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Abstract
We consider the stability issue of the inverse conductivity problem for a
conformal class of anisotropic conductivities in terms of the local Dirichlet–
Neumann map. We extend here the stability result obtained by Alessandrini
and Vessella (Alessandrini G and Vessella S 2005 Lipschitz stability for the
inverse conductivity problem Adv. Appl. Math. 35 207–241), where the
authors considered the piecewise constant isotropic case.
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1. Introduction

In the present paper we study the stability issue for the inverse conductivity problem in the
presence of anisotropic conductivity which is a priori known to depend linearly on an
unknown piecewise-constant function. Let us start by recalling the basic formulation of the
inverse conductivity problem.

In absence of internal sources, the electrostatic potential u in a conducting body,
described by a domain Ω ⊂ n, is governed by the elliptic equation

σ Ω=udiv ( ) 0 in , (1.1)

where the symmetric, positive definite matrix σ σ= x( ), Ω∈x represents the (possibly
anisotropic) electric conductivity. The inverse conductivity problem consists of finding σ
when the so called Dirichlet–Neumann (D–N) map
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Λ Ω σ ν Ω∈ ∂ → ∈ ∂σ Ω Ω∂ ∂
−u H u H: ( ) · ( )

1
2

1
2

is given for any Ω∈u H ( )1 solution to (1.1). Here, ν denotes the unit outer normal to Ω∂ . If
measurements can be taken only on one portion Σ of Ω∂ , then the relevant map is called the
local D–N map. Let Σ be a non-empty open portion of Ω∂ and let us introduce the subspace of

Ω∂H ( )
1
2

Σ Ω Σ= ∈ ∂ ⊂{ }H f H f( ) ( ) supp . (1.2)co
1
2

1
2

The local D–N map is given, in its weak formulation, as the operator Λσ
Σ such that

∫Λ ϕ σ ϕ=σ
Σ

Ω
 u u, · , (1.3)

for any ϕ Ω∈u H, ( )1 , ϕ Σ∈Ω Ω∂ ∂u H| , | ( )co
1
2 and u is a weak solution to (1.1).

The problem of recovering the conductivity of a body by taking measurements of voltage
and current on its surface has came to be known as electrical impedance tomography (EIT).
Different materials display different electrical properties, so that a map of the conductivity
σ x( ), Ω∈x can be used to investigate internal properties of Ω. EIT has many important
applications in fields such as geophysics, medicine and non-destructive testing of materials.
The first mathematical formulation of the inverse conductivity problem is due to Calderón
[C], where he addressed the problem of whether it is possible to determine the (isotropic)
conductivity σ γ= I by the D–N map. Although Calderón studied the problem of determining
σ from the knowledge of the quadratic form

∫ γ=γ
Ω

Q u u( ) ,2

where u is a solution to (1.1), it is well known that the knowledge of σQ is equivalent to
the knowledge of Λσ by

Λ Ω= ∈γ σQ u u u u H( ) , , for every ( ),1

where σ γ= I . Here 〈 〉· , · denotes the dual pairing between Ω∂H ( )1 2 and its dual
Ω∂−H ( )1 2 , with respect to the L2 scalar product. Reference [C] opened the way to the

solution to the uniqueness issue where one is asking whether σ can be determined by the
knowledge of Λσ (or Λσ

Σ in the case of local measurements). As main contributions in this
respect we mention the papers by Kohn and Vogelius [K-Vo1, K-Vo2], Sylvester and Uhl-
mann [S-U] and Nachman [Na]. We refer to [Bo, Ch-I-N] and [U] for an overview of recent
developments regarding the issues of uniqueness and reconstruction of the conductivity.
Regarding the stability, Alessandrini proved in [A] that, assuming ⩾n 3 and a priori bounds
on γ of the form

γ∥ ∥ ⩽ > +Ω E s
n

, for some
2

2, (1.4)H ( )s

γ depends continuously on Λσ with a modulus of continuity of logarithmic type. In
[A1, A2] the same author subsequently proved that a similar stability estimate holds when the
a priori bound (1.4) is replaced by

γ∥ ∥ ⩽Ω∞ E. (1.5)W ( )2,

Logarithmic type stability estimates have recently been proved for γ Ω∈ εC ( ¯ )1, and
⩾n 3 in [Ca-G-R]. For the two-dimensional case, logarithmic type stability estimates were

obtained in [B-B-R, B-F-R, Liu]. Unfortunately, all the above results share the common
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inconvenient logarithmic type of stability which cannot be avoided [A3]. In fact Mandache
[Ma] showed that the logarithmic stability is the best possible, in any dimension ⩾n 2 if
a priori assumptions of the form

γ∥ ∥ ⩽Ω E (1.6)C ( )k

for any =k 0, 1, 2,... are assumed. It seems therefore reasonable to think that, in order to
restore stability in a really (Lipschitz) stable fashion, one needs to replace in some way the
a priori assumptions expressed in terms of regularity bounds such as (1.6), with a priori
pieces of information of a different type. Alessandrini and Vessella showed in [A-V] that γ
depends in a Lipschitz continuous fashion upon the local D–N map, by assuming that γ is a
function a priori known to be piecewise constant

∑γ γ χ=
=

x x( ) ( ), (1.7)
j

N

j D
1

j

where each subdomain of Ω, Dj, =j N1,..., is given and each number γj, =j N1,..., is
unknown. From a medical imaging point of view, each Dj may represent the area occupied by
different tissues or organs and one can think that the geometrical configuration of each Dj is
given by means of other imaging techniques such as MRI for example. Since most tissues in the
human body are anisotropic, the present authors, motivated by the work in [A-V] and its
medical application, consider here the more general case of an anisotropic conductivity of type

σ γ=x x A x( ) ( ) ( ),

where A(x) is a known, matrix valued function which is Lipschitz continuous and γ x( ) is
of type (1.7). Anisotropic conductivity appears in nature, for example as a homogenization
limit in layered or fibrous structures such as rock stratum or muscle, as a result of crystalline
structure or of deformation of an isotropic material, therefore the case treated in this paper
seems to be a natural extension of [A-V] relevant to several applications.

It is well known that since Tartarʼs observation [K-Vo1] that any diffeomorphism of Ω
which keeps the boundary points fixed has the property of leaving the D–N map unchanged,
whereas σ is modified, different lines of research have been pursued. One direction has been
to find the conductivity up to a diffeomorphism which keeps the boundary fixed (see
[LU, Na, S, La-U]). Another direction has been the one to assume that the anisotropic
conductivity is a priori known to depend on a restricted number of spatially-dependent
parameters (see [A, A-G, A-G1,G-L, L, ]). Nevertheless the problem of proving uniqueness
for anisotropic conductivities still represents an open problem in dimension ⩾n 3, where the
two-dimensional case can be considered settled, in fact it has been proved in [A-La-P]) that an
anisotropic ∞L -conductivity can be determined in dimension 2 up to a W1,2-diffeomorphism.

The present work is concerned about the stability issue for the Calderòn problem and it
represents the first result of Lipschitz stability estimates for conductivities of anisotropic type
as far as the authors know, therefore the simplest possible extension to the work done in [A-
V] to anisotropic conductivities has been considered in this manuscript. The paper improves
upon the results obtained in [A-V] in the sense that the global Lipschitz stability estimate
obtained there is here adapted to a special anisotropic type of conductivity. The class of
anisotropic conductivities considered here includes some piecewise constant anisotropic ones
but not all. This is due to the fact that the construction of the fundamental solution for the
conductivity equation with matrix valued constant coefficients (see (4.81)) would require a
different type of study to the one carried out in [A-V] and in the present work. The precise
assumptions shall be illustrated in section 2. The authors hope that the stability estimate
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obtained here for this simple case of anisotropy will stimulate further study of the stability
issue for anisotropic conductivities.

For related results in the anisotropic case we also refer to [Be, D-Ke-S-U, D-Ku-L-S, F-
K-R, H-S, K, N-S]. We also recall [Be-Fr, Be-Fr-V, B-dH-Q] where similar Lipschitz stability
results have been obtained for complex conductivity, the Lamé parameters and for a
Schrödinger type of equation respectively.

For a more in-dept description and consideration of the stability issue and related open
problems in the inverse conductivity problem we refer to [A3] and [A-V].

Our approach follows the one by Alessandrini and Vessella [A-V] of constructing sin-
gular solutions and studying their asymptotic behaviour when the singularity approaches the
discontinuity interfaces for the conductivity. However, in order to deal with the present
structure of the conductivity we had to develop original asymptotic analysis estimates and an
accurate quantitative control of the error terms which represent a novel feature in the treat-
ment of anisotropic type of conductivity.

The paper is organized as follows. Our main assumptions and our main result (theorem
2.1) are contained in section 2, where the proof of theorem 2.1 is contained in section 3. This
section also lists the two main results (theorem 3.4 and proposition 3.5) needed to build the
machinery for the proof of theorem 2.1. Theorem 3.4 provides original asymptotic estimates
for the Green function of the conductivity equation, for conductivities belonging to a special
anisotropic conformal class  , at the interfaces between the given domains Dj, where the
conductivity is discontinuous. Proposition 3.5 provides estimates of unique continuation of
the solution to the conductivity equation for conductivities in  . Section 4 is devoted to the
proofs of theorem 3.4 and proposition 3.5. For the proof of theorem 3.4 we provide the
explicit form of the fundamental solution for the conformal anisotropic two-phase case with
flat interface. The proof of proposition 3.5 is a straight forward consequence proposition 4.3
which we state in this section. The proof of the latter is independent from the presence of
anisotropy in the conductivity, therefore we refer to [A-V] for a full proof of it. In this paper
we point out the main facts on which the proof is based on only.

2. Main result

2.1. Notation and definitions

In several places within this manuscript it will be useful to single out one coordinate direction.
To this purpose, the following notations for points ∈x n will be adopted. For ⩾n 3, a point

∈x n will be denoted by = ′x x x( , )n , where ′ ∈ −x n 1 and ∈xn . Moreover, given a
point ∈x n, ′B x B x( ), ( )r r the open balls in   −,n n 1 centered at x, x′, respectively with
radius r and by Qr(x) the cylinder

= ′ ′ × − +Q x B x x r x r( ) ( ) ( , ).r r n n

We shall also denote

   

 

 

∩ ∩
∩ ∩

= ′ ∈ > = ′ ∈ <

= =
= =

+ −
+

+
−

−
+

+
−

−

{ } { }( ) ( )x x x x x x

B B B B

Q Q Q Q

, 0 ; , 0 ;

; ;

; .

n
n

n
n

n
n

n
n

r r
n

r r
n

r r
n

r r
n

where Br, Qr denote Br(0), Qr(0), respectively.
In the sequel, we shall make a repeated use of quantitative notions of smoothness for the

boundaries of various domains. Let us introduce the following notation and definitions.
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Definition 2.1. Let Ω be a domain in n. We say that a portion Σ of Ω∂ is of Lipschitz class
with constants r L,0 if for any Σ∈P there exists a rigid transformation of n under which we
have ≡P 0 and

∩Ω φ= ∈ > ′{ }Q x Q x x: ( ) ,r r n0 0

where φ is a Lipschitz function on ′Br0
satisfying

φ φ φ= = ∥ ∥ ⩽′′ ( ) Lr(0) (0) 0; .x C B 0r
0,1

0

It is understood that Ω∂ is of Lipschitz class with constants r L,0 as a special case of Σ, with
Σ Ω= ∂ . Here and in the sequel ′Br0

denotes ′B (0)r0
.

Definition 2.2. Let Ω be a domain in n. Given α, α ∈ (0, 1], we say that a portion Σ of Ω∂
is of class αC1, with constants r M,0 if for any Σ∈P there exists a rigid transformation of n

under which we have P = 0 and

∩Ω φ= ∈ > ′{ }Q x Q x x: ( ) ,r r n0 0

where φ is a αC1, function on ′Br0
satisfying

φ φ φ= = ∥ ∥ ⩽′′ α ( ) Mr(0) (0) 0; ,x C B 0
r

1,
0

where we denote

φ φ φ φ φ∥ ∥ = ∥ ∥ + ∥ ∥ + −
−′ ′ ′

α
α

+

∈ ′
≠

α ∞ ∞
 

( ) ( ) ( )r r
x y

x y
sup

( ) ( )
.C B L B L B

x y B

x y

0 0
1

,
r r r

r

1,
0 0 0

0

Let us rigorously define the local D–N map.

Definition 2.3. Let Ω be a domain in n with Lipschitz boundary Ω∂ and Σ an open non-
empty subset of Ω∂ . Assume that σ Ω∈ ∞L Sym( , )n satisfies the ellipticity condition



λ ξ σ ξ ξ λ ξ Ω
ξ

⩽ ⩽ ∈
∈

− x x( ) · , for almost every ,

for every . (2.1)n

1 2 2

The local D–N map associated to σ and Σ is the operator

Λ Σ Σ→σ
Σ −H H: ( ) ( ) (2.2)co co

1
2

1
2

defined by

∫Λ η σ ϕ< > =σ
Σ

Ω
 g x u x x x, ( ) ( ) · ( ) d , (2.3)

for any g, η Σ∈ H ( )co
1
2 , where Ω∈u H ( )1 is the weak solution to

σ Ω
Ω

=
= ∂

⎧⎨⎩
x u x

u g
div ( ( ) ( )) 0, in ,

, on ,

and ϕ Ω∈ H ( )1 is any function such that ϕ η=Ω∂| in the trace sense. Here we denote by

< >· , · the Ω∂L ( )2 -pairing between ΣH ( )co
1
2 and its dual Σ−H ( )co

1
2 .

Note that, by (2.3), it is easily verified that Λσ
Σ is selfadjoint. We shall denote by ∥ ∥· *

the norm on the Banach space of bounded linear operators between ΣH ( )co
1
2 and Σ−H ( )co

1
2 .
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2.2. Our assumptions

We give here the precise assumptions for the domain Ω under investigation and its con-
ductivity σ. The dimension of the space for Ω is denoted by n and for sake of simplicity we
only consider ⩾n 3.

2.2.1. Assumptions about the domain Ω.

(1) We assume that Ω is a domain in n satisfying

Ω ⩽ Nr , (2.4)n
0

where Ω| | denotes the Lebesgue measure of Ω.
(2) We assume that Ω∂ is of Lipschitz class with constants r0, L.
(3) We fix an open non-empty subset Σ of Ω∂ (where the measurements in terms of the local

D–N map are taken).
(4)

Ω = ⋃
=

D¯ ¯ ,
j

N

j
1

where Dj, =j N1,..., are known open sets of n, satisfying the conditions below.
(a) Dj, =j N1,..., are connected and pairwise nonoverlapping.
(b) ∂D j, =j N1,..., are of Lipschitz class with constants r0, L.

(c) There exists one region, say D1, such that ∩ Σ∂D1 contains a αC1, portion Σ1 with
constants r0, M.

(d) For every ∈i N{2,..., } there exists ∈j j N,..., {1,..., }K1 such that

= =D D D D, . (2.5)j j i1 K1

In addition we assume that, for every =k K1,..., , ∩∂ ∂
−

D Dj jk k 1
contains a αC1,

portion Σk (here we agree that  Ω= ⧹D j
n

0
), such that

Σ Σ⊂ ,1

Σ Ω⊂ =k K, for every 2,..., ,k

and, for every =k K1,..., , there exists Σ∈Pk k and a rigid transformation of
coordinates under which we have Pk = 0 and

∩

∩

∩

Σ ϕ

ϕ

ϕ

= ∈ = ′

= ∈ > ′

= ∈ < ′
−

{ }
{ }
{ }

Q x Q x x

D Q x Q x x

D Q x Q x x

( )

( )

( ) , (2.6)

k r r n k

j r r n k

j r r n k

3 3

3 3

3 3

k

k

0 0

0 0

1 0 0

where ϕk is a αC1, function on ′Br 3o
satisfying

ϕ ϕ= =(0) (0) 0k k

and

ϕ∥ ∥ ⩽′α( ) Mr .k C B 0
r

1,
0
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2.2.2. A priori information on the conductivity γ: the class 

Definition 2.4. We shall say that σ ∈  if σ is of type

∑σ σ γ χ Ω= = ∈
=

x x A x x x( ) ( ) ( ) ( ), , (2.7)A

j

N

j D
1

j

where γj are unknown real numbers, Dj, =j N1,..., are the given subdomains introduced in
section 2.2.1 and

γ γ γ⩽ ⩽ =− j N¯ ¯ , for any 1,... . (2.8)j
1

A(x) is a known Lipschitz matrix valued function satisfying

∥ ∥ ⩽ΩA Ā , (2.9)C ( )0,1

where >Ā 0 is a constant and



λ ξ ξ ξ λ ξ Ω
ξ

⩽ ⩽ ∈
∈

− A x x( ) · , for almost every ,

for every . (2.10)n

1 2 2

Definition 2.5. Let N, r0, L, M, α, λ γ, ¯, Ā be given positive numbers with ∈N and
α ∈ (0, 1]. We will refer to this set of numbers, along with the space dimension n, as to the
a priori data. Our main result is the following.

Theorem 2.1. Let Ω, Dj, =j N1,..., and Σ be a domain, N subdomains of Ω and a portion
of Ω∂ as in section 2.2.1 respectively. If σ ∈ A

i( ) , i = 1, 2 are two conductivities of type

∑σ γ χ Ω= ∈ =
=

x A x x x i( ) ( ) ( ) , 1, 2, (2.11)A
i

j

N

j
i

D
( )

1

( )
j

then we have

σ σ Λ Λ∥ − ∥ ⩽ ∥ − ∥Ω σ
Σ

σ
Σ

∞ C
*

, (2.12)A A L
(1) (2)

( ) A A
(1) (2)

where C is a positive constant that depends on the a priori data only.

3. Proof of the main result

The proof of our main result (theorem 2.1) is based on an argument that combines asymptotic
type of estimates for the Greenʼs function of the operator

σ Ω= L xdiv( ( ) ) in , (3.1)

(theorem 3.4), with σ ∈ , together with a result of unique continuation (proposition 3.5) for
solutions to

Ω=Lu 0, in .

We shall give the precise formulation of these results in what follows.
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3.1. Measurable conductivity σ

We shall start with some general considerations about the Greenʼs functionG x y( , ) associated
to the operator (3.1), where σ is merely a measurable matrix valued function satisfying the
ellipticity condition (2.1).

3.1.1. Greenʼs function. If L is the operator given in (3.1), then for every Ω∈y , the Greenʼs
function G y( · , ) is the weak solution to the Dirichlet problem

σ δ Ω
Ω

= − −
= ∂

⎧⎨⎩
G y y

G y
div ( ( · , )) ( · ), in ,

( · , ) 0, on ,
(3.1)

where δ −y( · ) is the Dirac measure at y. We recall that G satisfies the properties ([Lit-St-W])

Ω= ∈ ≠G x y G y x x y x y( , ) ( , ), for every , , , (3.2)

Ω< < − ∈ ≠−G x y x y x y x y0 ( , ) , for every , , . (3.3)n2

Moreover, the following result holds true.

Proposition 3.1. For any Ω∈y and every >r 0 we have that

∫ ⩽
Ω⧹

−G y Cr( · , ) , (3.4)
B y

n

( )

2 2

r

where >C 0 depends on λ and n only.

Proof. The proof can be obtained by combining Caccioppoli inequality with (3.3) ([A-V],
proposition 3.1). □

3.1.2. Integral solutions of L. Let σ i( ), i = 1, 2 be two measurable matrix valued functions
satisfying the ellipticity condition (2.1) and let G x y( , )i be the Greenʼs functions associated to
the operators

σ Ω= =( )L x idiv ( ) in , 1, 2. (3.5)i
i( )

Let  be an open subset of Ω and Ω= ⧹  . For any ∈ y z, we define

∫ σ σ= −    ( )S y z x x G x y G z x x( , ) ( ) ( ) ( , ) · ( , )d . (3.6)x x
(1) (2)

1 2

Remark 3.2.

σ σ⩽ ∥ − ∥ ∈Ω
−∞ S y z C y z y z( , ) (d( )d( )) , for  every , , (3.7)L

(1) (2)
( )

1 n
2

where = y yd( ) dist( , ) and C is a positive constant depending on λ and n only.

Observe that (3.7) is a straightforward consequence of Hölder inequality and proposition
3.1. We constructed in this way an integral function S ( · , · ) on ×  , which is written
in terms of the two Greenʼs functions G y( · , )1 , G z( · , )2 of L1, L2 respectively; S z( · , ),

S y( , · ) are in turn solutions for L1, L2 respectively on the complement part of  in Ω. More
precisely we have
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Proposition 3.3. For every ∈y z W, we have that ∈S z S y H W( · , ), ( , · ) ( )U loc
1 are

weak solutions to

σ σ= =   ( ) ( )S z S ydiv (·) ( · , ) 0, div (·) ( , · ) 0, in . (3.8)(1) (2)

Proof. The proof relies on differentiation under the integral sign arguments and the
symmetry of =G i, 1, 2i . □

3.2. Conductivity σ ∈ 

We shall denote with

Γ
ω

=
−

− −x y
n

x y( , )
1

( 2)
, (3.9)

n

n2

the fundamental solution of the Laplace operator (here ω nn denotes the volume of the unit
ball in n). If Di, =i N1,..., are the domains introduced in section 2.2.1 and L is the operator
given by (3.1), with σ ∈  , we shall give asymptotic estimates for the Greenʼs function of L,
with respect to (3.9) at the interfaces between the domains Di, =i N1,... . These estimates are
given below. In what follows let G be the Greenʼs function associated to the operator L in Ω.

3.2.1. Greenʼs function

Theorem 3.4. (Asymptotic estimates) For every ∈ −l K{1 ,..., 1}, let ν +P( )l 1 denote the
unit exterior normal to

+
D jl 1

at the point +Pl 1. There exist constants β α∈ (0, ) and >C̄ 1
depending on γ λ αM¯, , , and n only such that the following inequalities hold true for every

∩∈ + +
x B P D¯ ( )l j1

r

C l
0
¯ 1

and every ν= ++ +y P r P¯ ( )l l1 1 , where ∈r (0, )
r

C̄
0

γ γ
Γ−

+
⩽ −β

β

+

+ −( )G x y J x J y
C

r
x y( ¯, ¯)

2
( ¯), ( ¯)

¯
¯ ¯ , (3.10)

j j

n

1 0

2

l l

γ γ
Γ−

+
⩽ −β

β

+

+ −  ( )G x y J x J y
C

r
x y( ¯, ¯)

2
( ¯), ( ¯)

¯
¯ ¯ , (3.11)x

j j
x

n

1 0

1

l l

where J is the positive definite matrix such that = +
−J A P( )l 1

1 .

3.2.2. Integral solutions of L: unique continuation. We recall that up to a rigid transformation
of coordinates we can assume that

 ∩Ω φ= ⧹ = ′ ∈ < ′{ }( ) ( ) ( )P B x x B x x0 ; , ,n
r n r n1 0 0

where φ is a Lipschitz function such that

φ φ= ∥ ∥ ⩽′( ) Lr(0) 0 and .C B 0
r

0,1
0
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Denoting by

 ∩Ω= ∈ ⧹ < = − − <
⎧⎨⎩

⎫⎬⎭( )D x B x r i n x
r

r
2

3
, 1,..., 1,

6

5

6
,n

r i n0 0
0

00

it turns out that the augmented domain ∪Ω Ω= D0 0 is of Lipschitz class with constants
r

3
0 and L̃, where L̃ depends on L only. We consider the operator Li given by (3.5) and extend

σ ∈ i( ) to σ γ= A˜ ˜ ˜i i( ) ( ) on Ω0, by setting γ =˜ | 1i
D

( )
0 , and extending A to Ω∈A C˜ ( )0,1

0 with

Lipschitz constant L, for i = 1, 2. We denote by G̃i the Green function associated to

σ= L x˜ div ( ˜ ( ) · )i
i( ) in Ω0, for i = 1, 2. For any number ∈ ( )r r0, 2

3 0 we also denote

Ω= ∈ >{ }( )D x D x rdist( , ) .
r0 0

Let us fix ∈k N{2,... } and recall that there exist ∈j j N,... {1,... }K1 such that

= =D D D D,... .j j k1 K1

We denote

Ω= ⋃ = ⧹ ⩾
=

  D k, , when 0K
i

K

j k K
0

0i

( =D Dj 00
) and for any ∈ y z, K

∫ σ σ= − ⩾   ( )S y z G y G z k˜ ( , ) ˜ ( · ) ˜ ( · ) ˜ ( · , ) · ˜ ( · , ), when 0.A A
(1) (2)

1 2K
K

We introduce for any number >b 0 as in [A-V], the concave non-decreasing function
ω t( )b , defined on +∞(0, )

ω =
∈

∈ +∞

− − −

− −

⎧
⎨⎪
⎩⎪ ⎡⎣

( )
)

t
e t t e

e t e
( )

2 log , 0, ,

, ,
b

b b2 2

2 2

and denote

ω ω ω ω ω= = ◦ −, .b b
j

b b
j(1) ( ) ( 1)

The following parameters shall also be introduced

β β β λ
β

ρ λ β
β
β

λ λ ρ ρ
λ ρ

= = =
+

= =
−
+

= = ⩾
= − ⩾

− −

⎜ ⎟⎛
⎝

⎞
⎠L

r

a

a a k

d k

arctan
1

, arctan
sin

4
,

1 sin

sin ,
1 sin

1 sin

, , for every 2,

, 1.
k k k k

k k k

1 1
0

1

1 1 1
1

1

1 1

Let us denote here and in the sequel

σ σ= ∥ − ∥ Ω∞E .A A L
(1) (2)

( )

The following estimate for S y z˜ ( , )K
holds true.
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Proposition 3.5. (Estimates of unique continuation) If, for a positive number ε0, we have

ε⩽ ∈ ×− ( ) ( )S y z r y z D D˜ ( , ) , for every ( , ) , (3.12)n
0
2

0 0 0K r r0
3

0
3

then the following inequality holds true for every ∈r d(0, ]1

ε ω
ε

ε
⩽ +

++ +
−

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( )( ) ( ) ( )S w P w P r C E

E
˜ , , (3.13)h K h K

n h
C

K
C

¯ 1 ¯ 1 0
2 ¯

0 1
(2 ) 0

0

(1 )

K

h̄

where Σ∈+ +PK K1 1, = ∈ ⩽h k d r¯ min { | }k , λ ν= −+ + +w P P P( ) ( )h K K h K¯ 1 1 ¯ 1 , ν is the
exterior unit normal to ∂DK and ⩾C 1 depends on the a priori data only.

3.3. Proof of theorem 2.1

Proof. We denote by Λi the map Λσ
Σ
A
i( ) , for i = 1, 2 and, for every ∈k K{0,..., }, the subscript

jk will be replaced by k. This should simplify the notation. Let us point out that

σ σ γ γ− ⩽ ∥ − ∥
Ω Ω∞

∞( ) Ā ,A A
L

L
(1) (2)

( )

(1) (2)
( )

where

∑γ γ χ= =
=

x i( ), 1, 2,i

j

N

j
i

D
( )

1

( )
j

therefore (2.12) trivially follows from

γ γ Λ Λ∥ − ∥ ⩽ ∥ − ∥Ω∞ C
*

, (3.14)L
(1) (2)

( ) 1 2

which we shall prove. Moreover we shall denote

ε Λ Λ δ γ γ= ∥ − ∥ = ∥ − ∥ ∞ ( )*
, ˜ ˜ .k L1 2

(1) (2)
k

We start by recalling that for every ∈y z D, 0 we have

∫Λ Λ γ γ− = −
Ω

 ( )( )G y G z A G y G z˜ ( · , ), ˜ ( · , ) ˜ ˜ (·) ˜ ( · , ) · ˜ ( · , )1 2 1 2
(1) (2)

1 2

and that, for every ∈k K{1,... }

∫ γ γ= −−
−

   ( )S y z A G y G z˜ ( , ) ˜ ˜ ˜ (·) ˜ ( · , ) · ˜ ( · , ),(1) (2)
1 2k

k
1

1

therefore

ε

δ

ε δ

⩽ ∥ ∥ ∥ ∥

+ ∥ ∥ ∥ ∥

⩽ + ∈

Σ Σ

−

−
−

−

− −
 



 

( ) ( )
( ) ( )

S y z G y G z

A G y G z

C r y z D

˜ ( , ) ˜ ( · , ) ˜ ( · , )

¯ ˜ ( · , ) ˜ ( · , )

, for every , , (3.15)

H H

k L L

k
n

r

1 ( ) 2 ( )

1 1 2

1 0
2

0 3

k co co

k k

1 1 2 1 2

2
1

2
1

0

where C depends on A, L, λ, Ā and n. Let ρ = r

C0 ¯
0 , where C̄ is the constant introduced in

theorem 3.4, let ∈r d(0, )2 and denote

σν σ λ= + = −( )w P P a, where ,k k
h̄ 1

1

Inverse Problems 31 (2015) 015008 R Gaburro and E Sincich

11



where ν P( )k denotes the exterior unit normal to ∂Dk in Pk, then

= +−S w w I w I w˜ ( , ) ( ) ( ), (3.16)1 2k 1

where

∫ ∩
γ γ= −

ρ
 ( )

( )
I w A G w G w( ) (·) ˜ ( · , ) · ˜ ( · , ),

B P D
1

(1) (2)
1 1

k k0

∫ ∩
γ γ= −

⧹ ρ−
  ( )( )( )

I w A G w G w( ) (·) ˜ ( · , ) · ˜ ( · , )
B P D

2
(1) (2)

1 1
k k k1 0

and (see [A-V])

ρ⩽ −I w CE( ) , (3.17)n
2 0

2

where C depends on λ, Ā and n only. To estimate I w( )1 we recall theorem 3.4 which leads to

∫

∫

∫

γ γ Γ

Γ
ρ

ρ

⩾ −

− ∥ −

− −

∩

∩

∩

β

β

β

β

− +

− +

ρ

ρ

ρ





⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( )

( )

( )

I w C Jx Jw

A x Jx Jw
x w

A x
x w

( ) ( , )

( ) ( , )

( ) ,

k k B P D
x

B P D
x

n

B P D

n

1
(1) (2) 2

1

0

2 2

0
2

k k

k k

k k

0

0

0

where C is a constant that depends on λ αM, , , Ā and n only. Therefore, by combining
(3.15) together with (3.16) and (3.17), we obtain

∫

∫

∫

γ γ

ρ

ρ

⩾ −
−

−

−
−

−
−

− −

∩

∩

∩

β
β

β
β

− +

− +

ρ

ρ

ρ

⎪

⎪

⎧
⎨⎪
⎩⎪

⎫
⎬
⎭

( )

( )

( )

I w C
J x w

J x w

E J x w

J x w
x w

E
x w

( )
( )

( )

( )

( )

.

k k B P D n

B P D n
n

B P D

n

1
(1) (2)

2 2

2

0

2
1

0
2

2(1 )

k k

k k

k k

0

0

0

Therefore

∫

∫

∫

γ γ

ρ

ρ

⩾ − −

− −

− −

∩

∩

∩

β
β

β
β

−

− +

− +

ρ

ρ

ρ

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( )

( )

( )

I w C x w

E
x w

E
x w

( )

, (3.18)

k k B P D

n

B P D

n

B P D

n

1
(1) (2) 2(1 )

0

2(1 )

0
2

2(1 )

k k

k k

k k

0

0

0
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which leads to

γ γ σ σ
ρ

⩾ − −
β

β
−

− +
I w C C E( ) , (3.19)k k

n
n

1 1
(1) (2) 2

2

2

0

where β is the number introduced in theorem 3.4 and C1, C2 are constants depending on
λ αM, , , Ā and n only. By combining (3.19) together with (3.16) and (3.17) we obtain

γ γ σ σ
ρ

− ⩽ +
β

β
−

− +

−C S w w C E˜ ( , ) (3.20)k k
n

n

1
(1) (2) 2

2

2

0
k 1

and by proposition 3.5 and (3.15) we obtain

σ ε δ ω
ε δ

ε δ
⩽ + +

+
+ +

−
−

−

−
−

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟
( )

( )S w w C E
E

˜ ( , ) ,n h
k

k

k

C
2 ¯

1
1

1

1

k C

h

1
1

¯

where ⩾C 1 is a constant depending on A, L, Ā, M, N, α, λ and n only, therefore

γ γ ε δ ω σ
ρ

− ⩽ + + +
β

−
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )( ) ( )

C E C E . (3.21)k k
h

k C
k(1) (2) ¯

1 1
(2( 1))

2
0

C
h1 ¯

We need to estimate Ch̄ and ( )C

h1 ¯
, where >C 1. It turns out that

⩽

⩽

−

−
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

C C
d

r

C C

r

d

1 1
, (3.22)

h

h

¯ 2 1

¯

1

ca

ca

1
log

1
log

therefore

γ γ ε δ ω− ⩽ + + +
β

−
−

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( )( )( )C E

d

r

r

d
. (3.23)k k k

C

C
k(1) (2)

1
1

1
(2( 1))

1

r
d

C

1

By (3.23) we obtain for every ∈k K{1,..., }

δ δ ε δ ω
ε δ

ε δ
⩽ + + +

+
+ +− −

+ −

−

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( )C E

E
,k k k C

k k

k

C

1 1 1
(2( 1)) 1

1

1

which leads to

γ γ ε ω ε
ε

∥ − ∥ ⩽ +
+Ω∞ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

( )C E
E

( ) ,L
N(1) (2)

( )
C

C

1

2
1

therefore

ε ω ε
ε

⩽ +
+

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

( )E C E
E

( ) . (3.24)
N

C

C

1

2
1
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Assuming that ε>E e2 (if this is not the case then the theorem is proven) we obtain

ω ε⩽ + ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

( )E C
E

e
E

E
,

N

2 C

C

1

2
1

which leads to

ω ε⩽ ⎜ ⎟
⎛
⎝

⎞
⎠

( )
C E

1
,

N

C
1

2

therefore

ω
ε⩽

− ( )( )
E

1
,

N

C

1

C
1

2

which concludes the proof. □

4. Proof of technical propositions

4.1. Proof of the asymptotic estimates

Whenever φ is a Lipschitz continuous function on  −n 1, we shall denote by φ
+Q r, and φ

−Q r,
the following sets

φ= ′ ∈ > ′φ
+ { }( )Q x x Q x x, ( ) , (4.1)r n r n,

φ= ′ ∈ < ′φ
− { }( )Q x x Q x x, ( ) . (4.2)r n r n,

Let μ< <0 1 and ∈ μ
φ

+ +B C Q( )r, , ∈ μ
φ

− −B C Q( )r, be symmetric, positive definite
matrix valued functions and define

=
∈
∈

φ

φ

+ +

− −
⎪

⎪

⎧
⎨
⎩

B x
B x x Q

B x x Q
( )

( ), ,

( ),
,

r

r

,

,

such that B satisfies the uniform ellipticity condition



λ ξ ξ ξ λ ξ
ξ

⩽ ⩽ ∈
∈

− B x x Q( ) · , for almost every ,

for every , (4.3)
r

n
0

1 2
0

2

where λ > 00 is a constant.

Theorem 4.1. Let > >k r0, 0 and α< <0 1 be fixed numbers. Moreover, let B be a
matrix as above. Assume that φ ∈ ′αC B( )r

1, and let ∈U H Q( )r
1 be a solution to

χ+ − =
φ
+ ⎜ ⎟⎛

⎝
⎞
⎠( )k B Udiv 1 ( 1) 0. (4.4)Q r,

Suppose α′ satisfies at the same time α μ< ′ ⩽0 and α′ < α
α + n( 1)

. Then, there exists a

positive constant C such that for any ρ ⩽ r

2
and for any ∈ ρ−x Qr 2 , the following estimate

holds true
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ρ ρ

ρ

∥ ∥ + +

⩽ ∥ ∥

∩ ∩
α

α
α

α
′

′
′

′

+

ρ ρ φ ρ φ

ρ

∞ + −  ( )

( )

U U U

C
U , (4.5)

L Q x Q x Q Q x Q

n L Q x

( ) , ( ) , ( )

1 2 ( )

r r, ,

2
2

where C depends on φ α α λ∥ ∥ ′′α k n, , , , ,C B( ) 0r
1, , ∥ ∥+ α

φ
′ +B C Q( )r,

and ∥ ∥− α
φ

′ −B C Q( )r,
only.

Proof. For the proof we refer to [Li-Vo theorem 1.1], where the authors, among various
results, obtain piecewise α′C1, estimates for solutions to divergence form elliptic equations
with piecewise Hölder continuous coefficients (see also [Li-Ni]).

We fix ∈ −l K{1 ,..., 1}. There exists a rigid transformation of coordinates under which
=+P 0l 1 and

∩Σ φ= ∈ = ′{ }Q x Q x x( ) , (4.6)l n
r r0
3

0
3

∩ φ= ∈ > ′
+ { }D Q x Q x x( ) , (4.7)j nl

r r
1

0
3

0
3

∩ φ= ∈ < ′{ }D Q x Q x x( ) , (4.8)j nl
r r0
3

0
3

where φ is a αC1, function on ′Br0
3

satisfying

φ φ φ= = ∥ ∥ ′ ⩽α ( )B Mr(0) (0) 0, . (4.9)C r 01,
0

Moreover, up to a possible replacement of γ with γ
γjl

, we can assume that γ =| 1D jl
and

γ =
+

k|D jl 1
, where k is a real number which satisfies

γ γ⩽ ⩽ −k¯ ¯ . (4.10)2

Let τ be a ∞C function on  such that τ τ⩽ ⩽ =s0 1, ( ) 1 for every
τ∈ − =s s( 1, 1), ( ) 0 for every ∈ ⧹ −s ( 2, 2) and τ′ ⩽s| ( ) | 2 for every ∈s .

We introduce

= −α{ }r
r

M
3

min
1

2
(8 ) ,

1

4
(4.11)1

0 1

and we consider the following change of variable ξ Φ= x( ) given by

ξ

ξ φ τ τ

′ = ′

= − ′ ′

⎧
⎨⎪

⎩⎪
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

x

x x
x

r

x

r

,

( ) .
(4.12)

n n
n

1 1

It can be verified that the map Φ is a  αC ( , )n n1, and it satisfies the following properties

∩Φ Σ = ∈ ={ }( )Q x Q x 0 , (4.13)l r r n1 1

Φ = ∈ ⧹x x x Q( ) , for every , (4.14)n
r2 1



Φ Φ− ⩽ −

⩽ − ∈

−C x x x x

C x x x x

( ) ( )

, for every , , (4.15)n

1
1 2 1 2

1 2 1 2
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Φ − ⩽ α
α+x x

C

r
x( ) , and (4.16)

0

1

Φ − ⩽ ∈α
αD x I

C

r
x x( ) , for every , (4.17)n

0

where >C 1, is a constant depending on M and α only and I denotes the identity matrix.
Let ∈ −y ( , 0)n

r

2
1 and =y yen. We set

η Φ= y( ), (4.18)

ξ η Φ ξ Φ η= − −( )G G( , ) ( ), ( ) , (4.19)B
1 1

ξ Φ Φ ξ= −( )J D( ) ( ) ( ) , (4.20)1

σ ξ
ξ

ξ γ Φ ξ Φ ξ ξ= − −( ) ( )
J

J A J( )
1

det ( )
( ) ( ) ( ) ( ( )) , (4.21)B

T1 1

we have that ηG ( · , )B is a solution to

σ η δ η Ω
η Ω

= − −
= ∂

ξ⎪

⎪

⎧
⎨
⎩

( )G

G

div ˜ ( · , ) ( · ), in ,

( · , ) 0, on .
(4.22)B

B

We have

σ ξ χ ξ ξ ξ= + − ∈+( )k B Q( ) 1 ( 1) ( ) ( ), for any , (4.23)B r1

where χ+ is the characteristic function of +
n and

ξ
ξ

ξ Φ ξ ξ= −( )B
J

J A J( )
1

det ( )
( ) ( ) ( ( )) . (4.24)T1

Furthermore, we have that B is of class αC and

∥ ∥ ⩽ΩαB C, (4.25)C ( )0,

where >C 0 is a constant depending on α λM A, , , ¯ only. We also have that =B A(0) (0).
We denote

σ ξ χ ξ= + − +( )k A( ) 1 ( 1) ( ) (0) (4.26)A(0)

and we refer to G0 as the Green’s function solution to

σ δ Ω
Ω

= − −
= ∂

⎪

⎪

⎧
⎨
⎩

( )G y y

G y

div (·) ( · , ) ( · ), in ,

( · , ) 0, on .
(4.27)A(0) 0

0

We then define

ξ η ξ η ξ η= −R G G( , ) ( , ) ( , ). (4.28)B 0
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Lemma 4.2. For every ξ ∈ +Br1
4
and η ∈ −( , 0)n

r

4
1 we have that

ξ η ξ η ξ η ξ η+ − ∥ ⩽ −ξ β
β+ −( )R e e R

c

r
e, ( , ) , (4.29)n n n n n n

n

1

2

where β α∈ (0, ]2 depends on α and n only and C depends on γ λM A, ¯, , ¯ only.

Proof. It is easy to check that R in (4.28) satisfies

σ η σ σ η Ω

η Ω

= − −

= ∂
ξ ξ ξ ξ ⎪

⎪

⎧
⎨
⎩

( )( )( )R G

R

div (·) ( · , ) div (·) (·) ( · , ) , in ,

( · , ) 0, on .
(4.30)B B A(0) 0

By the representation formula over Ω we have that R in (4.28) satisfies

∫ξ η σ ζ σ ζ ζ η ζ ξ ζ= −
Ω

ζ ( )R G G( , ) ( ) ( ) ( , ) · ˜ ( , )d . (4.31)B A(0) 0

We consider ξ ∈ +Q r1
2
and η η= en n and we split R as the sum of the following integrals

∫ξ η σ ζ σ ζ ζ η ζ ξ ζ= −
Ω

ζ
⧹

 ( )R G G( , ) ( ) ( ) ( , ) · ˜ ( , )d , (4.32)
Q

B A1 (0) 0
r1

∫ξ η σ ζ σ ζ ζ η ζ ξ ζ= − ζ ( )R G G( , ) ( ) ( ) ( , ) · ˜ ( , )d . (4.33)
Q

B A2 (0) 0
r1

By the bounds (2.8)–(2.10) and by combining the Schwartz inequality with the
Caccioppoli inequality we get

ξ η η η⩽ ∥ ∥ ∥ ∥Ω Ω⧹ ⧹( ) ( )R
C

r
G G( , ) ( · , ) ( · , ) , (4.34)L Q B L Q1

1
2 0

r r
2

3 1 4
2

3 1 4

where >C 0 depends on α γ λM, , ¯, and Ā only. By the standard behaviour (3.3) of the
Green’s functions at hand, it follows that

ξ η ⩽ −R Cr( , ) , (4.35)n
1 1

2

where >C 0 depends on α γ λM, , ¯, and Ā only. Moreover being =B A(0) (0), it follows that
(2.9) and (4.25) lead to

σ ξ σ ξ ξ ξ− ⩽ − ⩽ α
αk B A

C

r
( ) ( ) max {1, }( ( ) (0) ) , (4.36)B A(0)

1

for any ξ ∈ Qr1, where C depends on αM A, , ¯ and γ̄ only. By (3.3) and by theorem 4.1 we
have that

ζ ξ ζ ξ ζ ξ⩽ − ∈ζ
− G C Q( , ) , for every , , (4.37)n

r0
1

1

where C depends on αM A, , ¯ and γ̄ only. By (4.15) and the same arguments used above, we
infer that

ζ ξ ζ ξ ζ ξ⩽ − ∈ζ
− G C Q( , ) , for every , , (4.38)B

n
r

1
1

where C depends on αM A, , ¯ and γ̄ only. We denote

∫ ζ ζ ξ ζ η η= − −α − −I d (4.39)
B

n n
1

1 1

h4
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and


∫ ζ ζ ξ ζ η η= − −α

⧹
− −I d . (4.40)

B

n n
2

1 1
n

h4

By (4.36)–(4.38) we have that

ξ η ⩽ +α ( )R
C

r
I I( , ) . (4.41)2

1
1 2

Let us denote now ξ η= −h | | and consider the following change of variables ζ = hw;
we set = ξt

h
and = ηs

h
; it follows that for any ∈t s, n we have that − =t s| | 1. We obtain

∫⩽ − −α α+ − − −I h t w s w w4 d . (4.42)n

B

n n
1

2 1 1

4

Let us now set

∫= − −− −F t s t w s w w( , ) d . (4.43)
B

n n1 1

4

From standard bounds (see for instance, [Mi chapter 2]) we have that

⩽F t s C( , ) , (4.44)

where C depends on n only. Hence

⩽ α+ −I Ch , (4.45)n
1

2

where C depends on n only. We consider now integral I2 and we recall that η η= en n, where
η ∈ −( , 0)n

r

2
1 and ξ ∈ +Q r1

2
, hence we have

η η η ξ ξ η= − ⩽ − + ⩽ − = h, (4.46)n n n

which leads to

ξ ξ η η⩽ − + ⩽ h2 . (4.47)

On the other hand, we have that for any ζ ∈ ⧹Bn
h4

ζ ζ η η ζ η ζ⩽ − + ⩽ − + 1

4
, (4.48)

hence we get

ζ ζ η⩽ −3

4
. (4.49)

and

ζ ξ ζ ζ⩽ − ∈ ⧹B
1

2
, for any . (4.50)n

h4

By combining (4.49) together with (4.50), we obtain


∫ ζ ζ⩽ ⩽α α

−

⧹
+ − + −⎜ ⎟⎛

⎝
⎞
⎠I Ch

8

3
d , (4.51)

n

B

n n
2

1
2 2 2

n
h4
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where C depends on α and n only. By combining (4.35), (4.41), (4.45) and (4.51) we obtain

ξ η ⩽ α
α+ −R

C

r
h( , ) , (4.52)n

1

2

where C depends on αM A n, , ¯ , and γ̄ only. Let us fix ξ ∈ +Br1
4

, η ∈ −r( 4, 0)n 1 and consider
the cylinder

ξ ξ ξ= ′ ′ × +⎜ ⎟⎛
⎝

⎞
⎠Q B

h
( ) ,

8
. (4.53)n nh

8

Observing that ξ η= − ⩽h e| (0, )|n n
r

2
1 we deduce that ⊂ +Q Q r1

2
. Moreover ⊂ ξQ Q ( )h

4

and ξ ∈ ∂Q, then by choosing for instance α α′ = α
α +{ }min ,

n

1

2 ( 1)
in the statement of

theorem 4.1 and observing that η ξ∉e Q(0, ) ( )n n h
2

, by (4.5) we obtain the following bound for
the seminorm

η η

η

⩽

⩽ ∥ ∥

∩ξ α ξ α

α
ξ

′ ′

− ′− −

ξ

ξ

+
 

 ⎜ ⎟
⎛
⎝

⎞
⎠

G e G e

Ch G e

( · , ) ( · , )

( · , ) , (4.54)

B n n Q
B n n Q Q

n
B n n L Q

, ,

1 2

h r

h

4
( ) 1

2

2

2
( )

where C depends on αM A n, , ¯ , and γ̄ only. Furthermore by observing that for any ξ ∈ ξQ˜ ( )h
2

we have that ξ η− ⩾e| ˜ (0, )|n n
h

2
and by (3.3) we have

η ⩽ξ α
α

′
′+ − G e Ch˜ ( · , ) , (4.55)n n Q

n
,

1

where C depends on αM A n, , ¯ , and γ̄ only. By analogous argument we may also infer that

η ⩽ξ α
α

′
′+ − G e Ch( · , ) , (4.56)n n Q

n
0 ,

1

where C depends on αM A n, , ¯ , and γ̄ only. Hence by (4.28), (4.55) and (4.56) we obtain

η ⩽ξ α
α

′
′+ − R e Ch( · , ) , (4.57)n n Q

n
,

1

where C depends on αM A n, , ¯ , and γ̄ only. We recall the following interpolation inequality
(see for instance [A-S], proposition 8.3)

η η η∥ ∥ ⩽ ∥ ∥ξ ξ α′
α

α α
∞ ∞

′
+ ′ + ′ R e R e R e( · , ) ( · , ) ( · , ) , (4.58)n n L Q n n L Q n n Q( ) ( ) ,

1
1

1

where C depends on αM A n, , ¯ , and γ̄ only. By the above estimate and (4.52) we get

ξ η ξ η⩽ ∈ ∈ −ξ β
β+ − + ⎜ ⎟

⎛
⎝

⎞
⎠( )R e

C

r
h B

r
, , for every and

4
, 0 , (4.59)n n

n

1

1 1
r1
4

where C depends on αM A n, , ¯ , and γ̄ only. The thesis follows with β = α
α
′

+ ′1

2

. □

Proof of theorem 3.4. We first assume that the auxiliary hypothesis that =A I(0) is
fulfilled and denote with ξ ηH ( , ) the half space fundamental solution of the operator

χ ξ ξ+ −ξ ξ
+ k Idiv ((1 ( 1)) ( ) ( ) ) which has the following explicit form
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ξ η

Γ ξ η Γ ξ η ξ η

Γ ξ η ξ η

Γ ξ η Γ ξ η ξ η

=

+ −
+

>

+
<

+ −
+

<

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( )

( )
H

k

k

k k

k
k

k

( , )

1
( , )

1

( 1)
, * , if , 0,

2

1
( , ), if 0,

( , )
1

1
, * , if , 0,

(4.60)

n n

n n

n n

where Γ is the distribution introduced in (3.9) and for any ξ ξ ξ= ′( , )n we denote

ξ ξ ξ= ′ −* ( , )n . Let η ∈ −( , 0)n
r

4
1 , then we have

χ ξ ξ ξ η ξ η

ξ η ξ η

+ − − =

− ⩽ ∂

ξ ξ
+

−

⎧
⎨⎪

⎩⎪
( )( )

( )
( ) ( )

( ) ( )

k I G e H e Q

G e H e Cr Q

div (1 ( 1)) ( ) ( ) , , 0, in ,

, , , on .

n n n n

n n n n
n

0

0 1
2

r

r

1
2

1
2

Hence by the maximum principle we can infer that

η η∥ − ∥ ⩽ −
∞⎜ ⎟

⎛
⎝

⎞
⎠

G e H e Cr( · , ) ( · , ) (4.61)n n n n L Q
n

0 1
2

r1
2

and by theorem 4.1 we deduce that

η η∥ − ∥ ⩽ξ ξ
−

∞  ⎜ ⎟
⎛
⎝

⎞
⎠

G e H e Cr( · , ) ( · , ) . (4.62)n n n n L Q
n

0 1
1

r1
4

We now consider Φ∈ − +x B( )1
r1
4

and ∈ −y ( , 0)n
r

2
1 , then we observe that being Φ =y y( )

we have that

Φ Φ Φ Φ Φ= − ⩽ −y y y x( ) ( ) (0) ( ) ( ) . (4.63)

Moreover, by (4.15) and the above estimate we have

Φ Φ Φ Φ⩽ ⩽ − + ⩽ −−C x x x y y C x y( ) ( ) ( ) ( ) . (4.64)1

By combining the above estimate with (4.16), we infer that

Φ − ⩽ ⩽ −α
α

α
α+ +

x x
C

r
x

C

r
x e y( ) , (4.65)n n

0

1

0

1

where C depends on M and α only. Let ⩾A{ }k k 1 be a regularizing sequence for A obtained by
convolution with a sequence of mollifiers, then we have that

∥ ∥ ⩽ ∈ΩA A k2 ¯ , for any (4.66)k C ( )1

and Ak satisfies (2.10), with =A Ak, ∈k . Let us introduce the following function

⧹ →{ }F B e y: (4.67)k r n n0

↦ < − − > −
z A z z e y z e y( )( ), ( ) , (4.68)k n n n n

n2
2

where < >· , · denotes the Euclidean scalar product of vectors in n. Given
∈ ⧹z z B e y, { }r n n1 2 0 by the mean-value theorem, there exists < <t t, 0 1k k such that
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∑

− ⩽ − − −

+ − −

× ∂ − −

−

=

−⎛
⎝⎜

⎞
⎠
⎟⎟

F z F z C z z A z z e y z e y

A z z e y z e y

Ak z z e y z e y

( ) ( ) ( )( ), ( )

( )( ), ( )

( )( ), ( ) ,

k k k t t n n t n n

k t t n n t n n

i

n

z t t n n t n n

1 2 1 2

1

k k k

n

k k k

n

i k k k

1
2

2

where = + −z z t z z( )t k1 2 1k and where C depends on depends on αM A, , ¯ and n only.
Let us denote with Γk the fundamental solution introduced in (3.9) associated to the matrix Ak.
We choose Φ=z x( )1 and =z x2 , then we have

Γ Φ Γ Φ Φ− ⩽ − ∥ − + − −( )x e y x e y C x x x e y t x x( ), ( , ) ( ) ( ( ) ) ,k n n k n n n n k
n1

where C depends on α λM A, , ¯ , and n only. By (4.65) and the triangle inequality we
deduce that for any ∩∈

α+
x D Bjl

r

C
1

0

4 1

Φ Φ− − − ⩾ − − ∥ −x e y t x x x e y t x x( ( ) ) ( ) (4.69)n n k n n k

⩾ − − − ⩾ − −α+
x e y x e y x e y

1

2
. (4.70)n n n n n n

1

Finally combining the above estimates and (4.65) we obtain

Γ Φ Γ− ⩽ − α− +( )x e y x e y C x e y( ), ( , ) , (4.71)k n n k n n n n
n2

where C depends on α λM A, , , ¯ and n only. Now since Ak converges uniformly to A in Ω we
can infer that

Γ Φ Γ− ⩽ − α− +( )x e y x e y C x e y( ), ( , ) , , (4.72)n n n n n n
n2

for Φ∈ − +x B( )1
r1
4

, where C depends on α λM A, , , ¯ and n only. By (4.61), (4.62) and (4.72) we
have

Φ Φ Φ

Φ

− ⩽ −

+ −

⩽ −α
α+ −

( ) ( ) ( )
( )

G x e y H x e y G x e y H x e y

H x e y H x e y

C

r
x e y

( ), ( , ) ( ), ( ),

( ), ( , )

(4.73)

n n n n n n n n

n n n n

n n
n

0 0

0

2

and

Φ − ⩽ −α
α+ −

 ( )G x e y H x e y
C

r
x e y( ), ( , ) , (4.74)n n n n n n

n
0

0

1

for Φ∈ − +x B( )1
r1
4

, where C depends on λ γ αM, , ¯, and n only. Moreover, by lemma 4.2 and

(4.15) and recalling that Φ =y y( ) , we get

Φ η η Φ η ξ η+ − ∥ ⩽ −ξ β
β+ −( )R x e x e R x

c

r
e( ), ( ( ), ) , (4.75)n n n n n n

n

1

2

for Φ∈ − +x B( )1
r1
4

, C depends on λ γ αM, , ¯, and n only. Gathering (4.73)–(4.75) and recalling
that
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Φ Φ= +( ) ( ) ( )G x e y G x e y R x e y¯, ( ¯), ( ¯), (4.76)n n n n n n0

we first find that

Γ−
+

⩽ −β
β+ −( ) ( )G x e y

k
x e y

C

r
x e y¯,

2

1
¯, ¯ , (4.77)n n n n n n

n

0

2

Γ−
+

⩽ − −β
β+ −

 ( ) ( )G x e y
k

x e y
C

r
x e ny¯,

2

1
¯, ¯ , (4.78)x n n x n n n

n

0

1

for a.e. ∩∈
α+

x D B¯ jl
r

C
1

0

(4 )1
and ∈ − αy r C( (4 ) , 0)n 1

1 ( ) , where C depends on λ γM, , ¯, Ā, α and

n only. The thesis then follows for the case =A I(0) .
To treat the general case when ≠A I(0) , we introduce the fundamental solution HA (0) of

the operator χ ξ+ −ξ ξ
+ k Adiv ((1 ( 1)) ( ) (0) ). We set σ ξ χ ξ= + − +k I( ) (1 ( 1)) ( )I and

recall that σ ξ χ ξ= + − +k A( ) (1 ( 1)) ( ) (0)A (0) . Let us introduce the linear change of variable

 →L: (4.79)n n

ξ ξ ξ↦ = −L R A: (0) , (4.80)1

where R is the planar rotation in n that rotates the unit vector
∥ ∥

v

v
, where =v A e(0) n, to

the nth standard unit vector en and such that

≡π π
⊥

⊥
R Id ,( )

( )

where π is the plane in n generated by en, v and π ⊥( ) denotes the orthogonal complement
of π in n. For this choice of L we have

(i) = − −A L L(0) · ( )T1 1 ,
(ii) ξ ξ= ∥ ∥L e e( ) · ·n v n

1 ,

which leads to

σ ξ σ ξ= − −( )L L L( ) ( ) ,A I
T

(0)
1 1

i.e. ξ↦−L x:1 is the linear change of variables that maps σ x( )I into σ ξ( )A (0) .
Therefore the fundamental solution for the operator χ ξ+ −ξ ξ

+ k Adiv ((1 ( 1)) ( ) (0) ) turns
out to be

ξ η

Γ ξ η Γ ξ η ξ η

Γ ξ η ξ η

Γ ξ η Γ ξ η ξ η

=

+ −
+

>

+
<

+ −
+

<

⎜ ⎟

⎜ ⎟

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

H

J
k

L L
k

k k
L L

J
k

L L

J L L
k

k
L L

( , )

1
( , )

1

( 1)
, * , if , 0,

2

1
( , ) , if 0,

( , )
1

1
, * , if , 0,

(4.81)A

n n

n n

n n

(0)

where J| | denotes the determinant of matrix = −J A (0)1 , matrix = =L l* { }i j i j
n

,
*

, 1 is such

that =l li j i j,
*

, for = − =i n j n1,..., 1, 1 ,..., and = −l ln j n j,
*

, for =j n1 ..., . In particular we
have that when ξ η < 0n n
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ξ η ξ η ξ η=
+

< − − >− −
H

J

k
A( , )

2

1
(0)( , ) .A(0)

1 n2
2

Hence for the case ≠A I(0) (4.77) and (4.78) shall be replaced by

−
+

< − − > ⩽ −β
β− − +−( ) ( ) ( )G x e y

k
A x e y x e y

C

r
x e y¯,

2

1
(0) ¯ , ¯ ¯ ,n n n n n n n n

n1

0

2n2
2

−
+

< − − > ⩽ −β
β− + −− ( ) ( ) ( )G x e y

k
A x e y x e y

C

r
x e y¯,

2

1
(0) ¯ , ¯ ¯ ,x n n x n n n n n n

n1

0

1n2
2

for ∩∈
α+

x D B¯ jl
r

C
1

0

(4 )1
and ∈ − αy r C( (4 ) , 0)n 1

1 ( ) , where C depends on λ γM, , ¯, Ā, α and n

only. Hence the thesis follows also for the general case. □

4.2. Proof of unique continuation estimates

Let P1, D0 Ω0, D( )r0 and G̃i, for i = 1, 2 be as in subsection 3.2.1. Let us fix ∈k N{2,... } and
recall that there exist ∈j j N,... {2,... }K1 such that

= =D D D D,... .j j k1 K1

We recall that

Ω= ⋃ = ⧹ ⩾
=

  D k, , when 0K
i

K

j k K
0

0i

( =D Dj 00
) and for any ∈ y z, K

∫ σ σ= − ⩾   ( )S y z G y G z k˜ ( , ) ˜ ˜ ˜ ( · , ) · ˜ ( · , ), when 0.A A
(1) (2)

1 2K
K

The proof of proposition 3.5 is a straight forward consequence of the following result
(see [A-V], proof of proposition 4.6).

Proposition 4.3. Let v be a weak solution to

σ = ( )vdiv ˜ 0, in ,k

where σ̃ is either equal to σ̃A
(1) or to σ̃A

(2) . Assume that, for given positive numbers ε0 and E0, v
satisfies

ε⩽ ∈− ( )v x r x D( ) , for  every , (4.1)n
0 0

2
0 r0

3

and

⩽ ∈− ( )v x E r d x x( ) ( ) , for  every , (4.2)n
k0 0

1 2

where Σ= +d x x( ) dist( , )k 1 . Then the following inequality holds true for every ∈r d(0, ]1

ε ω
ε

ε
⩽ +

++
−

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( )( ) ( )v w P r C E

E
. (4.3)h k

n h
C
k

C

¯ 1 0
2 ¯

0 0 1
( ) 0

0 0

(1 )h̄

Proof. We observe that the proof of this result follows the same line of the argument used in
[A-V proof of proposition 4.4] which is independent from the presence of isotropy/anisotropy
in σ̃ . In fact their proof is based on an argument of unique continuation which requires σ̃ to be
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Lipschitz continuous and the interfaces between each domain Dj to contain a αC1, portion,
therefore we simply recall [A-V], proof of proposition 4.4 for a complete proof of this
proposition. Here we simply recall for sake of completeness the main fact proven in [A-V],
proof of proposition 4.4. By defining the quantities

ρ= =
+

r
r r

L4
, ¯

128 1
,1

0 1

2

let ∈y Dm m be a point ‘near the portion’ Σm+1 of the interface between Dm and +Dm 1

defined by

ν= −+ +( )y P
r

P
32

,m m m1
1

1

where Σ∈+ +Pm m1 1. Their main point is the proof of the following fact

ε ω
ε

ε
∥ ∥ ⩽ +

+
− + +

ρ
∞

⎛
⎝⎜

⎞
⎠⎟( )( )v r C E

E
, (4.4)L B y

n m m
( ) 0

2 1
0 0

( 1) 0

0 0
m C

¯ 1

where ρ̄ has been chosen above so that ⊂ρB y D( )m m¯ . The proof of the above inequality is
done by induction. The so-called argument of global propagation of smallness is used there to
prove (4.4) for m = 0. We refer to [A-R-R-V], theorem 5.3 for a complete treatment of this
topic. The rest of the proof is based on the three sphere inequality, therefore we simply refer
to [A-V], proof of proposition 4.4 for this.
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