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Abstract: Cancers progress through the accumulation of somatic mutations which accrue during tumour
evolution, allowing some cells to proliferate in an uncontrolled fashion. This growth process is intimately
related to latent evolutionary forces moulding the genetic and epigenetic composition of tumour sub-
populations. Understanding cancer requires therefore the understanding of these selective pressures. The
adoption of widespread next-generation sequencing technologies opens up for the possibility of measuring
molecular profiles of cancers at multiple resolutions, across one or multiple patients. In this reviewwe discuss
how cancer genome sequencing data from a single tumour can be used to understand these evolutionary
forces, overviewing mathematical models and inferential methods adopted in field of Cancer Evolution.
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1 Introduction

Cancer, with roughly 10million deaths in 2018, is the second leading cause of death globally. A lot of efforts are
at play to understand its aetiology, its relation to the genetic and epigenetic background of the individual
patient and the associated disease trajectory. From a precision medicine point of view, we are interested in
optimising treatment for each and every patient, leveraging on the most sophisticated data generation tech-
nologies, and the most powerful computational methods for data interpretation.

In this review we discuss mathematical models and statistical challenges to measure cancer evolutionary
dynamics fromgenome sequencing of a single patient (weplan to discuss the joint analysis ofmultiple patients
in a follow up manuscript). This topic is at the core of the emerging field of Cancer Evolution (CE), where we
investigate tumours from an evolutionary perspective. This area of research relies on some of the most
advanced technologies for Next Generation Sequencing (NGS), and is a very strong testbed for the application
of many ideas from Machine Learning and Artificial Intelligence (Bi et al. 2019; Topol 2019).

Tumours aremade of subpopulations that evolve from a single cell and compete for survival, following an
evolutionary process where positive, neutral and negative selection modulates clone dynamics (see “A primer
on tumour evolution”, Section 2). The process outcome depends on the complex interplay of these forces, and
the past tumour history is recorded in the cancer molecules (Greaves and Maley 2012; Greenman et al. 2007;
Nik-Zainal et al. 2012). In particular, the signal of somatic evolution can be detected from multiple molecules
that we can readout by NGS assays. The one we refer to in this review is DNA, where the signal are somatic
mutations (in a broad sense), as we explain later. Of equal importance are RNA and other molecules
(e.g., chromatin), which we however do not discuss in this review. The clonal evolution model, originally
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postulated by Peter Nowell in 1976, is a key component to study tumour evolution, both with and without
therapy (Nowell 1976). In particular, “response” to therapy can be modelled as shifts in selective forces and
summarised by evolutionary trajectories (Turajlic et al. 2019). The CE paradigmuses cancer NGS data to bring a
“temporal dimension” in cancer analysis, using computational models to infer the evolutionary history of a
neoplasm. From the practical point of view, many computational methods popularised in CE implement some
form of feature selection or clustering for different types of NGS data. We apply these technologies either to
single tumours, or to cohorts; in both case, data are strongly affected by sequencing noise, sampling bias and
other confounders that depend on the specific analysis.

In a broad sense, the aim of CE is to quantify clonal selection from spatio-temporal patterns of somatic
genetic and epigenetic changes (McGranahan and Swanton 2017; Shackleton et al. 2009; Turajlic et al. 2019).
From the measurements obtained from sequencing we can unravel the tumour architecture and its “evolu-
tionary signature”. We can apply this to primary tumours, metastasis or post-treatment relapse samples. With
a model of the tumour and data we can address precise quantitative questions spanning from basic tumour
biology to advanced, controllable, tumour evolutionary dynamics (Gatenby et al. 2009). With data from
multiple patients, we can extend these patterns across tumour patients and identify prognostic subtypes,
along with their evolutionary biomarkers (Caravagna et al. 2016, 2018; Turajlic et al. 2018a, b).

This review regards the former type of problem, working with data of one patient. The concepts that we
highlight can be extend to work with longitudinal data of a single patient, but are not covered in this review.
The actual implementation of these ideas requires also to use bioinformatic tools to generate the somatic calls
used for the analysis. This is a key step, and all we discuss here holds under the assumption that we can
generate “good” calls to begin with (Househam et al., In preparation 2021). However, for the sake of brevity we
focus this review on the evolutionary aspects of the analysis. The interested reader can findmany other reviews
that cover these topics and can help getting a broader perspective on these data analysis problems (see e.g.
Dentro et al. 2017).

2 A primer on tumour evolution

Cancer growth is fuelled by various genetic and epigenetic lesions that accrue across generations of cancer
cells, which in the following we just shall call “mutations”. Depending on cancer type, these can be from few
hundreds to several hundred thousands (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
2020). In loose terms, these can drive proliferation and therefore competition between cancer subclones and
non-cancer cells. Among all mutations, the most prevalent ones are Single Nucleotide Variants (SNVs),
substitutions of a single DNA nucleotide; less frequent events are insertion and deletions that involvemultiple
nucleotides, up to larger chromosomal structural rearrangements such as Copy Number Alterations (CNAs)
and genomic fusions. Across cancers and patients these type of mutations have different prevalences, with
exogenous factors (e.g., exposure to carcinogens such as tobacco or UV light) playing also an important role on
the distribution of the somatic signals (Alexandrov et al. 2013; Ramazzotti et al. 2019; Rosenthal et al. 2016). For
instance, haematological cancers such as leukaemia have far few Single Nucleotide Variants (SNVs) than lung
or colon adenocarcinomas; similarly, certain ovarian cancer subtypes have hundreds of copy number events,
and few SNVs (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 2020).

2.1 The clonal evolution model

To understand tumour growth we use the clonal evolution model (Nowell 1976). Tumours start from one
healthy cell, triggered by a somatic driver mutation (Figure 1). From this cell x a new subclone seeds and
expand through nested generations; the genetic variation of these cells is called intra-tumour heterogeneity
(ITH) and can be detected by sequencing (Sottoriva et al. 2015). From an evolutionary perspective, this
variation is neutral within this expansion (i.e., it is non-functional), which means that all the progeny of x has
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the same fitness. Here x is Most Recent Common Ancestor (MRCA) of the clone, i.e., the most ancient ancestor
from which the sequenced cells originate. This can be identified, at least conceptually, if we percolate back-
wards the tumour phylogenetic tree starting from its leaves, which are the sequenced cancer cells. When we
sample a tumour, we always find an MRCA, which is not the MRCA of the whole tumour unless the biopsy
contains all and only the whole sets of cancer cells in the tumour. For this reason, the MRCA is somewhat an
arbitrary ancestor that depends on sampling (Caravagna et al. 2020).

The fitness of a clone is an abstract measure of its proliferative potential, usually denoted by s (we discuss
mathematical models in Section 3.1). Fitness increases when a cell acquires a new driver mutation; drivers co-
occurring in the same cell confer further fitness increase thorough epistatic interactions. There can be several
types of epistatic interactions in cancer (Beerenwinkel et al. 2007; Caravagna et al. 2016; Diaz-Uriarte 2018;
Diaz-Uriarte and Vasallo 2019; Ramazzotti et al. 2015). For instance, the negative one is important when we
study multiple patients, as it can be related to patterns of mutual exclusivity across genes mutated in non-
overlapping sets of patients. In this context, when a new subclone is triggered with higher fitness than its
MRCA, it can proliferate faster. By enjoying a force of positive selection, the new subclone is pushed to colonise
the whole tumour mass (in the long run). This evolutionary process is at play with potentially multiple co-
existing subclones, and is also affected by random drift.

Cancer clonal dynamics is also heavily affected by negative selection, especially when mechanisms of
immune response are active or boosted by therapy (Martincorena et al. 2017; Pich et al. 2019; Zapata et al. 2018).
Cancer cells that harbour certain neo-antigens are exposed to T-cells, with the effect of becoming depleted by
the immune system, a process that can bemathematically modelled (Lakatos et al. 2020; Zapata et al. 2020). In
very loose terms, many modern cancer immunotherapies either try to boost or restore the immune system, a
natural antagonist of the cancer (Schumacher and Schreiber 2015). As a consequence of the strong immune
pressure, resistance to this type of treatments often emerges through complex mechanisms, genetic or
epigenetic, that allow for immune evasion. A notable example of geneticmechanism is the copy number loss of
heterozygosity of the human leukocyte antigen (HLA) system, which hijacks amachinery that tumour cells use
to expose neoantigens (Christopher et al. 2018; Toffalori et al. 2019; Vago et al. 2009).

Figure 1: Clonal evolution model with three clones. The tree of cell divisions is represented and the clonal expansions coloured.
Each cell division newmutations are acquired, most of them are neutral and do not change the fitness level of the cell where they
happen. Others can instead increase proliferation and survival, de facto increasing the level of fitness s of the clone. Nested
expansions such as these describe a case with s0 < s1 < s2. Drift and random death can happen along the tree, as stochastic
events. The clones that we can infer from data of this tumour depends on when we observe the process; In general, we make
inferences about the ongoing clonal history of the tumour.
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2.2 Cancer sequencing data

We can use several types of molecular data to study cancer, but for the problems that we discuss in this review
we will refer mostly to bulk DNA sequencing. These are readouts of DNA fragments which we align to a
reference genome through standard bioinformatics (DePristo et al. 2011). A common experimental design
consists in acquiring one ormore tumour samples, togetherwith a biopsy of “normal” cells (e.g., from a distant
tissue, saliva, blood or anything that is free of cancer cells).

Sequencing reads are processedwith bioinformatics tools to identify germline and somaticmutations. This
is done by detecting the variation to the reference independently in both the normal and tumour; somatic
tumour mutations are then obtained by subtracting the signal of the normal from the tumour (since a normal
cell is the tumour’s MRCA). The most reliable source of information to infer the evolutionary history of the
tumour are simple SNVs, for which we use the substitution frequency of the reference allele v, against the
variant allele r. At genome position ℓ, we consider the Variant Allele Frequency (VAF)

vℓ � nℓ

dℓ
,

where
– the depth of sequencing dℓ, defined as the total number of reads that span ℓ;
– the total number of reads nℓ with the variant allele r, in position ℓ.

TheVAF is a proxy for the prevalence of themutation in the cell population, whichwe callCancer Cell Fractions
(CCF). If the tumourwas diploid, amutation present in all cellswould have CCF equal to 1, andVAF0.5. Inmore
general cases, when cancers have CNAs (i.e., high levels of aneuploidy), adjustment is a bit more complicated
as we need to retrieve the number of copies of the mutation in the genome (see a good review in Dentro et al.
2017).

The reality is more complicated, since with bulk sequencing we often end up sequencing also DNA from
normal cells. Therefore dℓ − nℓ, the number of reference reads, is a composition of reads from both normal and
tumour cells. Therefore in the computation of CCFs we need to adjust frequencies also for sample purity
(i.e., the percentage of tumour cells in the bulk sample).

3 Measuring evolution in a single patient

We can use genome sequencing data to measure clonal evolution in a single patient. Ideally, we will be using
whole-genome sequencing (WGS) data of one, or more, biopsies of the same tumour (which could be either a
primary or a metastasis). It is possible to use whole-exome sequencing (WES) data, but there are no gold
standard rules. The key variable here is the tumour mutational burden, as that affects the VAF distribution we
see with a WES or WGS assay.

3.1 Mathematical models of tumour growth

Population genetics is the ground upon which we can formalise the clonal evolution model (Durrett 2002;
Ewens 2012; Kimura 1994; Tavaré 1984). There are however some differences between the fields which are
worth noting. First, in cancer we have no sexual recombination, which makes modelling easier. Second,
evolution in cancer is on a microscopic time-scale, compared to canonical species evolution (e.g., over
thousands or millions of years). Third, human cancers are independent realisations of some latent evolu-
tionary processes, as opposite to canonical species that derive from a unique stream of evolution (Caravagna
et al. 2018).
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In the population genetics literature there are several popular cell growth models; we refer to (Beer-
enwinkel et al. 2015) for a rich review on these topics. The Moran process, the Wright–Fisher process and the
coalescent are the standard models for finite populations of constant size. Branching processes (e.g., the
Galton–Watson process) are more general stochastic models for well-mixed populations that have finite, but
fluctuating, size. This kind of stochastic branching process has been successful in describing selection-driven
bacterial dynamics observed by Luria and Delbrück (Fusco et al. 2016; Kessler and Levine 2013, 2015). Here we
give a brief and intuitive description of a possible process, and refer to more advanced literature for details
(Beerenwinkel et al. 2015; Nowak 2006; Williams et al. 2016).

The growth of a population of cells can be described as a Markov birth-death process that starts from a
single cell, which at every step undergoes a probabilistic choice (independently from all other cells): the cell
either proliferates by generating two distinct daughter cells (asymmetrical cell division), or it dies
(Williams et al. 2016; Tung and Durrett 2020). There are also symmetric division cases, often linked to the
cancer stem cell model, where only one daughter cell is produced and the ancestor cell retained (Shackleton
et al. 2009). Despite this change the conceptualisation of the model is not very different, and the inter-event
probability follows an exponential distribution (i.e., it is memoryless, as it depends on the current state and
other parameters).

3.1.1 A single clonal expansion

It is easy and instructive to visualise the special case of a single clone with fitness advantage s > 0 (monoclonal
expansion), as in Sottoriva et al. (2015),Williams et al. (2016, 2018). The process of cell division canbe described
by two stochastic events with mass action rate functions fi

(divide) x→ 2 x f1(x) � λ(1 + s)x
(die)  x→ θ f2(x) � βx.

Both events are linear in x, and the total exit rate of the process in state x is

a0(x) � f1(x) + f2(x) � [λ(1 + s) + β]x.
Since we count cells, the process state is always a discrete vector – this leads to a Continuous TimeMarkov

Chainmodel, with absorbing state0. In the general casewith k clones states are elements fromN
k; with a single

population the state reduces to a scalar x ∈N. The division event (divide) depends on the baseline cell division
rate λ > 0, with s the selection coefficient of the clone. A value of s = 0.2 represents a 120% increased fitness,
relative to baseline; here this means a 20% faster growth, but in alternative models this could relate to a 20%
increase survival rate for the offspring. In this model s can predict the outcome of competitions among clones
with different fitness values (Antal and Krapivsky 2010; Khan et al. 2018).

The overall model is characterised by the conditional density function p(x, t|x0, t0) – the probability of
being in state x at time t, given the initial start in state x0 at time t0 – which obeys the ordinary differential
equation

∂tp(x, t|x0, t0) �p(x − 1, t|x0, t0)a1(x − 1) + p(x + 1, t|x0, t0)a2(x + 1)
−p(x, t|x0, t0)(a1(x) + a2(x)). (1)

This is the equation for the general case x > 1; the special case with x = 1 where there are no jumps from the
0-absorbing state is discussed in Williams et al. (2018).

Analytical solutions to this master equation equation can be obtained as shown in Williams et al. (2018)
within the context of cancer, and evenmore in general cases in an earlier book by Bailey (1990). Samples from
the density function (i.e., realisations of the process) that solves this equation can be obtained through the
Gillespie approach (Gillespie 1977) – i.e., if the chain is in state x at time t we can determine when the next
reaction event will happen, and what that will be:
– the time-to-event lag τ follows an exponential density λ ∼ Exp(a0(x));
– the conditional density that that event is j = {1, 2} follows j ∼ fj(x)/a0(x).
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3.1.2 Including genotypes and mutations

To complete a cancer model we need to add cell genotypes, on top of clonal expansions, allowing for cells to
simulate intra-tumour heterogeneity. We read out genotypes from sequencing, which we can be abstractly
model as binary vectors g ⊆ {0, 1}r indicating presence or absence of rmutations. Every cell division, a daughter
cell inherits the genotype g fromhis ancestor, plusw new randommutations (w new entries 1 in g). The process
is recursive and triggers every cell division (notice that the genotype per se does not affect the jump rates,
which depend only on fitness). The total number of newly acquired mutationsw follow a Poisson density with
constant rate μ > 0, w ∼ Poisson(μ) ≡ p(w|μ).

3.1.3 Generalisation with multiple clones

The overall process contains cell division, death, and genotypes, to distinguish cells; it needs to be extended
with clones. For every clone, the selection coefficient s is constant through time; in amonoclonal expansion all
w mutations are neutral (Williams et al. 2016). To model clones that experience either positive or negative
selection, we need to allow for a somatic mutation to change the value of s, the fitness coefficient. This can be
done by introducing a probability η > 0 of a new mutation to be a driver; this event is independent of the
probability of a new mutation, so the joint density of sampling one driver among w mutations is

p(1 driver among  w new  mutations) � η(1 − η)w−1p(w|μ)
where p(w|μ) is the Poisson density described above.

For any new driver event we sample a new ŝ for the associated cell. In practice, one can set s0 = 0 for the
initial selection coefficient of the tumour-initiating cell, so that every new subclone with s > 0 is s percent more
fit than baseline. The actual distribution to draw values for s is subject to modelling (Williams et al. 2020;
Zapata et al. 2020). The new clone can enjoy either positive (ŝ > s, which triggers a new subclonal expansion) or
negative (ŝ < s, which triggers depletion of the new population) selection. The new selection coefficient ŝ also
determines the speed of these dynamics – i.e., how long it takes for the subclone to colonise the overall
population, or go extinct. For practical purposes one can model the prevalence of a clone as a density, and
assume that very small clones (e.g., <1% of the overall mass) are too small to detect by sequencing. Mathe-
matically, in the long run, the predicted distribution for this process is totally concentrated towards states
where a single clone survives.

Some simulators are already available to generate samples from this stochastic process as well as from its
spatial extensions (Heide, Webpage: https://github.com/T-Heide/TEMULATOR 2020 (accessed December 6,
2020; Chkhaidze et al. 2019). The utility of thesemodels is that they also include a data-generation process that
mimicks the effect of other confounders observed in real data (e.g., tumour purity and sequencing coverage,
which can make this analysis more complicated but are not discussed here).

3.2 Clonal deconvolution from bulk sequencing

Bulk WGS can be used to detect subclonal expansions that are currently ongoing in a tumour sample (Turajlic
et al. 2019); this means determining colours for the tree in Figure 1. From a single patient we can only identify
ongoing expansions of the populations competing for fixation. We cannot infer all past clonal dynamics and,
for instance, resolve the order of clonal mutations whose expansions are already fixated in the current sample.

The deconvolution problem is approached by using VAF or CCF values from read counts data, ideally from
WGS (Dentro et al. 2017). This problem draws on some popular clustering models in the context of Machine
Learning, usually parametric and non-parametric formulations of Dirichlet mixtures (Bishop 2006). The
intuition is that mutations with similar allele frequencies are likely to co-occur in the same cell. The mixture
density has the general form
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p(x|π, θ) � ∑
k

i�i
πif(x|θ),

where ∑k
i�iπi � 1. For the likelihood of each component, we can model read counts by Binomial or Beta-

Binomial distributions, or we canmodel VAF or CCF values by Beta or Gaussian distributions (Caravagna et al.
2020; Deshwar et al. 2015; Miller et al. 2014; Nik-Zainal et al. 2012; Roth et al. 2014). For example, if we use VAF
and Binomials we have

f(x|θ) � Bin(nℓ|dℓ, vℓ).
The model for nmutations x has usually a n × k latent variable matrix z that assign mutations to clusters.

From the output clustering assignments we compose cancer clones, assembling a clone tree via the pigeonhole
principle.1 We can identify genotypes percolating on a clone tree that represents ancestral relations.

While this approach is neat, the joint presence of neutral within-clone dynamics and positive selection
requires caution2 in the interpretation of these clusters (Caravagna et al. 2020). In practice, we are neglecting
non-functional ITH from the overall picture. Some earlier work on the master equation for a stochastic Luria–
Delbrück model of bacterial growth can be adapted to cancer, providing insights for the shape of the ITH
signal – see (Kessler and Levine 2013) for a nice recap on those results, as well as some new findings. The large
population solution for the probability of having m mutants at time t follows a fat-tail Landau distribution

p(m) � 1
μN

fLandau( m
μN

− logμN + γ − 1),
where N is population size, μ the mutation rate and γ a constant. The asymptotic behavior of fLandau can be
approximated as the inverse squared of m, which is a power-law3 model for neutral growth (Caravagna et al.
2020; Williams et al. 2016, 2018) (Figure 2). By this reason one can include a power-law density (fPowerLaw) on
top of a Dirichlet mixture model with k − 1 Betas ( fBeta), i.e.,

p(x|π, θ) � π⋆fPowerLaw(x|θ) + ∑
k

i�1
πi fBeta(x ∣ θ),

where ∑k
i�iπi � 1 − π⋆, de facto integrating a model – the power law – to perform tumour subclonal decon-

volution (Caravagna et al. 2020). The advantage of this model is that it can retrieve, from the fit distributions,
tumour features such as themutation rate and the age of the identified subclones (seeWilliams et al. (2018) for
the derivation of these quantities).

In general, it is possible to extend these models to consider multiple spatially separated biopsies of the
same tumour, so we can measure ITH in space by detecting clusters of alleles that move differently across
biopsies. In this case to model the data we use multivariate Binomial distributions, where each dimension
corresponds to one of the biopsies – therefore alleles that move have distinct Binomial parameters. If there are
w dimensions the likelihood is

f(x|θ) � ∏
w

i�1
Bin(nℓ, i

∣∣∣∣dℓ, ivℓ, i).
where the data is now indexed by each biopsy, and the dimensions are assumed to be independent. Note that

1 This is a constructive combinatorial principle to assemble a tree: it states that the total CCFs for the descendants of a node, cannot
be larger than the CCF of the node (Deshwar et al. 2015; Nik-Zainal et al. 2012).
2 This is discussed in detail in Caravagna et al. (2020). The key point is the polyphyletic nature of neutral tails, which invalidates the
implicit assumption that mutations at the same frequency co-occur in the same cell. For instance, in Figure 2 yellow and blue
mutations that are present in 50% of the sequenced cells originate into two separate branches of the tree.
3 A type-I Pareto density that can capture p(m) follows the generic density

f(x|α, x*) � αxα
*/(xα+1),

where x* is the scale value, i.e., the value such that f(x|α, x∗) � 0 for x < x*, and α is the shape of the power law.
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even if the dimensions are independent, in the latent variables of the model each input point is assigned to a
cluster after considering the product likelihood on all dimensions. The introduction of multivariate extensions
in the overall picture however leaves a number of open problems: in particular, it turns out that many
multivariate distributions are equally observable in cases with genuine spatially-measurable positive selec-
tion, or in cases that are actually neutral, but affected by strong spatial sampling biases. A detailed discussion
of the role of spatial sampling in the deconvolution has been recently presented in Caravagna et al. (2020).

3.2.1 Software for deconvolution

In the last years many software tools have been developed for deconvolution from bulk sequencing – see
Rosenthal et al. (2017) for a review. One of the most famous is PyClone, which can integrate clonal copy
numbers and tumour purity on top of somatic VAFs obtained from deep sequencing assays, in a Bayesian
model learnt by Markov Chain Monte Carlo (Roth et al. 2014). Similar to PyClone is DPclust, which leverages
WGS to circumvent the need for deep sequencing and allowsmutations to reside on subclonal copy numbers –
i.e., CNAs that appear in a subset of cells in the whole tumour. An interesting alternative, which also applies a
Bayesian clustering method but restricts only to mutation data is SciClone, which uses a variational
approximation to the posterior parameters (Miller et al. 2014). There are also many other methods that
approach the problem fromother technical angles, e.g., via integer linear programming and the like;we refer to
Rosenthal et al. (2017) for a broad review of these tools.

Importantly, all the above mentioned tools approach the deconvolution problem for the perspective of
Binomial, Beta-Binomial or Gaussianmixtures, disregarding the power lawmodel presented in this review. As
of today, the only tool that integrates both perspectives is MOBSTER (Caravagna et al. 2020).

4 Conclusions

The field of Cancer Evolution has recently emerged, in which we seek tomodel tumour growth and response to
therapy through the lens of evolution. From several NGS technologies we seek to extract the evolutionary
trajectories that describe a cancer. In this review, we have summarised some of the basic principles

Figure 2: Intra-clone evolutionary dynamics are neutral and can bemathematicallymodelled (with exact solutions for the steady-
state distributions for the process). If we neglect drift, the tree of cell divisions is balanced –in the plot we annotate on tree
branches themutations that accumulate. If we find the proportion of tumour cells that harbour a set ofmutations, we can infer the
cell lineage history (what mutation happened first). Note in this case the scaling power law for the Cancer Cell Fraction (CCF) and
corresponding Variant Allele Frequency (VAF) values, assuming a diploid cancer genome.
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underpinning the application of mathematical modelling to clonal evolution, the conceptual framework upon
whichwe can study tumour growth. Also,we have provided an overview of the inferential approach that can be
used to learn, from cancer DNA sequencing data, cancer clonal dynamics.

In this respect, many new technologies promise to deliver new measurements which we can use to study
tumour evolution. Among these we want to mention both single-cell technologies (Gawad et al. 2016; Navin
2015), with their multiomics extensions (Chappell et al. 2018; Macaulay et al. 2017), and spatial sequencing
approaches (Burgess 2019; Ståhl et al. 2016). Multi-omics assays can probe multiple molecules from the same
cell – e.g., the DNA and the RNA – and pose challenges for data integration and mathematical modelling
(Colomé-Tatché and Theis 2018; Nam et al. 2021; Stuart and Satija 2019). In multi-omics data we have multiple
measurements for the same cell, and the integration seems conceptually more intuitive; in many cases,
however, we have multiple data types generated from different cells, and an explicit integration has to be
carried out (Argelaguet et al. 2018, 2020; Campbell et al. 2019; Milite and Caravagna, In preparation 2021).
Spatial extensions for single-cell RNA sequencing are also extremely important to identify patterns of spatial
transcriptomics. These new technologies allow, to a different degree, to probe the cancer RNA profiles from
tissue slices, obtaining a measurement associated with a geographical position (Vickovic et al. 2019). This
information makes it easier to decouple the spatial signal, since that becomes explicitly associated to a
location. While still in their infancy, these technologies can be used to understand spatial patterns of cell
segregation and localised drug response (Berglund et al. 2018; Moncada et al. 2018).

With those data becoming increasingly available, there is the need of extending the approaches
mentioned in this review in order to accommodate specificities of the newdata (see (Lähnemann et al. 2020) for
a very recent review on these topics).
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