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Introduction

One of the major goals of computational material science is the 
rapid and accurate prediction of properties of new materials and 
complex systems. Despite the tremendous advances made in the 
modeling of structural, thermal, mechanical and transport prop-
erties of materials at the macroscopic level (finite element (FE) 
analysis of complicated structures), they leave a tremendous un-
certainty about how to predict many critical properties related to 
performance, which strongly depends on nanostructure. 

It is then essential to analyze the structure at molecular lev-
el, with all the chemical and physical implications. Currently, 
simulations at atomistic level such as molecular dynamics (MD) 
or Monte Carlo (MC) techniques allows to predict the structure 
and properties for systems of considerably large number of at-
oms and time scales of the order of microseconds. Although this 
can lead to many relevant results in material design, many criti-
cal issues in materials design still require time and length scales 
far too large for practical MD/MC simulations. This requires 
developing techniques useful to design engineers, by incorpo-
rating the methods and results of the lower scales (e.g., MD) to 
mesoscale simulations.

Advanced materials are essential to economic security and 
human well-being, with applications in industries aiming at ad-
dressing challenges in clean energy, national security, and hu-
man welfare. Despite this paramount importance, the develop-

ment of a new advanced material can take 20+ years from initial 
discovery to put it on the market [1]. Accelerating the pace of 
discovery and deployment of advanced materials will therefore 
be crucial to achieving global competitiveness in the 21st cen-
tury. In 2011 the Federal government of United States launched 
the Materials Genome Initiative (MGI) with an investment of 
over $250 million in new R&D and innovation infrastructure 
[2]. The basic idea of MGI is the integration of three different 
tools, namely simulations, experiments and big data (Figure 1). 
In the MGI strategy, simulations and experiments are coupled 
and optimized in order to provide reliable data in different con-
ditions and for different properties: they are tightly integrated 
with slight overlapping for defining the relative ranges of un-
certainties. In particular, simulation is used for complementing 
experiments in ranges of conditions where experiments are dif-
ficult to be carried out as well as for speeding up the procedure 
of characterization of new materials with different formulations. 
All relevant results obtained by both tools are stored in databas-
es (big data), which in turn are queried by specific analytical 
tools capable of obtaining the necessary information from the 
data, and provide them to the industrial sectors. 

The MGI philosophy for the design of new materials is also 
central to the concept of Industry 4.0, in which digitalization 
is going to deeply convert the way new products and new pro-
cesses will be developed [3]. Industry 4.0 is related to the use 
of big data, cloud computing, internet-of-things and simulation 
tools, coupled with robotics and sensors able to acquire data. Big 
data are then analyzed using business intelligence and advanced 
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analytical tools in order to give feedback to initiators aiming at 
enhancing the efficiency of the production processes. 

In the last years, another important issue strongly related to 
the multiscale modeling was investigated and developed: the 
convergence of technologies in the area on nano-bio sciences. 
The phrase “convergent technologies” refers to the synergistic 
combination of four major “NBIC” (nano-bio-info-cogni) fields 
of science and technology, each of which is currently progress-
ing at a rapid rate: (a) nanoscience and nanotechnology; (b) bi-
otechnology and biomedicine, including genetic engineering; 
(c) information technology, including advanced computing and 
communications; (d) cognitive science, including cognitive neu-
roscience [4, 5].

Convergence of diverse technologies is based on material 
unity at the nanoscale and on technology integration from that 
scale: the building blocks of matter originate at the nanoscale 
(atoms). NBIC aims at using not only atoms to build processes 
and products of the future, but aims at combining atoms with 
bits, genes and synapses.

This paper focuses on multiscale molecular modeling of com-
plex nanostructured polymeric materials consisting of polymer-
ic matrices in which nano-objects are dispersed and/or are inter-
acting via chemical or physical bonds. 

These materials display structure features that span several 
length scales, from the Å level of the individual backbone of a 
single chain to the mesoscopic system morphology, reaching far 
into hundreds of nanometers. In addition, the time scales of the 
characteristic dynamic processes relevant to such different na-
nostructured material properties span a wider range, from fem-
toseconds to milliseconds or even seconds or hours in glassy 
materials or for large-scale ordering processes (e.g. phase sepa-

ration in blends). Unfortunately, no single model or simulation 
algorithm can cover such an interval of length and time scales; 
therefore, the seamless integration of many different models, 
each suitable for describing the chemistry and the physics at a 
given time and/or length scale, is required.

This concept indeed constitutes the pillar of multiscale mo-
lecular modeling and simulation, which is the bridging of length 
and time scales by linking computational methods for predict-
ing macroscopic properties and behavior of complex systems 
from fundamental molecular processes [6–9]. Thus, the idea of 
performing simulations of materials across several characteris-
tic length and time scales, starting from fundamental physical 
principles and experimental data, is highly appealing as a tool of 
potentially great effect on technological innovation and material 
design [10].

Multiscale molecular modeling can be applied to almost all 
materials whose properties depend on its nano-structure or mi-
crostructure. Accordingly, this contribution is not conceived as 
a thorough presentation of all state-of-the-art current multiscale 
molecular modeling [8, 11–15]. Rather, the selected examples 
presented in this overview reflect authors’ own research inter-
ests, and are by no means exhaustive. Nevertheless, it is our 
hope that they can serve as inspiration for further developments 
in this exciting branch of science. The concept of multiscale mo-
lecular modeling has been successfully applied in other fields as 
it is reported in several review papers [8–10, 13, 16–20].

Multiscale molecular modeling

The recent years have observed a rapid expansion in the use of 
computer modeling techniques in both materials and life scienc-
es. Many important driving forces increased the use of computer 
molecular modeling and simulations in materials science, but 
probably the most important one is the availability of (relative-
ly) inexpensive commodity processing power, driven in part by 
Moore’s law, which, in its original form, related to the doubling 
of the transistor density in integrated circuits every 18 months 
[21]. In practice, this has led to a rapid decrease in the unit price 
of CPUs (Central Processing Units) – and today – GPUs (Graph-
ical Processing Units), physical memory and hard disk space, 
as machines suitable for scientific calculations have found their 
way onto the mass market. Parallel to hardware improvement, a 
plethora of free and commercially available integrated modeling 
software packages now exists, a selection of notable examples 
includes Gaussian® (mainly for quantum mechanics calcula-
tions), AMBER and NAMD (for atomistic simulations), Materi-
als Studio®, Culgi, GROMACS, and LAMMPS (for both atom-
istic and mesoscale simulations), and Digimat and ABAQUS® 
(for continuum (i.e., finite element) calculations). 

By definition, multiscale molecular modeling entails the ap-
plication of computational techniques at two or more different 
length and time scales, which are often, but not always, dissim-

Figure 1. Materials Genome Initiative: a materials innovation infrastructure 
combining simulation with experiments and digital data [2]
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ilar in their theoretical character due to the change in scale. A 
distinction is made between the hierarchical approach, which 
involves running separate models with some sort of paramet-
ric coupling, and the hybrid approach, in which models are run 
concurrently over different spatial regions of a simulation. The 
relationships between different categories of methods com-
monly used in the multiscale modeling hierarchy are shown in 
Figure 2 [8-20]. Although some techniques have been known 
for a long time and are currently widely used (e.g., molecular 
dynamics (MD) and Monte Carlo (MC) methods), other such as 
mesoscale simulation (MS) and some more advanced methods 
for accelerating atomistic simulations are not as common yet, 

and require more advanced experience and specialized back-
ground in the field.

In the context of materials simulations shown in Figure 2, four 
characteristic time and length levels can be envisaged before 
reaching the last step, i.e. engineering design [22].

1.  the quantum scale (10-10–10-9 m and 10-12 s), in which nuclei 
and electrons are the main players, and their quantum-me-
chanical state dictates the interactions among atoms. The 
possibility of obtaining data describing structural and 
electronic features of the system under consideration and 
of taking into account effects associated with rupture and 
formation of chemical bonds in molecules, changes in elec-
tron configurations, and other similar phenomena are the 
main advantages of methods working at the quantum scale. 

2.  the atomistic scale (10-10–10-7 m and 10-12–10-6 s). In atom-
istic simulations, all atoms are explicitly represented or in 
some cases, small groups of atoms are treated by single 
sites referred to as pseudo or united atoms. The potential 
energy in the system is estimated using a number of dif-

ferent classes of interactions (collectively known as force 
fields), typically consisting in: (i) bonded interactions, in-
cluding bond-length (stretch) potentials, bond-angle (bend) 
potentials, torsion (twist) potentials and cross-terms, and 
(ii) non-bonded interactions, mostly comprising in Cou-
lomb interactions and dispersion forces.

3.  the mesoscopic scale (10-9–10-1 m and 10-6–101 s). In these 
methods, a molecule is usually treated with a field descrip-
tion (field-based model) or microscopic particles (parti-
cle-based model) that incorporate molecular details im-
plicitly. Therefore, they are able to simulate phenomena on 
length and time scales currently inaccessible by classical 

atomistic approach. At the simplest mesoscopic level, a 
polymer system may be modeled by a phenomenological 
expression for the free energy (field-based approach). For 
example, the Flory-Huggins or Landau free energies of 
mixing may be used to model aspects of polymer mixtures. 
In such models, the details of the system are incorporated 
into, e.g., the Flory parameter and the monomer segment 
mobility. Such phenomenological expressions are equiva-
lent to truncated expansions of a more complicated free en-
ergy expression. Instead, in particle-based models the fluid 
is portrayed as a collection of point particles that represent 
lumps of fluid containing many molecules or segments 
of chains, termed beads. The interaction between beads 
is considered mesoscopic because the internal degrees of 
freedom of the fluid elements are ignored and only their 
center-of-mass motion is resolved.

4.  the macroscopic scale (10− 3–101 m and 101–103 s). At this 
level, constitutive laws govern the behavior of the physical 
system, which is considered as a continuous medium, ig-

Figure 2. The hierarchy of multiscale molecular modeling techniques, showing approximate range of temporal and spatial scales covered by different categories 
of methods. Areas of overlap permit “mapping” or “zooming” from one scale to the next, which is often required for parameterization of higher scale methods or 
for obtaining a finer scale resolution of selected parts of the larger system [8-20]
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noring discrete atomic and molecular structures and their 
influence on the overall system behavior. The basic assump-
tion then consists in representing a heterogeneous material 
as an equivalent of homogeneous one. A medium is called 
a continuum, if its volume contains an apparent continuity 
of material mass over the physical scale of the problem of 
interest. In general, this requires the domain of interest to 
be several orders of magnitude larger than the length scale 
of the elemental components. All mathematical functions 
(e.g., velocity or displacement fields) used to describe the 
state of the system are continuous, except possibly at a fi-
nite number of interior surfaces separating regions of con-
tinuity. Stress and strain tensors may be split into isotropic 
and deviatory parts, allowing to predict the behavior of the 
medium under both static and dynamic loading with sepa-
rate descriptions of constitutive behavior of material under 
hydrostatic and non-hydrostatic circumstances.

At each length and timescale, well-established and efficient 
computational approaches have been developed over the years 
to handle the relevant, underlying phenomena. To treat electrons 

explicitly and accurately at the lower scale, electronic models 
based on quantum mechanical (QM) methods can be employed. 
QM methods have undergone enormous advances in the last 
decades, enabling simulation of systems containing several hun-
dred atoms with good accuracy [23].

For material properties at the atomic level, molecular dynam-
ics and Monte Carlo simulations are usually performed employ-
ing classical interatomic potential, which can often be derived 
from QM calculations [24, 25]. Although not as accurate as QM 
methods, classical MD and MC simulations are able to provide 

insight into atomic processes involving considerably large sys-
tems [26].

At the mesoscopic scale, the atomic degrees of freedom are 
not explicitly treated, and only large-scale entities are modeled 
(that is, agglomeration of atoms called beads, obtained through 
a coarse-graining procedure, vide infra). Mesoscale models are 
particularly useful for studying the behavior of polymers and 
soft materials. They can model even larger molecular systems, 
but with the commensurate trade-off in accuracy. Typical results 
of mesoscale simulations are morphologies of matter in the na-
nometer - millimeter range at specific conditions of temperature, 
composition, and shear. Various simulation methods have been 
proposed to study the mesoscale structures in polymer-based 
materials, the most common being Brownian Dynamics (BD), 
Dissipative Particle Dynamics (DPD), Lattice Boltzmann (LB), 
time-dependent Ginzburg–Landau theory, and Dynamic Densi-
ty Functional Theory (DDFT) [27–32]. Eventually, it is possible 
to transfer the simulated mesoscopic structure to finite elements 
modeling (FEM) tools to calculate macroscopic properties for 
the systems of interest [33, 34]. 

Whatever the multiscale protocol has been developed, it is 
important to be able to compare the calculated results with ex-
perimental evidences at each scale a computation is performed. 
Fortunately, the experimental methods available now allow this 
comparison along the entire multiscale procedure, as shown in 
Figure 3. Experimental tools and methodologies available at dif-
ferent time and length scales allow not only to check the validity 
of the simulations but also to feed data to the big data repository 
in the framework of the MGI mentioned above. 

In summary, the ultimate goal of the multiscale modeling is 

Figure 3. Experimental and theoretical tools for characterization and modeling of polymer-based nanocomposites, plotted over their respective time and length 
scale domain of applicability. Experimental methods include X-ray diffraction, nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), 
tomography, atomic force microscopy (AFM), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), mechanical testing, X-ray reflectivi-
ty and neutron reflectivity [13]
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the prediction of the macroscopic behavior of an engineering 
process from first principles, by adopting a sequential simula-
tion pathway where we compute information at a smaller (fin-
er) scale and pass it to a model at a larger (coarser) scale. This 
procedure leaves out (i.e. coarse grains) all the degrees of free-
dom pertaining to the smaller scale, which is considered to be in 
equilibrium [22, 35–39]. 

This message-passing approach can be performed in sequence 
for multiple-length scales. The vital attribute of the sequential 
approach is that the simulation at a higher level critically de-
pends on the completeness and the correctness of the informa-
tion gathered at the lower level, as well as on the efficiency and 
reliability of the model at the coarser level. 

To obtain first principles-based results for macroscale sys-
tems, a sufficient degree of overlap between each simulation 
scale and the finer description must be ensured, so that all in-
put parameters and constitutive laws at each level of theory can 
be determined from a more fundamental theory. Equally im-
portant, these relations must be invertible so that the results of 
coarse level simulations can be used to suggest the best choices 
for finer level parameters, which, in turn, can be employed to 
formulate new choices of material composition and structure.

The problem for polymers is that the method of coarsening the 
description from atomistic to mesoscale or mesoscale to continu-
um is not as obvious as it is in going from electrons to atoms [8].

In other words, the coarsening from QM to MD relies on basic 
principles and can be easily generalized in a method and in a 
procedure, while the coarsening at higher scales is system spe-
cific. Multiscale simulation poses, in some sense, greater chal-
lenges for polymer materials than for seemingly more complex 
systems such as metals and ceramics due to the larger range of 
length and time scales that characterize macromolecules. 

Scale integration in specific contexts in the field of polymer 
modeling can be done in different ways. All approaches are ini-
tially based on the application of a force field (FF) that transfers 
information from quantum chemistry to atomistic simulation. 
From atomistic simulation to mesoscale model, essential fea-
tures of the system have to be maintained while reducing the 
degree of freedom [40–43].

So far, the features chosen for the reproduction by coarse-
grained models have been mainly structural, thermodynamic or 
both, with structure prevailing [44]. This linking through the 
mesoscale in which we can describe microstructure is probably 
the most challenging step toward the developing reliable first 
principles methods for practical material design applications.

Among the possibilities to achieve seamless zooming multi-
scale simulations in the field of polymer-based nanocomposites, 
we present and discuss here one strategy that proved to yield 
accurate and reliable results for many different systems of in-
dustrial interest [45]. According to this multiscale computation-
al recipe, four sequential steps need to be performed, as follows:

i.  QM calculations are employed (when required) to derive 

specific (and, hence, highly accurate) force fields, that is, 
material energy functions (aka interatomic potentials) 
comprising in the functional form and parameter sets used 
to calculate the potential energy of a system of atoms or 
coarse-grained particles in molecular mechanics/molecu-
lar dynamics simulations.

ii.  Having chosen the appropriate FF for the system under 
consideration (either already available in the literature 
or derived ad hoc at point i)), fully atomistic molecular 
dynamics (MD) simulations are performed to retrieve 
fundamental structural and energetical information at the 
molecular level.

iii.  The data gathered at point ii) are mapped into the cor-
responding structural and energetical input parameters 
required to run simulations at a mesoscopic level.

iv.  The main output of point iii), i.e., the mesoscopic mor-
phologies and density distributions of the system are fi-
nally used as the input for finite element calculations and 
macroscopic property predictions.

In the next paragraph, we will present and discuss the appli-
cation of such hierarchical multiscale molecular modeling ap-
proach to the prediction of self-assembly nanostructured poly-
mer systems for biomedical applications.

Multiscale molecular simulation for 
nanostructured polymer systems for 
biomedical applications

In this paragraph, the multiscale molecular modeling procedure 
described in the previous paragraph has been applied to two se-
lected systems relevant in biomedical applications: (i) nanovec-
tors for drug delivery system and (ii) self-assembly of polymer 
chains on gold nanoparticles. 

Systems for biomedical applications ranges from few nanom-
eters up to several thousand nanometers. Figure 4 shows exam-
ples of systems of interest in biomedical applications grouped by 
type and dimensions of representative agglomeration of atoms. 

The first system considered is a block polymer system used 
as a drug carrier. The idea is that diblock or triblock copolymers 
may form reverse micelles under certain conditions and that the 
micelles could be used for incorporating drugs, aiming at deliv-
ery of drugs to the target without dissolution in the environment, 
thus maximizing the therapeutic effect [46]. 

Several questions could be answered by molecular simula-
tions in the preliminary process of selecting the most promising 
system, namely, is it better to have a diblock or a triblock copol-
ymer? Under which thermodynamic conditions the micelle is 
formed? If the micelle is formed, what is its size? In addition, 
what is the maximum drug concentration inside the micelle that 
maintain the micelle intact? The diblock copolymer considered 
in this application is the Poly(ethylene oxide) PEG (Mw = 3670 
Da) / Poly-DL(lactic acid) PLA (Mw = 3300 Da) and the triblock 
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copolymer is the PLA5875-PEO7761-PLA5875. Both copoly-
mers are FDA approved and therefore suitable to be used as drug 
carrier in the human body. 

The effect of copolymer composition and concentration on 
system morphology is investigated by using multiscale molec-
ular modeling described in the previous paragraph. The model 
drug under consideration is NIFEDIPINE (Adalat®, Nifedi-
cal®, Procardia®) which is a Calcium channel blocker intended 
for use in several applications (ischemic cardiopathy, chronic 
arterial hypertension, Raynaud syndrome, premature delivery). 
This drug is highly hydrophobic and has side effects, therefore 
it needs a well-designed delivery system to be used in therapy. 

The first objective of the simulation was the description of 
the phase diagram of the block copolymers. Figure 5 shows the 
phase diagram for the diblock copolymer system obtained by the 
mesoscale simulation: all the experimental available structures 
are reliably simulated including the formation of micelles in the 
upper part of the diagram. The results of the simulations are suc-
cessfully used for answering the questions about the conditions 
of formation and the size of the micelles. 

The next step was the simulation of the complete system 
made up by the block copolymer with the drug. For the diblock 
copolymer the maximum drug load, before the collapse of the 
micelle, was determined to be around 15% v/v (volume of drug/

Figure 4. Nanostructure of potential interest for biomedical applications. Dimensions span from few nanometers to hundreds of nanometers 
with increasing structural complexity

Figure 5. Phase diagram of the diblock copolymer Poly(ethylene oxide) PEG as a function of concentration in water and PLKA fraction [46]
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total volume), while for the triblock copolymer system the same 
limit was between 2–3% v/v, thus showing the superiority of the 
diblock copolymer system with respect to the other. 

Figure 6 shows the results of the simulation of the diblock 
copolymer system with a drug concentration of 22% v/v: it is ev-
ident from the figure that the drug is not kept inside the micelle. 

The second system investigated shows how nanostructures 
may self-assembly on gold nanoparticles for creating well de-
fined structures (i.e., self-assembled monolayers – SAMs) suita-
ble for biomedical applications. The grafted chains are made by 
Fluorine (F) and carbon (CH) and, depending upon the thermo-
dynamic conditions, they may create stripe/patch, Janus or ran-

dom nano-structures (Figure 7) after successful grafting [47, 48]. 
It is important to simulate the different structures for deter-

mining which condition will give raise to a specific one. The 
quality of the simulations have been tested versus NMR and 
STM experiments, showing a very good agreement, as it is 
shown in Figure 8 where comparison between predicted and ex-
perimental NMR chemical shift decay as a function of the SAM 
composition for random, janus and striped morphology are re-
ported. Figure 8 (middle panel) presents also the comparison 
of simulated and experimental STEM images for the different 
morphologies considered.

Figure 7. Different grafting chains topologies give different nanostructure of chains around the gold nanoparticle [47, 48]

Figure 6. Simulation of the diblock copolymer with model drug for a 
Nifedipine loading greater than 15% v/v; it is observed that drug (brown) is 
escaping out of the micelle (red and violet) [46]
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Conclusions

Nanostructured polymer systems are an area of substantial sci-
entific interest and of emerging industrial practice, as it is clear-
ly indicated by the convergence of technologies (NBIC). Since 
the systems are complex, the only possible way to support the 
design is through the combination of experiments and modeling 
(MGI). Once more, due to the peculiarities of the systems of 
interest, no single technique can be applied for their simulation: 
it is therefore necessary to rely on a multiscale molecular mod-
eling approach that has been introduced and explained in this 
paper. 

The methodology presented in this paper can be considered a 
general design approach for complex nanostructured systems to 
be successfully used for the interpretation of experiments and 
for the design of active nano materials and nano systems. The 
approach is not at all limited to applications in biomedicine, but 
can be used from classical nanotechnology and beyond. Success-
ful applications of the multiscale molecular modeling method 
described above have been implemented in classical industries 
(automotive, opto-electronic, polymer…) and in industry 4.0, 
in pharmaceutical industry, in nano medicine & personalized 
medicine and in the internet of nano things and NBIC. 

It is expected that NBIC will have the same importance in 
21st century as the oil, polymers and semi-conductors had in the 
20th century. 
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