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Abstract

In bioaccumulation studies, sample devitalization through acid washing or oven drying is commonly applied to enhance the
element accumulation efficiency of moss sample. Such aspect, however, has never been considered in biomonitoring surveys
using lichens. In this study, the trace element accumulation performance of living (L) and dead (D) samples of the lichen
Pseudevernia furfuracea was compared by a side-by-side transplanting at 40 sites in a large, mixed land use area of NE Italy
for 8 weeks. Devitalization was achieved without any physico-chemical treatments, by storing lichen samples in a dark cool room
for 18 months. Health status of lichens was assessed before and after the sample exposure by chlorophyll fluorescence emission.
Although elemental analysis of the two exposed sample sets revealed a similar trace element pollution scenario, the content of 13
out of the 24 selected elements was higher in D samples. By expressing results as exposed-to-unexposed (EU) ratio, D samples
show a higher bioaccumulation signal in 80% of transplant sites for Al, Ca, Fe, Hg, Pb and Ti. Overall, the health status of lichen
samples might lead to interpretational discrepancies when EU ratio is classified according to the recently proposed bioaccumu-

lation scale.
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Introduction

Lichens and mosses are highly performing bioaccumulators,
which provide reliable information on the source apportioning
of airborne elements and their depositional patterns (Giordano
et al. 2013). For this reason, their use is frequently recom-
mended as complementary to conventional monitoring by in-
strumental devices (Mar¢ et al. 2015).

The wide application of biomonitoring techniques by li-
chens and mosses over years triggered a major research inter-
est for the processes underlying metal accumulation (e.g.
Garty et al. 1979; Brown and Beckett 1985; Tyler 1989;
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Vazquez et al. 1999). These processes may be very complex,
as many factors affect the element accumulation by biological
systems (or even by their individual symbionts, in case of
mutualistic associations; Bac¢kor and Loppi 2009). However,
in spite of such interest and the growing supportive role of
biomonitoring in environmental forensics and decision-
making processes, the research aimed at enhancing the meth-
odological consistency of biomonitoring techniques has often
followed separated pathways for mosses and lichens. This
produced unbalanced outcomes in terms of available proto-
cols, supra-regional sampling networks, data quality and com-
parability (Cecconi et al. 2019a). A perfect illustration of this
phenomenon is represented by the investigation of trace ele-
ment bioaccumulation in relation to the vitality of the biomon-
itor. As a matter of fact, such an aspect was frequently ad-
dressed in the framework of active “bryomonitoring” (i.e. bio-
monitoring by moss transplants, of which the moss bag tech-
nique is the most used approach, e.g. Anici¢ et al. 2009a, b;
Basile et al. 2009; Giordano et al. 2009; Debén et al. 2016),
whereas it has scarcely been faced for lichens.

To date, it is acknowledged that devitalization of moss
gametophytes enables an enhanced efficiency of contaminant
capture by passive uptake processes (see Ares et al. 2012 and
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references therein). Especially, the particulate interception and
entrapment at the surface level is enhanced in dead mosses
(Giordano et al. 2013), with useful effects in terms of achiev-
able trace element pollution signals. Further advantages of
devitalizing samples would consist in the reduced variability
of results at site level (Gailey and Lloyd 1986; Castello 1996)
due to the absence of (i) metabolic activity (Giordano et al.
2009; Capozzi et al. 2017) and (ii) growth during the exposure
period (which is a non-negligible source of data variability;
Fernandez et al. 2009; Fortuna and Tretiach 2018). In this
light, the leitmotif of sample devitalization has been carried
forward with great consistence in the bosom of
bryomonitoring, as reflected by the ‘Mossphere’, a highly
standardized exposure device of recent development which
uses devitalized shoots of an axenically cultured Sphagnum
palustre clone (Reski et al. 2016).

Differently, the influence of lichen vitality on the efficiency
of elemental accumulation was addressed in a single field
work. Indeed, Adamo et al. (2007) assessed the accumulation
performance of the macrolichen Pseudevernia furfuracea (L.)
Zopfin comparison to that of the moss Hypnum cupressiforme
Hedw. in a 6-week transplant experiment carried out in two
Italian sites with different pollutant loads and climatic condi-
tions. Besides performing an inter-species comparison, the
authors demonstrated that living P. furfuracea samples did
not show a better performance with respect to dead ones
(Adamo et al. 2007).

Irrespective the test species, in most methodological stud-
ies targeting the issue of biomonitor vitality in relation to
bioaccumulation, devitalization is generally carried out by ac-
id washings and/or oven-drying (Ares et al. 2012). Acid wash-
ing (or “activation”) consists in rinsing the material in an acid
medium, with the aim of leaching metal ions from the cell
walls, hence regenerating the cation exchange sites to increase
the bioconcentration capacity (Brown and Wells 1988; Brown
and Brown 1991; Adamo et al. 2007). This procedure notably
deteriorates the tissues (Giordano et al. 2009). In oven-drying,
the material is simply maintained at temperatures higher than
100 °C for 24 h; thus, it possibly causes the volatilization of
some elements (Ares et al. 2012). Oven-drying alters much
less the morphological structure of biomonitors, also being
eco-friendlier than acid washing (Giordano et al. 2009). A
third method, the so-called heat shock treatment (which is
carried out at 50-60 °C on wet mosses, lichens and algae)
has never been tested in this context (Tretiach et al. 2012;
Bertuzzi et al. 2013, 2017).

Another aspect common to these studies is that the accumu-
lation efficiency of living and dead biomonitors is generally
tested by transplanting paired living-dead samples at a little
number of sites (e.g. Adamo et al. 2007; Giordano et al.
2009; Debén et al. 2016). Therefore, although the experimental
design provides with a discrete number of replicates, poor con-
clusions can be drawn on the potential interpretational bias

resulting from the exposure of samples with different health
status in a real, large sample-sized survey.

In this work, the hypothesis that living and dead lichen
matrices differ in terms of accumulation efficiency is tested
using the highly performing lichen bioaccumulator
P. furfuracea, the only species for which this issue was previ-
ously addressed, therefore providing a starting point to per-
form reliable result comparison. The choice of the species is
also dictated by its widespread use in lichen transplants (e.g.
Adamo et al. 2003; Cicek et al. 2007; Jozic et al. 2009;
Tretiach et al. 2011; Petrova et al. 2015) and its role in meth-
odological studies (e.g. Incerti et al. 2017; Cecconi et al. 2018,
Cecconi et al. 2019b, c) that has led to the development of the
very last interpretative tool for lichen bioaccumulation data
from transplant applications (Cecconi et al. 2019a). Here, for
the first time, the issue of P. furfuracea vitality in relation to its
accumulation capacity is faced in a large-scale transplant ap-
plication (characterized by a high density of experimental
sites), carried out in an area of NE Italy, already used in meth-
odological studies (Kodnik et al. 2015, 2017), adopting a de-
vitalization treatment, which permits to avoid the alteration of
the original physical structure and chemical composition of
samples, caused by more aggressive procedures (Adamo
et al. 2007, 2008). Eventually, this work is also aimed at
investigating the potential interpretative bias derived from li-
chens in different health conditions.

Materials and methods
Lichen collection, sample pre-treatment and storage

On December 8, 2016, c. 400 thalli of Pseudevernia
furfuracea were collected in an acknowledged background
area of the Carnic Alps (317614 E, 5148046 N;
1750 m a.s.l.; Cecconi et al. 2018, 2019b).

After the cleaning and selection procedures (for details, see
Cecconi et al. 2019b), the bulk material was split into two sets
subjected to different storage conditions. A half of thalli was
air dried, vacuum-sealed and stored in a freezer at — 20 °C to
preserve their vitality (Honegger 2003). The residual material
was instead stored in a dark, refrigerated room at c. 10 °C with
ambient air humidity higher than 80%, to achieve devitaliza-
tion (following an in-house developed protocol).

Storage and post-storage assessment of lichen vitality

During storage and at the end of the storage, the photosynthet-
ic activity of algal populations was occasionally assessed by
chlorophyll fluorescence emission (Chl,F) measurements on
terminal lobes of randomly selected thalli, to assess their
health status (Tretiach et al. 2007). Chl,F was assessed in
terms of the maximum quantum yield of primary
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photochemistry in dark adapted samples, using the parameter
F,/F,, as a proxy for the efficiency of photosystem II
(Candotto Carniel et al. 2017).

Dark-stored thalli were air dried at room temperature,
whereas thalli stored at —20 °C were thawed in silica for
24 h. F,/F,, values were assessed on 60 lobes per set, each
one detached from a randomly chosen thallus, by selecting
scarcely isidiate terminal lobes of 2.5-cm length. Prior to the
Chl,F measurements, lobes were hydrated in jars for 48 h at c.
100% relative humidity (RH), 18 °C, and 30 pumol
photons m 2 s~* for 14 h per day. Once hydrated, lobes were
rinsed for 3 min in dH,O, gently shaken to remove the excess
water, then dark-adapted for 30 min.

Chl,F measurements were carried out with a
Photosynthetic Efficiency Analyzer Fluorimeter Handy-PEA
(Hansatech, King’s Lynn, UK). Lichens were considered ei-
ther fully vital (henceforth, ‘living—L—samples’) or dead
(henceforth, ‘dead—D—samples’) when F,/F,, exceeded
0.5 or it was lower than 0.1, respectively (Jensen 2002). As
expected, the long-term storage at —20 °C was effective in
preserving the vitality of thalli; contextually, the protracted
dark storage at high ambient air humidity led to a successful
devitalization (Supplementary Fig. S1).

After the vitality assessment, a sufficient amount of sam-
ples from the two bulk sets was selected to assess the elemen-
tal composition of living and devitalized lichen material prior
the transplant study. These samples were not exposed in the
study area (“unexposed” or “pre-exposure” samples), but
refrozen at — 20 °C until retrieving transplanted L and D sam-
ples. The study area covers c. 40 km? in a typical mixed land
use plain located at the foot of the Carnic Pre-Alps (NE Italy)
(Kodnik et al. 2015). It includes a medium-extent urban centre
(Maniago) and three smaller centres (Arba, Cavasso Nuovo
and Fanna). The main potential anthropogenic pollution
sources are a large industrial park, an isolated medium-sized
cement plant (Supplementary Fig. S2), vehicular traffic and
agricultural activities (Kodnik et al. 2017; Supplementary
Methods S1). In the study area, the elemental and PAH depo-
sition patterns were repeatedly assessed through native and
transplanted lichens (Tretiach and Baruffo 2001a; Tretiach
and Pittao 2008; Kodnik et al. 2015, 2017).

Study area and lichen transplant

In this study, 40 transplant sites were selected according to the
systematic sampling design originally adopted in Kodnik et al.
(2015, 2017) (Supplementary Table S1, Supplementary Fig.
S2), and located as much as possible far from linear and point
emission sources such as busy roads and house chimneys, as
possibly acting as confounding agents for the interpretation of
results. Thirty-seven sites were located at the knots of a 700-m
step grid, and three further in the nearby centres of Arba,
Cavasso and Maniago.

@ Springer

A week before the field exposure, L and D thalli were
mounted on exposure devices. From three to six thalli were
secured with plastic cable ties to wooden rods (120 cm long,
0.5 cm ©) previously subjected to dH,O washing. Overall, 80
exposure devices were assembled, 40 bearing L thalli and 40
bearing D ones. Immediately after their preparation (June 13,
2018), paired (L-D) exposure devices were placed at each trans-
plant site, attached to the external branches of deciduous trees at
¢. 4 m above the ground, within 8 h of field work. After 8 weeks
(August 18th), all samples were retrieved, with the exception of
the D sample exposed at site 7D that was missing.

After their retrieving, the health status of samples was again
assessed by Chl,F measurement on 60 lobes per set, as de-
scribed above (Sect. 2.2). After the exposure, L samples
stayed vital, although F,/F,, mean values lowered due to
stressing field conditions (Supplementary Fig. S1), in accor-
dance with previous observations on P. furfuracea
transplanted in summertime, irrespective the pollutant loads
(e.g. Tretiach et al. 2007; Pirintsos et al. 2011).

Sample processing and element content
determination

After their retrieving, samples were transported to the labora-
tory and left to dry out at room temperature for 24 h.
Afterwards, terminal lobes homogenous in size (15-25 mm)
were selected and grinded for 4 min at 30 Hz with a mixer mill
Retsch MM 400. The resulting powder (c. 1 g per sample) was
stored in pre-labelled polypropylene tubes and kept in silica
until the analytical determination.

Element content determination was performed at Burcau
Veritas Mineral (BVM) laboratories (Arkansas, USA).
Grinded samples of P. furfuracea were subjected to a partial
acid digestion with ACS-grade HNO; (1 h), and Aqua Regia
(ACS-grade HCI-HNO3, volume ratio 1:3) in a boiling water
bath (95 °C, 1 h). The concentrations of 24 clements (Al, As,
Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P,
Pb, S, Sb, Sr, Ti, Zn) were measured through inductively
couple plasma mass spectroscopy (ICP-MS), with a
PerkinElmer Elan 6000 ICP-MS. The resulting concentration
values were expressed on a dry weight basis (ug g ' DW).

In order to assess the accuracy of analytical procedures,
BVM laboratories analyzed aliquots of two in-house reference
materials (CDV-1 and V16, plant leaves), with the same pro-
tocol adopted for the experimental samples. Accuracy results
were expressed in terms of mean recovery percentages
(Supplementary Table S2).

Data analysis
Descriptive statistics were calculated for the concentrations of 24

target elements measured in unexposed and exposed L and D
samples (Supplementary Table S3). Afterwards, element
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concentrations in exposed samples were expressed with respect
to those of unexposed ones in terms of the so-called exposed-to-
unexposed ratio (EU ratio; Cecconi et al. 2019a), and the same
descriptive statistics were calculated for dimensionless EU ratios.

Explorative multivariate statistics (PCA and hierarchical
CA) were performed on the EU ratio data matrix of L and D
samples. Firstly, a PCA was performed on the matrix 78 x 24
(39 L samples plus 39 D samples x 24 elements). The four
quantitative levels of the factor ‘land use’ (U, urban; I,
industrial; R, rural; N, natural; Supplementary Methods S1.2)
were also included in the analysis as supplementary variables
and shown as vectors in the principal component (PC) space of
elements. The two levels of the factor ‘sample set’ (i.e. L and D)
were inserted as binary dummy variables, indicating the vitality
of lichen samples. Dummy and supplementary variables were
not used to calculate the principal components (PCs) but plotted
on the ordination space based on their correlations with the PCs
(Legendre and Legendre 1998).

For comparative purposes, EU ratio data derived from living
and dead samples were also organized in two distinct matrices
39 x 24 (39 samples x 24 elements for either L or D sets). The
variables (elements) and cases (sites) of such matrices were sub-
jected to hierarchical CAs used as distance measure and cluster-
ing algorithm, respectively, Pearson’s 1- and the complete link-
age, and the Euclidean distance and the Ward’s method. Then,
for the element groups and the site clusters, among-group/
among-cluster significant differences were tested by non-
parametric Kruskal-Wallis ANOVA and Dunn’s post hoc test.

To address the effect of the lichen vitality on the accumulation
of single elements and to assess potential interpretational differ-
ences derived by the use of living and dead samples, significant
differences between median EU ratios of L and D samples were
tested by Wilcoxon signed rank test (the same was done for the
median concentrations of unexposed and exposed L and D
sample sets; Supplementary Table S3). The lichen vitality was
considered to have a systematic effect when the element-specific
EU ratio was higher in either L or D in more than 80% of sites.
Accordingly, mean EU ratios were used to classify the accumu-
lation of the 24 target elements, either overall or site by site, on
the basis of the bioaccumulation scale available for 8-week trans-
plant applications (Supplementary Table S4).

All data analyses and graphics were performed with the soft-
ware packages QGIS 2.18.17 ‘Las Palmas’, Statistica v. 10
(StatSoft Inc., Tulsa, OK, USA) and R (R Core Team 2013).
Statistical significance was tested at v =0.05 in all cases.

Results
Multivariate assessments

The first and second principal components (PC 1, PC 2) of the
multivariate space describe 35.8% and 13.9% of variance

(Fig. 1). PC 1 is negatively associated with the EU ratio of
most elements (Al, Ca, Cd, Co, Fe, Hg, Pb, Sr, Ti and Zn) and
positively with that of K, Na, P and S. Moreover, this axis is
negatively and positively correlated with living and dead li-
chen samples (their projection on PC 1 being +0.72), there-
fore indicating a higher bioaccumulation of elements placed at
negative scores of PC 1 in dead samples, and contextual
higher EU ratios of K, Na, P and S in living samples. PC 2
is instead positively correlated with Bi, Cr, Mo, Ni and Sb
(with negative PC 1 scores), as well as with K, Na, S and P
(with positive PC 1 scores) (Fig. 1a). Concerning landcover
categories in the surroundings of the transplant sites, the in-
dustrial land use is respectively negatively/positively correlat-
ed with PC 1/PC 2, suggesting an enhanced accumulation
(higher EU ratios) of Al, Bi, Ca, Cd, Co, Cr, Fe, Hg, Mo,
Ni, Pb, Sb, Sr, Ti and Zn. Natural land use is consistently
positively/negatively correlated with PC 1/PC 2, suggesting
the lowest loss (higher EU ratios) of physiological elements
(mostly K and P) as well as the lowest accumulation of Bi, Cr,
Mo, Ni and Sb.

Lichen samples segregate according to their set, with L
samples mostly placed in the first quadrant and D samples
mostly occupying the third quadrant (Fig. 1b). However, there
was an exception to this general pattern, i.e. the D sample is
exposed at site SA, characterized by an anomalous high S
enrichment.

The cluster analysis (CA) of elements performed on the EU
ratios of L and D sets produced dendrograms with comparable
topologies (Fig. 2a). At the same linkage distance, four groups
can be identified in both cases, with elements co-occurring
within each group of the two dendrograms. Therefore,
matching groups were labelled with the same roman numeral
and a superscript reflecting the sample set (I"-I°, ... IV--IVP).
In particular, Al, Fe and Ti (lithogenic elements) plus Cd and
Hg, Bi, Cr, Mo and Ni (heavy metals associated to steel work
industry), Ba, Ca and Mg (alkaline earth metals) plus Cu and
Pb, as well as K and P (physiology-related elements), are
shared within groups I, II, III and IV, respectively.

The results of the non-parametric Kruskall-Wallis
ANOVA reveal that the EU ratios of element groups signifi-
cantly differ among the sample sets (see bar charts at the
bottom of Fig. 2a). Lithogenic elements of group I show the
largest significant differences between EU ratios of L and D
samples, with D samples characterized by the highest values,
so as group III, although with more limited inter-set differ-
ences. Differently, group Il shows significantly higher EU
ratios in L samples. Physiological elements of group IV are
instead not accumulated (‘Absence of bioaccumulation’) by
both sample sets, although their loss is substantially higher in
D samples (Fig. 2a). Overall, averaged EU ratios for different
groups of elements in both sample sets never exceed the upper
threshold of ‘low bioaccumulation’ class (EU ratio < 1.9; class
2 of the bioaccumulation scale; Fig. 2a; Supplementary

@ Springer
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transplants (Supplementary Table S4). Letters above bars indicate
among-group/cluster significant differences (Kruskal-Wallis ANOVA
and Dunn’s post hoc test). Elements shared by matching groups are
underlined and reported in bold
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Table S4), therefore highlighting generally low elemental de-
positions over the study area.

By cutting the site dendrograms at the same linkage dis-
tance, four clusters of comparable dimensions are still formed
for either L or D samples (Fig. 2b). However, in this case, the
two dendrograms do not share the same overall topology;
therefore, these were labelled with different letters. Although
site clusters are comparable in size (P, Q, R and S include 18,
6, 13 and 2 sites respectively, whereas W, X, Y and Z include
19, 4, 13 and 3 sites), a weaker match can be noticed between
the cluster composition of L and D sets (Fig. 2b). In the three
clusters sharing sites, mean EU ratio values differ among the
sample sets with D samples exhibiting significantly higher
values. Averaged EU ratios for different site clusters never
exceed the ‘low bioaccumulation’ class (EU ratio < 1.9; class
2 of the bioaccumulation scale; Fig. 2b; Supplementary
Table S4). In particular, although significantly differing, clus-
ters P and W (sharing the highest number of samples) show
the lowest mean EU levels. Clusters S and Z (sharing the
industrial site 6B) show instead the highest bioaccumulation:
in this case, and limited to cluster Z (D samples), the upper
95% confidence limit falls in the ‘moderate bioaccumulation’
class (1.9 < EU ratio <2.7; class 3 of the bioaccumulation
scale; Fig. 2b; Supplementary Table S4). An intermediate sit-
uation can be highlighted for clusters Q and R of L samples
and for clusters X and Y of D samples, respectively. Indeed,
within the same sample set, the averaged EU ratio values of
these clusters do not differ (Fig. 2b).

Living vs dead: single-element accumulation perfor-
mance and transplant site alteration

When addressing single elements, Al, As, Ca, Cd, Co, Cu, Fe,
Hg, K, Mg, Mo, Na, P, Pb, S, Sr, Ti, Zn show significant EU
ratio differences between sample sets (Table 1; Fig. 3).

As already highlighted at the cluster level, physiological
elements (K, Na, P, S) were generally characterized by ‘ab-
sence of bioaccumulation’, but significantly higher elemental
losses occurred in D samples during the exposure. L samples
had significant higher EU ratios limited to Mo, which, by
itself, determined the significant higher median EU ratio of
group IT" (Sect. 3.1; Fig. 2a). Concerning Mg, both sample
sets were characterized by ‘low bioaccumulation’, but D sam-
ples showed slight, although significant, higher EU ratios
(Fig. 3). Overall, D samples were more effective in accumu-
lating lithogenic elements (Al, Ca, Fe, Ti) and As, Cd, Co, Cu,
Hg, Pb, Sr and Zn.

A consistent effect of lichen vitality was highlighted over
the study area for a subset of elements exhibiting between-set
significant differences. Indeed, EU ratios of K, Mo, Na, P and
S were higher in L samples in more than 80% of transplant
sites, whereas the opposite was found for Al, Ca, Fe, Hg, Pb
and Ti (Supplementary Fig. S3).

When the interpretative scale (Supplementary Table S4)
was used to classify the mean EU ratios of element content
in L and D samples, this led to different class attribution for
some elements (Supplementary Fig. S4). Indeed, the mean EU
ratio of S in L and D samples was attributed to ‘low bioaccu-
mulation’ and to ‘absence of bioaccumulation class’, respec-
tively. The opposite was instead observed for Cu, Hg, Sr and
Ti. The mean EU ratio values calculated for Hg and Sr in L
samples showed ‘absence of bioaccumulation’ (EU ratio < 1;
class 1) and ‘low bioaccumulation’ (EU ratio < 1.9) in D ones,
whereas those of Cu and Ti were characterized by ‘low bio-
accumulation’ in L samples and by ‘moderate bioaccumula-
tion’ (EU ratio <2.7; class 3) for L and D samples, respective-
ly (Supplementary Fig. S4). With the exception of Cu and Sr,
these elements exhibited higher £U ratios in more than 80% of
transplant sites, in either L (for S) or D (for Hg and Ti) sample
sets.

When EU ratios of single elements were addressed site per
site, the results obtained by different sample sets depicted a
general pattern of low pollutant depositions, irrespective the
use of L and D samples. The majority of transplant sites were
accordingly characterized by the predominance of ‘low’ or
‘absence of” bioaccumulation. Indeed, when considering L
samples, only two sites out of 39 were characterized by less
than 80% of classes 1 and 2 (6A and 4B), whereas 11 sites
were exclusively characterized by such classes
(Supplementary Fig. S4). When referring to D samples, eight
sites out of 39 were characterized by less than 80% of classes 1
and 2, whereas six sites were exclusively characterized by
such classes (Supplementary Fig. S4).

However, when focusing on the situations of alteration, the
use of different sample sets also determines some major dif-
ferences. Indeed, with L samples, only eight sites out of 39
were characterized by more than 10% of classes 3, 4 and 5
(from “moderate” to “extreme” bioaccumulation;
Supplementary Fig. S4). Instead, when referring to D samples,
more than a half of transplant sites were so characterized, with
19 sites showing such pattern (Supplementary Fig. S4).

Discussion
Bioaccumulation capacity of living and dead samples

After the exposure in the study area, living and dead
Pseudevernia furfuracea samples showed different elemental
content. Indeed, the statistical analysis of EU data character-
izing the experimental sets highlighted a higher enrichment of
Al Ca, Fe, Ti, As, Cd, Co, Cu, Hg, Pb, Sr, Zn and a higher
loss of K, Na, S and P by dead thalli, whereas living samples
were more effective only in accumulating Mo. The latter ele-
ment is an essential micronutrient for almost all biological
systems (especially bacteria, but also eukaryotes), which holds

@ Springer



16220

Environ Sci Pollut Res (2021) 28:16214-16226

Table 1  Descriptive statistics (mean + standard deviation, 95% confidence interval, median and range) of element EU ratios in living (L) and dead (D)
samples, along with the output of the Wilcoxon test for paired samples on EU ratio data (p values < 0.05 are reported in italic)
Element Living samples (L) Dead samples (D) Wilcoxon

Mean + SD C.1 95% Median Range Mean + SD C.1 95% Median Range Z p value
Al 1.16 £ 0.24 1.08-1.24 0.95 0.95-1.43 1.73 £ 0.30 1.63-1.83 1.88 1.25-2.50 5.30 1.1x107
As 0.65 +£0.22 0.57-0.72 0.53 0.53-1.05 0.99 + 0.59 0.80-1.18 091 0.45-2.27 2.39 0.017
Ba 1.11 £0.21 1.05-1.18 1.09 0.79-1.61 1.19 £0.20 1.12-1.25 1.22 0.82-1.55 1.77 0.076
Bi 1.67 =0.77 1.42-1.92 1.50 1.00-3.50 1.58 £0.72 1.34-1.81 1.50 1.00-4.00 1.09 0.276
Ca* 1.05 £ 0.19 0.99-1.11 1.03 0.74-1.58 124 +£0.28 1.15-1.33 1.20 0.81-1.83 3.88 1.0x 1077
Cd 1.18 £0.33 1.07-1.29 1.09 0.76-2.83 1.35+£0.21 1.28-1.42 1.31 0.83-1.79 3.19 0.001
Co 1.20 £0.20 1.14-1.27 1.22 0.76-1.68 1.39 £0.23 1.32-1.47 1.42 0.79-1.81 3.88 1.0x 1077
Cr 122 +£0.27 1.13-1.30 1.19 0.77-2.04 1.35+£0.51 1.18-1.51 1.21 1.03-3.53 1.27 0.204
Cu 1.67 £0.48 1.52-1.83 1.57 1.12-3.34 2.08 +0.85 1.80-2.35 1.89 1.26-5.83 3.06 0.002
Fe* 1.32 +£0.25 1.24-1.41 1.33 0.90-1.72 1.71 £ 0.30 1.61-1.81 1.70 0.98-2.47 4.90 9.7x 1077
Hg* 0.89 +£0.12 0.85-0.92 0.88 0.69-1.12 1.16 £ 0.20 1.09-1.22 1.11 0.85-1.60 4.94 7.8% 1077
K° 0.76 £ 0.13 0.72-0.80 0.76 0.51-1.01 024 £0.11 0.20-0.27 0.22 0.07-0.66 5.44 53x 1078
Mg 1.16 £ 0.16 1.11-1.22 1.14 0.85-1.54 1.24 £0.20 1.18-1.31 1.22 0.91-1.82 222 0.026
Mn 1.01 £0.26 091-1.11 0.99 0.48-1.57 1.10 £ 0.37 0.98-1.22 1.00 0.56-2.72 1.16 0.247
Mo® 1.54 +0.53 1.37-1.71 1.46 0.80-3.87 1.17 £ 0.56 0.99-1.36 0.95 0.71-3.89 435 1.3x 1077
Na® 0.76 £ 0.25 0.67-0.84 1.00 0.50-1.00 0.55 +0.19 0.49-0.61 0.45 0.45-0.91 448 7.5%x10°°
Ni 1.46 £ 0.52 1.29-1.63 1.28 0.90-3.33 1.72 £ 093 1.42-2.02 1.47 0.88-5.44 1.90 0.058
P° 0.98 £ 0.16 0.93-1.04 0.97 0.60-1.36 033 £0.17 0.28-0.39 0.31 0.22-1.30 5.43 57x 1078
Pb* 1.12 £ 0.17 1.06-1.17 1.07 0.81-1.59 1.48 £0.23 1.41-1.56 1.46 0.91-2.08 5.19 21% 1077
S° 1.03 £0.18 0.97-1.08 1.01 0.63-1.39 0.85+0.14 0.81-0.90 0.81 0.81-1.61 4.05 52x107°
Sb 2.00 + 0.62 1.80-2.20 2.00 0.80-3.60 226 +0.86 1.98-2.54 2.38 0.95-5.24 191 0.056
Sr 0.91 +0.20 0.85-0.97 0.89 0.59-1.62 1.25+0.41 1.11-1.38 1.13 0.70-2.46 4.17 3.0x107°
Ti* 1.24 £0.25 1.16-1.32 1.22 0.98-1.95 1.91 £0.30 1.74-1.99 2.00 1.00-2.33 4.76 1.9x 107°
Zn 1.16 £ 0.15 1.12-1.21 1.16 0.93-1.51 1.31 £0.20 1.24-1.37 1.26 1.01-1.98 3.52 4.4x 107"

° Elements showing higher EU ratio values in L samples in more than 80% of transplant sites (Supplementary Fig. S3)

* Elements showing higher EU ratio values in D samples in more than 80% of transplant sites (Supplementary Fig. S3)

key positions in several enzymes involved in carbon, nitrogen
and sulphur metabolism (Peng et al. 2018). However, the role
of Mo as enzymatic cofactor, by itself, does not explain an
enhanced accumulation by healthy P. furfuracea thalli, al-
though suggesting the possibility for interesting in vitro re-
search to clarify the accumulation behaviour of Mo in lichen
ecosystems.

The higher loss of K, Na, S and P by dead samples is in
accordance with previous observations of impairment of li-
chen intracellular uptake mechanisms caused by
ultrastructural/physiological damage (e.g. Tretiach et al.
2007; Spagnuolo et al. 2011; Corapi et al. 2014). Indeed,
when plasma membranes are severely damaged, the
cytoplasmatic immobilization of ions by intracellular binding
matrix may result impaired (Tyler 1989), causing the loss of
ions (Asta and Garrec 1980; Bargagli and Mikhailova 2002).

In lichens, a large proportion of airborne trace elements is
mainly accumulated by the extracellular entrapment of partic-
ulate matter (Tretiach et al. 2011) occurring within the loose
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hyphal weft of the medulla, which also prevents toxicity at cell
level (Bargagli 1998). Therefore, the relative importance of
the particle entrapment in dead matrices may result substan-
tially enhanced due to the empty cell volumes, which also
leads to an increased availability of ion binding sites at cell
wall level (Richardson et al. 1985). Indeed, lichen cell walls
contain a plurality of compounds (e.g. chitin, glucans,
polyketides) with several poly-anionic functional groups able
to bind metal ions (Sarret et al. 1998). There are several evi-
dences that elements with high affinity for these functional
groups, especially Al, Cu, Hg, Fe, Pb and Ti (Nieboer et al.
1978; Bargagli and Mikhailova 2002), may continue to be
accumulated in dead thalli (Chettri et al. 1997).

Our findings were in general agreement with the results
achieved for other lichen species under different experimental
conditions. For instance, Nieboer et al. (1976) investigated the
metal uptake by Umbilicaria muhlenbergii (Ach.) Tuck.
in vitro, proving that the uptake of Ni from solutions of
NiCl, was merely physicochemical. Indeed, dead thalli
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<« Fig. 3 Boxplots of EU ratio data of living (L, grey) and dead (D, white)
Pseudevernia furfuracea samples for 24 target elements. Data refer to
median, first and third quartiles, and non-outlier ranges (outliers and
extreme values are highlighted by circles and stars, respectively).
Asterisks next to the element name indicate significant differences be-
tween the sample sets (Wilcoxon test; Table 1). Background is coloured
according to the EU range of bioaccumulation classes (Supplementary
Table S4)

accumulated the metal to a slightly greater extent (Nieboer
et al. 1976). In our transplant experiment, after the 8-week
exposure, dead P. furfuracea samples had higher mean EU
ratio for Ni, although not significantly (Table 1). Moreover,
the metal accumulation was higher in dead samples in 25 out
of 39 sites (64% of cases), also producing from single- to
three-step differences in bioaccumulation classes at sites 3A,
6B, 4E, 5D, 7B and 5C (i.e. L vs D samples: classes 2—1,4-3,
4-2, 3-1, 5-3, respectively).

Chettri et al. (1997) investigated the uptake of Cu, Pb and
Zn by Cladonia convoluta (Lam.) Anders and C. rangiformis
Hoffim. from solutions of Pb(NOj3),, CuCl, and ZnCl,. The
uptake of Cu and Pb was higher in dead Cladonia thalli,
whereas the opposite was found for Zn, whose content is
usually higher in the intracellular fraction of living thalli
(Fortuna et al. 2017). Chettri et al. (1997) also highlighted that
Zn suffers competitive uptake, being affected by the co-
occurrence of Cu and Pb in the medium. These results match
our findings for Cu and Pb; limited to Zn, we highlighted an
overall higher accumulation by dead thalli (also revealed by
the other single work targeting such issue in P. furfuracea; see
infra). The fully controlled experimental conditions of Chettri
et al. (1997), along with the frequently proven species-
specificity of elemental accumulation (Nimis et al. 2001;
Tretiach and Baruffo 2001b; Minganti et al. 2003;
Bergamaschi et al. 2007), may easily explain the discrepancy.

The accumulation efficiency of living and dead
P. furfuracea was also investigated by Adamo et al. (2007)
in a 6-week transplant experiment at two urban sites. The
authors demonstrated that the accumulative efficiency of liv-
ing samples was not higher than that of dead ones, showing
the major role of atmospheric particulate, irrespective of or-
ganism vitality. For both exposure sites, they reported slightly
higher bioaccumulation levels in devitalized samples for Al,
Ca, Cd, Cr, Cu, Mn and Zn, with the exception of Hg, instead
showing higher levels in living thalli. Overall, our results
match previous findings: indeed, all elements showed higher
bioaccumulation in dead samples, either significantly (Al, Ca,
Cd, Cu and Zn) or not (Cr and Mn, Table 1). The differences
observed for Hg may be explained by the interplay of peculiar
behaviour of this element in the atmosphere and the different
pollutant loads affecting the exposure sites. It is feasible that
the low levels observed in this work and by Adamo et al.
(2007) may derive from different relative contributions of
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Hg forms (i.e. gaseous or associated to particulate; Bargagli
2016; Keeler et al. 1995). If so, gaseous Hg would be mostly
actively accumulated at intracellular level (Rinino et al. 2005),
resulting in an enhanced bioaccumulation by living thalli (as
in Adamo et al. 2007), whereas the accumulation of Hg
adsorbed on airborne particulate matter would be enhanced
in dead matrices by physical entrapment (as possibly in this
study).

Pollutant loads and lichen health: the risk of
interpretative bias

Overall, the study area was not exposed to high pollutant
loads. Indeed, when classified according to the new interpre-
tative scale for lichen transplants, the majority of EU ratio
values of both living and dead samples were associated to
‘low’ or ‘absence of’ bioaccumulation classes (EU ratio <
1.9). Only Cu and Ti in dead samples, as well as Sb in both
living and dead ones exceeded class 2 (Supplementary
Table S4 and Fig. S3). Therefore, besides the cautious termi-
nology of the interpretative scale (focusing on lichens—i.e.
‘bioaccumulation levels’—rather than on ‘environmental al-
teration’; Cecconi et al. 2019a), the historically acknowledged
link between lichen elemental enrichment and air pollution
(e.g. Herzig et al. 1989; Sloof 1995; van Dobben et al.
2001) expressly indicates the absence of any clear emission
pattern in the study area. This is especially true for As, Hg and
Pb, elements whose atmospheric concentration is targeted by
the European Air Quality Directives (2008/50/EC4,
2004/107/ECS). Despite such general pattern, a small set of
elements—Bi, Cu, Ni, and Sb—was characterized by substan-
tial bioaccumulation (EU ratio > 2.7; class 3) at several sites in
either living or dead lichens. Limited to Sb, it must be ac-
knowledged that its recovery is far from being satisfactory
(47.6%; Supplementary Table S2), indicating a substantial
underestimation of lichen enrichment (and thus of Sb pollu-
tion) in the study area. Instead, Cd, Cr and Ti showed such
levels limited to single sites in living samples (Cd: class 4 at
Maniago; Cr: class 3 at 6A; Ti: class 3 at 2D), or to a higher
number of sites in dead samples (Cr: class 3 at 4E, class 4 at
5Cand class 5 at 7B; Ti class 3 at 20 sites; Supplementary Fig.
S4). All such elements are generally considered tracers of coal
combustion (Van de Velde et al. 1999), also related to iron,
steel and ferro-alloy industrial processing (Tretiach and Pittao
2008; Brunialti and Frati 2014). Consistently, Cr, Mo, Ni and
Sb showed the highest bioaccumulation levels within or near
the industrial park, along with the highest concentrations of
Fe, Pb and Zn, however characterized by negligible deposi-
tions over the whole territory.

Despite an overall accordance of results obtained by using
different sample sets, interpretative differences arise in terms
of depositional patterns (which is substantiated by different
structures of the two site dendrograms; Fig. 2b) and severity
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of metal-rich particulate pollution (signals are higher in
devitalized samples). In this respect, and concerning Fe, Hg
and Pb, it is worth to notice that the pre-exposure concentra-
tion values of these elements significantly differ between the
experimental sample sets (Supplementary Table S3). In particu-
lar, the concentration values of Fe and Hg in unexposed L sam-
ples (U;) were slightly, but significantly higher than those of D
samples (U; > Up), whereas the concentrations measured in ex-
posed (E) L and D samples were fully comparable (E; =Ep).
Likely, the different Fe and Hg content between U; and Up
samples should be traced back to the inherent biological variabil-
ity of the bulk material from which living and dead samples were
derived. In the case of Pb, besides higher pre-exposure concen-
tration values in L samples, also the concentrations of exposed
samples differ, exhibiting the opposite pattern (U; > U and E;,

< Ep). Strictly speaking, in case of limited elemental depositions,
as in this case, significant differences observed in EU ratio de-
nominators (U values) would not allow proper ratio comparison.
Indeed, significantly higher denominators in L samples could, by
themselves, produce lower EU ratios for such samples, possibly
determining unreliable outcomes of statistical testing for such
elements. Nonetheless, it must also be considered that, in such
cases, EU ratios were higher in D samples in more than 80% of
transplant sites (Table 1; Supplementary Fig. S3), and that EU
ratios of L and D samples determined different bioaccumulation
classes for 33%, 64% and 28% of sites (Supplementary Fig. S4).
Since we confidently exclude that any differential contamination
of sample sets may have occurred in the laboratory, this has to be
regarded as an indication that the effect of the pre-exposure phys-
iological status of lichen thalli likely overcomes that of different
pre-exposure concentrations.

Another aspect that has to be taken into account is that alive
thalli exposed in the study area may experience different degrees
of physiological impairment (see the variation of F,/F,,
distributions in living samples before and after exposure;
Supplementary Fig. S1), depending on the site-specific environ-
mental conditions and the initial health status of each thallus
(Piccotto and Tretiach 2010; Piccotto et al. 2011). It is possible
to assume that when the initial physiological differences
among transplanted samples are stronger, also the ‘noise’ asso-
ciated to their ‘bioaccumulation signal’ is higher. Indeed, our data
suggest that samples in different physiological conditions pro-
duced different results in terms of bioaccumulation, and this may
introduce an additional, undesirable source of variability affect-
ing the following interpretation of the results. Unfortunately,
transplant biomonitoring over large areas is associated to the
regular testing of lichen vitality only exceptionally (e.g. Corapi
et al. 2014). Hence, devitalization of sample before exposure
might be the best solution to decrease the variability of the results
ascribable to possible variations in sample vitality during the
exposure, maximizing the ‘signal-to-noise’ ratio.

Conclusions

This work is the first attempt to test the bioaccumulation per-
formance of living vs dead samples of Pseudevernia
furfuracea, in a side-by-side transplanting at 40 sites in a large,
mixed land use area of NE Italy. Overall, dead thalli accumu-
lated higher amounts of elements of environmental concern
(e.g. As, Cd, Hg and Pb) as well as those of soil origin (e.g.
Al, Ca, Fe and Ti), thus providing a further indication that in
transplanted lichens, passive uptake mechanisms play a major
role in accumulation of trace elements. Non-negligible interpre-
tational discrepancies in terms of different bioaccumulation
classes for 80% of the exposure sites were observed, suggesting
that the progressive physiological impairment of living thalli
caused by a prolonged exposure to unfavourable environmental
conditions might be an important, undesirable source of noise
that should preferably be avoided. The use of devitalized sam-
ples could reduce this noise, decreasing in the meantime sam-
pling and storage cost. However, the proposal of introducing
devitalization as a routine procedure in protocols of lichen
transplants (as done for mosses) needs to be sustained by further
investigation on the (bio-)degradation resistance of dead thalli,
although in this respect our results are fully supportive.
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