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ABSTRACT
We derive upper and lower estimates of the area of unknown defects in the
form of either cavities or rigid inclusions in Mindlin–Reissner elastic plates
in termsof thedifference δW of theworks exertedbyboundary loads on the
defected and on the reference plate. It turns out that the upper estimates
depend linearly on δW , whereas the lower ones depend quadratically on
δW . These results continue a line of research concerning size estimates of
extreme inclusions in electric conductors, elastic bodies and plates.
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1. Introduction

In the present paper we continue a line of research concerning the identification of unknown defects
inside Reissner–Mindlin plates. As is well known, the Reissner–Mindlin theory gives a more refined
model for elastic plates with respect to the Kirchhoff–Love theory and, in particular, it allows for an
accurate description of moderately thick plates, having thickness h of the order of one tenth of the
dimension of the middle plane�.

Perhaps, the simplest approach in detecting defects consists in estimating their size. In [1] we
derived constructive upper and lower bounds of the area of elastic inclusions (size estimates) in terms
of the difference between the works exerted by given boundary loads in deforming the plate without
and with inclusion. Here, we obtain constructive size estimates for extreme inclusions in the form of
either cavities or rigid inclusions. The interested reader can refer, among others, to the papers [2–10]
for results and application of the size estimate approach to various physical contexts.

Let �× [−h/2, h/2] be the plate, with � a bounded domain in R
2, and let P the fourth-order

bending tensor and S the shearing matrix of the reference plate (i.e. without defects). Let us denote
by D × [−h/2, h/2], D ⊂⊂ �, the unknown defect to be determined. Our experiment consists in
applying the same (self-equilibrated) transverse force field Q and couple field M at the boundary of
the plate, in presence and in absence of the inclusion.

When D represents a cavity, the infinitesimal transverse displacement wc and the infinitesimal
rigid rotation ϕc (of transverse material fiber to the middle plane �) satisfy the following Neumann
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boundary value problem

div(S(ϕc + ∇wc)) = 0, in� \ D, (1)

div(P∇ϕc)− S(ϕc + ∇wc) = 0, in� \ D, (2)

S(ϕc + ∇wc) · n = Q̄ on ∂�, (3)

(P∇ϕc)n = M̄, on ∂�, (4)

S(ϕc + ∇wc) · n = 0 on ∂D, (5)

(P∇ϕc)n = 0, on ∂D, (6)

where n is the outer unit normal to� and D, respectively.
In case D is a rigid inclusion, the analogous statical equilibrium problem becomes the following

mixed boundary value problem

div(S(ϕr + ∇wr)) = 0, in� \ D̄, (7)

div(P∇ϕr)− S(ϕr + ∇wr) = 0, in� \ D, (8)

S(ϕr + ∇wr) · n = Q̄ on ∂�, (9)

(P∇ϕr)n = M̄, on ∂�, (10)

ϕr = b, in D̄, (11)

wr = −b · x + a, in D̄, (12)

where ϕr andwr are continuous functions through ∂D, a is any constant and b is any two-dimensional
vector.

When D is empty, the equilibrium of the undefective plate is modeled by

div(S(ϕ0 + ∇w0)) = 0, in�, (13)

div(P∇ϕ0)− S(ϕ0 + ∇w0) = 0, in�, (14)

S(ϕ0 + ∇w0) · n = Q̄ on ∂�, (15)

(P∇ϕ0)n = M̄, on ∂�. (16)

Let us define the following boundary integrals, which express the works produced by the given
boundary loads Q,M when D is a cavity, a rigid inclusion, or D is absent:

Wc =
∫
∂�

Qwc + M · ϕc, Wr =
∫
∂�

Qwr + M · ϕr , W0 =
∫
∂�

Qw0 + M · ϕ0. (17)

Our size estimates are formulated in terms of the normalized work gap

δW
W0

, (18)

where

δW = Wc − W0, δW = W0 − Wr , (19)

respectively.
Upper and lower estimates require different mathematical tools and, also, present different depen-

dence on the work gap. Precisely, upper estimates have linear character, but require additional a
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priori assumptions on the material (isotropy) and on the defect D, namely the following Fatness
Condition:

area{x ∈ D | dist(x, ∂D) > h1} ≥ 1
2
area(D), (20)

where h1 is a given parameter.
The isotropy assumption ensures the unique continuation property in the form of a quantitative

three spheres inequality for the strain energy density of solutions to the reference problem (13)–(16),
which was obtained in [1]. Let us observe that the above Fatness Condition could be removed pro-
vided a doubling inequality were at disposal. In that case, the upper estimate would have Hölder
character, see, for example, [11, Theorems 2.6 and 2.8] for an electric conductor, and [12, Theorems
2.7 and 2.9] in the context of linear elasticity.

The estimates from below are quite different, both for the a priori assumptions and the techniques
of proof. In fact, we need to assume Lipschitz regularity of the boundary of D, precisely

∂D is of Lipschitz class, with constants rD, LD, (21)

whereas, on the other hand, we can replace the Fatness Condition (20) with theweaker Scale Invariant
Fatness Condition

diam(D) ≤ QDrD, (22)
where, in both conditions, rD is unknown. This last hypothesis avoids collapsing of D to an empty
set having null 2-dimensional Lebesgue measure. Moreover, the dependence of area(D) on δW has a
quadratic character.

Main mathematical tools for cavities are constructive Poincaré-type and Korn-type inequalities
and, in particular, a generalized Korn inequality recently obtained in [13], suitable to handle the
Reissner–Mindlin system.

The treatment of rigid inclusions requires, in addition, boundary estimates in L2 for the boundary
value problem (7)–(12). These estimates are based on identities of Rellich type (see [14,15]), and are
in the style of the solvability in L2 of the regularity and Neumann problems formulated in [16,17].

The paper is organized as follows. In Section 2we introduce some useful notation. Direct problems
are described in Section 3, and the size estimates are stated in Section 4. Finally, proofs are given in
Sections 5 and 6, for cavities and rigid inclusions, respectively.

2. Notation

Let P = (x1(P), x2(P)) be a point of R
2. We shall denote by Br(P) the open disc in R

2 of radius r and
center P and by Ra,b(P) the rectangle Ra,b(P) = {x = (x1, x2) | |x1 − x1(P)| < a, |x2 − x2(P)| < b}.
To simplify the notation, we shall denote Br = Br(O), Ra,b = Ra,b(O).

Definition 2.1 (Lipschitz regularity): Let G be a bounded domain in R
2. We say that a portion �

of ∂G is of Lipschitz class with constants ρ, L if, for any P ∈ �, there exists a rigid transformation of
coordinates under which we have P = O and

G ∩ Rρ,Lρ = {x = (x1, x2) ∈ Rρ,Lρ |x2 > ψ(x1)},
where ψ is a Lipschitz continuous function on (−ρ, ρ) satisfying

ψ(0) = 0,

‖ψ‖C0,1(−ρ,ρ) ≤ Lρ.

Remark 2.2: We use the convention to normalize all norms in such a way that their terms are
dimensionally homogeneous with the L∞ norm and coincide with the standard definition when the
dimensional parameter equals one. For instance, the norm appearing above is meant as follows

‖ψ‖C0,1(−ρ,ρ) = ‖ψ‖L∞(−ρ,ρ) + ρ‖ψ ′‖L∞(−ρ,ρ). (23)
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4 A. MORASSI AND E. ROSSET

Given G ⊂ R
2, for any t> 0 we denote

Gt = {x ∈ G | dist(x, ∂G) > t}, (24)

Gr = {x ∈ R
2 | 0 < dist(x,G) < r}. (25)

Let

A = {z = (ϕ,w) | ϕ = b,w = −b · x + a, a ∈ R, b ∈ R
2}

= {z = (ϕ,w) | ∇ϕ = 0,ϕ + ∇w = 0}. (26)

We denote by M
2 the space of 2 × 2 real valued matrices and byL(X,Y) the space of bounded linear

operators between Banach spaces X and Y.
For every 2 × 2 matrices A, B and for every L ∈ L(M2,M2), we use the following notation:

(LA)ij = LijklAkl, (27)

A · B = AijBij, |A| = (A · A)1/2, tr(A) = Aii, (28)

(AT)ij = Aji, Â = 1
2
(A + AT). (29)

Notice that here and in the sequel summation over repeated indexes is implied.

3. Formulation of the direct problems

Let us consider a plate, with constant thickness h, represented by a bounded domain� in R
2 having

boundary of Lipschitz class, with constants ρ0 and L0, and satisfying

diam(�) ≤ Q0ρ0, (30)

for some Q0 > 0, and

O ∈ �. (31)

The reference plate is assumed to be made by linearly elastic isotropic material with Lamé moduli λ
and μ satisfying the strong convexity conditions

μ(x) ≥ α0, 2μ(x)+ 3λ(x) ≥ γ0, in�, (32)

for given positive constants α0, γ0, and the regularity condition

‖λ‖C0,1(�) + ‖μ‖C0,1(�) ≤ α1, (33)

where α1 is a given constant. Therefore, the shearing and bending plate tensors take the form

SI2, S = hμ, S ∈ C0,1(�), (34)

PA = B
[
(1 − ν)Â + νtr(A)I2

]
, P ∈ C0,1(�), (35)

where I2 is the two-dimensional unit matrix, A denotes a 2 × 2 matrix and

B = Eh3

12(1 − ν2)
, (36)

with Young’s modulus E and Poisson’s coefficient ν given by

E = μ(2μ+ 3λ)
μ+ λ

, ν = λ

2(μ+ λ)
. (37)

4



APPLICABLE ANALYSIS 5

By (31) and (32), the ellipticity conditions for S and P become

hα0 ≤ S ≤ hα1, in�, (38)

and

h3

12
ξ0|Â|2 ≤ PA · A ≤ h3

12
ξ1|Â|2, in�, (39)

for every 2 × 2 matrix A, with

ξ0 = min{2α0, γ0}, ξ1 = 2α1. (40)

Moreover,

‖S‖C0,1(�) ≤ hα1, ‖P‖C0,1(�) ≤ Ch3, (41)

with C> 0 only depending on α0, α1, γ0.
Let the boundary of the plate ∂� be subject to a transverse force field Q and a couple field M

satisfying

Q ∈ H−1/2(∂�), M ∈ H−1/2(∂�,R2), (42)

and the compatibility conditions ∫
∂�

Q = 0,
∫
∂�

(Qx − M) = 0. (43)

Throughout the paper, the defect is represented by an open set D satisfying

D ⊂⊂ �, � \ D is connected. (44)

When D represents a cavity, the statical equilibrium is governed by the Neumann boundary value
problem

div(S(ϕc + ∇wc)) = 0, in� \ D, (45)

div(P∇ϕc)− S(ϕc + ∇wc) = 0, in� \ D, (46)

S(ϕc + ∇wc) · n = Q̄ on ∂�, (47)

(P∇ϕc)n = M̄, on ∂�, (48)

S(ϕc + ∇wc) · n = 0 on ∂D, (49)

(P∇ϕc)n = 0, on ∂D, (50)

where n is the outer unit normal to � and to D, respectively. A weak solution to the above system is
a pair (ϕc,wc) ∈ H1(� \ D,R2)× H1(� \ D) satisfying∫

�\D
P∇ϕc · ∇ψ +

∫
�\D

S(ϕc + ∇wc) · (ψ + ∇v) =
∫
∂�

Qv + M · ψ , (51)

for every ψ ∈ H1(� \ D,R2) and for every v ∈ H1(� \ D).
Problem (44)–(49) admits a weak solution (ϕc,wc) ∈ H1(� \ D,R2)× H1(� \ D), which is

uniquely determined up to addition of an element z ∈ A.
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6 A. MORASSI AND E. ROSSET

SinceD has Lipschitz boundary, one can continue a solution pair (ϕc,wc) to aH1(�,R2)× H1(�)
function pair, which we continue to call (ϕc,wc):

(ϕc,wc) =
{
(ϕ+

c ,w+
c ) in� \ D,

(ϕ−
c ,w−

c ) inD,
(52)

where (ϕ+
c ,w+

c ) is the given solution (ϕc,wc) and (ϕ−
c ,w−

c ) is defined as the weak solution of the
Dirichlet problem

div(S(ϕ−
c + ∇w−

c )) = 0, in D,

div(P∇ϕ−
c )− S(ϕ−

c + ∇w−
c ) = 0, in D,

ϕ−
c = ϕ+

c |∂D, on ∂D,

w−
c = w+

c |∂D, on ∂D.

(53)

When D represents a rigid inclusion, the statical equilibrium is governed by the mixed boundary
value problem

div(S(ϕ+
r + ∇w+

r )) = 0, in� \ D̄, (54)

div(P∇ϕ+
r )− S(ϕ+

r + ∇w+
r ) = 0, in� \ D, (55)

S(ϕ+
r + ∇w+

r ) · n = Q̄ on ∂�, (56)

(P∇ϕ+
r )n = M̄, on ∂�, (57)

ϕ−
r + ∇w−

r = 0, in D̄, (58)

∇ϕ−
r = 0, in D̄, (59)

w−
r = w+

r , on ∂D, (60)

ϕ−
r = ϕ+

r , on ∂D, (61)

where we have denoted by (ϕ−
r ,w−

r ) and (ϕ+
r ,w+

r ) the restriction of the solution (ϕr ,wr) in D and
in � \ D, respectively, and n is the outer unit normal to �. For future reference, we notice that the
compatibility conditions (42) together with the above formulation (53)–(60) imply∫

∂D
S(ϕ+

r + ∇w+
r ) · n = 0, (62)∫

∂D
((P∇ϕ+

r )n − (S(ϕ+
r + ∇w+

r ) · n)x) = 0. (63)

From the mechanical point of view, the last two conditions state the force balance and the couple
balance of the rigid inclusion D, respectively.

Let us introduce

H1
D(�,R

2)× H1
D(�) = {(ϕ,w) ∈ H1(�,R2)× H1(�)| (ϕ,w)|D ∈ A}. (64)

A pair (ϕr ,wr) ∈ H1
D(�,R

2)× H1
D(�) is a weak solution to (53)–(60) if for every (ψ , v) ∈

H1
D(�,R

2)× H1
D(�) we have∫
�

P∇ϕr · ∇ψ +
∫
�

S(ϕr + ∇wr) · (ψ + ∇v) =
∫
∂�

Qv + M · ψ . (65)

SinceH1
D(�,R

2)× H1
D(�) is a closed linear subspace ofH

1(�,R2)× H1(�), by standard variational
methods it can be proven that (53)–(60) has a weak solution (ϕc,wc) ∈ H1(�,R2)× H1(�), which
is uniquely determined up to addition of an element z ∈ A.
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It is convenient to consider also the reference plate, in absence of inclusions, whose statical
equilibrium is governed by the following Neumann boundary value problem

div(S(ϕ0 + ∇w0)) = 0, in�, (66)

div(P∇ϕ0)− S(ϕ0 + ∇w0) = 0, in�, (67)

S(ϕ0 + ∇w0) · n = Q̄ on ∂�, (68)

(P∇ϕ0)n = M̄, on ∂�. (69)

A weak solution to the above Neumann problem is a pair (ϕ0,w0) ∈ H1(�,R2)× H1(�) satisfying∫
�

P∇ϕ0 · ∇ψ +
∫
�

S(ϕ0 + ∇w0) · (ψ + ∇v) =
∫
∂�

Qv + M · ψ , (70)

for every ψ ∈ H1(�,R2) and for every v ∈ H1(�). The equilibrium problem (65)–(68) has a weak
solution (ϕ0,w0) ∈ H1(�,R2)× H1(�), which is uniquely determined up to addition of an element
z ∈ A.

Let us denote byWc,Wr ,W0 the works exerted by the surface forces and couples Q andM when
D is a cavity, a rigid inclusion, or it is absent, respectively:

Wc =
∫
∂�

Qwc + M · ϕc =
∫
�\D

P∇ϕc · ∇ϕc +
∫
�\D

S(ϕc + ∇wc) · (ϕc + ∇wc), (71)

Wr =
∫
∂�

Qw+
r + M · ϕ+

r =
∫
�\D

P∇ϕ+
r · ∇ϕ+

r +
∫
�\D

S(ϕ+
r + ∇w+

r ) · (ϕ+
r + ∇w+

r ), (72)

W0 =
∫
∂�

Qw0 + M · ϕ0 =
∫
�

P∇ϕ0 · ∇ϕ0 +
∫
�

S(ϕ0 + ∇w0) · (ϕ0 + ∇w0). (73)

Remark 3.1: Let us notice that, in view of the compatibility conditions (42), the worksWc,Wr ,W0
are well defined, that is they are invariant with respect to the addition of any element z in A to the
solution pair (ϕc,wc), (ϕr ,wr), (ϕ0,w0), respectively.

Throughout the paper, we shall choose the following normalization conditions for (ϕ0,w0):∫
�

ϕ0 = 0,
∫
�

w0 = 0. (74)

4. The inverse problems: main results

Let us start considering the size estimates for cavities. We analyze separately the upper and lower
estimates, since they require different a priori assumptions and techniques of proof.

Theorem4.1: Let� be a bounded domain inR
2, such that ∂� is of Lipschitz class with constants ρ0, L0

and satisfying (29). Let D be an open set satisfying (43) and

∣∣Dh1ρ0
∣∣ ≥ 1

2
|D| , (75)

for a given positive constant h1. Let the reference plate be made by linearly elastic isotropic material with
Lamé moduli λ, μ satisfying (31), (32). Let the transverse force field Q ∈ H−1/2(∂�) and the couple

7



8 A. MORASSI AND E. ROSSET

field M ∈ H−1/2(∂�,R2) satisfy

F = ‖M‖H−1/2(∂�) + ρ0‖Q‖H−1/2(∂�)

‖M‖H−1(∂�) + ρ0‖Q‖H−1(∂�)

, (76)

for some positive constant F . The following estimate holds

|D| ≤ Kρ20
Wc − W0

W0
, (77)

where K only depends on α0, α1, γ0, L0, Q0, ρ0/h, h1 and F .

In order to obtain the estimate from below, we assume that D is a domain satisfying the following
a priori assumptions concerning its regularity and shape:

∂D is of Lipschitz class with constants rD, LD, (78)

diam(D) ≤ QDrD, (79)

where LD, QD are given a priori parameters, whereas rD is unknown.
Let us stress the fact that rD is an unknown parameter (otherwise, the size estimates should follow

trivially), whereas the parameters LD and QD, which are invariant under scaling, will be considered
as a priori information.

Theorem4.2: Let� be a bounded domain inR
2, such that ∂� is of Lipschitz class with constants ρ0, L0

and satisfying (29). Let D be a subdomain of� satisfying (43), (77), (78), and such that

dist(D, ∂�) ≥ d0ρ0, (80)

with d0 > 0, rD < (d0/2)ρ0. Let the reference plate be made by linearly elastic isotropic material with
Lamé moduli λ, μ satisfying (31), (32). Let the transverse force field Q ∈ H−1/2(∂�) and the couple
field M ∈ H−1/2(∂�,R2). The following estimate holds

|D| ≥ kρ20�
(
Wc − W0

W0

)
, (81)

where the function� is given by

[0,+∞) � t �→ �(t) = t2

1 + t
, (82)

and k> 0 only depends on α0, α1, γ0, L0, Q0, ρ0/h, d0, LD, QD.

Concerning rigid inclusions, the size estimates are stated in the next two theorems.

Theorem4.3: Let� be a bounded domain inR
2, such that ∂� is of Lipschitz class with constants ρ0, L0

and satisfying (29). Let D be an open set satisfying (43) and the fatness condition (74). Let the reference
plate be made by linearly elastic isotropic material with Lamé moduli λ, μ satisfying (31), (32). Let the
transverse force field Q ∈ H−1/2(∂�) and the couple field M ∈ H−1/2(∂�,R2) satisfy (75).

The following estimate holds

|D| ≤ Kρ20
W0 − Wr

W0
, (83)

where K only depends on α0, α1, γ0, L0, Q0, ρ0/h, h1 and F .
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Theorem4.4: Let� be a bounded domain inR
2, such that ∂� is of Lipschitz class with constants ρ0, L0

and satisfying (29). Let D be a subdomain of� satisfying (43), (77), (78), and such that

dist(D, ∂�) ≥ d0ρ0, (84)

with d0 > 0, rD < (d0/2)ρ0. Let the reference plate be made by linearly elastic isotropic material with
Lamé moduli λ, μ satisfying (31), (32). Let the transverse force field Q ∈ H−1/2(∂�) and the couple
field M ∈ H−1/2(∂�,R2). The following estimate holds

|D| ≥ Cρ20�
(
W0 − Wr

W0

)
, (85)

where the function� is given by

[0, 1) � t �→ �(t) = t2

1 − t
, (86)

and C> 0 only depends on α0, α1, γ0, L0, Q0, ρ0/h, d0, LD, QD.

Remark 4.5: Let us notice that the estimates from below stated in Theorems 4.2 and 4.4 hold for
the general context of anisotropic plates with bounded coefficients satisfying the strong convexity
assumption, since unique continuation estimates are not needed for the proofs of these theorems.

Moreover, Theorems 4.2 and 4.4 can be extended to the case when D is made of a finite unknown
number of connected components. Precisely, it suffices to assume that D = ∪J

j=1Dj, j = 1, . . . , J,
with � \ D connected, ∂Dj of Lipschitz class with constant rj, LD, such that diam(Dj) ≤ QDrj,
dist(Di,Dj) ≥ 3

2 (ri + rj), rj ≤ (d0/2)ρ0. The proofs can be extended to this general case by apply-
ing the same arguments to each connected component Dj taking care to replace the integrals over
� \ Dwith integrals over a neighborhood of ∂Dj in� \ D, by summing up the estimates obtained for
each j, and by applying the Cauchy–Schwarz inequality.

5. Proof of the size estimates for cavities

The proofs of both Theorems 4.1, 4.2 are based on the following energy lemma.

Lemma 5.1: Let � be a bounded domain in R
2 and D ⊂⊂ � a measurable set. Let S, P given

in (33), (34) satisfy the strong convexity conditions (31). Let (ϕc,wc) ∈ H1(� \ D,R2)× H1(� \ D),
(ϕ0,w0) ∈ H1(�,R2)× H1(�) be the weak solutions to problems (44)–(49) and (65)–(68), respec-
tively. We have ∫

D
P∇ϕ0 · ∇ϕ0 +

∫
D
S(ϕ0 + ∇w0) · (ϕ0 + ∇w0) ≤ Wc − W0

=
∫
D

P∇ϕc · ∇ϕ0 +
∫
D
S(ϕc + ∇wc) · (ϕ0 + ∇w0). (87)

Proof: For every weak solution (ϕ,w) ∈ H1(� \ D,R2)× H1(� \ D) to the system (44)–(45), we
have that∫

�\D̄
P∇ϕ · ∇ψ +

∫
�\D̄

S(ϕ + ∇w) · (ψ + ∇v)

=
∫
∂�

(S(ϕ + ∇w) · n)v + (P∇ϕ)n · ψ −
∫
∂D
(S(ϕ + ∇w) · n)v + (P∇ϕ)n · ψ , (88)

for everyψ ∈ H1(� \ D,R2) and for every v ∈ H1(� \ D), where n denotes the exterior unit normal
to� and D, respectively.
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Choosing in the above identity (ϕ,w) = (ϕ0,w0), (ψ , v) = (ϕc,wc), we have∫
�\D̄

P∇ϕ0 · ∇ϕc +
∫
�\D̄

S(ϕ0 + ∇w0) · (ϕc + ∇wc)

= Wc −
∫
∂D
(S(ϕ0 + ∇w0) · n)wc + (P∇ϕ0)n · ϕc. (89)

Similarly, choosing in (87) (ϕ,w) = (ϕc,wc), (ψ , v) = (ϕ0,w0) and recalling the boundary condi-
tions (48)–(49), we have∫

�\D
P∇ϕc · ∇ϕ0 +

∫
�\D

S(ϕc + ∇wc) · (ϕ0 + ∇w0) = W0. (90)

By subtracting (89) from (88),

Wc − W0 =
∫
∂D
(S(ϕ0 + ∇w0) · n)wc + (P∇ϕ0)n · ϕc. (91)

On the other hand, by the weak formulation of the system (65)–(66) in D, recalling the transmission
conditions in (52) for (ϕc,wc) and by (90), it follows that∫

D
P∇ϕ0 · ∇ϕc +

∫
D
S(ϕ0 + ∇w0) · (ϕc + ∇wc) = Wc − W0, (92)

that is the equality in (86) is established.
Choosing in (87) (ϕ,w) = (ψ , v) = (ϕc − ϕ0,wc − w0), recalling that (ϕc,wc) and (ϕ0,w0) satisfy

the same Neumann conditions on ∂� and that (ϕc,wc) satisfies homogeneous Neumann conditions
on ∂D, we have∫

�\D̄
P∇(ϕc − ϕ0) · ∇(ϕc − ϕ0)

+
∫
�\D̄

S((ϕc − ϕ0)+ ∇(wc − w0)) · ((ϕc − ϕ0)+ ∇(wc − w0))

=
∫
∂D
(S(ϕ0 + ∇w0) · n)(wc − w0)+ (P∇ϕ0)n · (ϕc − ϕ0). (93)

Summing (89) and (91), we obtain∫
�

P∇ϕ0 · ∇ϕc +
∫
�

S(ϕ0 + ∇w0) · (ϕc + ∇wc) = Wc. (94)

Subtracting (72) from (93) and recalling (91), we have∫
�

P∇ϕ0 · ∇(ϕc − ϕ0)+
∫
�

S(ϕ0 + ∇w0) · ((ϕc − ϕ0)+ ∇(wc − w0))

= Wc − W0 =
∫
D

P∇ϕ0 · ∇ϕc +
∫
D
S(ϕ0 + ∇w0) · (ϕc + ∇wc). (95)

By splitting the domain of integration on the left-hand side of (94) into the union of� \ D andD, the
following identity easily follows∫

�\D̄
P∇(ϕc − ϕ0) · ∇ϕ0 +

∫
�\D̄

S((ϕc − ϕ0)+ ∇(wc − w0)) · (ϕ0 + ∇w0)

=
∫
D

P∇ϕ0 · ∇ϕ0 +
∫
D
S(ϕ0 + ∇w0) · (ϕ0 + ∇w0). (96)

10



APPLICABLE ANALYSIS 11

By adding and subtracting to the left-hand side of (95) the term
∫
�\D P∇ϕc · ∇(ϕc − ϕ0)+∫

�\D S(ϕc + ∇wc) · ((ϕc − ϕ0)+ ∇(wc − w0)) and recalling (70) and (89), we derive∫
D

P∇ϕ0 · ∇ϕ0 +
∫
D
S(ϕ0 + ∇w0) · (ϕ0 + ∇w0)

= Wc − W0 −
∫
�\D̄

P∇(ϕc − ϕ0) · ∇(ϕc − ϕ0)

−
∫
�\D̄

S((ϕc − ϕ0)+ ∇(wc − w0)) · ((ϕc − ϕ0)+ ∇(wc − w0)) ≤ Wc − W0, (97)

that is the inequality in (86). �

It is convenient to introduce the strain energy density

E(ϕ0,w0) =
(

|∇̂ϕ0|2 + 1
ρ20

|ϕ0 + ∇w0|2
)1
/2. (98)

Let us notice that, by (37)–(39), the following double inequality holds

mρ30E
2(ϕ0,w0) ≤ P∇ϕ0 · ∇ϕ0 + S(ϕ0 + ∇w0) · (ϕ0 + ∇w0) ≤ Mρ30E

2(ϕ0,w0), (99)

where

m = min

{
ξ0

12

(
h
ρ0

)3
,α0

h
ρ0

}
, M = max

{
ξ1

12

(
h
ρ0

)3
,α1

h
ρ0

}
only depend on α0, α1, γ0 and ρ0/h.

The second key tool for proving Theorem 4.1 is the following unique continuation property for
solutions to (65)–(68).

Proposition 5.2 (Lipschitz propagation of smallness): Under the assumptions of Theorem 4.1, for
every ρ > 0 and for every x ∈ �(7/2θ)ρ , we have∫

Bρ(x)
E2(ϕ0,w0) ≥ Cρ

∫
�

E2(ϕ0,w0), (100)

where Cρ only depends on α0, α1, γ0, ρ0/h, L0, Q0, F , ρ/ρ0, and where θ ∈ (0, 1) only depends on
α0,α1, γ0, ρ0/h.

The above proposition was established in [1, Theorem 4.5].

Proof: Let us coverDh1ρ0 with internally non overlapping closed squaresQj of side l, for j = 1, . . . , J,
with l = 4θh1/(2

√
2θ + 7)ρ0, where θ ∈ (0, 1) is as in Proposition 5.2. By the choice of l the squares

Qj are contained in D. Hence∫
D
E2(ϕ0,w0) ≥

∫
⋃J

j=1 Qj

E2(ϕ0,w0) ≥ |Dh1ρ0 |
l2

∫
Qj̄

E2(ϕ0,w0), (101)

where j̄ is such that
∫
Qj̄
E2(ϕ0,w0) = minj

∫
Qj
E2(ϕ0,w0). Let x̄ be the center of Qj̄. By applying

estimate (99) with x = x̄ and ρ = l/2 and using (100) and (74) we have∫
D
E2(ϕ0,w0) ≥ C

|D|
ρ20

∫
�

E2(ϕ0,w0), (102)

where C only depends on α0, α1, γ0, L0, Q0, ρ0/h, h1 and F .

11



12 A. MORASSI AND E. ROSSET

From the left-hand side of (86), (98), (101) and (72), we have

Wc − W0 ≥ mρ30

∫
D
E2(ϕ0,w0) ≥ Cρ0|D|

∫
�

E2(ϕ0,w0) ≥ C
|D|
ρ20

W0, (103)

with C only depending on α0, α1, γ0, L0, Q0, ρ0/h, h1 and F , so that (76) follows. �

Let us premise some auxiliary propositions concerning Poincaré and Korn inequalities, which will
be used for the proof of Theorem 4.2. In the following three propositionsG is meant to be a bounded
measurable domain in R

2 having boundary of Lipschitz class with constants ρ and L and satisfying

diam(G) ≤ Qρ. (104)

Given u ∈ H1(G) and given � ⊂ ∂G, we shall denote

uG = 1
|G|

∫
G
u, u� = 1

|�|
∫
�

u. (105)

Proposition 5.3 (Poincaré-type inequalities): For every u ∈ H1(G) we have∫
G

|u − uG|2 ≤ C1ρ
2
∫
G

|∇u|2, (106)∫
G

|u − u�|2 ≤ C2

(
1 + |G|

ρ|�|
)
ρ2
∫
G

|∇u|2, (107)

where C1 and C2 only depend on L, Q.
Moreover, if u ∈ H1(Gρ) then ∫

∂G
|u − u∂G|2 ≤ C3ρ

∫
Gρ

|∇u|2, (108)

where C3 > 0 only depends on L, Q.

The above Poincaré-type inequalities are well-known. A precise evaluation of the constants C1,
C2, C3 in terms of the scale invariant parameters L,Q regarding the regularity and the shape ofG, can
be found in the proof of [11, Proposition 3.2].

Proposition 5.4 (Second Korn’s inequality): For every ϕ ∈ H1(G,R2) satisfying∫
G
(∇ϕ − (∇ϕ)T) = 0, (109)

we have ∫
G

|∇ϕ|2 ≤ C
∫
G

|∇̂ϕ|2, (110)

where C> 0 only depends on L and Q.

For a proof of this classical inequality see, for instance, [18,19].

Proposition 5.5 (Generalized secondKorn inequality): For every ϕ ∈ H1(G,R2) and for every w ∈
H1(G,R),

‖∇ϕ‖L2(G) ≤ C
(

‖∇̂ϕ‖L2(G) + 1
ρ

‖ϕ + ∇w‖L2(G)
)
, (111)

where C only depends on L and Q.

12



APPLICABLE ANALYSIS 13

The above Generalized Korn inequality, established in [13, Theorem 4.3], turned out to be a key
result in dealing with the direct Neumann problem for Reissner–Mindlin plates (see Proposition 5.2
in [13]) and in deriving unique continuation estimates for system (65)–(66) (see Theorem 4.2 in
[1]) and the Lipschitz propagation of smallness stated in Proposition 5.2. Let us notice that in the
statement of Theorem 4.3 in [13] it was made the explicit assumption that the domain contains a
disc of radius s0ρ, since this condition plays a fundamental role in the proof and, consequently, the
constant C appearing in the inequality (110) depends on s0. This hypothesis, which was emphasized
in [13] because of its relevance for the derivation of the estimate, can be deduced from the boundary
regularity, with s0 = L/(L2 + 1 + √

L2 + 1) and therefore it is omitted here.

Proof of Theorem 4.2: Let us consider DrD ⊂ � and its boundary ∂DrD = ∂D ∪ �rD , where �rD =
{x ∈ � \ D | dist(x, ∂D) = rD}. Let us tessellate R

2 with internally nonoverlapping closed squares
having side l = rD/2

√
2 and let Q1, . . . , QN be those squares having nonempty intersection with

DrD . Let us define D̃rD the interior of ∪N
i=1Qi \ D. We have that ∂D̃rD = ∂D ∪�rD , where �rD ⊂

∪j∈J∂Qj, with J = {j | Qj ∩ �rD �= ∅}. As a portion of the boundary of D̃rD , ∂D is of Lipschitz class

with constants rD/
√
L2D + 1 and LD. By construction, �rD is of Lipschitz class with constants rD/8

and 1. Therefore ∂D̃rD is of Lipschitz class with constants γ rD, L′, where γ = (max{8,
√
L2D + 1})−1

and L′ = max{1, LD}. Moreover, diam(D̃rD) ≤ (QD + 3)rD. Let

x∂D = 1
|∂D|

∫
∂D

x

be the center of mass of ∂D. Let

a = 1
|∂D|

∫
∂D

wc,

b = 1
|∂D|

∫
∂D
ϕc,

W = 1
2|D̃rD |

∫
D̃rD

∇ϕc − ∇Tϕc,

r = b + W(x − x∂D),

ϕ∗
c = ϕc − r,

w∗
c = wc + b · (x − x∂D)+ a.

By these definitions, ϕ∗
c and w∗

c have zero mean on ∂D, and

ϕ∗
c + ∇w∗

c = ϕc + ∇wc − W(x − x∂D).

By the weak formulation of the Reissner–Mindlin system satisfied by (ϕ0,w0) in D choosing the test
pair (ϕ∗

c ,w∗
c ), and recalling the right-hand side of (86), we have

Wc − W0 =
∫
D

P∇ϕ0 · ∇ϕ∗
c +

∫
D
S(ϕ0 + ∇w0) · (ϕ∗

c + ∇w∗
c + W(x − x∂D))

=
∫
∂D
(P∇ϕ0n) · ϕ∗

c +
∫
∂D
(S(ϕ0 + ∇w0) · n)w∗

c +
∫
D
S(ϕ0 + ∇w0) · W(x − x∂D)

= I1 + I2 + I3. (112)

13



14 A. MORASSI AND E. ROSSET

By applying Hölder inequality and by (40),

|I1| ≤ C
(
h3
∫
∂D

|∇ϕ0|2
)1
/2
(
h3
∫
∂D

|ϕ∗
c |2
)1
/2, (113)

with C only depending on α0, γ0, α1.
Recalling (79), we can apply interior regularity estimates (see [20, Theorem 6.1]) and then, by

taking into account the normalization condition (73), by applying Proposition 5.5 to (ϕ0,w0) in �,
and recalling (98) and (72), we have

h3
∫
∂D

|∇ϕ0|2 ≤ h3|∂D|‖∇ϕ0‖2L∞(D) ≤ Ch3|∂D|
(

‖ϕ0‖2H1(�) + 1
ρ20

‖w0‖2H1(�)

)
≤ Ch3|∂D|

(
‖∇̂ϕ0‖2L2(�) + 1

ρ20
‖ϕ0 + ∇w0‖2L2(�)

)
≤ C
ρ2o

|∂D|W0, (114)

with C only depending on α0, γ0, α1, ρ0/h, L0, Q0, d0.
By (107), (108) and (98) we have

h3
∫
∂D

|ϕ∗
c |2 ≤ Ch3rD

∫
DrD

|∇ϕ∗
c |2 ≤ Ch3rD

∫
D̃rD

|∇ϕ∗
c |2

≤ Ch3rD
∫
D̃rD

|∇̂ϕc|2 ≤ CrDWc, (115)

with C only depending on α0, γ0, α1, ρ0/h, LD, QD.
By using arguments similar to those in [21, Lemma 2.8], we have that

|∂D| ≤ C
|D|
rD

, (116)

with C only depending on LD.
By (112)–(115),

|I1| ≤ C
ρ0

|D|1/2W1/2
0 W1/2

c , (117)

with C only depending on α0, γ0, α1, ρ0/h, L0, Q0, LD, QD, d0.
Let us estimate I3. By Hölder inequality and by (40),

|I3| ≤ Ch
(∫

D
|ϕ0 + ∇w0|2

)1/2 (∫
D

|W(x − x∂D)|2
)1/2

≤ Ch‖ϕ0 + ∇w0‖L∞(D)|D|1/2|W|
(∫

D
|x − x∂D|2

)1/2
, (118)

with C only depending on α1.
By interior regularity estimates, by using the normalization conditions (73), the Poincaré inequal-

ity (105), the Generalized Korn inequality (110), and recalling (98) and (72), we have

h‖ϕ0 + ∇w0‖L∞(D) ≤ Ch
(

‖ϕ0‖H1(�) + 1
ρ0

‖w0‖H1(�)

)
≤ Ch

(∫
�

|∇̂ϕ0|2 + 1
ρ20

|ϕ0 + ∇w0|2
)1/2

≤ C√
ρ0

W1/2
0 , (119)

with with C only depending on α0, γ0, α1, ρ0/h, d0, L0, Q0.
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APPLICABLE ANALYSIS 15

By Hölder inequality, by the Generalized Korn inequality (110), noticing that |D̃rD | ≥ CrD2, with
C only depending on LD, using rD < (d0/2)ρ0, and recalling (98) and (70), we have

|W| ≤ C
|D̃rD |1/2

(∫
D̃rD

|∇ϕc|2
)1/2

≤ C
rD

(∫
D̃rD

|∇̂ϕc|2 + 1
rD2 |ϕc + ∇wc|2

)1/2

≤ C
rD2

(∫
D̃rD

ρ20 |∇̂ϕc|2 + |ϕc + ∇wc|2
)1/2

≤ C
rD2√ρ0W

1/2
c , (120)

with C only depending on α0, γ0, α1, ρ0/h, LD, QD, d0. Moreover,(∫
D

|x − x∂D|2
)1/2

≤ |D|1/2diam(D) ≤ CrD2 (121)

with C only depending on QD.
By (117)–(120), it follows that

|I3| ≤ C
ρ0

W1/2
0 W1/2

c |D|1/2, (122)

with with C only depending on α0, γ0, α1, ρ0/h, d0, L0, Q0, LD, QD.
By applying Hölder inequality, by (40), (107), (115) and (118), we get

|I2| ≤ C√
ρ0

W1/2
0 |D|1/2

(∫
D̃rD

|∇w∗
c |2
)1/2

, (123)

with with C only depending on α0, γ0, α1, ρ0/h, d0, L0, Q0, LD, QD.
On the other hand,∫
D̃rD

|∇w∗
c |2 =

∫
D̃rD

|∇wc + b|2 ≤ 2
∫
D̃rD

|∇wc + ϕc|2 + 2
∫
D̃rD

|ϕc − b|2

≤ 2
∫
D̃rD

|∇wc + ϕc|2 + 4
∫
D̃rD

|ϕc − b − W(x − x∂D)|2 + 4
∫
D̃rD

|W(x − x∂D)|2.
(124)

By applying the Poincaré inequality (106) and the Korn inequality (109), using (98) and (119) and
recalling that diam(D̃rD) ≤ (QD + 3)rD and |D̃rD | ≤ CrD2, with C only depending on QD, we have∫

D̃rD
|∇w∗

c |2 ≤ C
∫
D̃rD

|∇wc + ϕc|2 + CrD2
∫
D̃rD

|∇̂ϕc|2 + C|W|2
∫
D̃rD

|x − x∂D|2

≤ C
∫
D̃rD
(|ϕc + ∇wc|2 + ρ20 |∇̂ϕc|2)+ C

ρ0
Wc ≤ C

ρ0
Wc, (125)

where C only depends on α0, γ0, α1, ρ0/h, d0, LD, QD.
By (122) and (124), it follows that

|I2| ≤ C
ρ0

W1/2
0 W1/2

c |D|1/2, (126)

where C only depends on α0, γ0, α1, ρ0/h, d0, L0, Q0, LD, QD.
Finally, by (111), (116), (122) and (125),

Wc − W0 ≤ C
ρ0

W1/2
0 W1/2

c |D|1/2, (127)

whereC only depends onα0, γ0,α1, ρ0/h, d0, L0,Q0, LD,QD, and the thesis follows by straightforward
calculations. �
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16 A. MORASSI AND E. ROSSET

6. Proof of the size estimates for rigid inclusions

The comparison between the worksW0 andWr is stated in the following lemma.

Lemma 6.1: Let � be a bounded domain in R
2 and D ⊂⊂ � a measurable set. Let S, P

given in (33), (34) satisfy the strong convexity conditions (31). Let (ϕr ,wr) ∈ H1
D(�,R

2)× H1
D(�),

(ϕ0,w0) ∈ H1(�,R2)× H1(�) be the weak solutions to problems (53)–(60) and (65)–(68), respec-
tively. We have ∫

D
P∇ϕ0 · ∇ϕ0 + S(ϕ0 + ∇w0) · (ϕ0 + ∇w0) ≤ W0 − Wr

=
∫
∂D
(P∇ϕ+

r )n · ϕ0 + (S(ϕ+
r + ∇w+

r ) · n)w0. (128)

Proof: The proof of this energy lemma can be obtained by adapting the proof of the corresponding
result in linear elasticity, see [12]. Therefore, we skip the details and we report the main steps of the
proof.

Let us multiply Equations (53), (54) by w0, ϕ0, respectively. Integrating by parts and summing up,
we obtain ∫

�\D̄
P∇ϕ+

r · ∇ϕ0 + S(ϕ+
r + ∇w+

r ) · (ϕ0 + ∇w0)

= W0 −
∫
∂D
(P∇ϕ+

r )n · ϕ0 + (S(ϕ+
r + ∇w+

r ) · n)w0. (129)

Next, we multiply equations (65), (66) by w+
r , ϕ+

r , respectively, and we integrate by parts in � \ D.
Summing up, we obtain

Wr =
∫
�\D̄

P∇ϕ+
r · ∇ϕ0 + S(ϕ+

r + ∇w+
r ) · (ϕ0 + ∇w0)

−
∫
∂D
(P∇ϕ0)n · ϕ+

r + (S(ϕ0 + ∇w0) · n)w+
r

=
∫
�\D̄

P∇ϕ+
r · ∇ϕ0 + S(ϕ+

r + ∇w+
r ) · (ϕ0 + ∇w0), (130)

where, in the last step, we have used the fact that the second integral on the right-hand side vanishes
because of the definition of (ϕr ,wr) in D. By (128) and (129), the equality on the right-hand side
of (127) follows.

To obtain the inequality in (127), we consider the quadratic form of the strain energy associated
to the pair (ϕ0 − ϕr ,w0 − wr) in �. Recalling the definition of (ϕ−

r ,w−
r ) in D, by (71), (72) and by

(129), we have∫
�

P∇(ϕ0 − ϕr) · ∇(ϕ0 − ϕr)+ S((ϕ0 − ϕr)+ ∇(w0 − wr)) · ((ϕ0 − ϕr)+ ∇(w0 − wr))

=
∫
�

P∇ϕ0 · ∇ϕ0 + S(ϕ0 + ∇w0) · (ϕ0 + ∇w0)

+
∫
�\D̄

P∇ϕ+
r · ∇ϕ+

r + S(ϕ+
r + ∇w+

r ) · (ϕ+
r + ∇w+

r )

− 2
∫
�\D̄

P∇ϕ0 · ∇ϕ+
r + S(ϕ0 + ∇w0) · (ϕ+

r + ∇w+
r ) = W0 − Wr . (131)
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Noticing that∫
D

P∇ϕ0 · ∇ϕ0 + S(ϕ0 + ∇w0) · (ϕ0 + ∇w0)

=
∫
D

P∇(ϕ0 − ϕ−
r ) · ∇(ϕ0 − ϕ−

r )+ S((ϕ0 − ϕ−
r )

+ ∇(w0 − w−
r )) · ((ϕ0 − ϕ−

r )+ ∇(w0 − w−
r ))

≤
∫
�

P∇(ϕ0 − ϕr) · ∇(ϕ0 − ϕr)+ S((ϕ0 − ϕr)+ ∇(w0 − wr)) · ((ϕ0 − ϕr)+ ∇(w0 − wr)),

(132)

by (130) the thesis follows. �

Let us notice that the estimate from above stated in Theorem 4.3 can be derived as in the proof of
Theorem 4.1.

In order to prove Theorem 4.4 we shall use the following proposition.

Proposition 6.2: Let the hypotheses of Theorem 4.4 be satisfied. The contact actions exerted by the
material in � \ D on D throughout the boundary ∂D are square summable on ∂D, e.g. (P∇ϕ+

r )n ∈
L2(∂D,R2) and S(ϕ+

r + ∇w+
r ) · n ∈ L2(∂D), and the following estimate holds∫

∂D
|(P∇ϕ+

r )n|2 + ρ20 |S(ϕ+
r + ∇w+

r ) · n|2 ≤ C
ρ0

rD

∫
�\D

ρ50 |∇̂ϕ+
r |2 + ρ30 |ϕ+

r + ∇w+
r |2, (133)

where n denotes the outer unit normal to D and the constant C> 0 only depends on Q0, d0, LD, QD, α0,
α1, γ0.

Proof of Theorem 4.4: By using (61) and (62), the right-hand side of (127) can be written as

W0 − Wr =
∫
∂D
((P∇ϕ+

r )n − (S(ϕ+
r + ∇w+

r ) · n)x) · (ϕ0 − ϕ0,∂D)

+
∫
∂D
(S(ϕ+

r + ∇w+
r ) · n)x · ϕ0 +

∫
∂D
(S(ϕ+

r + ∇w+
r ) · n)(w0 − w0,∂D) ≡ I1 + I2 + I3.

(134)

By applying Hölder’s inequality and Poincaré’s inequality (107) we have

|I1| ≤ Cr1/2D

(∫
D

|∇ϕ0|2
)1/2 (∫

∂D
|(P∇ϕ+

r )n|2 + ρ20 |S(ϕ+
r + ∇w+

r ) · n|2
)1/2

, (135)

where C> 0 only depends on Q0, LD, QD.
By interior regularity estimates, by the generalized Korn inequality (110) (applied to (ϕ0,w0) in

�), and by recalling (98) and (72), we have(∫
D

|∇ϕ0|2
)1/2

≤ C

ρ
5/2
0

|D|1/2W1/2
0 , (136)

where C> 0 only depends on α0, γ0, α1, ρ0/h, L0, Q0, d0. Therefore, by (134) and (135), we have

|I1| ≤ C

ρ
5/2
0

r1/2D |D|1/2W1/2
0

(∫
∂D

|(P∇ϕ+
r )n|2 + ρ20 |S(ϕ+

r + ∇w+
r ) · n|2

)1/2
, (137)

where the constant C> 0 only depends on α0, γ0, α1, ρ0/h, L0, Q0, d0, LD, QD.
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18 A. MORASSI AND E. ROSSET

By using similar estimates, we get

|I3| ≤ C

ρ
5/2
0

r1/2D |D|1/2W1/2
0

(∫
∂D
ρ20 |S(ϕ+

r + ∇w+
r ) · n|2

)1/2
, (138)

where the constant C> 0 only depends on α0, γ0, α1, ρ0/h, L0, Q0, d0, LD, QD.
By (61) and by using Hölder’s inequality, the integral I2 can be dominated as follows

I2 =
∫
∂D
(S(ϕ+

r + ∇w+
r ) · n)(x · ϕ0 − (x · ϕ0)∂D)

≤
(∫

∂D
|x · ϕ0 − (x · ϕ0)∂D|2

)1/2 (∫
∂D

|S(ϕ+
r + ∇w+

r ) · n|2
)1/2

. (139)

Noticing that ∇(x · ϕ0) = ϕ0 + (∇ϕ0)Tx, the first integral on the right-hand side of (138) can be
estimated by using Proposition 5.3, interior regularity estimates for ∇ϕ0, the generalized Korn’s
inequality (110) (applied to (ϕ0,w0) in�), inequality (98) and the definition ofW0 in (72), obtaining∫

∂D
|x · ϕ0 − (x · ϕ0)∂D|2 ≤ CrD

∫
D

|∇(x · ϕ0)|2 ≤ CrD
∫
D

|ϕ0|2 + |x|2|∇ϕ0|2

≤ CrD|D|(‖ϕ0‖2L∞(D) + ρ20‖∇ϕ0‖2L∞(D)) ≤ C
ρ30

rD|D|W0, (140)

whereC> 0 only depends onα0, γ0,α1, ρ0/h, L0,Q0, d0, LD,QD. Inserting the above estimate in (138)
we have

I2 ≤ C

ρ
3/2
0

r1/2D |D|1/2W1/2
0

(∫
∂D

|S(ϕ+
r + ∇w+

r ) · n|2
)1/2

, (141)

where the constant C> 0 only depends on α0, γ0, α1, ρ0/h, L0, Q0, d0, LD, QD.
By (133), (136), (137), (140) and by Proposition 6.2, we have

W0 − Wr ≤ C

ρ
3/2
0

|D|1/2W1/2
0

(∫
�\D

ρ40 |∇̂ϕ+
r |2 + ρ20 |ϕ+

r + ∇w+
r |2
)1/2

, (142)

with C> 0 only depending on α0, γ0, α1, ρ0/h, L0, Q0, d0, LD, QD.
To conclude, by the strong convexity of P and S, recalling (98) and (71), we have∫

�\D̄
ρ40 |∇̂ϕ+

r |2 + ρ20 |ϕ+
r + ∇w+

r |2

≤ Cρ0
∫
�\D̄

P∇ϕ+
r · ∇ϕ+

r + S(ϕ+
r + ∇w+

r ) · (ϕ+
r + ∇w+

r ) = Cρ0Wr , (143)

with C> 0 only depending on α0, γ0, α1, ρ0/h, L0, Q0, d0, LD, QD. Therefore, by (141) and (142), we
have

W0 − Wr ≤ C
ρ0

|D|1/2W1/2
0 W1/2

r , (1434)

with C> 0 only depending on α0, γ0, α1, ρ0/h, L0, Q0, d0, LD, QD. By some algebra, estimate (84)
follows. �

The remaining part of the section is devoted to the proof of Proposition 6.2. Themain idea consists
in estimating the L2(∂D)-normof the conormal derivatives (P∇ϕ+

r )n, S∇w+
r · n in terms of the strain

18
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energy stored in� \ D and the L2(∂D)-norm of the tangential component of the gradient of ϕ+
r and

w+
r .
We start by introducing some notation.
Given ρ > 0, L> 0 and a Lipschitz continuous functionψ : (−2ρ, 2ρ) → R satisfyingψ(0) = 0,

‖ψ‖C0,1((−2ρ,2ρ)) ≤ 2ρL, let us define for every t, 0 < t ≤ 2ρ,

C+
t = {(x1, x2) ∈ R

2 | |x1| < t, ψ(x1) < x2 < Lt}, (145)

�t = {(x1, x2) ∈ R
2 | |x1| < t, x2 = ψ(x1)}. (146)

We shall use the following two-dimensional version of the constructive Korn-type inequality on
cylindrical domains due to Kondrat’ev and Oleinik [22].

Proposition 6.3 ([22, Theorem 2]): Let

Cl′,l = {(x1, x2) ∈ R
2 | |x1| < l′, −l < x2 < l}, (147)

where l > l′. For every u ∈ H1(Cl′,l,R2) such that u = 0 on {x2 = −l}, we have∫
Cl′ ,l

|∇u|2 ≤ C
(
1 + 4l2

l′2

)∫
Cl′ ,l

|∇̂u|2, (148)

where C> 0 is an absolute constant.

The next proposition states local boundary estimates in L2 of the conormal derivatives of solutions
to the Mindlin–Reissner plate problem. A proof shall be presented at the end of this section.

Proposition 6.4: Let S, P given in (33), (34) satisfy the strong convexity conditions (31).
Let w ∈ H1(C+

2ρ) be a solution to

div(S∇w) = −div(Sϕ) in C+
2ρ , (149)

with ϕ ∈ H1(C+
2ρ ,R

2).
If w|�2ρ ∈ H1(�2ρ), then S∇w · n ∈ L2(�ρ) and we have∫
�ρ

|S∇w · n|2 ≤ C

(∫
�2ρ

ρ20 |∇Tw|2 +
(
1 + ρ0

ρ

)∫
C+
2ρ

ρ0|∇w|2 +
∫
C+
2ρ

ρ0|ϕ|2 + ρ30 |∇ϕ|2
)
,

(150)
where ∇Tw is the tangential component of ∇w, and the constant C> 0 only depends on L, α0, γ0, α1.

Let ϕ ∈ H1(C+
2ρ ,R

2) be a solution to

div(P∇ϕ) = S(ϕ + ∇w) in C+
2ρ , (151)

with w ∈ H1(C+
2ρ).

If ϕ|�2ρ ∈ H1(�2ρ ,R2), then (P∇ϕ)n ∈ L2(�ρ ,R2) and we have

∫
�ρ

|(P∇ϕ)n|2 ≤ C

(∫
�2ρ

ρ60 |∇Tϕ|2 +
(
1 + ρ0

ρ

)∫
C+
2ρ

ρ30 |ϕ|2 + ρ50 |∇ϕ|2 +
∫
C+
2ρ

ρ30 |∇w|2
)
(152)

where ∇Tϕ is the tangential component of ∇ϕ, and the constant C> 0 only depends on L, α0, γ0, α1.
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20 A. MORASSI AND E. ROSSET

Proof of Proposition 6.2: We follow the lines of the proof derived in [11, Proposition 3.4] for the
analogous estimate in an electric conductor, see also [12, Proposition 3.3].

We cover ∂D with internally non-overlapping closed cubes Qj, j = 1, . . . , J, having side r̃D =
γ (LD)rD, where γ (LD) = min{1, LD}/2√2

√
1 + L2D. The number of these cubes can be evaluated

by a slight modification of the arguments in Lemma 2.8 of [21], that is

J ≤ C
|D|
r2D

≤ CQ2
D, (153)

where C> 0 only depends on LD.
For every j = 1, . . . , J there exists x0 ∈ ∂D ∩ Qj such that Qj ∩ (� \ D) ⊂ C+

r , where r =
rD/2

√
1 + L2D and C+

t = {y = (y1, y2) ∈ � \ D | |y1| < t,ψ(y1) < y2 < tLD} for every t, 0 < t ≤ 2r.
Here, ψ is a Lipschitz function in (−2r, 2r) satisfying ψ(0) = 0 and ‖ψ‖C0,1((−2r,2r)) ≤ 2rLD, repre-
senting locally the boundary of D in a suitable coordinate system y = (y1, y2), y = Rx, where R is an
orthogonal transformation and x = (x1, x2) is the referential cartesian coordinate system.

Recalling (57)–(60), it is not restrictive to choose (ϕr ,wr) such that

ϕr ≡ 0, wr ≡ 0 in D. (154)

By the change of variables y = Rx, the pair (ϕ+
r = ϕ+

r (RTy),w+
r = w+

r (RTy)) satisfies

div y(S∇yw+
r ) = −div y(SRϕ+

r ) in C+
2r (155)

and

div y(̃P(y)∇yϕ
+
r ) = S(ϕ+

r + RT∇yw+
r ) in C+

2r , (156)

where S = S(RTy) and P̃(y)[A] = RP(RTy)[RTAR]RT for every 2 × 2matrixA. The tensor P̃ belongs
to C0,1(C+

2r), with ‖P̃‖C0,1(C+
2r)

≤ Ch3, where C> 0 only depends on α0, α1 and γ0. Moreover, P̃

satisfies the strong convexity condition (38).
Recalling that w+

r = 0 on ∂D and by applying (149) with ρ = r, we have∫
Qj∩∂D

|S∇w+
r · n|2 ≤ C

(
1 + ρ0

rD

)∫
C+
2r

ρ0|∇w+
r |2 + Cρ0

∫
C+
2r

|ϕ+
r |2 + ρ20 |∇ϕ+

r |2, (157)

whereC> 0 only depends on LD,α0, γ0,α1. Similarly, sinceϕ+
r = 0 on ∂D, by applying estimate (151)

with ρ = r we obtain∫
Qj∩∂D

|(P∇ϕ+
r )n|2 ≤ C

(
1 + ρ0

rD

)∫
C+
2r

ρ30 |ϕ+
r |2 + ρ50 |∇ϕ+

r |2 + C
∫
C+
2r

ρ30 |∇w+
r |2, (158)

where C> 0 only depends on LD, α0, γ0, α1.
Let us consider the cylinder

C∗ = {(y1, y2) ∈ R
2 | |y1| < r, |y2| < L′r}, (159)

where L′ = max{L, 2 − L}, and let ϕ∗
r ∈ H1(C∗,R2) be defined as follows:

ϕ∗
r =

{
ϕ+
r inC+

r ,
0 inC∗ \ C+

r .
(160)
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By applying the Poincaré inequality
∫
C+
2r

|ϕ+
r |2 ≤ Cr2D

∫
C+
2r

|∇ϕ+
r |2, with C> 0 only depending on LD,

the Korn-type inequality (147) to ϕ∗
r , and by (157), we have∫

Qj∩∂D
|(P∇ϕ+

r )n|2 ≤ C
(
1 + ρ0

rD

)∫
C+
2r

ρ50 |∇̂ϕ+
r |2 + C

∫
C+
2r

ρ30 |∇w+
r |2, (161)

where C> 0 only depends on LD, α0, γ0, α1.
Finally, in order to estimate locally the L2 norm of the contact forces S(ϕ+

r + ∇w+
r ) · n on the

boundary of D, we rewrite inequality (156) as follows∫
Qj∩∂D

|S(ϕ+
r + ∇w+

r ) · n|2

≤ C
(
1 + ρ0

rD

)∫
C+
2r̄

ρ0|∇w+
r |2 + Cρ0

∫
C+
2r̄

|ϕ+
r |2 + ρ20 |∇ϕ+

r |2 + C
∫
Qj∩∂D

ρ20 |ϕ+
r |2, (162)

where C> 0 only depends on LD, α0, γ0, α1. Recalling that ϕ+
r = 0 on ∂D, by using Poincaré

inequalities and the Korn-type inequality (147), we have∫
Qj∩∂D

|S(ϕ+
r + ∇w+

r ) · n|2 ≤ C
(
1 + ρ0

rD

)∫
C+
2r̄

ρ0|∇w+
r |2 + C

∫
C+
2r̄

ρ30 |∇̂ϕ+
r |2, (163)

where C> 0 only depends on LD, α0, γ0, α1.
By summing (160) and (162), using the normalization (153), by applying Poincaré’s inequal-

ity (106) and the Korn-type inequality (147) we have∫
Qj∩∂D

|(P∇ϕ+
r )n|2 + ρ20 |S(ϕ+

r + ∇w+
r ) · n|2

≤ C
(
1 + ρ0

rD

)∫
C+
2r̄

ρ50 |∇̂ϕ+
r |2 + ρ30 |∇w+

r |2

≤ C
(
1 + ρ0

rD

)(∫
C+
2r̄

ρ50 |∇̂ϕ+
r |2 + ρ30 |ϕ+

r + ∇w+
r |2 + C

∫
C+
2r̄

ρ30 |ϕ+
r |2

)

≤ C
(
1 + ρ0

rD

)∫
C+
2r̄

ρ50 |∇̂ϕ+
r |2 + ρ30 |ϕ+

r + ∇w+
r |2, (164)

where C> 0 only depends on LD, α0, γ0, α1.
Since 1 + ρ0/rD ≤ (1 + d0/2)ρ0/rD, and recalling (152), we obtain thewished estimate (132). �

We conclude the section with a proof of Proposition 6.4, which is based on the following result.

Lemma 6.5: Let S, P given in (33), (34) satisfy the strong convexity conditions (37), (38) and the
regularity conditions in (40).

For every w ∈ H3/2(C+
2ρ) such that div(S∇w) ∈ L2(C+

2ρ) and w = |∇w| = 0 on ∂C+
2ρ \�2ρ , we

have ∫
�ρ

|S∇w · n|2 ≤ C

(
ρ20

∫
�2ρ

ρ0|∇Tw|2 + ρ0

∫
C+
2ρ

|∇w|2 + |∇w||div(S∇w)|
)
, (165)

where C> 0 only depends on L, α0, γ0, α1.
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For every ϕ ∈ H3/2(C+
2ρ ,R

2) such that div(P∇ϕ) ∈ L2(C+
2ρ ,R

2) and |ϕ| = |∇ϕ| = 0 on ∂C+
2ρ \

�2ρ , we have∫
�ρ

|(P∇ϕ)n|2 ≤ C

(∫
�2ρ

ρ60 |∇Tϕ|2 +
∫
C+
2ρ

ρ50 |∇ϕ|2 + ρ30 |∇ϕ||div(P∇ϕ)|
)
, (166)

where C> 0 only depends on L, α0, γ0, α1.

Proof: The proof follows the lines of the proof of the analogous result obtained in conductivity and
elasticity context, see [11, Lemma 5.2] and [12, Lemma 4.3], respectively. The key mathematical tool
is a generalization of the well-known Rellich’s identity [15]. �

Proof of Proposition 6.4: The proof can be obtained by adapting the arguments used, for example,
in the proof of the analogous result in three-dimensional elasticity [12, Proposition 4.2], see also
[11, Proposition 5.1]. Moreover, the proof of the estimates (149) and (151) follows the same path.
Therefore, we sketch the proof of the inequality (149) only.

We first prove the thesis under the additional assumption that w ∈ H3/2(C+
2t) for every t < ρ.

Let us introduce the cut-off function in R
2

η(x1, x2) = χ(x1)�(x2), (167)

where

χ ∈ C∞
0 (R), χ(x1) ≡ 1 if |x1| ≤ ρ, (168)

χ(x1) ≡ 0 if |x1| ≥ 3
2
ρ, (169)

‖χ ′‖∞ ≤ C1ρ
−1, ‖χ ′′‖∞ ≤ C1ρ

−2, (170)

� ∈ C∞
0 (R), ψ(x2) ≡ 1 if |x2| ≤ ρL, (171)

ψ(x2) ≡ 0 if |x2| ≥ 3
2
ρL, (172)

‖ψ ′‖∞ ≤ C2ρ
−1, ‖ψ ′′‖∞ ≤ C2ρ

−2, (173)

where C1 is an absolute constant and C2 is a constant only depending on L.
For every c ∈ R the function

u = η(w − c) (174)

satisfies the hypotheses of Lemma 6.5 with ρ = t, for every t ∈ ( 34ρ, ρ).
By substituting (173) in (164), and recalling (148), we have∫

�t

S2
(
(w − c)2|∇η · n|2 + η2|∇w · n|2 + 2η(w − c)(∇η · n)(∇w · n))

≤ Cρ20

∫
�2t

(w − c)2|∇Tη|2 + η2|∇Tw|2 + 2η(w − c)∇Tη · ∇Tw

+ Cρ0
∫
C+
2t

(w − c)2|∇η|2 + η2|∇w|2 + 2η(w − c)∇η · ∇w + |ϕ|2 + ρ20 |∇ϕ|2, (175)

where C> 0 only depends on L, α0, γ0, α1.
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By recalling (167)–(172), by using Schwarz inequality and 2ab ≤ a2/ε + εb2, for every ε > 0, we
obtain∫

�t

|S∇w · n|2

≤ C

(
ρ20

∫
�2t

(w − c)2

t2
+ |∇Tw|2 + ρ0

∫
C+
2t

(w − c)2

t2
+ |∇w|2 + |ϕ|2 + ρ20 |∇ϕ|2

)
,

for every t ∈
(
3
4
ρ, ρ

)
, (176)

where C> 0 only depends on L, α0, γ0, α1.
Choosing c = (1/|C+

2t|)
∫
C+
2t
w, by applying trace inequalities and Poincaré’s inequality (105), we

have ∫
�t

|S∇w · n|2

≤ C

(
ρ20

∫
�2t

|∇Tw|2 +
(
1 + ρ0

t

) ∫
C+
2t

ρ0|∇w|2 +
∫
C+
2t

ρ0|ϕ|2 + ρ30 |∇ϕ|2
)
,

for every t ∈
(
3
4
ρ, ρ

)
, (177)

where C> 0 only depends on L, α0, γ0, α1. Passing to the limit for t → ρ, we obtain (149).
We notice that if the function � representing the boundary �2t is smooth, then the additional

assumption made at the beginning of this proof (e.g. w ∈ H3/2(C+
2t) for every t < ρ) is satisfied by

regularity estimates up to the boundary for solutions to (148).When�2t is represented by a Lipschitz
function, the thesis can be obtained by following the approximation argument presented in [12, Step
2 of Proposition 4.2]. �
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