
1

Bounds on quantum collapse models from 
matter-wave interferometry: calculational 
details

Marko Toroš1,3  and Angelo Bassi2

1  Department of Physics, University of Trieste, 34151 Miramare-Trieste, Italy
2  Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2, 34127 
Trieste, Italy

E-mail: marko.toros@ts.infn.it and bassi@ts.infn.it

 Accepted for publication 31 January 2018 

Abstract
We present a simple derivation of the interference pattern in matter-wave 
interferometry predicted by a class of quantum master equations. We apply 
the obtained formulae to the following collapse models: the Ghirardi–Rimini–
Weber (GRW) model, the continuous spontaneous localization (CSL) model 
together with its dissipative (dCSL) and non-Markovian generalizations 
(cCSL), the quantum mechanics with universal position localization 
(QMUPL), and the Diósi–Penrose (DP) model. We discuss the separability
of the dynamics of the collapse models along the three spatial directions, the 
validity of the paraxial approximation, and the amplification mechanism. We 
obtain analytical expressions both in the far field and near field limits. These 
results agree with those already derived in the Wigner function formalism. 
We compare the theoretical predictions with the experimental data from two 
recent matter-wave experiments: the 2012 far-field experiment of Juffmann 
T et  al (2012 Nat. Nanotechnol. 7 297–300) and the 2013 Kapitza–Dirac–
Talbot–Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. 
Chem. Chem. Phys. 15 14696–700). We show the region of the parameter
space for each collapse model that is excluded by these experiments. We show 
that matter-wave experiments provide model-insensitive bounds that are valid 
for a wide family of dissipative and non-Markovian generalizations.
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1. Introduction

The interest in exploring the foundations of quantum mechanics has significantly increased 
over the years. This applies both to theoretical foundations and experimental foundations. 
After the establishment of quantum nonlocality, first with the works of Bell [3, 4] and subse-
quently with the experimental confirmation done by the group of Aspect [5–7], perhaps the
most important question is whether the so-called collapse of the wave function is a physical 
phenomenon.

Quantum mechanics also allows for the possibility that macroscopic objects—being made
of atoms, which are quantum—might live in the superpositions of different states. But this has
never been observed. Why so? Is it simply because macroscopic quantum superpositions are 
difficult to spot, due to environmental noises, or because they are forbidden for some physi-
cal reason? No one knows the answer yet, and research is active in testing which of the two 
alternatives is correct.

Collapse models [8, 9] have been formulated to take this second possibility into account: 
nature forbids macroscopic systems to live in superposition states. From the mathematical 
point of view, the Schrödinger equation is modified by adding nonlinear and stochastic terms,
which account for the quantum-to-classical transition. For microscopic systems, the standard 
quantum evolution is the dominant contribution to the dynamics, hence they behave in a fully 
quantum way, as repeatedly confirmed in experiments. For macroscopic objects, on the other 
hand, the opposite is true: the nonlinear terms prevent superpositions to occur. The border 
between these two regimes lies somewhere in the mesoscopic world.

As such, collapse models are predictively different from standard quantum mechanics, 
and research is active in testing them [9], because any test of collapse models is a test of the 
quantum superposition principle, which lies at the foundations of any quantum theory.

Different collapse models have been proposed over the years. The most famous model is 
the continuous spontaneous localisation (CSL) model [10, 11], a generalisation of the original 
Ghirardi–Rimini–Weber (GRW) model [12] to systems containing identical particles. The
CSL model, in the limit of short superposition distances, reduces to the quantum mechanics 
with universal position localization (QMUPL) model [13, 14]. In all cases, the noise driving 
the collapse is a white noise. This modelling of the noise is very useful from the practical 
point of view, as in this case the equations of motions are relatively simple, however a white 
noise is not physical. For this reason, in recent years the CSL model has been generalised 
in two directions. On the one side, dissipative effects have been included in the dynamics, 
which drive any quantum system, during the collapse, to a thermal state. This partly solves the 
problem of the steady energy increases, which affects the CSL model. The model is called the 
dissipative CSL (dCSL) model [15]. Its limiting case, the dissipative QMUPL model, has also 
been studied [16]. On the other hand, the white noise has been replaced by a coloured noise 
[17–19]. In this case we speak of coloured CSL (cCSL). A coloured noise introduces non-
Markovian terms in the dynamics, making the whole mathematical analysis rather difficult. 
The cCSL model reduces to the coloured QMUPL model in the limit of short superposition 
distances [20]. Only for the QMUPL model, both dissipative and non-Markovian effects have 
been combined together in a single model [21], so far. Independent from the CSL model, there 
is the Diosi–Penrose (DP) model [13], which is a first attempt to link the collapse of the wave 
function to gravity.

All these models contain phenomenological parameters. The GRW and CSL models are 
defined in terms of a localization rate λ and a localization length rC. λ gives the frequency of 
the localization events for a reference object of mass m0  =  1 amu, while rC describes how well 
an object is localized. The QMUPL model has only the parameter η, which can be related to 
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the GRW/CSL parameters [22]. A common open question of both the GRW and CSL models, 
is to explain the origin of the noise in the dynamical equations. A first attempt at addressing 
this issue is given by the DP model, where the strength of the localization is set by the gravi-
tational interaction through the gravitational constant G. The DP model introduces only one 
cut-off length phenomenological parameter R0, which cures the ultraviolet divergence of the 
gravitational interaction. The effective collapse rate, analogous to λ, is given by Gm2

0/
√
π�R0,

while R0 describes how well an object is localized, analogous to rC.
One unwanted feature, common to the GRW, CSL and DP models, is the energy divergence 

for very long (cosmological) times. Indeed, the GRW, CSL and DP master equations have the 
structure of a quantum linear Boltzmann equation [23] of a particle immersed in a infinite 
temperature bath. One attempt to solve this issue, is proposed by the dissipative extensions of 
the GRW and CSL models, namely the dGRW and dCSL models, respectively [15, 24]. Here 
the energy divergence is eliminated by the introduction of a noise temperature parameter T. 
Another approach to solve the energy divergence, adopted by the cCSL model [18, 19], is to 
replace the non-physical white noise by a colored noise with a finite correlation time param
eter τC . We provide a brief summary of the former these models in section 3. Alternatively, 
instead of the position-based collapse models introduced above, one can also consider the 
class of energy-based collapse models, which localize in energy eigenstates, and preserve the 
energy of an isolated system. In this paper, we limit the discussion to the former ones and refer 
the reader interested in the latter ones to [25–30].

Bounds on collapse models parameters are first investigated in [31] and an overview is 
given in [32, 33]. In this paper, we complete and improve the previous analysis of collapse 
models’ predictions for matter-wave interferometry. The bounds on the parameters (λ, rC) 
can be conveniently studied in the parameter space [34, 35] shown in figure 13, while the 
bounds on the parameters η are shown in figures 14. We obtain bounds for all the collapse 
models introduced above, from the localization requirement of macroscopic objects and from 
experimental data.

We describe how to obtain the bounds from the localization requirement of macroscopic 
objects at the end of section 4, where we discuss a key feature of all collapse models, namely 
the amplification of the effective collapse rate, as the size (mass) of the system increases. In 
other words, under standard assumptions, the center of mass motion for a rigid many-body 
system is governed by the single particle equation with a rescaled collapse rate.

We show that, on the one hand, current matter-wave experiments do not give significant 
bounds on the DP parameter R0, while, on the other hand, the localization requirement of 
macroscopic objects (as defined in sections 4 and 5), excludes all values of R0.

The first and main prediction of collapse models is the gradual modification of the inter-
ference pattern in interferometric experiments, as the mass of the diffracted object becomes 
large. Therefore matter-wave experiments provide the most direct test of collapse models. 
They are described in sections 2 and 5. In particular, in section 2 we derive the interference 
pattern p(x) for the experimental setup described in figure  1. We compare the theoretical 
interference patterns with experimental data from the 2012 far-field matter-wave interferom-
etry experiment [1, 36] and the 2013 Kapitza–Dirac–Talbot–Lau (KDTL) near-field matter-
wave interferometry experiment [2], in section 5. Tests of the CSL model with matter-wave 
interferometry experiments were first investigated in [31, 37], in particular, in the context of 
the OTIMA experiment [38]. In a recent publication [39], we have presented the matter-wave 
interferometry bounds for the CSL model and its variants, here discussed. In this paper we 
give the full derivations of formulas, which were presented, without derivation, in the publica-
tion [39].
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The interference pattern derived in section 2 in the density matrix formalism is not limited 
only to collapse models, but is valid for a large class of dynamics. In particular, we also dis-
cuss under which conditions the diffraction experiment can be reduced to a one dimensional 
problem, since the collapse dynamics, unlike ordinary quantum mechanics, is not separable 
in the three spatial dimension, even for the free particle dynamics. In this way we justify the 
calculation of the interference pattern in the paraxial approximation. In addition, the density 
matrix formalism outlines the similarities of far-field and near-field interference, by present-
ing a unified derivation. We also reobtain the results for diffraction experiments that were 
derived in the Wigner function formalism [38, 40, 41].

In section 5 we combine all the parameter bounds for the CSL, GRW, dCSL, dGRW and 
cCSL models in a single parameter diagram and we discuss the bounds on the parameter of 
the QMUPL model as well as on the length parameter of the DP model.

2. Derivation of the interference pattern

For all collapse models considered here (see the next section), the evolution of the free single-
particle density matrix has the form:

ρ(x, x′, t) =
1

(2π�)3

∫
dk̃

∫
dw̃ e−

i
� k̃·w̃F(k̃, x − x′, t)ρQM(x + w̃, x′ + w̃, t), (1)

where ρQM is the free standard quantum mechanical density matrix and the function F depends 
on the type of collapse model.

Figure 1.  The common structure of far-field and near-field diffraction experiments. A 
molecular beam from an incoherent source propagates along the z axis. Each molecule 
is emitted from the source, propagates to the grating, where it is diffracted and then 
recorded by the detector. The molecules individually recorded gradually form an 
interference pattern. The figure  shows a mechanical grating (with N  =  4 slits), but 
the analysis in this paper applies to more general gratings, e.g. optical gratings. The 
distance from the source to the grating is L1 and the distance from the grating to detector 
is L2. Between the grating and the detector we identify the paraxial (Fresnel) regime. 
Adapted from [39], Copyright (2017), with permission from Elsevier.
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The quantum mechanical description of matter-wave interferometry is usually treated as a 
one-dimensional problem. This is justified by the fact that the free Schrödinger dynamics is
separable along the three directions of motion. On the contrary, in general the dynamics given 
by equation (1) is not separable, not even in the free particle case. We show, however, that 
due to the specific geometry and experimental parameters of the diffraction experiments here 
considered, we can effectively separate the collapse dynamics in the three spatial directions, 
thus considerably simplifying the problem. Along with this, we will investigate the assump-
tions that are required for the justification of the one dimensional approximation. Actually, 
it is instructive to first carry out the calculation in the 1D (paraxial) approximation before 
justifying it.

The derivation of the paraxial interference pattern is the main result of this section. We then 
apply the paraxial interference formula to the far-field and near-field experimental setups. In 
order to simplify the comparison with similar results obtained in the literature, we will adopt 
the notation of [42]. We will also omit the overall normalization factors for the wave func-
tions, density matrices and probability densities. At any step of the calculation, one can obtain 
a normalized quantity by dividing with an appropriate normalization factor.

2.1.  Paraxial approximation

We first review the quantum mechanical derivation of the interference pattern in the paraxial 
(Fresnel) region, as depicted in figure 1. We label with z1, z2, z3 the positions of source, grating 
and detector along the optical axis z, respectively. Similarly, we label the horizontal coordi-
nates along the optical elements as x1, x2, x3, respectively.

In the paraxial diffraction region the evolution of the wave function can be approximated 
by the free quantum mechanical wave function propagation in one spatial dimension, i.e. the 
Fresnel diffraction integral:

ψ(x; t = L/v) =
∫ +∞

−∞
dx0ψ0(x0) e

ik
2L (x−x0)

2
,� (2)

where k is the wave number of the matter wave, ψ0 is the initial wave function and ψ is the 
wave function after it has propagated for a distance L in a time t  =  L/v, where v is the speed of 
propagation along the optical axis z. One has the usual relation mv = �k, where m is the mass 
of the system (the macromolecule). In the language of density matrices equation (2) reads:

ρQM(x, x′; t = L/v) =
∫ +∞

−∞
dx′0

∫ +∞

−∞
dx0ρ0(x0, x′0) e

ik
2L ((x−x0)

2−(x′−x′0)
2),

� (3)
where ρ0(x0, x′0) is the initial density matrix and ρQM(x, x′; t) is the density matrix after it has 
propagated for a distance L in a time t  =  L/v.

The calculation of the interference pattern can be summarized in the following steps.

	[z1]:	We choose the initial wave function at z1. Both the far-field and near-field experiments 
will be modeled by a completely incoherent source at z1, meaning that the wave functions 
associated to different molecules are uncorrelated and spatially localized initially. It is 
then sufficient to consider a single source at point (x1, z1). At the end, one can integrate 
over the extension of the source. The corresponding initial wave function is given by

ψ1(x̃1) = δ(x1 − x̃1). (4)

	[z1 to z2]: We propagate the wave function to z2 according to equation (2):
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ψ2(x2) =

∫ +∞

−∞
dx̃1ψ1(x̃1) e

ik
2L1

(x2−x̃1)
2

.� (5)

	[z2]:	We now assume that the optical element at position z2 has a transmission function t(x). 
The wave function immediately after the grating at z2 is given by t(x2)ψ2(x2).

	[z2 to z3]: We propagate the wave function from z2 to z3 according to equation (2):

ψ3(x3) =

∫ +∞

−∞
dx2t(x2)ψ2(x2) e

ik
2L2

(x3−x2)
2

.� (6)

	[z3]:	The detector records the arrival of the molecules along the axis x3. The probability dis-
tribution is p3(x3) = |ψ3(x3)|2. After combining the equations of the previous steps we
obtain the interference pattern:

p3(x3) =

∫ +∞

−∞
dx2

∫ +∞

−∞
dx′2t(x2)t∗(x′2)

e−
ik

2L2
(x2−x′2)x3 e

ik
2L1

(x2
2−x′2

2) e
ik

2L2
(x′2

2−x2
2) e−

ik
L1
(x2−x′2)x1 . (7)

Note that equation (7) was derived from equation (2), but it could equally well be derived from 
the density matrix evolution given by equation (3).

We now consider what happens if in place of the standard quantum evolution, we have the 
following density matrix evolution:

ρ(x, x′; t) =
1

2π�

∫ +∞

−∞
dk̃

∫ +∞

−∞
dw̃ e−

i
� k̃w̃F(k̃, 0, 0; x − x′, 0, 0; t)ρQM(x + w̃, x′ + w̃; t).

(8)
We will justify equation (8) below, when we discuss the separability issue. The calculation of 
the interference pattern can be again carried out as before.

	[z1]:	We consider a single source at point (x1, z1). The corresponding initial wave function is 
given by ψ1(x̃1) = δ(x1 − x̃1) and the corresponding density matrix is given by

ρ1(x̃1, x̃′1) = δ(x1 − x̃1)δ(x1 − x̃′1).� (9)

	[z1 to z2]: We propagate the density matrix from the point z1 to the point z2 along the optical 
axis using equation (8):

ρ2(x2, x2) =
1

2π�

∫ +∞

−∞
dk̃

∫ +∞

−∞
dw̃ e−

i
� k̃w̃F(k̃, 0, 0; x − x′, 0, 0; t)ρQM

2 (x2 + w̃, x′2 + w̃),

(10)
		where according to equations (3) and (9):

ρQM
2 (x2, x′2) = e

ik
2L1

(x2
2−x′2

2 ) e−
ik
L1
(x2−x′2)x1 .� (11)

In equation (10) the w̃ integration yields a delta function δ(k̃ − �k
L1
(x2 − x′2)) and hence

after the k̃ integration we obtain:

ρ2(x2, x′2) = e
ik

2L1
(x2

2−x′2
2 ) e−

ik
L1
(x2−x′2)x1 F

(
�k
L1

(x2 − x′2), 0, 0; x2 − x′2, 0, 0; t1

)
. (12)

	[z2]:	We apply the grating’s transmission function t(x) to the density matrix and obtain
t(x2)ρ2(x2, x′2)t

∗(x′2).
	[z2 to z3]: We perform a free propagation according to equation (8) from z2 to z3:
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ρ3(x3, x′3) =
1

2π�

∫ +∞

−∞
dk̃

∫ +∞

−∞
dw̃ e−

i
� k̃w̃F(k̃, 0, 0; x3 − x′3, 0, 0; t2)ρ

QM
3 (x3 + w̃, x′3 + w̃)

(13)
		where

ρQM
3 (x3, x′3) =

∫ +∞

−∞
dx2

∫ +∞

−∞
dx′2 t(x2)t∗(x′2)ρ2(x2, x′2) e

ik
2L2

((x3−x2)
2−(x′3−x′2)

2). (14)

	[z3]:	The interference pattern is again proportional to the probability density p(x) = ρ3(x, x). 
The w̃ integration yields a delta function δ(k̃ + �k

L2
(x2 − x′2)). Hence after the ̃k integration

we obtain the interference pattern:

p(x) =
∫ +∞

−∞
dx2

∫ +∞

−∞
dx′2 D(x2 − x′2) t(x2)t∗(x′2)

× e−i mv
� (x2−x′2)(

x1
L1
+ x

L2
) ei mv

�
L1+L2
2L1L2

(x2
2−x′2

2 ), (15)

where

D(x2 − x′2) = F(−�k
L2

(x2 − x′2), 0, 0; 0, 0, 0; t2)F(
�k
L1

(x2 − x′2), 0, 0; (x2 − x′2), 0, 0; t1).

(16)
As we can see, the interference pattern in equation (15) differs from the pure quantum mechan-
ical interference pattern of equation (7) by the presence of D(x2 − x′2).

2.2.  Separability

We now perform the full 3D treatment of the problem to justify the 1D approximation. We 
consider an initial Gaussian wave packet, evolving according to the full dynamics in equa-
tion (1). For the geometry, we refer again to the experimental setup depicted in figure 1. We 
will show under which assumptions the interference pattern is given by equation (15), thus 
justifying the above analysis in the 1D (paraxial) approximation. The assumptions are:

1:	The extension of the macromolecule σ(t) is much smaller then the distances L1, L2 during 
the time of flight t:

σ(t) � L1, L2. (17)

		This key assumption allows to split the flight of the molecule from the source at time 
t  =  0 to the grating at time t1, from the motion from the grating at time t1 to the detector 
at time t1 + t2 , and to treat the non-free interaction with the grating as instantaneous. This 
is necessary in order to conveniently introduce a transmission function for the grating 
txy(x,y). In particular, we choose txy(x, y) = t(x)ty(y), where

t(x) = 0 if |x| > sx

2
, (18)

while for |x| < sx
2  it depends on the type of grating and

ty(y) =
{

1, if |y| � sy

2 .
0, if |y| > sy

2 .
(19)
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		where sx, sy are described in figure 2 and t(x) is to be identified with the transmission 
function used above, when working in the 1D (paraxial) approximation.

2:	We assume that the molecule extension σ2  at time t1, as it reaches the grating, is much 
larger than the molecule extension σ1, at time t  =  0, as it leaves the source:

σ1 � σ2. (20)

3:	We require that the grating transmission function satisfies (see figure 2):

sx � σ2, (21)
σ2 � sy. (22)

Using ordinary quantum mechanics it is easy to give an estimate for the molecule extension 

at the grating: σ2 = �t1
mσ1

 with σ1 the extension at the source (see analysis below). Using this 
relation let us check the validity of the above assumptions for the two experiments considered.

For the far-field diffraction experiment [36] we have L1 = 0.702 m, L2 = 0.564 m, 
sx = 3µm, sy = 60µm and the molecular speed along the z axis v ∼ 100 ms−1. The above
assumptions are satisfied if the initial molecular extension at the source is contained in the 
interval 4 × 10−9 m � σ1 � 7 × 10−8 m. No one knows the actual value of σ1. The range of
values here considered makes the initial spread much smaller than the extension of the source 
(s = 1µm) as given by the collimator and also provides a justification as to why the source is 
incoherent.

For the near-field KDTL diffraction experiment [2] we have L1 = L2 = 10.5 cm, while 
it is difficult to give estimates for parameters sx, sy of the light grating. Anyhow, making 

Figure 2.  The grating has non-zero transmission function limited to a rectangle of size 
sx × sy, e.g. here we show a mechanical grating with N  =  4 slits with total horizontal
extension sx and slit height sy. The analysis of this section applies also to other types of 
gratings, e.g. an optical grating.
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the following guess for these parameters: sx = 10−3 m , sy = 100 × 10−3 m  (and being the
molecular speed along the z axis v ∼ 100 ms−1), the above assumptions are satisfied if the ini-
tial molecular extension at the source is contained in the interval 10−13 m � σ1 � 10−11 m.
This is to be compared with the slit openings of the source grating l  =  110 nm. Without more 
precise estimates for the molecule extension σ(t) it is difficult to assess the validity of the 
above assumptions and hence of the 1D approximation. We stress that we are considering 
a single molecule emitted from the source. In particular, the single molecule extension σ(t) 
should not be confused with the spatial coherence length of the beam, which is a property of 
an ensemble of particles emitted from the source.

As in the previous section, the calculation of the interference pattern can be split into sev-
eral steps.

	[z1]:	It is convenient to work in a boosted reference frame along the z axis with molecular 
velocity v, i.e. moving alongside the molecule. For non boost-invariant dynamics, one 
has to choose the correct function F depending on the reference frame. To simplify the 
analysis we neglect gravity and we consider an initial Gaussian wave-function centered 
at (x1,0,0):

ψ1(x̃1, ỹ1, z̃1) = e
− (x1−x̃1)

2

4σ2
1 e

− ỹ2
1

4σ2
1 e

− z̃2
1

4σ2
1 ,� (23)

		with the corresponding density matrix given by

ρ1(x̃1, ỹ1, z̃1; x̃′1, ỹ′1, z̃′1) = ψ1(x̃1, ỹ1, z̃1)ψ
∗
1 (x̃

′
1, ỹ′1, z̃′1).� (24)

	[z1 to z2]: We propagate the density matrix ρ1 from t  =  0 to t = t1 = L1/v using equa-
tion  (1). We denote the resulting density matrix as ρ2(x2, y2, z2; x′2, y′2, z′2) (and by 
ρQM

2 (x2, y2, z2; x′2, y′2, z′2) the quantum mechanical evolution of ρ1 at t  =  t1). In particular,
using the separability of ordinary quantum mechanics, the quantum mechanical wave 
function just before t1 is given by:

ψQM
2 (x2, y2, z2) = ψ

QM(1)
2 (x2; x1)ψ

QM(1)
2 (y2; 0)ψQM(1)

2 (z2; 0),� (25)

where ψQM(1)
2 (x2; x1) = exp

[
− (x2−x1)

2

4σ2
1(1+ i�t1

2mσ2
1
)

]
. Hence the quantum mechanical density 

matrix is given by:

ρQM
2 (x2, y2, z2; x′2, y′2, z′2; t1) = ρ

QM(1)
2 (x2, x′2; x1)ρ

QM(1)
2 (y2, y′2; 0)ρQM(1)

2 (z2, z′2; 0), (26)

		where

ρ
QM(1)
2 (x, x′, x1) = exp [ − 1

σ2
2
( x2(1 − i�t1

2mσ2
1
) + x′2(1 +

i�t1
2mσ2

1
)

− 2xx1(1 +
i�t1

2mσ2
1
)− 2x′x1(1 − i�t1

2mσ2
1
) + 2x2

1 ) ]

(27)

and σ2 = �t1
mσ1

because of equation  (20), i.e. �2t2
1

4m2σ4
1
� 1. To summarize this step of the

calculation:
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ρ2(x2, y2, z2; x′2, y′2, z′2) =
∫

dk̃x

∫
dw̃xρ

QM(1)
2 (x2 + w̃x, x′2 + w̃x; x1) e−

i
� k̃xw̃x

×
∫

dk̃y

∫
dw̃zρ

QM(1)
2 (y2 + w̃y, y′2 + w̃y; 0) e−

i
� k̃yw̃y

×
∫

dk̃z

∫
dw̃zρ

QM(1)
2 (z2 + w̃z, z′2 + w̃z; 0) e−

i
� k̃zw̃z

× F(k̃x, k̃y, k̃z; x2 − x′2, y2 − y′2, z2 − z′2; t1). (28)

	[z2]:	We apply the transmission function on the x and y axis given by equations (18) and (19) 
respectively. Let us first consider the integrals along the x axis. Using equation (21) we 
can simplify in equation (27) (which is contained in equation (28)):

ρ
QM(1)
2 (x, x′, x1)t(x)t∗(x′) = exp

[
−

i(−x2 + x′2 − 2x1(x − x′)) σ2
2σ1

σ2
2

]
t(x)t∗(x′). (29)

		The dependence on w̃x, which will be integrated out, is contained in:

e−
i
� k̃xw̃xρ

QM(1)
2 (x2 + w̃x; x′2 + w̃x) = exp

[
iB(x2, x′2)w̃x

σ2
2

]
Exp

[
C(x2, x′2)

σ2
2

]
, (30)

		where

B(x2, x′2) =
σ2

σ1
(x2 − x′2)−

1
�

k̃xσ
2
2 (31)

C(x2, x′2) =
iσ2

2σ1

(
(x2

2 − x′22 ) + 2x1(x2 − x′2)
)

.� (32)

Hence the w̃x integral yields the delta function δ(k̃x − (x2 − x′2)
m
t1
), which we use to

perform k̃x integration. On the y axis, by assumption (22), we can replace ty( y ) by 1. To 
summarize, after performing the x-axis integrations we obtain:

ρ2(x2, y2, z2; x′2, y′2, z′2) = e
ik

2L1
(x2

2−x′2
2 ) e−

ik
L1
(x2−x′2)x1

×
∫

dk̃y

∫
dw̃zρ

QM(1)
2 (y2 + w̃y, y′2 + w̃y; 0) e−

i
� k̃yw̃y

×
∫

dk̃z

∫
dw̃zρ

QM(1)
2 (z2 + w̃z, z′2 + w̃z; 0) e−

i
� k̃zw̃z

× F(
�k
L1

(x2 − x′2), k̃y, k̃z; x2 − x′2, y2 − y′2, z2 − z′2; t1). (33)

	[z2 to z3]: We apply equation (1) to ρ2(x2, y2, z2; x′2, y′2, z′2) for a time t2 = L2
v :

ρ3(x3, y3, z3; x′3, y′3, z′3) =
∫

d˜̃kx

∫
d ˜̃wx e−

i
�
˜̃kx ˜̃wx

∫
d˜̃ky

∫
d ˜̃wz e−

i
�
˜̃ky ˜̃wy

×
∫

d˜̃kz

∫
d ˜̃wz e−

i
�
˜̃kz ˜̃wz F(˜̃kx, ˜̃ky, ˜̃kz; x3 − x′3, y3 − y′3, z3 − z′3; t2)

× ρQM
3 (x3 + ˜̃wx, y3 + ˜̃wy, z3 + ˜̃wz; x′3 + ˜̃wx, y′3 + ˜̃wy, z′3 + ˜̃wz),

(34)
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		where

ρQM
3 (x3, y3, z3; x′3, y′3, z′3) =

∫ +∞

−∞
dx2

∫ +∞

−∞
dx′2 e

ik
2L2

((x3−x2)
2−(x′3−x′2)

2)

×
∫ +∞

−∞
dy2

∫ +∞

−∞
dy′2 e

ik
2L2

((y3−y2)
2−(y′3−y′2)

2)

×
∫ +∞

−∞
dz2

∫ +∞

−∞
dz′2 e

ik
2L2

((z3−z2)
2−(z′3−z′2)

2)

× ρ2(x2, y2, z2; x′2, y′2, z′2) (35)

		 is the free quantum mechanical evolution of ρ2(x2, y2, z2; x′2, y′2, z′2) for a time t2.
	[z3]:	We now set x = x3 = x′3, y = y3 = y′3 and z = z3 = z′3 to obtain the probability den-

sity function p3(x, y, z) = ρ3(x, y, z; x, y, z), as the molecule interacts with the detector. 
However, we are only interested in the probability of detecting a particle at a horizontal 
coordinate x, therefore we consider:

p(x) =
∫ +∞

−∞
dy

∫ +∞

−∞
dz p3(x, y, z).� (36)

		It is straightforward to perform the integrations along the x axis in equation (36) at this 
step of the calculation. In fact, these calculations are completely analogous to those 
described above (equations (9) to (16)), when working within the 1D approximation.

		Let us now look at the tedious integrations associated with the y axis in equation (36). In 
particular, we have from equation (34):

∫
dy

∫
dy2

∫
dy′2ρ2(x2, y2, z2; x′2, y′2, z′2) e

ik
2L2

(−2(y+˜̃wy)y2+2(y+˜̃wy)y′2) e
ik

2L2
(y2

2−y′2
2 ). (37)

By performing the y integration we obtain a delta function δ(y2 − y′2) and by performing
then also the y′2 integration, the expression given in equation (37) reduces to:

∫
dy2ρ2(x2, y2, z2; x′2, y2, z′2). (38)

		Let us now write the integrations associated with the y axis contained within ρ2 (see 
equations (33) and (27)):

∫
dk̃y

∫
dw̃y

∫
dy2 exp

[
−

2w̃2
y + 2y2

2 + w̃y(4y2 +
i
� k̃yσ

2
2)

σ2
2

]

× F(k̃x, k̃y, k̃z; x2 − x′2, 0, z2 − z′2; t1). (39)

		By performing the y2 integration we remove the quadratic term containing w̃y:

∫
dk̃y

∫
dw̃y F(k̃x, k̃y, k̃z; x2 − x′2, 0, z2 − z′2; t1) exp

[
− i
�

w̃yk̃y

]
.� (40)

		The w̃y integration yields a delta function δ(k̃y) and by then also performing the ̃ky integra-
tion, the expression given in equation (40) reduces to:
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F(k̃x, 0, k̃z; x2 − x′2, 0, z2 − z′2; t1). (41)

		In addition, we have just shown that ρQM
3 (x3 + ˜̃wx, y3 + ˜̃wy, z3 + ˜̃wz; x3 + ˜̃wx, y3 +

˜̃wy, z3 + ˜̃wz) defined in equation (35) does not depend on ˜̃wy. Hence we can perform the 
following integrations:

∫
d ˜̃wy

∫
d˜̃ky e−

i
�
˜̃wz
˜̃kz F(˜̃kx, ˜̃ky, ˜̃kz; 0, 0, 0, t2).� (42)

		Since the ˜̃wy integration yields a delta function δ(˜̃ky) we obtain from the expression given 

in equation (42):

F(˜̃kx, 0, ˜̃kz; 0, 0, 0, t2). (43)

		We have thus shown that the final probability density is not affected by the dynamics 
along the y axis. A completely analogous calculation can be performed for the integra-
tions associated with the z axis. Hence we obtain from equation (36), relabeling x3 as x, 
the interference pattern in equation (15).

This calculation thus justifies, and gives the limits of applicability, of the 1D treatment 
discussed before.

2.3.  Far-field

The experimental setup for the far-field interference experiments is summarized in figure 3 
(left). The difference with respect to the idealized situation described here above is that instead 
of a single point source we have an incoherent source of horizontal extension s, centred at 
x1  =  0. We obtain the interference pattern by integrating equation (15) over the points x1 of 
the source from − s

2 to s
2:

p(x) =
∫ +∞

−∞
dx2

∫ +∞

−∞
dx′2 D(x2 − x′2) e−

ik
L2
(x2−x′2)x

× sinc
(

k
2L1

(x2 − x′2)s
)

eik(x2
2−x′2

2 )( 1
2L1

+ 1
2L2

). (44)

A related study of far-field decoherence effects in the Wigner function formalism is given in 
[41].

Let us discuss how to evaluate numerically equation (44). We recognize from the factor 
e−

ik
L2
(x2−x′2)x3 a Fourier transform and an inverse Fourier transform. Fourier transforms can be

approximated with discrete Fourier transforms using the FFT algorithm. Hence the integra-
tions in equation (44) can be conveniently evaluated numerically with the row column FFT 
algorithm.

2.4. Talbot–Lau near-field

The experimental setup for the KDTL near-field interference experiment is represented in 
figure 3(right). This is essentially the same scheme as presented before (figure 1) except that 
now we have two additional gratings at positions z1, z3 along the optical axis. We assume that 
all gratings have a very large horizontal extension such that we can model them by periodic 
functions. The first grating at z1 acts as a mask of an infinite incoherent source and similarly 
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the third grating at z3 acts as a mask of the infinite detection screen. The experiment is per-
formed by moving the masking grating at z3 along the x3 axis and recording the total number 
of molecules that reach the detector in a given amount of time. At the end one obtains the 
number of molecules that reach the detector given a given displacement x3s of the third grating 
from its initial position.

In section 5 we will describe the KDTL experiment, where the 3 gratings have the same 
periodicity d and the distance from z1 to z2 and from z2 to z3 is L = L1 = L2. Due to the perio-
dicity of the 3 gratings, we adopt the following notation for the Fourier series of the corre
sponding transmission functions (notation of [42]):

|t1(x1)|2 =

+∞∑
l=−∞

Al ei2πl x1
d , (45)

t(x2) =

+∞∑
j=−∞

bj ei2πj x2
d , (46)

|t3(x3)|2 =
+∞∑

n=−∞
Cn ei2πn x3

d . (47)

We can now directly proceed with the derivation of the interference pattern starting again from 
equation (15):

Figure 3.  Left: far-field experimental setup. The optical elements are: an incoherent 
source at z1 (centered on the optical axis, i.e. around x1  =  0), the diffraction grating at 
z2 (here we have shown a mechanical grating with N  =  7 slits) and the detector at z3. 
For the experiment described in section 5 we have the following numerical values. The 
distance from z1 to z2 is L1 = 0.702 m and the distance from z2 to z3 is L2 = 0.564 m. 
The source extension is taken to be s = 1µm. The mechanical grating with N  =  30 slits 
is described by the period d = 100 nm and slit width l = 79 nm . The van der Walls 
forces due to the grating are modelled by an effective slit width leff = 43 nm . Right: 
Talbot–Lau near-field experimental setup. In this case the optical elements are: an 
extended incoherent source at z1, a diffraction grating at z2 (here, an optical grating 
produced by a standing light wave) and the detector at z3. Two additional mechanical 
gratings block part of the molecules: the mechanical grating located immediately after 
the source is held fixed, while the mechanical grating immediately before the detector 
can move along the x3 axis (we denote the displacement from its initial position by x3s). 
We assume that all elements have a very large horizontal extension such that one can 
approximate them with periodic functions. The detector at z3 records molecules that 
arrive at all points along the x3 axis in a certain amount of time. For the experiment 
described in section  5 we have the following numerical values. The distance from 
z1 to z2 and the distance from z2 to z3 is L = L1 = L2 = 10.5 cm. Both mechanical 
gratings are described by the same period d = 266 nm and slit width l = 110 nm . 
The optical grating is described by the wavelength λlaser = 532 nm, the laser power 
Plaser = 1 W, the optical polarizability αopt = 410 Å × 4πε0 and the absorption cross
section σa = 1.7 × 10−21 m2.
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S(x3s) =

∫ +∞

−∞
dx1

∫ +∞

−∞
dx3 p(x3; x1)|t1(x1)|2|t3(x3 − x3s)|2,� (48)

where with respect to the far-field experiment, there is a further integration over all the detec-
tor region, x3s is the horizontal shift of the third grating and p(x3; x1) is the interference pat-
tern due to a single source point at x1 given by equation (15). In other words, S(x3s) gives the 
number of molecules that reach the infinite detector at z3 from the infinite source at z1 in a 
given amount of time, given a displacement x3s of the third grating from its initial position. 
Since this gives formally an infinite value, we have to properly normalize the result. This is 
done in the following way.

The integrations in equation  (48) over x1, x3 yield two delta functions 
δ( 2πl

d − k
L1
(x2 − x′2)), δ(

2πn
d − k

L2
(x2 − x′2)). We perform the integration over dx′2  which gives

the constraint x2 − x′2 = 2πl
d

L
k , while the other delta function gives the constrain l  =  n. We 

now divide by δ(0) in order to remove the infinite factor due to the delta function giving 

this first constrain. We are left with the integration over dx2  which gives a delta function 

δ( 4πn
d + 2πj

d − 2πj′

d ), where j′ is the index in the Fourier expansion of t∗(x′2). This gives the
constraint j′ = j + 2n. We again divide by δ(0) in order to remove the infinite factor due to 
the delta function giving this second constrain. We are now left with a finite expression. In 
order to obtain a notation consistent with that of [42] we relabel n as  −n and use the fact that 
A−n = A∗

n , C−n = C∗
n. Thus we obtain:

S(x3s) =
∑

n

A∗
n C∗

n BnD
(

2πn
d

L
k

)
ei2πn x3s

d ,� (49)

where Bn =
∑

j bjb∗
j−n ei π

2

d2
L
k (n2−2nj). The above equation coincides with the results derived by

using the Wigner function formalism [38, 40].

3. Summary of collapse models and of the interference pattern

3.1.  CSL: continuous spontaneous localization

Here we are referring to the mass-proportional version of the CSL model [43]. The single-
particle master equation in 3D is given by [44]:

d
dt
ρ̂(t) = − i

�

[
Ĥ, ρ̂(t)

]
+ λ

m2

m2
0

((
rC√
π�

)3 ∫
d3Q e−

Q2r2
C

�2 e
i
� Q·x̂ρ̂(t) e−

i
� Q·x̂ − ρ̂(t)

)
.

(50)
The physical meaning of the phenomenological constants λ and rC was clarified in section 1. 
In the free-particle case Ĥ = p̂2/2m, the equation can be solved exactly. In the coordinate 
basis, it reads [12]:

ρCSL(x, x′, t) =
1

(2π�)3

∫
dk̃

∫
dw̃ e−

i
� k̃·w̃FCSL(k̃, x − x′, t)ρQM(x + w̃, x′ + w̃, t), (51)

where ρQM(x, x′, t) is the standard free quantum evolution for the density matrix (λ = 0) and

FCSL(k̃, q, t) = exp

[
−λ

m2

m2
0

t
(

1 − 1
t

∫ t

0
dτ e

− 1
4r2

C
(q− k̃τ

m )2
)]

. (52)
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The interference pattern is given by equation (15) with the function D defined as follows:

DCSL(x2 − x′2) = exp


−λ

m2

m2
0
(t1 + t2)


1 −

√
π

2

erf( (x2−x′2)
2rC

)

(x2−x′2)
2rC




 .� (53)

Note that DCSL(x2 − x′2) was previuosly derived [38, 40, 41] by using the Wigner function’s
formalism.

The GRW single-particle master equation has the same mathematical structure as the CSL 
single-particle master equation. Since our analysis is based entirely on this master equation the 
above CSL formulae apply also to the GRW model, the only difference being the amplifica-
tion mechanism discussed before.

3.2.  DP: Diósi-Penrose

The single-particle master equation in 3D for a particle of mass m0 is given by [13, 24]:

dρ̂t

dt
= − i

�

[
Ĥ, ρ̂t

]
+

Gm2
0

2π�2

∫
dQ

1
Q2 e−

Q2R2
0

�2

(
e

i
� Q·̂xρ̂t e−

i
� Q·̂x − ρ̂t

)
,� (54)

where R0 is a regularization parameter, which has to be included in order to avoid divergences 
at short distances. Loosely speaking, the effective collapse rate, analogous to λ, is given by 
Gm2

0/
√
π�R0, while R0 describes how well an object is localized, analogous to rC. For a point-

like particle of mass m we have to replace m0 with m. In the free-particle case, the equation can 
be solved exactly, and in the position representation it reads [24]:

ρDP(x, x′, t) =
1

(2π�)3

∫
dk̃

∫
dw̃ e−

i
� k̃·w̃FDP(k̃, x − x′, t)ρQM(x + w, x′ + w, t), (55)

where, again, ρQM(x, x′, t) is the free standard quantum evolution, and

FDP(k̃, q, t) = exp

[
−1
�

∫ t

0
dτ

(
U(− k̃τ

m
+ q)− U(0)

)]
� (56)

with U(x) = −Gm2
0 erf(|x|/2R0)/|x|.

The interference pattern is given again by equation (15), with the function D given by:

DDP(x2 − x′2) = exp

[
− Gm2

0

�
√
πR0

(t1 + t2)

(
1 − 2F2

(
1
2

,
1
2

,
3
2

,
3
2

;−
(
|x2 − x′2|

2R0

)2
))]

,

(57)

where 2F2(
1
2 , 1

2 , 3
2 , 3

2 ; z) =
∑∞

k=0

(
1

1+2k

)
2 zk

k!.

It is instructive to compare DDP  and DCSL. One can relate the role of λ in the CSL model 

with λDP =
Gm2

0
�
√
πR0

 in the DP model, and the role of rC for CSL with R0 for DP. As figure 4

shows, when appropriately rescaled, DDP  and DCSL have a very similar behaviour. In par

ticular, both are equal to 1 for |x2 − x′2| = 0 and decay more or less in the same way towards
the asymptotic value e−λ(t1+t2) as |x2 − x′2| → ∞.
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3.3.  dCSL: dissipative CSL

This is a recently developed new version of the CSL model, which includes dissipative effects, 
which prevent the energy of the system to increase and eventually diverge. The single-particle 
master equation in 3D is [15, 24]:

dρ̂t

dt
= − i

�

[
Ĥ, ρ̂t

]

+ λ
m2

m2
0

((
rC(1 + kT)√

π�

)3 ∫
dQ e

i
� Q·x̂ e−

r2
C

2�2 ((1+kT)Q+2kT p̂)2

ρ̂t e−
r2
C

2�2 ((1+kT)Q+2kT p̂)2

e−
i
� Q·x̂ − ρ̂

)

(58)

where kT = �2

8mr2
CkBT , kB is the Boltzmann constant and T the temperature the system thermal-

izes to. This is a new parameter of the theory, which together with λ and rC fully identifies the 
model. In the limit kT → 0 (i.e. T → ∞), one re-obtains standard CSL model.

We simplify the analysis, as in [15, 24], by considering only small values of kT:

kT � 1. (59)

This assumption identifies a region in the parameter space (T,rC), depicted in figure 5.
In the free particle case the solution reads [15]:

ρdCSL(x, x′, t) =
1

(2π�)3

∫
dk̃

∫
dw̃ e−

i
� k̃·w̃FdCSL(k̃, x − x′, t)ρQM(x + w̃, x′ + w̃, t),

(60)
where as usual ρQM(x, x′, t) is the free standard quantum evolution, and

FdCSL(k̃, q, t) = exp


−λ

m2

m2
0

t


1 − 1

t

∫ t

0
dτ e

− k̃2r2
Ck2

T
�2 −

(− k̃τ
m +q)2

4r2
C(1+kT )2




 .� (61)

Figure 4.  Comparison of D functions for the considered collapse models. The plot is 
obtained with rC = 10−7 m, λ = 500 s−1, t1 = t2 = 1 ms, L1 = L2 = 0.1 m, R0 = 10−7 
m, λDP = λ = 500 s−1, where the rescaled λ, λDP are such that λ(t1 + t2) = 1. The 
black solid line represents the quantum mechanical function (D  =  1), the orange solid 
line represents the D function for the DP model, the green solid line represents that of 
the CSL, GRW, dCSL, dGRW and cCSL models (for temperatures T > 10−7 K and 
boost along the x axis ux < 104 ms−1 . The solid brown line represents the asymptotic 
value of the D functions for all the considered collapse models as |x − x′| → +∞.
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The interference pattern is still given by equation (15), with the function D given by:

DdCSL(x2 − x′2) = exp [ − λ
m2

m2
0
(t1 + t2)

+ λ
m2

m2
0

(
t1 e

− k2

L2
1
(x2−x′2)

2r2
Ck2

T
+ t2 e

− k2

L2
2
(x2−x′2)

2r2
Ck2

T

) √
π

2

erf( (x2−x′2)
2rC(1+kT)

)

(x2−x′2)
2rC(1+kT)

] .

(62)
We note that this equation reduces to the CSL D-function, given in equation (53), when the 

following condition is fulfilled:

rCt � �∆x
8kBT

, (63)

for t  =  t1 and t  =  t2. We estimate these limits for experimental situations, where the spatial 
and temporal extension of the superpositions is limited to distances ∆x < 10−5 m and dura-
tion t < 10−2 s, respectively. This condition identifies a region in the parameter space (rC,T), 
depicted in figure 5.

Figure 5.  Graphical depiction of the conditions given in equations (59) and (63). The 
condition given by equation  (59) is satisfied in the orange and green regions, while 
the condition given in equation  (63) is satisfied in the gray and green regions: both 
conditions are satisfied in the green region. We estimate these limits for experimental 
situations, where the spatial and temporal extension of the superpositions is limited to 
distances ∆x < 10−5 m and duration t < 10−2 s, respectively. Reprinted from [39], 
Copyright (2017), with permission from Elsevier.
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However, the master equation  (58) is not invariant under boosts. Indeed, the dissipative 
CSL master equation has the same structure of a quantum linear Boltzmann equation of a 
particle immersed in a finite temperature bath [23]. Thus the dissipative CSL model contains 
an additional free parameter, a velocity u, which is analogous to the relative velocity between 
bath and particle. In particular, the master equation in the boosted reference frame with boost 
velocity u is given by the following equation:

dρ̂t

dt
=− i

�

[
Ĥ, ρ̂t

]
+ λ

m2

m2
0
(

(
rC(1 + kT)√

π�

)3

×
∫

dQ e
i
� Q·x̂ e−

r2
C

2�2 ((1+kT)Q+2kT(p̂−mu))2

ρ̂t e−
r2
C

2�2 ((1+kT)Q+2kT(p̂−mu))2

e−
i
� Q·x̂ − ρ̂ ) .

(64)
We find the solution of equation  (64) using the characteristic function approach [45]. The 
solution is given by equation (60) with the function FdCSL replaced by:

Fboosted
dCSL (k̃, q, t; u) = exp

[
− λ

m2

m2
0

t


1 − 1

t

∫ t

0
dτ e

− k̃2r2
Ck2

T
�2 −

(− k̃τ
m +q)2

4r2
C(1+kT )2 e

i
�

2kT mu
1+kT

·(− k̃τ
m +q)




]
.

(65)
The interference pattern is given by equation (15) with the function D replaced by:

Dboosted
dCSL (x2 − x′2) = exp [ − λ

m2

m2
0
(t1 + t2)

+ λ
m2

m2
0

(
t1 e

− k2

L2
1
(x2−x′2)

2r2
Ck2

T
+ t2 e

− k2

L2
2
(x2−x′2)

2r2
Ck2

T

)

×
∫ (

(x2−x′2)
2rC(1+kT )

)

0 dτ e−τ 2
cos(2τ 2rCkT mux

� )

(
(x2−x′2)

2rC(1+kT)
)

] , (66)

where ux is the x component of u. We note that this equation reduces to the CSL D-function, 
given in equation (53), when in addition to equation (63), the following condition is fulfilled:

r2
C

ux
� �∆x

8kBT
. (67)

We note that equation (66) reduces to equation (62) as ux → 0 and that equation (62) reduces
to equation (53) as kT → 0. We estimate these limits for experimental situations, where the
spatial and temporal extension of the superpositions is limited to distances ∆x < 10−5 m and 
duration t < 10−2 s, respectively. This condition identifies a region in the parameter space 
(rC, ux, T), depicted in figure 6.

A comparison of Dboosted
dCSL  functions evaluated with different temperatures T and different

boosts ux is given in figures 7 and 8 respectively. We see from these figures that the dCSL 
model with large temperatures T and small boosts ux give the smallest modification with 
respect to the standard quantum mechanical evolution (D  =  1) and practically coincide with 
the CSL model evolution. Hence, given that T and ux are unknown, the CSL model can be used 
as a bound for all dCSL models with arbitrary T and u.

The dGRW single-particle master equation  has the same mathematical structure as the 
dCSL single-particle master equation. Since our analysis is based entirely on this master equa-
tion the above dCSL formulae apply also to the dGRW model, the only difference being the 
amplification mechanism discussed in section 4.
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3.4.  cCSL: colored CSL

This model presents an additional difficulty with respect to the white noise models discussed 
here above. The previous calculation splits into two parts, the free evolution from the source 
at time τ1 to the grating at time τ2 and the free evolution from the grating at time τ2 to the 
detector at time τ3, whereas at time τ2 the molecule is subject to a non free evolution. Let us 
consider the times τ1 < tbefore < τ2 and τ2 < tafter < τ3. The non white noise might correlate 
the evolution between tbefore and tafter. In order to simplify the analysis we neglect the cor-
relations between these times by assuming a small correlation time τC � τ3 − τ1. A similar
argument can be put forward for the correlation between times before and after τ1. Hence we 
limit the discussion to non white CSL models with small correlation times. In particular, this 
assumption justifies the following approximation of the free one particle master equation in 
3D [18, 46]:

dρ̂t

dt
=− i

�

[
Ĥ, ρ̂t

]

− λ
m2

m2
0

(
rC√
π�

)3 ∫ t

0
dsf (t − s)

∫
dQ e−

Q2r2
C

�2 [ e
i
� x̂·Q, [Û†(s − t) e−

i
� x̂·QÛ(s − t), ρ̂t]],

(68)

where f (t − s) is the correlation function and Û(t) = e−
i
�

p̂2

2m t.

Figure 6.  Graphical depiction of the condition given in equation  (67). The color 
indicates the minimum temperature, for a given value of rC and ux, such that the 
condition given in equation (67) is satisfied. We estimate these limits for experimental 
situations, where the spatial and temporal extension of the superpositions is limited to 
distances ∆x < 10−5 m and duration t < 10−2 s, respectively. Reprinted from [39], 
Copyright (2017), with permission from Elsevier.
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Figure 7.  Comparison of DdCSL functions for different temperatures T at fixed boost 
ux  =  0. The plot is obtained with rC = 10−7 m, λ = 500 s−1, t1 = t2 = 1 ms and 
L1 = L2 = 0.1 m. The black solid line represents the quantum mechanical function 
(D  =  1), the green solid line represents the D function for the dCSL models with 
T > 10−7 K (which includes the CSL model), while the dashed lines represent the dCSL 
models with temperatures T = 10−8 K, T = 10−9 K and T = 10−10 K. The solid brown 
line represents the asymptotic value of the D functions for all the considered collapse 
models as |x − x′| → +∞. Reprinted from [39], Copyright (2017), with permission from
Elsevier.

Figure 8.  Comparison of DdCSL functions for different boost along the x 
axis ux at fixed temperature T  =  1K. The plot is obtained with rC = 10−7 m, 
λ = 500 s−1, t1 = t2 = 1 ms and L1 = L2 = 0.1 m . The black solid line represents the 
quantum mechanical function (D  =  1), the green solid line represents the D function 
for the dCSL models with boosts along the x axis |ux| < 104 ms−1 (which includes
the CSL model), while the dashed lines represent the dCSL models with boost along 
the x axis |ux| = 2 × 104 ms−1, |ux| = 105 ms−1 and |ux| = 106 ms−1. The solid brown
line represents the asymptotic value of the D functions for all the considered collapse 
models as |x − x′| → +∞.
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We now expand Û(τ) to first order: Û(τ) ≈ 1 − i
�

p̂2

2mτ , which is justified since τ is limited

by the correlation time τC  of the correlation function f (s) through the time integral in equa-
tion (68). We make the following assumption:

1
�

p̂2

2m
τC � 1. (69)

We can make a rough estimate for the maximum value of τC  by replacing the operator with 
the expectation value in equation (69): 〈p̂2/2m〉τC/� � 1, We consider the temperature of the
system to be T ≈ 102 − 103K. Thus based on the equipartition theorem we replace 〈p̂2/2m〉 
by kBT  which gives the condition τC < 10−13s. This gives us a corresponding minimum ultra-
violet frequency cut-off Ω � 104 GHz for the Fourier transform of the correlation function.

Hence by performing the time integration we obtain from equation (68):

dρ̂t

dt
= LCSL[ρ̂] + Lcorrection[ρ̂], (70)

where

LCSL[ρ̂] = − i
�

[
Ĥ, ρ̂t

]
+ λ

m2

m2
0

((
rC√
π�

)3 ∫
dQ e−

Q2r2
C

�2 e
i
� Q·x̂ρ̂(t) e−

i
� Q·x̂ − ρ̂(t)

)
(71)

is the white noise CSL evolution,

Lcorrection[ρ̂] =
iτ̄

2m�
λ

m2

m2
0

(
rC√
π�

)3 ∫
dQ e−

Q2r2
C

�2 Q · ( [ e
i
� Q·x̂ρ̂ e−

i
� Q·x̂, p̂] + e

i
� Q·x̂[ρ̂, p̂] e−

i
� Q·x̂ )

(72)
is the first order correction due to the non white noise and

τ̄ =

∫ t

0
f (s)sds. (73)

By performing a direct but tedious calculation, it can be shown that equation (70) is invari-
ant under boost and thus fully Galilean invariant.

Let us now find the solution of equation (70) by using the characteristic function approach 
[45]. We multiply equation (70) by e

i
� (ν·x̂+µ·p̂) and take the trace:

∂

∂t
χ(ν,µ, t) =

ν

M
· ∂µχ(ν,µ, t) + λ (Φ(ν,µ)− 1) ,� (74)

where

Φ(ν,µ) = e
−µ2

4r2
C (1 − µ · ν

4mr2
C
τ̄) (75)

and

χ(ν,µ, t) = Tr[ρ̂t e
i
� (ν·x̂+µ·p̂]. (76)

The solution of the characteristic function in equation (74) is given by:

χ(ν,µ, t) = χ0(ν,µ, t) e−λt+
∫ t

0 Φ(ν, ντ
m +µ)dτ ,� (77)

where χ0(ν,µ, t) is the solution of equation  ∂∂tχ
0(ν,µ, t) = 1

mν · ∂
∂µχ

0(ν,µ, t). The density 
matrix can be obtained from the characteristic function using the inversion formula:

M Toroš and A Bassi﻿



22

ρ(x, x′, t) =
∫

dν
(2π�)3 e−

i
2�ν·(x+x′)χ(ν, x − x′, t).� (78)

Hence the solution of the master equation (70) is given by:

ρcCSL(x, x′, t) =
1

(2π�)3

∫
dk̃

∫
dw̃ e−

i
� k̃·w̃FcCSL(k̃, x − x′, t)ρQM(x + w̃, x′ + w̃, t),

(79)
where

FcCSL(k̃, q, t) = FCSL(k̃, q, t) exp

[
λτ̄

2


 e

−
(q− k̃t

m )2

4r2
C − e

− q2

4r2
C




]
.� (80)

For further details about the characteristic function approach see [24, 45]. The interference 
pattern is given by equation (15) with the function D replaced by DcCSL = DCSL given in equa-
tion (53). Although FCSL and FcCSL in general differ, i.e. CSL and cCSL have different free 
evolutions, we have the curious situation that the non Markovian effects in diffraction experi-
ments cancel exactly, i.e. the CSL and cCSL interference patterns coincide.

3.5.  QMUPL: quantum mechanics with universal position localization

Here we are referring to the mass-proportional version of the QMUPL model [13, 14]. The 
single-particle master equation in 3D is given by [44]:

dρ̂t

dt
= − i

�

[
Ĥ, ρ̂t

]
− η

2
m
m0

[x̂, [x̂, ρ̂]] .� (81)

In the free particle case, the solution to this master equation can be obtained with the help of 
the characteristic function:

ρQMUPL(x, x′, t) =
1

(2π�)3

∫
dk̃

∫
dw̃ e−

i
� k̃·w̃FQMUPL(k̃, x − x′, t)ρQM(x + w̃, x′ + w̃, t),

(82)
where ρQM(x, x′, t) denotes the usual free quantum mechanical evolution (η = 0) and

FQMUPL(k̃, q, t) = exp

[
η

2
m
m0

[
q2 − q · k̃t

m
+

k̃2

m2

t2

3

]]
.� (83)

The interference pattern is given by equation (15) with the function D defined as follows:

DQMUPL(x2 − x′2) = exp

[
−η

3
m
m0

(t1 + t2)(x2 − x′2)
2
]

.� (84)

The function DQMUPL(q) completely encodes the modification to the quantum mechanical 
interference pattern (η = 0).

4. Center-of-mass motion for a rigid object and the amplification mechanism

Matter-wave experiments use large molecules and create spatial superpositions of their center-
of-mass motion. In this section, starting from the many-particle collapse dynamics, we will 
derive a closed equation for the center of mass, under the rigid-body approximation. We will 
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show and quantify the amplification mechanism: the larger the system, the faster the collapse 
of the center-of-mass wave function.

We will start by considering the CSL model. Under siutable assumptions, discussed at the 
end of this section, the analysis applies also to the dCSL, cCSL with small correlation time, 
and to the DP model. We will discuss three approximations for the geometry of a planar mol-
ecule, namely Adler’s formula [31], the homogeneous disk approximation and the 2D lattice
structure approximation [47].

The N-particle CSL master equation reads:

d
dt
ρ̂(t) = − i

�

[
Ĥ, ρ̂(t)

]
+ λ

m2

m2
0

(
rC√
π�

)3 N∑
j,l

∫
dQ e−

Q2r2
C

�2

(
e

i
� Q·x̂j ρ̂(t) e−

i
� Q·x̂l − ρ̂(t)

)
,

(85)
where m is the mass of a single particle and x̂i is the position operator of particle i. By per-
forming a trace over the relative coordinates, we obtain the master equation for the reduced 
density matrix ρ̂CM(t) describing the center-of-mass motion:

d
dt
ρ̂CM(t) = − i

�

[
Ĥ, ρ̂CM(t)

]

+ λ

(
rC√
π�

)3 m2

m2
0

∫
dQR(Q) e−

Q2r2
C

�2 ( e
i
� Q·X̂ρ̂CM(t) e−

i
� Q·X̂ − ρ̂CM(t)), (86)

where x̂ =
∑N

i=1 x̂i/N  is the center of mass position operator and

R(Q) =

∫
dr1...drN

N∑
j=1,l=1

e
i
� Q·(rj−rl)� (87)

encodes the distribution of atoms in space around the center of mass. By considering a rigid 
body and neglecting rotations around the center of mass, we can remove the integrations over 
the relative coordinates [11]:

R(Q) =

N∑
j=1,l=1

e
i
� Q·(rj−rl). (88)

The next step is to replace R(Q) with a function independent of the position of the particles, 
so that equation (86) reduces to a single-particle master equation like equation (50), with λ 
replaced by an enhanced factor Λ, which depends on the total number of particle and their 
geometrical distribution. Hence we want to show that under suitable approximations:

λ
m2

m2
0

∫
dQR(Q) e−

Q2r2
C

�2 e
i
� Q·X̂ρ̂CM(t) e−

i
� Q·X̂ −→ Λ

∫
dQ e−

Q2r2
C

�2 e
i
� Q·X̂ρ̂CM(t) e−

i
� Q·X̂,

(89)

−λ
m2

m2
0

(
rC√
π�

)3 ∫
dQR(Q) e−

Q2r2
C

�2 ρ̂CM(t) −→ −Λρ̂CM(t).� (90)

We now review the three possible methods of approximation mentioned above.
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4.1.  Adler’s formula

Consider first the situation when the molecule is enclosed in a radius rs � rC  (see figure 9).
According to equation (86) the weight exp(−Q2r2

C/�2) selects those values of |Q| such that

|Q| < �/rC . Hence we have that | 1
�Q · (rj − rl)| < | (rj−rl)

rC
| ≈ 0, and we can write:

R(Q) ≈
N∑

j=1,l=1

1 = N2. (91)

On the opposite side, let us consider the situation when the distance between near-
est neighbour atoms ra is much bigger than rC, i.e. rC � ra. We group the terms

e−Q2r2
C/�

2
( e

i
� Q·(rj−rl) + e−

i
� Q·(rj−rl)), which can be rewritten as: 2e−Q2r2

C/�
2
cos(Q · (rj − rl)/�).

Let us rewrite: Q · (rj − rl) = |Q||rj − rl|cos(θ). Except for the cases when cos(θ) ≈ 0, if j �= l
the condition rC � ra implies that the oscillations of cos(|Q||rj − rl|cos(θ)/�) make the Q
integrals negligible. Therefore, the dominant contribution in equation (88) comes from j  =  l 
terms, and we can write:

R(Q) ≈
N∑

j=1

1 = N. (92)

The conclusion is that, when N particles in the system are distant less than rC, we have 
a quadratic scaling (∼N2) of Λ for the center of mass motion. On the other hand, when the 
mutual distance between the N particles is larger than rC, then Λ for the center of mass motion 
increases linearly with N.

We also need to consider the intermediate case, where a more careful analysis is needed. 
In this situation, the behaviour is expected to interpolate between the linear and quadratic 
scalings. We model the macro-molecules used in the experiments by atoms uniformly distrib-
uted over a thin disk, as depicted in figure 9. We neglect the electrons, as their mass is small 
compared to the nucleon mass and we describe the atomic nuclei as single particles of aver-
age mass ma = m

na
 (average atomic mass), where na is the total number of atoms. We limit the

discussion to values of rC larger than the nucleon size  ∼10−15 m. The mean area covered by 
a single atom is πr2

a, where we take the mean atomic radius to be ra = 10−10 m. The number
of atoms contained within a circle of radius rC is:

n(rC) =




1, if rC < ra.
πr2

C
πr2

a
, if ra � rC � rs.

na if rs < rC.

(93)

These will contribute quadratically to the collapse rate. The molecule can be covered by 
na/n(rC) circles of radius rC and atoms belonging to different circles contribute linearly to the 
collapse rate. Thus we model the collapse rate for the center of mass of the molecule accord-
ing to the formula:

Λ =
na

n(rC)

(
man(rC)

m0

)2

λ.� (94)

This is the formula we will use in following sections. We will describe the center of mass 
motion as that of a single particle via equation (1), and in all formulas derived starting from

it, λ
(

m
m0

)
2 is replaced by Λ. Of course, in the limiting case when the molecular radius rs is 
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smaller then rC, the above scaling reduces to the purely quadratic scaling law, while when the 
atomic radius ra is larger than rC it reduces to the purely linear scaling law. We now discuss 
two further approximation schemes which will confirm the validity of equation (94).

4.2.  Homogeneous thin disk approximation

As a different way to tackle the problem, let us consider the molecule as a thin homogeneous 
disk of radius rs and thickness d. In this continuous limit, we can approximate:

N∑
j=1

e
i
� Q·rj −→

∫
dxρrel(x) e

i
� Q·x = ρ̃rel(Q),� (95)

where ρrel(x) is the matter distribution around the center of mass, and ρ̃rel(Q) its Fourier trans-
form. Then equation (88) reduces to:

R(Q) = |ρ̃rel(Q)|2. (96)

Figure 9.  Macro-molecule thin disk approximation with uniformly distributed atoms. 
The blue circles represent atomic nuclei, the purple circles the atoms of radius ra and 
the orange circle of radius rs denotes the area spanned by the molecule. We assume 
for simplicity, that the purple circles denoting atoms completely fill the orange circle 
denoting the molecule, so that empty spaces can be neglected. When rC > rs, the 

whole molecule is contained within a circle of radius rC, and the quadratic scaling law 

applies (e.g. rC = r(2)
C ) . When rC < ra, only one nucleus is contained within a circle of

radius rC, and the linear scaling law applies (e.g. for rC = r(1)
C ). When ra < rC < rs , we

interpolate the two limiting cases with the scaling law (94).
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In particular, by labelling the axis of rotational symmetry of the disk as the z axis and its 
orthogonal plane (x-y plane) with the label o, we find that

ρ̃rel(Q) =
2�

QoR
J1(

QoR
�

) sinc(
Qzd
2�

), (97)

where Qz,Qo are the z axis and the x-y plane components of Q, respectively and J1 denotes 
the Bessel function of the first kind. We now insert ρ̃rel(Q) into equations (89) and (90) and 
take the limit d → 0 (very thin disk approximation). To perform the approximation in equa-
tion (89) and equation (90), we work in the position basis, i.e. we apply 〈x, y, z|, |x′, y′, z′〉 from
the left and right, respectively. In addition, we assume that the superposition is on distances 
much greater than the size of the system, i.e. ∆x = x − x′ is either |∆x| � rs or ∆x = 0 and
similarly for the y axis. It is then easy to obtain the rescaling of the parameter λ:

Λ =

4λm2r2
C

(
1 − e

− r2
s

4r2
C

)

m2
0r2

s
.

(98)

4.3.  2D lattice disk

As a different approximation, we consider a 2-D lattice, as depicted in figure 9, of point-like 
nuclei (small blue circles) forming a thin disk of radius rs (orange circle). The axis of rota-
tional symmetry of the disk is z, the nuclei sit on the x-y plane and their poisition is denoted 
as (nx, ny). The index nx runs from nmin = −� rs

a � to nmax = � rs
a �, where we take a = 10−10 m

to be the lattice constant and �.� indicates the floor rounded value. Hence the ny index runs

from −
⌊√

r2
s

a2 − n2

⌋
 to 

⌊√
r2

s
a2 − n2

⌋
 in accordance with the circular shape of the molecule

n2
x + n2

y �
(

rs
ra

)
2. In other words, we consider the following R(Q) function (88):

R(Q) =
∑

n2
x+n2

y�n2
max

n′2
x +n′2

y �n2
max

e
i
� a(nx−n′x)Qx+

i
� a(ny−n′y)Qy

(99)

where the primed and undprimed variables label the first and second sum, respectively.
Let us first deal with the rescaling in equation (90). We perform the dQ integration and we 

get the rescaled parameter Λ:

Λ = λ
∑

n2
x+n2

y�n2
max

n′2
x +n′2

y �n2
max

exp

(
−a2 (∆nx)

2

4r2
C

−
a2 (∆ny)

2

4r2
C

)

� (100)

where ∆nx = nx − n′
x  and ∆ny = ny − n′y.

Next, we consider the rescaling in equation (89). To ease the analysis, we work in the posi-
tion basis, i.e. we apply 〈x, y, z|, |x′, y′, z′〉 from the left and right, respectively. We consider a
single term in equation (99) and perform the dQ integration in equation (89), we get:

λ exp

(
− (a∆nx +∆x)2

4r2
C

−
(a∆ny +∆y)2

4r2
C

− ∆z2

4r2
C

)
, (101)

where ∆x,∆y,∆z are x − x′, y − y′, z − z′ respectively. Let us again assume that the super-
position varies on distances much greater than the size of the system, i.e. ∆x is either 
|∆x| � a∆n or ∆x = 0. Hence we can approximate (a∆n + ∆x) 2 ≈ (a∆n) 2 + ( ∆x) 2. A
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similar argument can be carried also for the y axis variables. Thus, combining equation (100) 
and equation (101) we finally obtain:

Λexp

(
−∆x2 +∆y2 +∆z2

4r2
C

)
− Λ,� (102)

which implies that the center of mass density matrix satisfies the one particle CSL master 
equation with the rescaled parameter Λ.

4.4.  Comparison and other collapse models

The three approximations discussed here above are compared in figure 10. In particular, we 
see that Adler’s heuristic formula is in good agreement with the 2D lattice model amplification
mechanism. We also see that the homogeneous thin disk approximation begins to break down 
for rC values smaller than the atomic radius ra as one would expect.

We also stress the key assumption used in the derivation of the amplification mechanism: 
rs � rsup, where rs is the size of the system (e.g. molecular radius) and rsup is the size of the
macroscopic superposition. Only using this assumption, we were able to effectively describe 
the center of mass motion master equation (86) by the single particle master equation (50) 
with the rescaled parameter Λ. When rs � rsup we have a weaker suppression of macroscopic
superpositions.

The dCSL and cCSL models (with small correlation time) many particle master equa-
tions  have a similar structure as that of the CSL model. Hence, as in part argued in [15, 
18], the amplification mechanism is analogous to the CSL amplification mechanism. For 
the dCSL model, one has to also consider the parameter kT, which limits the validity of the 
approximations.

Figure 10.  Amplification of the parameter Λ as a function of rC for three different 
approximations: Adler’s formula (solid blue line), homogenous disk approximation
(dotted green line), 2D lattice approximation (dashed orange line). We see, that Adler’s
formula agrees very well with the more sophisticated 2D lattice model approximation, 
while the homogenous disk approximation breaks down at distances below the atomic 
radius (ra = 10−10 m). The plot is obtained for N  =  100 atoms with atomic (nuclei) 
mass 12m0 = 12 amu.
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The previous analysis is also applicable to the DP model, as it can be easily shown by 
considering the many particle DP master equation. As previously stated, in the DP model, R0 

can be identified with rC and λ can be identified with Gm2
0

�
√
πR0

. As in the CSL model λ rescales

to Λ(rC), in the DP model Gm2
0

�
√
πR0

 rescales to λDP =
Gm2

0
�
√
πR0

Λ(R0)
λ .

In figure 11 we show how Λ varies as a function of the total number of atoms N according 
to equation (94), where the atoms form a thin disk lattice structure, as described in figure 9,

The GRW and dGRW models have a simple linear scaling of Λ with the mass of the system 
by construction.

4.5.  Localization requirement of macroscopic objects

In the next section we will derive the upper bounds on the collapse parameters, with reference 
to the KDTL experiment, but there are also lower bounds, as the collapse cannot be too weak, 
otherwise the model looses its usefulness. The basic requirement for any collapse model is the 
rapid suppression of macroscopic superpositions. This type of requirement, which is different 
in nature from the experimental bounds, has been already considered in [34], where it has been 
named as the theoretical constraint, and in [33], where it has been called the philosophical 
constraint. In spite of different names, they are of the same nature.

We make the following reasonable, although arbitrary, minimal request: a macroscopic 
superposition of an object, visible by the naked eye (with spatial resolution r), should decay 
within a short time, set by the temporal resolution t of the eye. This implies for example that 
a macroscopic superposition for a single-layered Graphene disk of radius r localizes with an 
effective rate t−1. Specifically, we choose the values t = 10 ms and r = 0.01 mm [48] (for a 
more refined analysis see [49]).

The quantitative analysis is carried out in the following way. We neglect the free quantum 
mechanical evolution, while retaining the modification due to the collapse dynamics, i.e. we 
neglect Ĥ = p̂2/2m. This is a reasonable assumption since the free quantum mechanical evo
lution is negligible for macroscopic objects on the time scale during which the wave function 

Figure 11.  The plot shows the amplification of the effective collapse rate Λ according 
to equation  (94) for the thin disk model described in the text. The plot is obtained 
with λ = 10−16 s−1, rC = 10−7 m, atomic radius ra = 10 m  and atomic mass 
ma = 12m0 = 12 amu. We notice that at N  =  106 the amplification mechanism changes 
behavior as the total size of the system rs becomes equal to rC.
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localizes. We have solved the resulting dynamics for each of the collapse models using the 
characteristic function approach [45]. For each of the considered collapse models the corre
sponding characteristic function equation is given by:

∂

∂t
χ(ν,µ, t) = Λ (Φ(ν,µ)− 1) , (103)

where Φ depends on the model. We can easily obtain the solution to this equation:

χ(ν,µ, t) = χ(ν,µ, 0) exp (−Λt(1 − Φ(ν,µ))) .� (104)

Using the inversion formula given by equation  (78) we obtain the corresponding density 
matrix:

ρ(x, x′, t) =
1

(2π�)3

∫
dk̃

∫
dw̃ e−

i
� k̃·w̃ exp

(
−Λt(1 − Φ(k̃, x − x′))

)
ρ(x + w, x′ + w, 0),

(105)
where ρ(x + w, x′ + w, 0) is the initial density matrix.

Formally, we can also obtain the solution of the collapse dynamics (without the free 
quantum mechanical term) from the full solution (with the free quantum mechanical term) 
by taking the limit m → ∞ in the expressions originating from the free quantum mechanical
evolution, while keeping finite m in the other expressions.

We now list the solutions for the considered collapse models using the notation of sec-
tion 3. For the CSL we obtain:

ρCSL(x, x′, t) = ρ(x, x′, 0) exp

(
−Λt

(
1 − e

− (x−x)2

4r2
C

))
.� (106)

The same formula applies also for the cCSL model with small correlation times τC .
For the QMUPL we obtain:

ρQMUPL(x, x′, t) = ρ(x, x′, 0) exp
(
−η

m
m0

t(x − x′)2
)

.� (107)

For the DP we obtain:

ρDP(x, x′, t) = ρ(x, x′, 0) exp
(
− t
�
(U(x − x′)− U(0))

)
.� (108)

For the dCSL we obtain:

ρdCSL(x, x′, t) =
1

(2π�)3

∫
dw̃ ρ(x + w̃, x′ + w̃, 0)

∫
dk̃ e−

i
� k̃·w̃ exp ( − Λt(1 − e−

k̃2r2
Ck2

T
�2 e

− (x−x′)2

4r2
C(1+kT )2 e

i
�

2kT mu
(1+kT )

·(x−x′)
) ) , (109)

where in the limit kT → 0 we obtain the CSL solution given by equation (106). While for the
CSL, cCSL and DP models we were able to perform the k̃ and w̃ integrations, for the dCSL 
the two integrations in general cannot be performed analytically. Hence for the dCSL we do 
not have in general a simple exponential decay of the off-diagonal elements. However, we can 
still investigate the dCSL decay of the off-diagonal elements by considering a particular initial 
state and performing a numerical simulation. In particular, we have considered a superposition 
state of two Gaussians centered at points (r/2, 0, 0) and (−r/2, 0, 0):
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ψ(x, 0) =
(
exp[− (x − r/2)2

4σ2 ] + exp[− (x + r/2)2

4σ2 ]

)
exp[− y2

4σ2 ] exp[−
z2

4σ2 ] (110)

with r the spatial resolution of the eye and σ = 10−5 m.
For the considered collapse models we can thus write the localization requirement for mac-

roscopic objects as an inequality:
∣∣∣∣
ρ (x, x′, t)
ρ (x, x′, 0)

∣∣∣∣ < exp(−1), (111)

where we set x = (r/2, 0, 0), x′ = (−r/2, 0, 0) and t and r are the eye temporal and spatial
resolutions, respectively. The constant exp(−1) ∼ 0.37 is chosen arbitrarily, reflecting that for
most collapse models the decay of the off-diagonal elements is exponential. This inequality 
will be used to obtain bounds on collapse parameters.

The same analysis applies also for the GRW and dGRW models, the only difference being 
the amplification mechanism discussed before.

5. Experimental data analysis

We are now ready to apply the above results to the experiments [36] and [2]. For concreteness, 
we illustrate the procedure with the CSL model. The same procedure is applicable for each 
collapse model described in section 3.

In these experiments one has a source of molecules that have different velocities v along the 
optical axis z. Hence the real far-field interference pattern is given by:

∫ +∞

0
pf (v) p(x; v)dv, (112)

where p is given by equation (44) and pf(v) is the macromolecule velocity profile. Similarly 
the real near-field interference pattern is given by

∫ +∞

0
pn(v)S(x3s; v)dv, (113)

where S is given by equation (49) and pn(v) is the macromolecule velocity profile.
To make a quantitative comparison with experimental data, we consider a grid of pairs 

(λ, rC) and for each pair we perform a χ2 minimization procedure for the predicted CSL pat-
tern according to equations (112) and (113). In this way, we obtain a parameter diagram with 
an exclusion zone of pairs (λ, rC) that are incompatible with experimental data.

A note of caution is at order. We have initially attempted to fit the experimental data by
adopting the Poisson experimental error 

√
I  for each value I recorded by the detector since

error bars were not reported in the papers. With this choice we were unable to obtain reason-
able values of χ2 even for the standard quantum mechanical predictions. This is probably due, 
at least in part, to the approximations in the theoretical modeling and to unknown sources of 
error in the experiment. In order to circumvent this problem and to obtain reasonable values
of χ2, we used an enlarged Poisson experimental error a

√
I , where a is a constant. In order

for the standard quantum mechanical fits to have reasonable χ2 values, we took a  =  4.5 for 
both experiments, but different values of a (within the same magnitude) do not change the 
final result.
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5.1.  Far-field

We first analyze the interference experiment with Phthalocyanine C32H18N8 molecules 
reported in [1], with the date taken from [36]. The experimental setup is shown in figure 3. 
The velocity profile was estimated according to [36]. One has to be careful in considering the 
van der Walls forces between the molecules and the grating. This is modelled by consider-
ing an effective slit width smaller than the real one as described in [1]. The effective value is 
leff = 43 nm. The finite spatial resolution of the detector 4 µ m was also taken into account.

As an example, in figure 12 we plot a comparison between the experimental interference 
pattern, the quantum mechanical fit and the CSL fit, for some arbitrarily chosen pair of param
eters λ, rC. More importantly, we repeated the simulation for different pairs of parameters 
λ, rC as described before, obtaining the CSL parameter diagram shown in figure 13.

5.2.  Near-field KDTL

We now consider the experiment with L12 = C284H190F320N4S12 molecules reported in [2]. 
The experimental setup is shown in figure 3. The Fourier coefficients, defined in equations (45) 
and (47) for the transmission functions of the mechanical gratings, can be calculated analyti-
cally: An = Cn = 2l

d sinc( l
d n). The velocity profile was approximated by a Gaussian centered

around v = 85 ms−1 with spread ∆vFWHM = 30 ms−1 [2].
As an example, in figure 12 we plot a comparison between the experimental interference 

pattern, the quantum mechanical fit and the CSL fit, for an arbitrarily chosen pair of param
eters λ, rC. We repeated the simulation for different pairs of parameters λ, rC as previously 
described. We obtain the parameter diagram shown in figure 13.

5.3.  Comparison of near and far field experiments

Figure 13 shows the exclusion zone of the CSL parameters λ,rC for the far and near field 
experiments here considered. As we can see, they are similar: the near-field experiment sets a 
bound which is roughly two orders of magnitude stronger than the far-field experiment. This 
can be understood by the following argument.

Figure 12.  Left: Far-field experiment [36]: λ ≈ 3.8 · 10−3 s−1 and rC = 10−7 m.
Right: KDTL near-field experiment [2]: λ ≈ 0.98 · 10−5 s−1, rC = 10−7 m, laser power
Plaser = 1 W. The orange dashed line represents the quantum mechanical fit, the solid 
orange line represents the CSL fit for an arbitrarily chosen (large) parameter λ and the 
conventional rC value and the blue points and blue error bars represent the experimental 
data. The y axis values are rescaled such that the maximum value is equal to unity.
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Let us fix rC and focus our attention on the CSL model. The only remaining parameter 
is λ. We expect that deviations from standard quantum mechanics become important as λt 
increases. For the far-field experiment we have a typical flight time t ≈ 5 ms and molecular
mass m ≈ 500 amu. For the near-field experiment we have a typical flight time t ≈ 2 ms and
molecular mass m ≈ 10 000 amu. Hence the ratio of bounds on λ from the two experiments
is approximately:

Figure 13.  Parameter diagram for the CSL, dCSL and cCSL models. The red shaded 
zone at the top corresponds to the upper bounds set by the KDTL [2] experiment 
discussed in the text. We have also reported the bounds from the far field experiment 
[1, 36], given by the the dark green exclusion zone, which are roughly 2 orders of 
magnitude weaker. For comparison we have included the bounds from x-ray 
experiments [50], valid for the CSL model and the cCSL model with frequency cutoff 
Ω � 1018 Hz, given by the light blue exclusion zone on the left, and the bounds from
LIGO, LISA Pathfinder and AURIGA [51], analyzed so far for the CSL model only, 
given by the exclusion zones on the right, shaded in light blue, light green and light 
red, respectively. The exclusion zone, given by the light gray shaded zone, arises from 
the requirement of quick suppression of macroscopic superpositions according to 
the criteria of classicality discussed in the main text. Note that this zone can change 
significantly depending on chosen criteria of classicality [33, 34], which is reflected 
by the fuzzy edge of this zone. We have also included for reference, the GRW [12] 
values (λ = 10−16 s−1, rC = 10−7 m) and the values proposed by Adler [31]: 
(λ = 10−8±2 s−1, rC = 10−7 m) and (λ = 10−6±2 s−1, rC = 10−6 m). The dashed 
blue and purple lines denote the KDTL bounds estimated using the analysis from 
[33] and [38], respectively. We note that for values of rC smaller than the size of the 
macro-molecule (≃10−8 m), the bounds on λ become less stringent. Adapted from [39],
Copyright (2017), with permission from Elsevier.
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λt|KDTL

λt|far
=

(10 000 amu)2 2 ms
(500 amu)2 5 ms

≈ 100.� (114)

This rough estimate provides a simple explanation why the KDTL near-field experiment gives 
bounds which are 2 order of magnitude stronger than the bounds obtained from the far-field 
experiment.

5.4.  Parameter bounds

The analysis here above refers to the CSL model, but easily applies to the other models dis-
cussed in this work. The bounds reported in figure 13 for the CSL model, refer also to dCSL 
an cCSL. The figure also shows the bounds coming from requiring that macroscopic objects 
are always well localized (see section 4). This bound puts the original value proposed by GRW 
right on the border of the exclusion zone (the shaded gray zone at the bottom).

The dCSL bounds from interferometry change slightly if we consider very low temper
atures or very high boosts. However, as already stressed before, the smallest modification of 
the quantum mechanical interference pattern is given by the dCSL model with infinite temper
ature and no boost, i.e. the CSL model. Hence, since we do not know the temperature and 
speed of the noise, the most conservative bounds for all dCSL models coincide with the CSL 
bounds. On the other hand, the bounds obtained by requiring that macroscopic objects are 
always well localized, become weaker for lower temperatures and higher boost of the noise, 
but this affects only very high values of rC. On the other extreme, for very small rC values, 
the bounds for dCSL models with very low temperature may become invalid, as the approx
imations utilized begin to break down. See figures 5 and 6 for a quantitative analysis.

The cCSL bounds from interferometry experiments are valid for noises with a frequency 
cut-off Ω � 1013 Hz. For comparison, bounds from x-ray experiments [50], refer to the cCSL
model with a frequency cut-off Ω � 1018 Hz. For completeness, we have also shown the CSL
bounds from LISA Pathfinder [51].

The fact that the CSL, cCSL and dCSL bounds in figure 13 coincide is due to the fact the 
time scale of dissipative and non-Markovian effects are longer than the experimental times. 
This result, shows that interferometric experiments provide bounds that are insensitive to dis-
sipative or non-markavian extensions of the original models for very lage values of the param
eters. Interferometric experiments can thus provide a test, not only for a specific model, but for 
a large class of collapse models, even those not yet considered, such as a CSL model which 
is both dissipative and non-markovian. For a detailed analysis of the CSL, cCSL and dCSL 
bounds from non-interferometric experiments with cold-atoms see [52].

Figure 14.  Bounds on the parameter η of the QMUPL model from the KDTL matter-
wave interferometry are colored in red. The values colored in gray are excluded from 
the requirement of quick suppression of macroscopic superpositions: the shade and the 
fuzzy edge reflect the fact that the excluded interval can vary significantly depending 
on the chosen criteria of classicality. The excluded zone for the definition of classicality 
discussed in the main text is η < 101 s−1 m−2 (see also [33, 34]).
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The bounds for the GRW and dGRW models can be obtained from the bounds of the CSL 
and dCSL models, respectively, by changing the amplification factor Λ.

The bounds on the QMUPL model parameter η are shown in figure 14. We can obtain some 
reference values for the parameter η in the following way: the QMUPL model can be obtained 
as the limit of the GRW/CSL model [22], specifically, we have η = λ/(2r2

C). Using the val-
ues suggested in [12] we obtain (λ = 10−16 s−1, rC = 10−7 m): ηGRW = 10−2 s−1 m−2. 
We will refer to these value as the Ghirardi values. In [31] we have two different choices: 
λ = 10−8±2 s−1 (λ = 10−6±2 s−1) and rC = 10−7 m (rC = 10−6 m). These give the fol-
lowing value: ηAdler = 105±2 s−1 m−2. We will refer to this value as the Adler value. From 
figure  14 we see that the Ghirardi value is excluded by the requirement of macroscopic 
localization.

The KDTL bounds on the DP parameter R0 fall below the regime of applicability of the DP 

model (R0 � 10−15 m). In fact, the effective collapse rate of the DP model ΛDP =
Gm2

0
�
√
πR0

λ(R0)
λ

is very small above 10−15 m, e.g. for R0 = 10−15 m we have ΛDP ≈ 10−15 s−1 λ(R0)
λ , while for 

R0 = 10−7 m we have ΛDP ≈ 10−23 s−1 λ(R0)
λ , which is orders of magnitude below the CSL 

bounds λ ≈ 10−3 s−1(λ ≈ 10−6 s−1) for rC = 10−15 m (rC = 10−7 m), respectively. On the
other hand, the requirement that macroscopic objects are always well localized provides very 
strong bounds. Although these excluded values depend on chosen criteria of classicality [33, 
34]), it is nevertheless instructive to make the following estimates. If we require that a single 
layered Graphene disk of radius r = 0.01 mm is to be localized within t = 10 ms, as we 
have done for the CSL family of models, we can already exclude all values of R0 = 10−15 m, 
R0 = 10−7 m proposed by Diósi [53] and Ghirardi [54], respectively, are still excluded.
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