig validate the design procedures
showing good agreement with the expected performances.

Index Terms—Distributed power generation, motor
drives, rotating machines, variable speed drives.

I. INTRODUCTION

THE electrification of transportation systems started at the
end of the 19th century. At that time, engineers already

studied how to electrify many different technologies for a wide
range of applications, like for example locomotives [1] and
tractor ploughs [2]. Nevertheless, fossil fuel technologies super-
seded the electrification process during the 20th century. Only
recently, thanks to many technology advancements (i.e., power
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electronics, renewable energy sources, storage devices, etc.),
following the resolution adopted by the general assembly of the
United Nations held in 1989 [3], a proper propulsion system rev-
olution aiming at pollution reduction has been launched. Since
then, multiple research projects for transportation systems, i.e.,
mining machines [4], [5], ships [6], [7], offshore wind turbines
[8], ultrahigh-speed elevators [9], road vehicles [10], and air-
craft [11]–[13], have been founded by governments, innovation
centers, and companies around the world.

Thanks to the ongoing electrical propulsion revolution to-
gether with the increase of high-power generation demand [14]–
[16], multiphase electrical machines are gaining popularity [17],
[18]. They present improved power density [19], reducing the
current per-phase [20] without reaching the power electronics
voltage limit [21]. Multiphase machines can guarantee higher
fault tolerance and reliability levels [22] required by power sys-
tems for future aerospace and safety critical applications [23],
[24]. Having multiple terminals, they can be wired within future
on-board microgrids for more electric aircraft [25] introducing
new redundant subsystem and power path in case of fault [26],
[27]. Among all the on-board systems, which will be electri-
fied, due to the required overloading and postfault operation
capabilities, two of the most challenging ones are the engine
[28] and the starter/generator [29].

Among multiphase machines, multithree-phase machines
(MTPM) are a particular subgroup. They are obtained by wind-
ing multiphase machine phases into three-phase subwindings
sets with isolated neutral points [30], [31]. Power-train redesign
by adopting MTPM leads to modularity by extending redun-
dancy from the power electronics to the control unit level. The
repetition of independent modules made by one three-phase set
of windings, one dc–ac two-levels three-phase voltage source
inverter (2L-3P-VSI) (see Fig. 1), and one micro controller unit
(MCU) will enable compliance with the forthcoming regulations
in aerospace applications. Furthermore, the aforementioned rep-
etition will allow the know-how on three-phase vector-control
theory and fault management [32] to be reused, and eventually
combined for developing new control strategies and postfault
counter-measures [33]–[35].

In this paper, a power sharing transient regulator [36], [37]
suitable for MTPM controlled by multiple independent mod-
ules is proposed, designed, and validated experimentally. The

1

https://orcid.org/0000-0002-8073-384X
https://orcid.org/0000-0002-3549-3568
https://orcid.org/0000-0002-9689-1172
https://orcid.org/0000-0003-4707-4480
https://orcid.org/0000-0002-7667-5552
https://orcid.org/0000-0003-4087-1014
mailto:alessandro.galassini@nottingham.ac.uk
mailto:alessandro.galassini@nottingham.ac.uk
mailto:alessandro.costabeber@nottingham.ac.uk
mailto:michele.degano@nottingham.ac.uk
mailto:michele.degano@nottingham.ac.uk
mailto:chris.gerada@nottingham.ac.uk
mailto:atessarolo@units.it
mailto:menis@units.it


GALASSINI et al.: ENHANCED POWER SHARING TRANSIENT WITH DROOP CONTROLLERS 5601

Fig. 1. Dc–ac 2L-3P-VSI and one three-phase set of windings (a, b, c).
da , db , dc are the duty cycles.

Fig. 2. Centralized control architecture.

distributed power sharing controller is based on the very well-
known droop regulator used in power systems [38]. If compared
to the state-of-the-art power sharing regulator [39], [40], by hav-
ing one MCU per module, the sharing transient controllability
presented in this work improves the total harmonic distortion
(THD) decreasing mechanical stress, vibrations, and electro-
magnetic interferences (EMI) during the power sharing opera-
tion, but without compromising the overall system reliability.

This paper is organized as follows. In Section II, the two
typical control configurations for MTPM are introduced and
discussed. The conventional power sharing regulator and the
proposed one are introduced in Sections III and IV, respec-
tively. While showing their simplified equivalent models, they
are compared in Section V. Before deriving the current sharing
dynamics and its time constant in Section VII, control design
procedures are given and compared in Section VI. Following
two case studies in Section VIII, both the regulator designs
are validated by means of experimental results in Section IX.
Conclusions are drawn in Section X.

II. MULTIDRIVE CONTROL STRATEGIES

Based on how current is controlled within every set of
windings, better performances or increased redundancy can be
achieved [41], [42]. In Figs. 2 and 3, two different control con-
figurations for MTPMs are shown. Every dc–ac converter output
(va,b,c ) is connected to one three-phase set of windings, da,b,c

are the duty cycles, i∧a,b,c are the measured phase currents, and
θ is the rotor position fed back from the speed sensor to the
MCUs.

Thanks to the vector space decomposition (VSD), better cur-
rent dynamics controlling all the orthonormal sub-spaces can be

Fig. 3. CSR. Fully modular and redundant.

Fig. 4. CSR simplified control schematic with power sharing
capabilities.

achieved by the configuration in Fig. 2, in which all the mea-
sured currents are fed back into a single MCU. On the other
hand, full redundancy is sacrificed in the name of lower THD
[41], [42], in-fact, in case of faulty MCU, the entire system is
compromised. Referring to Fig. 3 showing the common speed
reference (CSR) configuration, having one MCU per dc–ac con-
verter, gives a redundant system. Its main downside is from the
controllability point of view. In fact, subspaces cannot be con-
trolled because only the three local measured currents are fed
back into every single MCU.

Considering the higher reliability and fault tolerance levels
required by future aerospace systems, the CSR configuration is
deemed to be the most suitable one in this paper, since modu-
larity and redundancy are inherently achieved.

III. POWER SHARING—STATE OF THE ART

Among the features enabled by multithree-phase systems, for
example, augmented reliability and fault tolerance at system
level, one of the most interesting is power sharing. In Fig. 4, the
CSR simplified control schematic with power sharing capabili-
ties relative to Fig. 3 is shown. Each branch represents the q-axis
within the rotating reference frame, ω∗ is the speed set-point,
and ω∧ is the measured speed. The continuous transfer functions
ωc/(s + ωc) represent the closed q-current loops with cutoff fre-
quency ωc and phase margin ϕc , whilst (sKpS + KiS )/s blocks
are the speed proportional-integral (PI) controller transfer func-
tions. Defining the number of modules N , the torque produced
by the jth module Tj (with j = 1 . . . N), the jth q-current iqj ,
and the machine constant Kt = Tj/iqj , the total amount of
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Fig. 5. Example of currents on phase a during power sharing transients
(droop versus step).

torque TA produced by all the modules is set varying the q-
current set-points i∗qj . Introducing a sharing coefficient Wj , the
jth q-current set-point, and therefore, Tj can be set. The sharing
coefficients Wj define the new current set-points i∗

′
qj described

by the following equation: i∗
′

qj = i∗qjWj . In nominal conditions,
power is equally split (ES) and loop gains are assumed to be
equal to one, W

(ES )
1,2,3 = 1. Depending on the particular appli-

cation, unbalanced sharing (US) can be obtained varying the
sharing coefficients.

In order to track the speed set-point ω∗, the total power PTOT

produced by all the modules must be kept constant. The total
power is given by the sum of all the torques produced by each
module multiplied by the shaft speed, PTOT =

∑N
j Tjω. Defin-

ing the global sharing coefficient WT =
∑N

j Wj , the power Pj

in p.u. produced by the jth module is described by the following
equation:

Pj =
Iq,j

∑N
j Iq,j

=
Wj

WT
(1)

where Iq,j is the nominal current on the q-axis of the jth mod-
ule. Thanks to (1), as long as WT is kept constant, US can be
achieved by just changing the sharing coefficients. Whenever US
is needed, each Wj could be updated by a supervisory controller
or programed offline a priori using the following formula:

W
(US)
j = P

(US)
j WT (2)

and until the following equation is verified, constant speed loop
dynamics is guaranteed

WT = W
(ES)
T = W

(US)
T =

N∑

j

Wj = N. (3)

IV. ENHANCED POWER SHARING CONTROLLER

In this work, the droop controller is adopted for controlling
the power sharing transient on an MTPM, and it is compared
against the power sharing transient obtained by stepping the
power sharing coefficients as previously discussed in Section III.
As a qualitative example to anticipate the power sharing tran-
sients that will be shown later, Fig. 5 shows the same power
sharing transient from 3 to 6 A processed by the power shar-
ing coefficient and by the droop controller. It can be observed
that the droop controller enables the power sharing transient

Fig. 6. Droop planes comparison. (a) Droop plane in power systems.
(b) Droop plane in motor control.

Fig. 7. Sharing regulator control diagrams comparison (a) Sharing co-
efficient. (b) Droop controller (GD j ).

to be controlled by setting the time constant τsh , thus helping
reducing vibrations and EMI.

Droop control is a very well-known technique adopted in
power systems allowing the power demanded by the grid to be
shared among different generators [38]. The droop character-
istic is a linear function with negative coefficient KD , called
droop coefficient, on the Frequency-Active Power plane shown
in Fig. 6(a) governed by [43]:

ωi = ω0 − KD Pi (4)

where ωi and ω0 are the angular frequency of the output volt-
age and the nominal one, respectively, and Pi is the output
active power [see Fig. 6(a)]. The greater the frequency, the less
the power produced by the generation plant. Namely, when the
frequency deviates from a certain value, the power produced
varies according to the droop coefficient. Generated power can
be therefore partitioned among different generation plants as a
function of the droop gains [44].

In multithree-phase systems, the droop characteristic of the
jth module [see Fig. 6(b)] is defined by the current reference
i∗qj , set by the speed regulator, and by the new current set-point
i∗

′
qj according to

ωDj = i∗qj − KDj i
∗′
qj (5)

where ωDj is an internal drooped set-point.
The control diagram relative to (5) is shown and compared

against the sharing coefficient one in Fig. 7. Considering the
control diagram in Fig. 7(b), the jth droop controller input–
output relation is described by the following transfer function:

GDj (s) =
KiSH j

s + KiSH jKDj
=

i∗
′

qj

i∗qj

(6)

where KiSH j is the integral droop coefficient. For simplicity,
considering a system with only two modules, the enhanced CSR
(eCSR) control diagram is shown in Fig. 8. The mechanical load
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Fig. 8. CSR control diagram with enhanced, or droop, controllers (eCSR). For simplicity, only two modules are shown.

is common and it is represented by a linear model with inertia
J and friction F . Like in Fig. 4, every q-current control loop
is modeled as a low-pass filter with bandwidth ωc and phase
margin ϕc . In the eCSR configuration shown in Fig. 8, there are
the following regulators.

1) PI q-current controllers

PII q = KpIq + KiIq/s (7)

within the q-current loops modeled by transfer functions
ωc/(s + ωc) as discussed in Section III;

2) Speed-drooped, or droop or sharing, controllers GDj

shown in Fig. 7(b) characterized by bandwidth ωSH and
phase margin ϕSH , and described by (6);

3) PI speed controllers

PIS = (sKpS + KiS )/s (8)

characterized by bandwidth ωs and phase margin ϕs .
As it will be better explained in Section VI-B, the droop reg-

ulator should be designed considering the following constraint:

ωs < ωSH < ωc. (9)

A. Global Sharing Coefficient

In order to better understand Section VII, it is important to
take into consideration the difference between steady-state gains
of controllers from Fig. 7. For s → 0, whilst the gain of the con-
ventional controller is the sharing coefficient Wj itself, looking
at (6) for s → 0, the gain of the proposed droop controller GDj

is 1/KDj . The resulting global sharing coefficient for the droop
controller is expressed by the following formula:

W
′
T =

N∑

j

(1/KDj ). (10)

B. Speed Drop

Considering the control diagram in Fig. 8, but without the
outermost speed loops, the final speed of the shaft at steady
state at no load (TL = 0) can be calculated taking the limit for
s → 0, as shown in Fig. 9

ω

ω∗ =

∑N
j

1
KD j

Kt
1
F

1 +
∑N

j
1

KD j
Kt

1
F

. (11)

Fig. 9. eCSR without outermost speed loops at steady state while at
no load for s → 0.

Fig. 10. eCSR without outermost speed loops at steady state with null
speed reference for s → 0.

Considering (10) and defining γ = W
′
T Kt/F , (11) becomes:

ω

ω∗ =
γ

γ + 1
. (12)

Similarly, according to the superposition principle, the torque
contribution to the speed drop for a null speed reference can be
calculated taking the limit for s → 0, as shown in Fig. 10

− ω

TL
=

1
F

1 + 1
F

∑N
j

1
KD j

Kt

=
1

F + W
′
T Kt

. (13)

Combining (12) and (13), the final speed drop of the shaft at
steady state is described by the following equation:

ω = ω∗ γ

γ + 1
− TL

F + W
′
T Kt

(14)

Looking at Fig. 6, in power systems, the greater the power
Pi produced by the ith generation plant, the less the angular
frequency ωi . In motor control, the greater the q-current set-
point i∗

′
qj , the less the internal drooped set-point ωDj . In other

words, looking at Fig. 11, the greater the torque demand, the
greater the speed drop defined as Δω = ω∗ − ω. For a given
maximum torque load TMAX, the ΔωMAX would be the maxi-
mum speed drop if the outermost speed loops were not in place.
When TL = 0 N·m, the second term in (14) is null, and only the
friction F is contributing to the speed drop.

4



5604 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 66, NO. 7, JULY 2019

Fig. 11. Greater the torque demand, the greater the speed drop. At no
load, only the friction is contributing to the speed drop.

V. SIMPLIFIED EQUIVALENT MODELS

In general, current regulators in MTPMs are designed on
harmonic inductance and phase resistance values [45]. By def-
inition, the first d and q harmonic inductances are mapped into
the α − β plane and they are the inductances seen by the dc–ac
converters under ideal and balanced voltage supply hypothesis
[46]–[48]. The harmonic inductances can be obtained thanks
to the VSD, and once they are computed, PI controllers along
d- and q-axes can be designed taking into account actuation and
filtering delays. The design of paralleled speed regulators shown
in Figs. 4 and 8 is done assuming the power is ES among all
the modules. Looking at Figs. 4 and 8, the jth speed controller
output is the input reference i∗qj for the jth sharing controller. In
the following sections, reduced equivalent models for designing
the speed controllers will be introduced.

A. Common Speed Reference

Looking at Fig. 4, and assuming the power is ES among the
modules (W (ES)

1,2,3 = 1), the simplified equivalent model taking
into account the N paralleled branches is shown and highlighted
within dashed square in Fig. 13.

Design of the speed regulators PIS can be done on the fol-
lowing plant:

GS (s) = N
ωc

s + ωc
Kt

1
sJ + F

. (15)

The same parameters K
(CSR)
pS and K

(CSR)
iS computed on plant in

(15) can be used in the CSR simplified control schematic shown
in Fig. 4.

B. Enhanced CSR

As shown in the previous section, speed and droop controller
design has to be done on a plant considering the whole sys-
tem and assuming equal power sharing (K(ES)

D1
= K

(ES)
Dj

and

K
(ES)
iSH1

= K
(ES)
iSHj

). To this purpose, the control diagram in Fig. 8
can be simplified with the collective one shown in Fig. 12. The
parallel of the N droop controllers G

(ES)
Dj has been replaced by

the equivalent collective droop controller

GEQ (s) = NG
(ES)
Dj (s) (16)

within the dotted blue square in Fig. 12. The constraint in (16)
can be satisfied if and only if KiSH = K

(ES)
iSH jN , and KD =

K
(ES)
Dj /N , as highlighted by the following equation:

GEQ (s) =
NK

(ES)
iSH j

s + K
(ES)
iSH jN

K
( ES)
D j

N

= NG
(ES)
Dj (s). (17)

From (17), it can be verified that the whole system can be
modeled as an equivalent single module with integral sharing
gain KiSH and droop gain KD :

KiSH = K
(ES)
iSHj

N KD =
K

(ES)
Dj

N
. (18)

The KD and the KiSH gains in (18) can be defined as the
collective droop and the collective integral gain coefficient, re-
spectively. The equivalence in (16) can be further verified by
plotting the Bode diagrams in Fig. 14.

Defining the following transfer function:

GSHO L
(s) = GEQ (s)

ωc

s + ωc
Kt

1
sJ + F

(19)

therefore, speed regulator design can be done on the plant

GSHC L
(s) = GSHO L

(s)/(1 + GSHO L
(s)). (20)

Both transfer functions in (19) and (20) are highlighted in
Fig. 12 by dashed red square and loosely dashed magenta square,
respectively.

VI. CONTROL DESIGN PROCEDURES

Considering a system with N modules and with equal power
sharing, design procedures for both control diagrams in Figs. 12
and 13 here are discussed and compared. It is important to notice
that the dq-current loops denoted by low-pass filters ωc/(s +
ωc) and their design are the same for both control schemes. The
plant used for designing the current PI regulators is expressed by
(21). Measurement delay has been modeled by a second-order
filter with cutoff frequency ωf c , whilst actuation delay has been
shaped as a pure delay e−s1.5Ts , where Ts is the switching
period. dq-current regulators are designed imposing bandwidth
ωc and phase margin ϕc on the following plant:

GIΛ(s) = e−s1.5Ts
1

sΛ1 + rs

ω2
f c

s2 +
√

2ωf cs + ω2
f c

(21)

where rs is the phase stator resistance, Λ stands for d or q,
and Λ1 is the first harmonic inductance along the d- or q-axis
calculated using the VSD.

A. Common Speed Reference

Once the dq-current regulators are designed on plant GIΛ(s),
speed regulators setting the sharing controller q-current ref-
erences are designed on plant GS (s) in (15) considering the
equivalent control scheme in Fig. 13. The same PI gains K

(CSR)
pS

and K
(CSR)
iS can be used into control schematic in Fig. 4, where

W1,2,3 were assumed to be equal to one. While keeping constant
the global sharing coefficient WT in (3), power sharing can be
then achieved by setting different sharing coefficient Wj thanks
to (1) and (2).
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Fig. 12. Equivalent collective control scheme for the eCSR configuration assuming the power is ES among the N modules.

Fig. 13. Simplified equivalent model assuming sharing coefficients
W

(ES)
1 ,2 ,3 = 1. For simplicity, the mechanical model is not shown in Fig. 4.

Fig. 14. Bode diagrams of transfer functions in (16).

B. Enhanced CSR

The introduction of droop controllers in between q-current
and speed loops allows the power sharing transient to be regu-
lated. The collective droop coefficient KD must be chosen with
the following equation:

KD = ΔωMAX/ITOT = ΔωMAX/

N∑

j

Iq,j (22)

where ΔωMAX is the steady-state speed error without the out-
ermost speed loops at full load, and Iq,j is the nominal current
on the q-axis of the jth module. Referring to Fig. 12, for a given
sharing bandwidth ωSH sufficiently slower than the current dy-
namics and faster than the outermost speed loop, in other words
respecting (9), the collective integral gain KiSH can be calcu-
lated imposing the phase margin ϕSH on (19), leading to the
following analytical expression for the collective integral gain:

KiSH

=
ωSH

tan
[
−ϕSH + π − atan

(
ωS H

ωc

)
− atan

(
ωS H J

F

)]
KD

.

(23)

Under the previous hypothesis of balanced load and provided
that GEQ = NG

(ES)
Dj , the same response of the designed equiv-

alent collective system when using N modules can be achieved
multiplying by N the collective droop gain and dividing by
N the collective integral gain like in (18). Once the collective

sharing regulator is designed and its relative per-module coeffi-
cients K

(ES)
Dj

and K
(ES)
iSHj

are computed, speed regulators design
can be done considering the plant GSHC L

(s) in (20).

VII. DROOP SLOPES AND CURRENT SHARING DYNAMICS

Droop and speed loop regulators design is done under equal
sharing hypothesis. If in the CSR configuration US is achieved
changing W

(U S )
1,2,3 �= 1 considering (3), in the eCSR configura-

tion power sharing is achieved changing KDj
. However, con-

stant speed loop bandwidth and phase margins are guaranteed
if and only if KiSHj

are modified accordingly.
Defining W

′
j = 1/KDj , the power in p.u. produced by the

jth module is described by the following equation:

Pj =
Iq,j

∑N
j Iq,j

=
1/KDj

∑N
j (1/KDj )

=
W

′
j

W
′
T

. (24)

Comparing (24) against (1), in contrast to the CSR configuration,
Pj is decreased by setting a bigger droop coefficient KDj . Vice-
versa, higher power is achieved with a smaller droop coefficient.
Looking at (6), solely updating the droop coefficient would
affect the droop controller transfer function frequency response,
and therefore the collective one too. Equivalent droop controller
constant frequency response is guaranteed if and only if the
following condition is verified:

N∑

j

G
(US)
Dj (s) = NG

(ES)
Dj (s) = GEQ (s). (25)

On the assumption that
∑N

j Pj = 1, (25) can be satisfied by

dividing the individual equal power droop coefficients K
(ES)
Dj by

a factor:

ξj = NPj (26)

and multiplying the individual integral gain K
(ES)
iSH j by the same

factor ξj . Combining (6) and (25):

NK
(ES)
iSH j

s + K
(ES)
iSH jK

(ES)
Dj

=
N∑

j

K
( US)
i S H j

︷ ︸︸ ︷

K
(ES)
iSH j ξj

s + K
(ES)
iSH j ξj

︸ ︷︷ ︸
K

( US)
i S H j

K
(ES)
Dj

ξj
︸ ︷︷ ︸
K

( US)
D j

. (27)

6
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TABLE I
SHARING CONTROLLER PARAMETERS

Fig. 15. Updating the integral gains KiS H j , constant frequency re-
sponse with different power ratios is guaranteed.

Equivalences in (25) and (27) are highlighted by their relative
Blode plots in Fig. 15. The droop controller power sharing tran-
sient is ruled by the time constant τsh,j defined by the following
equation:

τsh,j =
1

KDjKiSH j
. (28)

It is worth to notice that directly setting KDj and KiSH j

does not guarantee the overall system stability, therefore, it is
recommended to design the droop controller with (22) and (23)
by setting ΔωMAX, ϕSH , and ωSH , while taking (9) into account.

Both the sharing controllers shown in Fig. 7 allow the power
produced by every module to be set. However, whilst in the
CSR control schematic shown in Fig. 4, the torque demand is
set by the sharing coefficients Wj only, in the eCSR one shown
in Fig. 8, the torque demand is set by the droop coefficients
KDj and by the measured speed ω∧. The droop coefficient to-
gether with the integral gain sets the time constant τsh,j in (28).
Power sharing with transient controllability could be obtained
by simply adding a low-pass filter after the power sharing co-
efficients Wj shown in Fig. 4. In MTPM, the signal fed back
to the MCUs is the speed of the only shaft within the system.
However, if implemented on a multishaft application with elas-
tic joint, the proposed sharing controller would self-adjust the
torque demand of each module by taking into account the speed
of every shaft. Furthermore, by feeding back another signal in-
stead of the measured speed, the torque demand of each module
could be set by an external factor.

VIII. CONTROL DESIGN—CASE STUDIES

In both CSR and eCSR configuration, current regulators have
been designed considering the plant GIΛ(s) in (21). In the
two following case studies, power sharing has been performed
setting the following power ratios: P1 = 2/3, P2 = 1/12, and
P3 = 1/4.

A. Common Speed Reference

Assuming W1,2,3 = 1, speed controller for the CSR config-
uration has been designed on plant GS (s) in (15) leading to
K

(CSR)
pS and K

(CSR)
iS . Provided that WT = N = 3, power sharing

is achieved with (2) leading to the following sharing coefficients:
W1 = 2, W1 = 0.25, and W3 = 0.75, reported in Table I.

B. Enhanced CSR

Speed controller design has to be done after that the equivalent
collective sharing controller GEQ (s) in (17) is arranged.

Thanks to (22) and (23), the resulting collective droop and
integral coefficients can be computed. In order to highlight that
the droop controller allows the power sharing time constant to be
controlled, GEQ (s) will be designed two times with two differ-
ent sets of design input parameters (ωSH and ϕSH ), labeled fast
(f ) and slow (s) , respectively. Equations (22) and (23) are lead-
ing to the following collective coefficients: K(f )

D = K
(s)
D = 0.5,

K
(f )
iSH = 2000, and K

(s)
iSH = 66.6. Once the equivalent sharing

controller is obtained, the speed controller can be designed on
the plant GSHC L

(s) in (20). Since the collective droop con-
troller has been designed with two different sets of design input
parameters [G(f )

EQ (s) and G
(s)
EQ (s)], two distinct sets of speed

controller coefficients have been computed (K(f )
pS , K

(f )
iS , K

(s)
pS ,

K
(s)
iS ).
Per-module ES droop coefficients are then obtained by multi-

plying and dividing the collective gains by N like in (18), leading
to the followings: K

(ES,f )
Dj = K

(ES,s)
Dj = 1.5, K

(ES,f )
iSH j = 666.6,

and K
(ES,s)
iSH j = 22.2. The relative power sharing time con-

stants can be obtained by (28) leading to τ
(f )
sh,j = 1 ms and

τ
(s)
sh,j = 30 ms. Finally, per-module US sharing coefficients have

7
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Fig. 16. Multithree-phase rig with nine phases.

been computed by putting the power ratios into (26), and then
multiplying and dividing by ξj the integral and the droop co-

efficient, K
(ES)
iSH j and K

(ES)
Dj , respectively, like in (27). All the

sharing controller parameters are summarized in Table I.

IX. EXPERIMENTAL VALIDATION

The droop controller has been validated on the experimen-
tal rig in Fig. 16. Every module was independently controlled
by a custom control platform named μCube [49]. The MTPM
with nine phases in Fig. 16 is a two poles synchronous generator
derived by the SINCROGS14005001COD2FF514001 manufac-
tured by Soga Energy Team. The brake coupled to the motor is
a hysteresis brake from Magtrol. The converters have been built
by combining the FP25R12KE3 power module from Infineon
with the IRMD22381Q demo board for the relative IR22381Q
gate drive, both from IOR. Switching and sampling frequency
were both set to 10 kHz, braking torque generated by the hys-
teresis brake was 55.2 N·m, rotor field dc current was 1.58 A, and
dc-link voltage was 350 V. On every module, the field oriented
control has been implemented while controlling the d-current
to zero like shown in Fig. 19, where saturation and speed filter
blocks have been omitted for simplicity.

The measured output speed while performing power sharing
with coefficients from Table I with modules in CSR mode is
shown in Fig. 20(a). The q and their respective a phase cur-
rents from the three modules are plotted in Figs. 20(b) and (c),
respectively. Until 17.5 s, having set W1,2,3 = 1, power was
equally shared among the modules. From 17.5 and 20.5 s, shar-
ing coefficients W1,2,3 have been set equal to 2, 0.25, and 0.75,
respectively. At instant 20.5 s sharing coefficients W1 and W2
have been swapped. Looking at Fig. 20(a), it is possible to verify
that the speed is not affected by the power sharing and swapping
operations.

In Fig. 21, measured speeds and q-currents from the modules
configured in eCSR mode are shown. Looking at the measured
output speeds during sharing and swapping operations for dif-
ferent time constants τsh shown in Fig. 21(a), it is possible to
verify that the speed is not affected by the droop controllers. The
q-currents under the same power sharing profile of Fig. 20(b)
but with modules configured in eCSR mode with τsh = 1 ms

Fig. 17. CSR versus eCSR phase currents with τ = 1 ms under swap-
ping operation.

Fig. 18. CSR versus eCSR phase currents with τ = 30 ms under swap-
ping operation.

are shown in Fig. 21(b). In Fig. 21(c), the current transient in
blue, labeled iq1(CSR), and highlighted by the dashed oval in
Fig. 20(b), is compared against the controlled current transients
for different sharing time constants. The controlled transient
plotted in red and labeled iq1τsh = 1 ms is highlighted by the
dashed square in Fig. 21(b). The q-current steady-state values in
Figs. 20(b) and 21(b), together with rise times in Fig. 21(c), are
validating the control design procedures and the current sharing
dynamics discussed in Sections VI and VII, respectively.

Phase a currents during swapping operations for τsh = 1 ms
and τsh = 30 ms are zoomed in Figs. 17 and 18 . In both the
plots, phase currents from the CSR (continuous lines) are com-
pared against currents from the eCSR (dashed lines). Looking
at both Figs. 17 and 18, the a current distortion from the third
module, labeled ia3(CSR), can be noticed. The distortion is
caused by the mutual interactions among different sets of wind-
ings within the stator. In Fig. 17, the droop controller clearly
mitigates the distortion caused by the electromagnetic coupling.
By increasing the sharing time constant τsh to 30 ms, the third
a current from quasi-constant it becomes constant, like high-
lighted by Fig. 18.

8
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Fig. 19. Droop controller implementation. Speed filter and saturation blocks have been omitted for simplicity. Droop controllers are in magenta.

Fig. 20. CSR measurements. In Fig. 20(a), constant speed during sharing and swapping operation is highlighted. Uncontrolled q-current transients
during sharing and swapping operations are shown in Fig. 20(b). In Fig. 20(c), respective a phase currents during swapping operation are shown.
(a) Speed is not affected by load sharing. (b) q-currents under US conditions from CSR mode. (c) Phase a current transients while swapping W1 ,2 .

Fig. 21. eCSR measurements. In Fig. 21(a), constant speeds during sharing and swapping operation are highlighted. Respective controlled
q-current transients with τsh = 1 ms are shown in Fig. 20(b). Uncontrolled transient iq 1 CSR is compared against the controlled ones in Fig. 21(c).
(a) Measured speeds for different time constants, (b) iq currents from eCSR mode with τsh = 1 ms, (c) CSR against eCSR for different time
constants.

X. CONCLUSION

This paper was focused on the power sharing transient and
its control design for multithree-phase electrical machines. The
proposed enhanced distributed configuration allowed the power
sharing time constant to be set, and during power sharing

transients, current distortion due to the mutual interactions
among different sets of windings was mitigated, thus reducing
vibrations and EMI. Power sharing transient controllability was
discussed and successfully verified after introducing the droop
regulator for motor control applications. The droop controller
and its characteristic were derived from the power system field

9
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which is very well-known and widely adopted. Transfer func-
tions, simplified equivalent models, Bode diagrams, and design
procedures for both the CSR and the proposed eCSR configura-
tions were provided and compared. The design procedures were
validated and compared by means of analytical equations and
experimental results on a 22-KW test rig showing good agree-
ment with the expected dynamics. The proposed system appears
to be a good subsystem for future power distribution system tar-
geting at more reliable transportation systems and safety critical
applications.
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