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We explore the possibility of probing flavor violations in the charged-lepton sector by means of high-
luminosity lepton-photon and electron-muon collisions, by inverting initial and final states in a variety 
of decay channels presently used to bound such violations. In particular, we analyze the resonant lepton, 
γ � → �′ , and neutral-meson, e−μ+ → φ, η, π0, scattering channels, whose cross sections are critically 
dependent on the colliding-beams energy spread, being particularly demanding in the case of leptonic 
processes. For these processes, we compute upper bounds to the cross-section corresponding to present 
limits on the inverse decay channel rates. In order to circumvent the beam energy spread limitations 
we extend the analysis to processes in which a photon accompanies the resonance in the final state, 
compensating the off-shellness effects by radiative return. These processes might be studied at future 
facilities with moderate energies, in case lepton-photon and electron-muon collisions with sufficiently 
high luminosity will be available.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Processes with violations of the generational leptonic num-
ber play a crucial role to test the standard model and to collect 
hints towards its possible extensions. While neutrino oscillations 
have been evidenced, lepton flavor violations for charged particles 
(CLFV hereafter) have not yet been observed. Some contribution 
to CLFV is expected in the standard model incorporating massive 
and mixing neutrinos, but at a level beyond the detectability for 
any foreseeable future [1–5]. Extensions of the standard model 
such as supersymmetric models or grand unified theories instead 
provide ranges for CLFV rates which can be of phenomenological 
interest [6–11]. After earlier attempts to detect such effects in the 
muon decay channel μ → eγ [12], the currently more stringent 
test is provided by the MEG experiment, which finds at 90% C.L. a 
branching-ratio (BR) bound BR(μ → eγ ) < 4.2 × 10−13 [13,14]. A 
factor 10 sensitivity improvement is expected after the MEG II up-
grade [15]. Further improved constraints will be provided by muon 
electron conversion μN → eN experiments [16–19] and electron-
ion colliders [20].
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In this letter we discuss a complementary method to constrain 
possible CLFV, obtained by time reversal from a typical two-body 
CLFV decay channel. For example, in the μ → eγ case, one can 
consider the inverse resonant production of a muon by the fusion 
of an electron and a photon of appropriate energy, in the γ e → μ
scattering. This process takes advantage from the possibility to 
control the beam intensities of electrons and photons. In princi-
ple, high intensity electron beams, as the one used in synchrotron 
radiation sources, and high intensity photon sources might provide 
a higher sensitivity, and allow, in the absence of detected events, 
for more stringent CLFV bounds. While we will see that, due to the 
extremely narrow linewidth of the process, the γ e− → μ− case is 
not viable, we will discuss in detail more promising processes with 
broader resonances as the ones involving the τ lepton and pseu-
doscalar/vector mesons.

As a possible way to cope with the critical limitations con-
nected to the finite beam-energy spread, we will then extend the 
above discussion by analyzing non-resonant channels derived by 
radiative return from the previous class of resonant processes.

The plan of the letter is as follows. In Section 2, we discuss 
the production cross sections for resonant lepton (γ � → �′) and 
neutral-meson (e−μ+ → φ, η, π0) scattering channels, including 
beam energy-spread effects on which the results are critically de-
pendent. Cross-section upper bounds are computed on the basis 
of present experimental limits on the corresponding inverse decay 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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channels. In Section 3, we go beyond the leading-order resonant 
cross sections, and present analytical results for the correspond-
ing radiative-return channels assuming a lepton-flavor violating 
Lagrangian in the effective field theory (EFT) approach. Finally, in 
Section 4, we present our conclusions.

2. CLFV processes as resonant phenomena

The observation of CLFV events in resonant production may 
proceed under very strict kinematic conditions, as discussed in the 
following by recalling quite general considerations. Let consider a 
generic resonant process induced by the scattering of the a and b
states a + b → R → f , where R is a resonance, and f its decay fi-
nal state. The R production in a b collisions, in the reference frame 
where the a and b momenta are parallel but opposite, occurs when 
the following condition is fulfilled

Ea Eb (1 + βaβb) = 1

2
(m2

R − m2
a − m2

b) , (1)

with βa,b = pa,b/Ea,b , where Ea,b and pa,b are the energies and 
corresponding (modulus of) momenta respectively, that for Ea,b �
ma,b can be approximated as Ea Eb � (m2

R − m2
a − m2

b)/4.
In order for the R resonance to go on-shell, one in general 

needs an excellent control on the energy spread of the colliding 
beams. The beam energy distribution can usually be described by 
a Gaussian function (see for instance [21])

G(E,	E) = 1√
2π	E

exp

[
− (E − E0)

2

2	E2

]
, (2)

where E0 is the energy for which the beam intensity is maximum 
and 	E the beam energy spread. Then, the cross section which 
takes into account the effect of the beam broadening is obtained 
as a convolution integral in the beam energy E of the Breit-Wigner 
(BW) distribution of the resonance with the Gaussian distribution 
of the beams in Eq. (2).

Before including possible beams energy spread, the resonant 
cross section, for center-of-mass energies E close to the resonance 
rest energy mR , and in the non-relativistic limit, is given by

σ(E) = (2 J + 1)BRiBR f

(2Sa + 1)(2Sb + 1)

4π

p2

�2
R

4(E − mR)2 + �2
R

, (3)

where J is the total angular momentum of the resonance, Sa(b)

the spin of the initial a(b) state, BRi and BR f are the branching 
ratios of the resonance decays into the initial (R → a b) and final 
(R → f ) state, respectively, and p is the a, b momentum in the 
a + b center-of-mass frame.

Then, the integrated or averaged cross-section over the beam 
energy spread at E � mR is given by

σ̄ ≡
∞∫

−∞
G(E,	E)σ (E)dE . (4)

In the case of a narrow resonance �R 
 mR the last term in Eq. (3)
can be well approximated by a Dirac delta-function distribution, 
namely

�2
R

4(E − mR)2 + �2
R

→ π
�R

2
δ(E − mR) . (5)

Then, in the narrow resonance approximation and for �R/	E 
 1, 
by means of Eq. (5), the cross section in Eq. (4) simplifies to

σ̄ � (2π)3/2 2 J + 1

(2S + 1)(2S + 1)

BRiBR f

2 p2

�R

	E
, (6)
a b R

2

Fig. 1. Reduction of the integrated cross-section due to the mismatching between 
the peak of the beams energy distribution and the resonance mass. The integrated 
cross-section normalized to the maximum of the cross-section σ̄peak is depicted 
versus the detuning factor (E0 − mR )/�R , for three different values of the �R/	E
ratio, 10−1 (black, continuous), 1 (red, dot-dashed), and 10 (blue, dotted).

with, neglecting initial particle masses, pR � mR/2. Likewise, if the 
resonance is broad, the energy distribution of the beams can be 
approximated with a Dirac delta-function distribution.

In a generic intermediate case, that is when �R and 	E are 
of the same order, one needs to numerically integrate the observ-
able resonant cross section. In this case, we evaluate the averaged 
cross section in Eq. (4) by retaining the whole energy dependence 
in Eq. (3), except for the momentum p, which has been replaced 
by its value p ∼ mR/2 at the resonant energy E = mR , a condition 
valid in the �R/mR 
 1 limit. In Fig. 1 we show the integrated res-
onant cross-section σ̄ in this general case, normalized to its peak 
value – that is relative to the case of an ideal tuning with a beam 
of negligible width – as a function of the energy detuning relative 
to the process linewidth, for different values of the ratio �R/	E . 
Notice that, by construction, the ratio plotted in Fig. 1 does not 
depend by the resonant mass mR . As expected, the suppression 
is negligible if the resonance is narrower that the spread of the 
energy beam, as evidenced in the �R/	E = 10−1 case. However, 
in the opposite case of �R/	E = 10, the reduction is consider-
able, for instance about two orders of magnitude for a detuning 
|E0 − mR | = 5�R .

2.1. The γ � → �′ processes

We specialize here the considerations developed in the former 
section to the class of resonant FCNC processes in the charged lep-
ton sector

γ � → �′ , (7)

for � �= �′ , with � = e, μ and �′ = μ, τ . By taking into account the 
beam-energy broadening effect in Eq. (2), setting E0 = m�′ and 
� = ��′ , with m�′ and ��′ the �′ mass and width, respectively, and 
neglecting m� , we obtain for the integrated resonant cross section

σ̄ (γ � → �′) � (2π)3/2

m2
�′

��′

	E
BR (�′ → �γ ) , (8)

where in Eq. (6) we have replaced BRi → BR (�′ → �γ ), and as-
sumed BR f = 1.

We analyze first the most promising �′ = τ case, in particular 
the processes γ e → τ and γμ → τ . By taking into account the τ
total width �τ � 2.27 × 10−3 eV and the present limits at 90% C.L. 
on the branching ratios for these processes, namely [22]

BR(τ → eγ ) < 3.3 × 10−8, BR(τ → μγ ) < 4.4 × 10−8, (9)
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we get the following upper bounds for the corresponding resonant 
cross sections

σ̄ (γ e → τ )� 1.4

(
100 keV

	E

)
ab , (10)

σ̄ (γμ → τ )� 1.9

(
100 keV

	E

)
ab . (11)

Hence, assuming a beam energy spread 	E ∼ 100 keV in γ e and 
γμ collisions, measurements of the γ � → τ cross sections of the 
order or smaller than 1 ab are required to achieve sensitivities on 
the branching ratios for the CLFV τ → eγ and τ → μγ decays 
which are comparable or stronger than the corresponding upper 
limits in Eq. (9).

It is also interesting to compare the latter cases with the more 
challenging resonant γ e → μ production. With a muon lifetime of 
τμ = 2.2 ×10−6 s (corresponding to a total width �μ = 3.0 ×10−10

eV), muon production would require an unrealistic beam energy 
spread. Moreover, the extremely constraining MEG bound on the 
μ → eγ decay (BR(μ → eγ ) � 4.2 ×10−13 at 90% C.L. [13]) implies 
an upper bound on the muon resonant cross section

σ̄ (γ e → μ) � 6.9 × 10−10
(

100 keV

	E

)
ab , (12)

which is beyond any realistic experimental performance by many 
orders of magnitude.

In preparation for the discussion presented in the next sections, 
it is useful to introduce an effective Lagrangian responsible for the 
CLFV �′ → �γ decay. This effective Lagrangian will be written in 
terms of the lowest (gauge-invariant) dimensional local operator 
given by the magnetic-dipole like interactions

LC L F V =
∑
�,�′

1

2�′�
ψ̄�σ

αβψ�′ Fαβ + h.c. , (13)

where �′� is the associated mass effective scale, ψ�′ and ψ� stand 
for the initial and final heavier lepton fields respectively, Fαβ =
∂α Aβ −∂β Aα is the usual electromagnetic tensor operator, with Aα

the photon field, and σαβ ≡ i/2[γ α, γ β ]. In a potential UV comple-
tion for the new physics (NP) scenario, the effective interaction in 
Eq. (13) could arise for instance at one loop. In this case, the effec-
tive �′� scale is expected to be related to the mass and couplings 
of the NP scenario as 1/�′� ∼ g2

�′�/(16π2 MNP), where MNP stand 
for the smallest mass relevant to new physics running in the loop, 
and g�′� 
 1 parametrizes the corresponding dimensionless CLFV 
coupling.

The decay width for �′ → �γ then becomes [23]

�(�′ → �γ ) = m3
�′

8π2
�′�

(1 − r�)
3 , (14)

with r� = m2
�/m2

�′ . For instance, in the case of the CLFV μ → eγ
decay, by using the upper bound BR (μ → eγ ) < 4.2 × 10−13, from 
Eq. (14) we obtain μe � 2 × 1010 TeV that, for MNP ∼ 10 TeV, 
would imply for the relevant CLFV coupling gμe� 3 × 10−4.

2.2. The e−μ+ → φ, η, π0 processes

The severe bounds on the cross section for inverse CLFV pro-
cesses like e(μ)γ → τ or eγ → μ are due to both the extremely 
narrow width of the final state, and the strong experimental bound 
on the related branching ratios, especially in the μ → eγ case. 
These two conditions are not satisfied for processes involving 
broader resonant states and less stringent experimental constraints 
on CLFV branching ratios (see [24] for model-independent bounds 
based on unitarity).
3

In order to consider less constrained setups, we then extend 
our discussion to CLFV inverse processes involving neutral mesons, 
hence replacing γ � initial states by opposite-charge leptons of 
different flavor. In particular, we will analyze the resonant CLFV 
production of a neutral meson M, via the channel e±μ∓ → M. 
Among many possibilities, we restrict the choice to the pseu-
doscalar mesons such as the neutral pion π0 and the η, as well 
as the vector meson φ. The considered mesons have widths much 
smaller than their mass, even in the broader φ case (�φ/mφ �
0.5%), and Eq. (6) still gives a proper description for the effective 
eμ → M cross sections.

The resonant M = π0, η, φ cross section averaged over the 
beam energy spread is then, analogously to Eq. (8) but retaining 
the exact muon mass (mμ) dependence,

σ̄ (e−μ+ → M) � CM(2π)3/2

m2
M(1 − rμ)2

�M

	E
BR (M → e−μ+), (15)

with mM and �M the M meson mass and width, respectively, while 
the coefficient CM (Cπ0,η = 1/2, and Cφ = 3/2) accounts for the M
spin degeneracy, and rμ = m2

μ/m2
M.

By using the corresponding meson widths, �φ � 4.25 MeV, 
�η � 1.31 keV, and �π0 � 7.72 eV, and the present experimen-
tal upper limits on the CLFV branching ratios at 90% C.L.,

BR(φ → e μ) � 2 × 10−6, [25]

BR(η → e μ) � 6 × 10−6, [26]

BR(π0→ e μ) � 3.6 × 10−10, [27] (16)

we obtain from Eq. (15) the following upper bounds on the cross 
sections

σ̄ (e−μ+ → φ) � 3.8 × 102
(

100 keV

	E

)
nb , (17)

σ̄ (e−μ+ → η) � 4.3 × 102
(

100 keV

	E

)
pb , (18)

σ̄ (e−μ+ → π0) � 1.5 × 10−2
(

100 keV

	E

)
pb . (19)

In the latter equations, which include only one charge combination 
for the colliding particles, we use half of the BR’s experimental 
upper limits in Eqs. (16).

Electron-muon collisions in the energy range needed for the 
latter processes are indeed presently under consideration. The 
fixed target experiment MUonE plans to explore electron-muon 
scattering at 

√
s � 400 MeV [28]. By running a similar experi-

ment at lower 
√

s, one in principle could cover the CLFV chan-
nel e−μ+ → π0, which has been investigated in the decay mode 
[29,30], but has an expected π0 → e μ partial width which is less 
than about 3 × 10−9 eV. With a modest boost in the energy with 
respect to MUonE, one could also reach the significantly broader η
resonance.

Notice that muon beams are expected to have a relative energy 
spread much smaller than their electron counterpart, due to the 
low impact of bremsstrahlung and synchrotron radiation, which is 
estimated to be at the Higgs-boson peak of the order of 	E/E �
10−5 [31,32].

A different possibility might be provided by non fixed-target 
electron-muon setups. For instance, in order to go on the η reso-
nance, assuming an electron beam with Ee = 50 MeV, one would 
need a muon beam with Eμ = 1.4 GeV. This combination could 
match the use of a high intensity electron beam from a van der 
Graaf accelerator (with order of μA currents) and a relatively high-
energy muon beam with beam energy spread 	E � 15 keV, with 
a comparatively negligible electron beam energy spread.
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In analogy to the purely leptonic channels, it is convenient to 
parametrize the effective CLFV coupling between the generic me-
son M (with M = π0, η for the case of scalar mesons, and M = φ

for the vector meson φ) and the leptons. We assume the effective 
Lagrangian to be dominated by lowest dimensional operators of di-
mension 4. In particular, for the neutral scalar mesons M = η, π0, 
we parametrize it with operators of scalar Yukawa-type interaction

LS
CLFV =

(
Y L

μeψ̄μ P Lψe + Y R
μeψ̄μ P Rψe

)
ϕM + h.c. , (20)

where we assume the most general parity-violating couplings Y L,R
μe

to the scalar meson M induced by some new physics, with the 
chiral projectors defined as P L/R = (1 ∓γ5)/2, and ϕ stands gener-
ically for the scalar field associated to the scalar meson M. On the 
other hand, for the vector meson φ, we can parametrize the corre-
sponding interaction as

LV
CLFV =

(
Y L

μeψ̄μγ α P Lψe + Y R
μeψ̄μγ α P Rψe

)
Vα + h.c. , (21)

where Vα stands for the massive spin-1 field associated to the φ
meson. To simplify the notations the same symbols for the cou-
plings as in Eq. (20) have been adopted.

The effective couplings appearing in Eqs. (20), (21) can origi-
nate at the fundamental level of quark and lepton interactions, via 
CLFV dimension 6 operators induced for instance by the exchange 
of some heavy new physics particle like

Leff ∼ 1

2
[q̄�iq][μ̄�ie] + h.c. , (22)

where q = u, d, s are the light quark fields, and �i generically indi-
cate matrices of the Clifford basis (contraction over Lorentz indices 
is understood). For instance, in the case of a vectorial exchange, 
�i = γμ or �i = γμγ5, one can easily relate the scale  to the ef-

fective Yukawa coupling Y L,R
μe by making use of Lorentz invariance 

to compute the hadronic matrix element of the q̄γμγ5q operator 
between the vacuum and the meson states. In particular, for the 
π0 we have

Y L,R
μe ∼ fπmμ

2
, (23)

with fπ the pion decay constant, that for a new physics scale of 
the order of  � 1 TeV yields Y L,R

μe ∼ 10−8. Analogous results can 
be obtained for the η and φ mesons, by applying the same con-
siderations. Then, due to the short-distance nature of the quark-
lepton interaction in Eq. (22), the validity of the effective meson 
interactions in Eqs. (20), (21), is up to energies of the order of the 
scale .

By using the effective Lagrangians in Eqs. (20), (21), and by ne-
glecting contributions proportional to me , we obtain, for the total 
width for the CLFV meson decay M → e−μ+

�(M → e−μ+) = SM|Yμe|2 mM

8π

(
1 − rμ

)2
, (24)

where |Yμe|2 ≡
(
|Y L

μe|2 + |Y R
μe|2

)
/2, with spin factors Sη,π0 = 1, 

Sφ = (
2 + rμ

)
/3.

By using the bounds in Eq. (16) we can derive the upper limits 
at 90% C.L. on the corresponding CLFV couplings Yμe associated to 
the meson M. In particular, we have

|Yμe| < 4.0 × 10−4 , M = φ

|Yμe| < 1.4 × 10−5 , M = η

|Yμe| < 4.2 × 10−8 , M = π0 . (25)
4

3. Radiative return effects

It is clear from Eq. (8) that the �μ/	E ratio is a crucial factor 
affecting the resonant cross section, which can be particularly de-
manding in the case of a very narrow resonance, most notably in 
the leptonic cases considered above. This limitation can be circum-
vented by considering the radiative photon emission (giving rise, 
for instance, to the γ e → γμ process in the γ e → μ case), an ef-
fect known as radiative return [33,34]. This has been mainly studied 
for the production of neutral resonant states (like J/�, Z 0, Higgs 
boson) in e+e− annihilation out of the resonant region, where it 
played a major role in the discovery of the J/�. In these cases, its 
contribution can be reabsorbed into the initial-state-radiation (ISR) 
effects, which also include higher-order QED corrections and their 
exponentiation [33,35–37].

In the next two subsections, we discuss possible advantages of 
the radiative-return channels for CLFV processes, distinguishing be-
tween the production of leptonic and mesonic final states.

3.1. The γ � → γ �′ processes

An extra photon emission in the γ � → �′ channel, where the 
resonance is a charged state, will involve both the initial and final 
states. Since the operator inducing the CLFV vertex for the �γ → �′
transition in Eq. (13) is a (dimension-5) magnetic-dipole operator, 
the γ � → γ �′ cross section will behave in the high energy limit in 
a dramatically different way with respect to the usual renormal-
izable interactions induced by dimension-4 operators. Indeed, we 
will see that it will tend to a constant in the asymptotic energy 
limit, against the usual 1/s cross-section behavior of renormaliz-
able interactions.

Here we provide an estimation of the upper bound of the CLFV 
γ � → γ �′ cross sections arising from radiative return effects, and 
compare them with the corresponding resonant processes cross 
sections discussed in section 2.

Let us now consider the CLFV scattering process, induced by the 
Lagrangian in Eq. (13),

γ (q1) e(p1) → γ (q2) μ(p2) , (26)

where p1,2 and q1,2 are the relevant 4-momenta. The correspond-
ing Feynman diagrams are shown in Fig. 2, panels (a-d). General-
izations to CLFV radiative transitions � → �′ involving other lepton 
flavors are straightforward. We obtain for the differential cross sec-
tion for the process in Eq. (26)

dσ

dt
(γ e → γμ) � α

22
μe

F (s, t)

(s − m2
μ)2 + �2

μm2
μ

, (27)

where α is the fine structure constant evaluated at the mμ scale, 
and s = (p1 + q1)

2, t = (q1 − p2)
2 are the Mandelstam variables. 

The function F (s, t) is given by

F (s, t) = s + t − m2
μ

s3(t − m2
μ)2(t − m2

e )
×

[
6s3t3 − 12m2

μs2t2(s + t) + m4
μst(7s2 + 24st + 7t2) −

m6
μ(s + t)(s2 + 13st + t2) + 12m8

μst − m10
μ (s + t)

)]
,

where the electron mass me is retained only in the denominator 
of the t-channel propagator, as needed to regularize the collinear 
divergencies. The exact expression for the function F (s, t) with the 
full mass dependence is reported in Appendix A. For a soft final 
photon, in proximity of the kinematic threshold given by s ∼ m2

μ , 
the resonant term in Eq. (27) is regularized by the muon width 
�μ .
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Fig. 2. Tree-level Feynman diagrams for the radiative return processes γ � → γ �′
with � �= �′ (a-d), and e−μ+ → Mγ (e, f) with M = φ, η, π0. The bubble vertex rep-
resents the proper effective CLFV interaction.

We first analyze this cross section in the asymptotic regime of 
center-of-mass energies 

√
s � mμ , where mμ (and hence me) can 

be neglected. By taking the massless limit in Eq. (27), we obtain

dσasy

dt
(γ e → γμ) � 3α

2
μe

s + t

s2
, (28)

and by integrating Eq. (28) over the entire phase space (−s ≤ t ≤
0), we get for the asymptotic total cross section

σasy(γ e → γμ) � 3α

22
μe

(
1 +O(m2

μ/s)
)

. (29)

The exact result, reported in Appendix A, allows to check that 
no powerlike singularities as from terms ∼1/t2, potentially mod-
ifying the expectations in Eq. (29) by contributions of the same 
order, arise in the muon and electron massless limit. The usual en-
hancement terms ∼ log (s/m2

�), arising from almost collinear, chi-
rally suppressed, kinematic configurations, are all included in the 
last term of Eq. (29). Therefore, the leading contribution to the to-
tal cross section tends to a constant at high energies 

√
s � mμ . 

This is simply due to dimensional reasons, being the effective op-
erator in Eq. (13) of dimension 5. However, it should be kept in 
mind that the interaction in Eq. (13) is an effective low energy 
coupling, which is valid up to characteristic scattering energies of 
the order 

√
s �O(μe), above which a UV completion of the the-

ory should be taken into account.
By using the μ → eγ decay width in Eq. (14), we can rewrite 

the total cross section in Eq. (29) in terms of the branching ratio 
BR(μ → eγ ) as

σasy(γ e → γμ) � 12πα
�μ

m3
μ

BR(μ → eγ ) , (30)

which shows the insensitivity of the radiative return rate in the 
asymptotic regime to the beam energy spread. By using the exist-
ing experimental bound on BR (μ → eγ ), we get an upper limit on 
the asymptotic radiative cross section
5

σasy(γ e → γμ) � 1.15 × 10−14 ab , (31)

that is anyhow too tiny to give measurable effects.
Independently from the BR (μ → eγ ) bound, the CLFV resonant 

eγ → μ cross section, as obtained from Eq. (8), is in general dom-
inant with respect to the corresponding non-resonant γ e → γμ

one. In the asymptotic regime of Eq. (29), their ratio is given by

σasy(γ e → γμ)

σ̄ (eγ → μ)
� 6α√

2π

	E

mμ
, (32)

with the two cross sections becoming comparable for a beam en-
ergy spread 	E ∼ 57 mμ . Although neither cross sections are real-
istically measurable, in principle, for a typical beam energy spread 
of 	E ∼ 100 keV, running on the mμ pole would be more advanta-
geous than looking at the radiative process with non-tuned collider 
facilities outside the resonant region.

Analogous results can be obtained for the more promising 
γ e → γ τ and γμ → γ τ processes, by properly replacing in 
Eq. (30) the muon width and mass, and the BR(μ → eγ ) bound 
with the τ corresponding quantities. In particular, by using the up-
per limits in Eq. (9), we obtain

σasy(γ e → γ τ)� 1.4 × 10−6 ab ,

σasy(γμ → γ τ)� 1.9 × 10−6 ab . (33)

By extending Eq. (32) to the τ production, the radiative mode is 
confirmed to be sub-leading with respect to the resonant one, un-
less the energy spread becomes unrealistically large and of the 
order of at least 	E ∼ 100 GeV.

On the other hand, in energy regions close to the resonance 
threshold, implying emissions of soft IR photons, the radiative 
γ � → γ �′ process can present a large enhancement inversely pro-
portional to the resonance width. The exact total cross section, 
normalized to the asymptotic cross section, versus the center-
of-mass energy 

√
s is shown in Fig. 3 (left plot) for a charged-

lepton resonance R . For illustrative purposes we show three 
representative cases for the relative resonance width, �R/mR =
10−5, 10−3, 10−1, valid for mR = mμ . The cross section peaks at 
more than 105 its asymptotic value for the case of �R/mR � 10−5. 
Nevertheless, the potential gain in the radiative process is expected 
to be smeared out when convoluted with realistic beam energy 
spreads. The shapes of the curves in the left plot of Fig. 3 are al-
most independent on the mass mR in the resonant region, since 
this explicit dependence slightly affects the overall normalization 
alone.

For completeness, we provide an analytical approximated ex-
pression of the γ e → γμ total cross section valid for energies 
close to the threshold region 

√
s � mμ (results can be generalized 

to different flavor radiative processes in a straightforward way). In 
particular, following the results in Appendix A, the total cross sec-
tion near the resonant region can be written as

σthr(γ e → γμ) � 8πα Ceμ
F

�μ

mμ
BR(μ → eγ ) ×

[ s − m2
μ

(s − m2
μ)2 + �2

μm2
μ

], (34)

where Ceμ
F � 8.7 (see Appendix A) accounts for an average on 

the integrated angular distribution near the 
√

s peak value. The 
s-distribution in square brackets has a maximum σpeak(γ e → γμ)

at s = s̄ with s̄ = m2
μ(1 + �μ/mμ), and vanishes at the threshold 

s → m2
μ . The peak value for the cross section is

σpeak(γ e → γμ) � 4πα Ceμ
F

m2
BR (μ → eγ ) � 12 fb .
μ
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Fig. 3. (Left) Cross section σ(eγ → Rγ ) versus √s/mR , for the CLFV production of a fermion resonance R , normalized to the corresponding asymptotic cross section 
σasy(eγ → Rγ ) at large √s � mR, for mR = mμ , and �R/mR = 10−5 (red, continuous), 10−3 (blue, dot-dashed), 10−1 (black, dotted). (Right) Upper bounds on total cross 
sections for the M meson production e−μ+ → Mγ , versus √s/mM, for M = φ (black, continuous), M = η (red, dot-dashed), and M = π0 (blue, dotted). A cut Eγ � mM/10 is 
applied.
The corresponding peak values for τ production cross sections 
are

σpeak(γ e → γ τ)� 5.3 pb ,

σpeak(γμ → γ τ)� 1.8 pb . (35)

If we compare the above result with the BW cross section in 
Eq. (3), we find for the ratio of the radiative versus the non-
radiative peak values

σpeak(γ e → γμ)

σpeak(γ e → μ)
� α

2
Ceμ

F � 0.032 , (36)

where σpeak is the corresponding BW distribution in Eq. (3) evalu-
ated at the resonant energy E = mR .

Then, for the averaged (according to the integral in Eq. (4) with 
E0 ∼ mμ) radiative cross sections near the peak region, we obtain

σ̄thr(γ e → γμ) � α Ceμ
F (2π)3/2

m2
μ

�μ

	E
BR (μ → eγ ), (37)

which is similar, apart from a numerical factor (∼ α), to the result 
for the resonant BW cross section in Eq. (8). In deriving Eq. (37)
the approximation of the relativistic version of the distribution in 
Eq. (5) for a narrow width has been used against the energy E
convolution integral in Eq. (4), namely 1/((s − m2

R)2 + �2m2
R) →

π/(2�m2
R)δ(E − mR), while the rest of the s function appearing in 

Eq. (34) has been evaluated at its maximum value, that is for s = s̄. 
Then the ratio of the convoluted (by beam energy spread effects) 
radiative cross section close to the threshold and the correspond-
ing one for the BW production in Eq. (8) yields

σ̄thr(γ e → γμ)

σ̄ (γ e → μ)
� αCeμ

F , (38)

which is approximatively twice the ratio of the unconvoluted peak 
cross sections in Eq. (36).

3.2. The e−μ+ → (φ, η, π0) γ processes

We consider now the radiative return process applied to the 
resonant meson production e−μ+ → M

e−(p1)μ
+(p2) → M(q1)γ (q2) , (39)
6

where M indicates a neutral meson, for the particular cases 
M = φ, η, π0. As shown in the corresponding Feynman diagrams 
in Fig. 2 (e, f), the photon emission is uniquely due to initial state 
radiation.

We keep the full mμ dependence, and the me dependence only 
in the denominator of the electron propagator in order to regular-
ize the collinear divergencies. By using the effective Lagrangians in 
Eqs. (20), (21), the differential cross section for the radiative return 
process in Eq. (39) becomes

dσ

dt
(e−μ+ → Mγ ) = 2πα BR(M → e−μ+)

(1 − xμ)2(1 − rμ)2 SM

�M

mM
FM(t) (40)

where

Fη,π0(t) = x2
M + 1 − 2xμ

(t − m2
μ)(u − m2

e )
+ 2m2

μ(1 − xM)(xM − xμ)

(t − m2
μ)2(u − m2

e )
,

Fφ(t) = 2 − 5xμ + 2xM(1 + xμ) + rμ(1 − 2xμ)

(t − m2
μ)(u − m2

e )

+ 2m2
μ

(
2xM − xμ(1 + rμ)

)
(1 − xM)

(t − m2
μ)2(u − m2

e )

+ 3(1 − xM) − xμ

s(u − m2
e )

+ (t − m2
μ)(3 − 5xM)

s2(u − m2
e )(1 − xM)

, (41)

with xa ≡ m2
a/s, s = (p1 + p2)

2, t = (p1 − q1)
2 and u = (p1 − q2)

2. 
By integrating over t , we get for the total cross section

σ(e−μ+ → Mγ ) = 2πα BR(M → e−μ+)

(1 − xμ)2s(1 − rμ)2 SM

�M

mM
ρM(xM, xμ) ,

(42)

where the ISR effect can be factorized by the function ρM(xM, xμ)

given by

ρη,π0(xM, xμ) = 2

(1 − xM)

[
(xM − xμ)(xμ − 1) +

(1 + x2
M − 2xμ − 2xMxμ + 2x2

μ)L1

]
,

ρφ(xM, xμ) = 1

(1 − xM)

[
2L1

(
2 − 5xμ + 2xM(1 + xμ) +

rμ(1 − 2xμ)
) − 2(1 − xμ(1 − 2L1)

)
(2xM − xμ(1 + rμ))

]
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Table 1
Summary of the inverse CFLV processes discussed in the text, with leptons and mesons in the final state. The columns report, for each process, the energy product from 
Eq. (1), the total resonance line-width, the current bound on the BR of the CLFV direct decay mode, and the corresponding bound on the integrated cross section for the 
inverse-decay scattering process, for √s tuned at the resonance with a beam energy spread 	E of 100 keV. All bounds on the CLFV branching ratios are at the 90% confidence 
level. In the last row the product Ea × Eb corresponds to the frame in which one of the initial particles is at rest.

CLFV process Ea × Eb (GeV2) �tot (MeV) BRmax
exp σ̄ max

(	E=100 keV)
(fb)

γμ → τ 7.9 × 10−1 2.27 × 10−9 4.4 × 10−8 [22] 1.9 × 10−3

γ e → τ 7.9 × 10−1 2.27 × 10−9 3.3 × 10−8 [22] 1.4 × 10−3

γ e → μ 2.8 × 10−3 3.00 × 10−16 4.2 × 10−13 [13] 6.9 × 10−13

e−μ+ → φ 2.6 × 10−1 4.25 2.0 × 10−6 [25] 3.8 × 108

e−μ+ → η 7.2 × 10−2 1.31 × 10−3 6.0 × 10−6 [26] 4.3 × 105

e−μ+ → π0 3.5 × 10−3 7.72 × 10−6 3.6 × 10−10 [27] 1.5 × 101
+(3(xM − 1) + xμ)L2 + (5xM − 3)(1 − xμ − L2) , (43)

where L1 ≡ log[(1 − xμ)/
√

xμxe], L2 ≡ log[(1 − xμ)/xe].
The upper bounds (derived by the BR(M → μe) upper limits in 

Eqs. (16)) for the e−μ+ → Mγ total cross sections versus 
√

s/mM
are reported in the right plot of Fig. 3. The infrared divergence of 
the cross-section near resonance is tamed by requiring the detec-
tion of photons with energy Eγ � mM/10 [38].

Although suppressed by the α factor with respect to the reso-
nant case, these cross sections retain values within experimental 
observability with presumably realistic running times, relaxing the 
stringent demand for small energy spreads as in the resonant case.

It is also worth to point out that the effective Lagrangian ap-
proach, assuming pointlike and electrically neutral mesons, omits 
the emission of photons from the constituent quarks, the so-called 
structure-dependent emission, which is expected to contribute sig-
nificantly at energies well above the threshold. Therefore our es-
timates at high energies should be considered as conservative, 
though in a regime which is anyway less favorable for the pro-
posed experiments.

4. Summary and conclusions

The CLFV resonant productions considered in this analysis are 
summarized in Table 1, where we show, for each process, a few 
relevant quantities that are crucial to the actual experimental im-
plementation. The kinematical constraint is expressed in terms of 
the product of the beam energies to create the corresponding par-
ticle according to Eq. (1), providing some flexibility in the choice of 
the colliding beams. The processes involving neutral mesons might 
be feasible once high-luminosity muon beams will be available. 
The corresponding electron beam does not have to be at compa-
rable high energy, therefore benefiting from the existence of less 
expensive high-intensity electron accelerators with energy in the 
(1-100) MeV range.

Purely leptonic resonating processes we have considered ap-
pear much more challenging. There is a certain complementarity 
in this regard, and processes with higher cross-sections are un-
fortunately harder to achieve kinematically. The γ e → μ process 
would be quite feasible in terms of kinematics, for instance by us-
ing high-intensity electron beams as the one used in synchrotron 
radiation machines, with energy Ee � 2.8 GeV. This would imply 
the use of high-intensity photon beams centered around 1 MeV, 
i.e. in the γ -ray range. This is not a trivial requirement and, in 
the absence of high intensity γ -ray lasers, might be achieved only 
with high-intensity machines using inverse Compton scattering, 
but with unnaturally small energy spread. There are already γ -ray 
facilities which might be of some interest for this kind of exper-
iments, such as HIγ s [39] and ELI-NP [40], or proposed ones like 
the Gamma factory at CERN [41]. One could alternatively use high-
intensity photon beams in the visible region, with Eγ � 1 eV, but 
only at the price of using electron beams with unrealistically high 
energy Ee � 2.8 × 103 TeV. The γ e → τ and γμ → τ cases have 
7

instead larger cross-sections, but the kinematics is less favorable, 
requiring high-energy muon beams with energy of order 1 TeV, 
and photon beams made of γ -rays in the 1 MeV range. Further 
analyses of the experimental feasibility of such collision setup will 
be required.

In conclusion, we have discussed the possibility of constrain-
ing lepton flavor violations in the charged sector using resonant 
and radiative-return processes, corresponding to the inverse of 
presently explored decay modes. In particular, we computed the 
upper bounds on the resonant lepton (γ � → �′) and neutral-
meson (e−μ+ → φ, η, π0) cross sections, and on the correspond-
ing radiative processes. The characteristic of this approach is the 
possibility to control and boost the rates by proper engineering 
the beam luminosity setups. We have stressed the limitations due 
the energy spread of the colliding beams, and discussed how to 
circumvent them by using the corresponding broadband radiative 
processes (γ � → γ �′ and e−μ+ → γ (φ, η, π0)), for which analyti-
cal cross sections have been computed by using an EFT approach.

The proposal is more effective for particles with large total 
width, and in this sense might generate competitive bounds, espe-
cially in the mesonic processes. For the purely leptonic processes, it 
seems that a strong effort for achieving beams with smaller energy 
spread is necessary, making this a further demand to the ongo-
ing research and development on muon accelerators and high flux 
gamma sources [31,32,42,43].

From the present discussion is clear that the actual sensitivity 
of the considered channels to possible CLFV effects will crucially 
depend on the luminosities and beams energy spread which can 
be actually reachable in the needed collision setup. On the other 
hand, here we did not focus on and discuss possible backgrounds 
of different nature, which in general will be as much crucial to 
set the actual potential of each channel and of the corresponding 
experimental signature. We leave a detailed discussion of this issue 
to future dedicated studies.
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Appendix A. Differential γ e → γμ cross section

Here we provide the exact expression for the differential cross 
section for the process e(p1)γ (q1) → μ(p2)γ (q2) by retaining all 
the mass dependences. In particular we make explicit, in Eq. (27), 
the F (s, t) function as

F (s, t) = u
∑10

k=0 mk
e F (k)(s, t)

, (A.1)

D(s, t)
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with D(s, t) = (s −m2
e )

4(t −m2
e )

2(t −m2
μ)2, and s, t are the Mandel-

stam variables as defined in Section 3.2, with u = −s −t +m2
e +m2

μ . 
The functions F (k)(s, t) are given by

F (0)(s, t) = −st
(

6s3t3 − 12m2
μs2t2(s + t) + m4

μst(7s2 + 24st

+ 7t2) − m6
μ(s + t)(s2 + 13st + t2) + 12m8

μst

− m10
μ (s + t)

)
,

F (1)(s, t) = 2mμs2t2(s − m2
μ)(t − m2

μ)(s + t − m2
μ) ,

F (2)(s, t) = 12s3t3(s + t) − 4m2
μs2t2(3s + 2t)(2s + 3t)

+ m4
μst(s + t)(13s2 + 55st + 13t2)

− m6
μ(s4 + 38s3t + 50s2t2 + 38st3 + t4)

+ m8
μ(s + t)(2s2 + 21st + 2t2)

− m10
μ (3s2 + 2st + 3t2) ,

F (3)(s, t) = 2mμst(s − m2
μ)(t − m2

μ)(m4
μ − s2 − 3st − t2) ,

F (4)(s, t) = −s2t2(7s2 + 24st + 7t2) + m2
μst(s + t)(13s2 + 55st

+ 13t2) − 2m4
μ(3s4 + 24s3t + 76s2t2 + 24st3 + 3t4)

+ 2m6
μ(s + t)(8s2 + 33st + 8t2) − 7m8

μ(s2 + 8st + t2)

+ 5m10
μ (s + t)

F (5)(s, t) = 2mμ(s − m2
μ)(t − m2

μ)(s + t)(2st + m2
μ(s + t)

− m4
μ) ,

F (6)(s, t) = st(s + t)(s2 + 13st + t2) − m2
μ(s4 + 38s3t + 50s2t2

+ 38st3 + t4) + 2m4
μ(s + t)(8s2 + 33st + 8t2)

− 6m6
μ(7s2 + 8st + 7t2) + 19m8

μ(s + t) − 4m10
μ ,

F (7)(s, t) = 2mμ(s − m2
μ)(t − m2

μ)(m4
μ − st − 2m2

μ(s + t)) ,

F (8)(s, t) = −12s2t2 + m2
μ(s + t)(2s2 + 21st + 2t2)

− 7m4
μ(s2 + 8st + t2) + 19m6

μ(s + t) − 6m8
μ ,

F (9)(s, t) = 2m3
μ(s − m2

μ)(t − m2
μ) ,

F (10)(s, t) = st(s + t) − m2
μ(3s2 + 2st + 3t2)

+ 5m4
μ(s + t) − 4m6

μ .

We now provide an approximate formula for the total cross 
section, valid for the kinematical regions s ∼ m2

μ close to the res-
onance muon threshold. For this aim, it is convenient to look at 
the angular distribution θ , with θ the angle between the muon 
and electron momenta in the center-of-mass frame. In this case 
the variable t can be expressed as

t = m2
e − (s + m2

e )(s − m2
μ)

2s
(1 − βe cos θ) , (A.2)

with βe = (s −m2
e )/(s +m2

e ) the electron velocity. Then, the angular 
distribution for the cross section is given by

dσ

d cos θ
(eγ → μγ ) = αF (s, t)(1 − re)

42
μe

×
[ s − m2

μ

(s − m2
μ)2 + �2

μm2
μ

]
, (A.3)

where re = m2
e /s. Notice that the s distribution inside the square 

brackets in Eq. (A.3) has a maximum for s = s̄, where s̄ ≡ m2
μ(1 +δ)

with δ ∼ �μ/mμ , while the function F (s, t) is almost flat in s near 
regions close to s ∼ s̄. Therefore, in order to extract the dominant 
8

contribution to the total cross section relevant to the peak region, 
we approximate F (s, t) with its expression evaluated at s = s̄, thus 
by replacing F (s, t) → F (s̄, ̄t), where t̄ ≡ t|s=s̄ , and averaged it over 
−1 < cos θ < 1. In particular, by defining

1∫
−1

d cos θ
F (s̄, t̄)

4
≡ Ceμ

F m2
μ , (A.4)

the approximated total cross section near the threshold is

σthr(γ e → γμ) � α Ceμ
F

2
μe

(ys − 1)

(ys − 1)2 + y2
�μ

, (A.5)

where ya ≡ a/m2
μ . By numerical integrating Eq. (A.4) we obtain 

Ceμ
F � 8.7. The approximated formula in Eq. (A.5) fits with good 

accuracy the exact result, in particular, with an average of 20% ac-
curacy in the range mμ <

√
s < 2mμ up to a few percent for 

√
s

within 10% from the resonant mass.
For the analogous processes γ e → γ τ and γμ → γ τ , the cor-

responding coefficients are Ceτ
F � 14.3 and Cμτ

F � 3.7, respectively.
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