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The paper contains some Liouville theorems for second order multicomponent 
quasilinear elliptic systems of equations or inequalities in RN associated to general 
nonlinearities. No assumptions on the behaviour of the solutions at infinity are 
assumed.

1. Introduction

Liouville theorems of quasilinear elliptic systems has been an active research area since the publication
of the seminal works [13], [7]. Since then, a huge number of papers have been published on this topic. See 
for instance [17], [14].

One of the main reasons for studying Liouville’s theorems, apart from their intrinsic interest, lies in the 
fact that they are a powerful tool to demonstrate existence results for the Dirichlet problem of associated 
problems in bounded domains of RN . See [8], [1], [3], for some results in this direction.

In this paper we prove some Liouville theorems of general quasilinear second order elliptic systems and 
inequalities in RN in divergence form. The interested reader may refer to [11], [10] for earlier results related 
to this work and to [5] and [6] for more recent outcomes.

Perhaps the main interest about our analysis is that we do not assume any kind of variational structure 
on our problems. In this way we can apply to prove existence theorems for general systems. The simplest 
problem that we have in mind in the semilinear case (see also [15]) is the following,
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu = up1vq1wr1 , in RN ,

−Δv = up2uq2wr2 , in RN ,

−Δw = uq3vp3wq3 , in RN ,

u > 0, v > 0, w > 0 in RN ,

(1.1)

and its quasilinear counterpart,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δpu = up1vq1wr1 , in RN ,

−Δqv = up2uq2wr2 , in RN ,

−Δrw = uq3vp3wq3 , in RN ,

u > 0, v > 0, w > 0 in RN ,

(1.2)

where as usual, Δp = div(|∇(.)|p−2∇(.)), p > 1, and similarly for the other two operators. We emphasise
that here, the exponents of the power nonlinearities are real numbers (they can be negative).

In this paper we concentrate our attention on the following problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div(Ap(x, u,∇u)) ≥ f(u, v, w) in RN ,

−div(Aq(x, v,∇v)) ≥ g(u, v, w) in Rn,

−div(Ar(x,w,∇w)) ≥ h(u, v, w) in Rn,

u ≥ 0, v ≥ 0, w ≥ 0 in Rn,

(1.3)

which is a strong generalization of (1.1) and (1.2). In (1.3), div(Ai(·, ·, ∇·) are general operators satisfying
a classical structure condition (see Definition 1 below for the precise assumption), and f , g, and h are 
nonnegative continuous functions on R3

+ =]0, +∞[×]0, +∞[×]0, +∞[ with an unique hypothesis on their
behaviour near the origin (0, 0, 0).

We emphasise that our assumptions on the nonlinearities allow us to study singular systems. See Re-
mark 4.

The results proved in this paper are a substantial generalization of those proved in [4] for the scalar case, 
and [5] and [6] for systems of two equations. However, to keep our exposition simple and transparent we 
bound our interest to systems with three equations. Extensions of the results contained in this paper can 
be proved for systems containing more than three equations or inequalities. This will be a subject of our 
future work.

We point out that not all Liouville theorems proved in this paper are sharp. On one hand, this is due 
to the complexity of the problem and, on the other hand, this paper can be considered just a beginning of 
more systematic study for this kind of systems. However, we emphasise that we do not assume any kind of 
behaviour of the solutions at infinity.

This paper is organised as follows. In the next section we fix some notations, hypotheses and definitions 
that we shall make throughout the paper. Section 3 is devoted to the key a priori estimates of the solutions 
of the problems under consideration. See in particular Lemma 10 and its consequences. Finally the last 
section contains the main result of this paper (see Theorem 16) and other related theorems.

2. Multicomponent quasilinear systems

In this paper we shall study system quasilinear inequalities whose differential operators are in divergence
form, namely

Lu(x) = div(A (x, u,∇u)).
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Our model case is the p-Laplace operator.

Definition 1. Let Ω ⊂ RN be an open set. Let p > 1 and Ap : Ω × R × RN → RN be a Carathéodory
function. The function Ap is called S-p-C, strongly-p-coercive, if there exist two constants a, ̃a > 0 such that

(S-p-C) (Ap(x, t, w) · w) ≥ ã|w|p ≥ a|Ap(x, t, w)|p′ for all (x, t, w) ∈ Ω ×R ×RN ,

see [11] and [12] for details.

As it is well known, a multicomponent system is a system that involves more than two equations. In this 
section we state some preliminary facts about the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div(Ap(x, u,∇u)) ≥ f(u, v, w) in Ω,

−div(Aq(x, v,∇v)) ≥ g(u, v, w) in Ω,

−div(Ar(x,w,∇w)) ≥ h(u, v, w) in Ω,

u ≥ 0, v ≥ 0, w ≥ 0 in Ω.

(2.1)

Along the whole paper we shall use the following assumption.

H1. The functions Ap, Aq, Ar : Ω × R × RN → RN are S-p-C, S-q-C and S-r-C respectively, N >

max{p, q, r} ≥ min{p, q, r} > 1 and the functions f, g, h :]0, ∞[×]0, ∞[×]0, ∞[→ [0, ∞[ are continu-
ous.

Definition 2. The set of three functions (u, v, w) ∈ W 1,p
loc (Ω) ×W 1,q

loc (Ω) ×W 1,r
loc (Ω) is called a weak solution

of (3.2) if

f(u, v, w), g(u, v, w), h(u, v, w) ∈ L1
loc(Ω),

|Ap(·, u,∇u)|p′
, |Aq(·, v,∇v)|q′ , |Ar(·, w,∇w)|r′ ∈ L1

loc(Ω),

and the following inequalities hold
∫
Ω

(Ap(x, u,∇u) · ∇φ1) ≥
∫
Ω

f(u, v, w)φ1,

∫
Ω

(Aq(x, v,∇v) · ∇φ2) ≥
∫
Ω

g(u, v, w)φ2,

∫
Ω

(Ar(x,w,∇w) · ∇φ3) ≥
∫
Ω

h(u, v, w)φ3,

for all non-negative functions φ1, φ2, φ3 ∈ C1
0 (Ω).

We say that a weak solution (u, v, w) is trivial if either u = 0 or v = 0 or w = 0 a.e. in Ω.

Moreover in what follows we shall assume that f, g, h satisfy the following hypotheses.

(f0) there exist p1 ≥ 0, q1 ≥ 0, r1 ≥ 0 such that

lim inf f(τ, ξ, ζ)
p1 q1 r1

> 0 (possibly infinity),

τ+ξ+ζ→0 τ ξ ζ

3



(g0) there exist p2 ≥ 0, q2 ≥ 0, r2 ≥ 0 such that

lim inf
τ+ξ+ζ→0

g(τ, ξ, ζ)
τp2ξq2ζr2

> 0 (possibly infinity),

(h0) there exist p3 ≥ 0, q3 ≥ 0 and r3 ≥ 0 such that

lim inf
τ+ξ+ζ→0

h(τ, ξ, ζ)
τp3ξq3ζr3

> 0 (possibly infinity).

Remark 3. The conditions (that we do not assume along the paper)

max{p2, p3} > 0, max{q1, q3} > 0, max{r1, r2} > 0, (2.2)

max{q1, r1} > 0, max{p2, r2} > 0, max{p3, q3} > 0, (2.3)

assure that the system is a genuinely strongly coupled. Indeed, for instance, in the case that f, g are pure 
powers, that is f(τ, ξ, ζ) = τp1ξq1ζr1 and g(τ, ξ, ζ) = τp2ξq2ζr2 , if r1 = r2 = 0 (i.e. (2.2) does not hold),
then the system can be decoupled, since the first two equations of (2.1) do not depend on w.

Remark 4. The assumptions (f0), (g0), (h0) cover also the case of singular nonlinearities. Indeed, if for
instance f(τ, η, ζ) = ξβζγ

τα , with α, β, γ > 0, then (f0) is fulfilled with p1 = 0, q1 = β and r1 = γ. Indeed in
this case we have,

lim
τ+ξ+ζ→0

f(τ, ξ, ζ)
τp1ξq1ζr1

= +∞.

For some results applicable to the singular case, see Lemma 11 and Proposition 14 below.

By BR we denote the euclidean ball in RN of radius R centred at the origin, while AR stands for the ring
AR := BR \BR/2. In the rest of the paper, for sake of simplicity, by infA u we denote the essential infimum
of u on the set A, that is essinfA u

We recall the following classical,

Proposition 5 (Weak Harnack inequality). Suppose that Ap is S-p-C and Ω ⊆ RN is an open set. Then there
exist σ > 0 and cH > 0 such that for any weak solution u of

{
−div(Ap(x, u,∇u)) ≥ 0 in Ω,

u ≥ 0 in Ω,

for any R > 0 such that B2R ⊂ Ω, we have

(WH)
(

1
|BR|

∫
BR

uσ
)1/σ

≤ cH infBR/2 u.

For a proof see for instance [12], [16].

Remark 6. The hypothesis S-p-C can be relaxed by requiring that the operators are of weak-p-C type and 
an Harnack type estimate holds. See [4] and [2]. However in this paper, for sake of brevity, we shall deal 
only with the S-p-C case.

The following is a direct consequence of (WH). See Proposition 1 and Remark 2 of [6].
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Proposition 7. If (WH) holds for the three nonnegative functions u, v and w, then (WH) also holds for 
u + v + w. Furthermore, there exists a positive constant C independent of u, v, w, such that,

inf
BR

(u + v + w) ≤ C

(
inf
BR/2

u + inf
BR/2

v + inf
BR/2

w

)
,

for all R > 0 such that B2R ⊂ Ω.

Lemma 8 (Lemma 3.1 [4]). Let u : RN → [0, ∞) be a function such that infRN u = 0. Assume that (WH)
holds with exponent σ > 0, then for all ε > 0

lim
R→∞

|AR ∩ Tu
ε |

|AR|
= 1, lim

R→∞

|BR ∩ Tu
ε |

|BR|
= 1,

where Tu
ε = {x ∈ RN : u(x) < ε} and AR = BR \BR/2.

From now on, if not otherwise specified, for ε > 0, we set

Tε = {x ∈ RN : u(x) + v(x) + w(x) < ε}.

3. General a priori estimates

A slight variation of the proof of Theorem 2 of [6] gives the following.

Theorem 9 (General a priori estimates). Assume that H1 holds. There exist positive constants,

c1 = c1(Ap) > 0, c2 = c2(Aq) > 0, c3 = c3(Ar) > 0

such that if (u, v, w) is a weak solution of (2.1), then for all R > 0 such that B2R ⊂⊂ Ω, we have

1
|BR|

∫
BR

f(u, v, w) ≤ c1R
−p

(
inf
BR

u

)p−1

,

1
|BR|

∫
BR

g(u, v, w) ≤ c2R
−q

(
inf
BR

v

)q−1

,

1
|BR|

∫
BR

h(u, v, w) ≤ c3R
−r

(
inf
BR

w

)r−1

.

(3.1)

In what follows we shall concentrate our attention to the problem,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div(Ap(x, u,∇u)) ≥ f(u, v, w) in RN ,

−div(Aq(x, v,∇v)) ≥ g(u, v, w) in RN ,

−div(Ar(x,w,∇w)) ≥ h(u, v, w) in RN ,

infRN u = infRN v = infRN w = 0.

(3.2)

The following is the key of our results.
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Lemma 10. Assume that H1 holds. Let (u, v, w) be a non trivial weak solution of (3.2).
If (f0) holds, then for all ε > 0 sufficiently small and R > 0 sufficiently large the following estimate holds

( inf
AR∩Tε

u)p1−p+1( inf
AR∩Tε

v)q1( inf
AR∩Tε

w)r1 ≤ cR−p, (3.3)

where Tε = {x ∈ RN : u(x) + v(x) + w(x) < ε} and AR = BR \BR/2.
Similarly, if (g0) and (h0) hold we have, respectively

( inf
AR∩Tε

u)p2( inf
AR∩Tε

v)q2−q+1( inf
AR∩Tε

w)r2 ≤ cR−q, (3.4)

and

( inf
AR∩Tε

u)p3( inf
AR∩Tε

v)q3( inf
AR∩Tε

w)r3−r+1 ≤ cR−r. (3.5)

Proof. Let us prove (3.3), the proof of (3.4) and (3.5) being similar. From (f0) it follows that for a suitable
c > 0 there exists ε > 0 such that,

f(τ, ξ, ζ) ≥ cτp1ξq1ζr1 for ε > τ, ξ, ζ > 0. (3.6)

From the first inequality of (3.1) we obtain
∫
BR

f(u, v, w) ≤ cR−p|AR|(inf
BR

u)p−1 ≤ cR−p|AR|( inf
AR∩Tε

u)p−1. (3.7)

On the other hand using (3.6), we have
∫
BR

f(u, v, w) ≥
∫

AR∩Tε

f(u, v, w) ≥ c

∫
AR∩Tε

up1vq1wr1 ,

hence,
∫

AR∩Tε

up1vq1wr1 ≤ cR−p|AR|( inf
AR∩Tε

u)p−1. (3.8)

Therefore

( inf
AR∩Tε

u)p1( inf
AR∩Tε

v)q1( inf
AR∩Tε

w)r1 ≤ cR−p |AR|
|AR ∩ Tε|

( inf
AR∩Tε

u)p−1 (3.9)

and so, by Proposition 7 and by Lemma 8 applied to the function u + v + w,

( inf
AR∩Tε

u)p1−p+1( inf
AR∩Tε

v)q1( inf
AR∩Tε

w)r1 ≤ cR−p,

for R sufficiently large. �
From the above lemma we immediately deduce the following Liouville theorem.

Lemma 11. Assume that H1 holds. If (f0) holds with p1 = q1 = r1 = 0 or (g0) holds with p2 = q2 = r2 = 0
or (h0) holds with p3 = q3 = r3 = 0 then (3.2) has no non trivial weak solution.
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Proof. Without loss of generality assume that (f0) holds with p1 = q1 = r1 = 0. By contradiction, let
(u, v, w) be a non-trivial weak solution with infRN u = infRN v = infRN w = 0. With the same notation of
Lemma 10, from (3.3) we have

ε−(p−1) ≤ ( inf
AR∩Tε

u)−(p−1) ≤ cR−p,

and letting R → +∞ we get a contradiction. �
Since Lemma 11 holds, we realize that the following assumption is natural.

H2. (f0) is fulfilled with p1, q1, r1 ≥ 0 and at least one of them positive,
(g0) is fulfilled with p2, q2, r2 ≥ 0 and at least one of them positive,
(h0) is fulfilled with p3, q3, r3 ≥ 0 and at least one of them positive.

Let us introduce the number,

D :=q3r2(p− 1 − p1) + p3r1(q − 1 − q2) + p2q1(r − 1 − r3)

− (p− 1 − p1)(q − 1 − q2)(r − 1 − r3) + p3q1r2 + p2q3r1.

Lemma 12. Assume that H1, (f0), (g0), (h0) hold. Let (u, v, w) be a non-trivial weak solution of (3.2). For
ε > 0, we set Tε = {x ∈ RN : u(x) + v(x) + w(x) < ε}.

If q3r2 < (q − 1 − q2)(r − 1 − r3), q2 < q − 1, r3 < r − 1, then for all ε > 0 sufficiently small and R > 0
sufficiently large, we have

( inf
AR∩Tε

u)D ≤ cR−θu , (3.10)

where

θu := rr1(q − 1 − q2) + qq1(r − 1 − r3) + p[(q − 1 − q2)(r − 1 − r3) − q3r2] + qq3r1 + rq1r2. (3.11)

Furthermore, if D > 0 then for R large we obtain
∫
BR

f(u, v, w) ≤ cRN−p− p−1
D θu . (3.12)

If p3r1 < (p − 1 − p1)(r − 1 − r3), p1 < p − 1, r3 < r − 1, then for all ε > 0 sufficiently small and R > 0
sufficiently large, we have

( inf
AR∩Tε

v)D ≤ cR−θv , (3.13)

where

θv := rr2(p− 1 − p1) + pp2(r − 1 − r3) + q[(p− 1 − p1)(r − 1 − r3) − p3r1] + pp3r2 + rp2r1. (3.14)

Furthermore, if D > 0 for R large we obtain
∫

g(u, v, w) ≤ cRN−q− q−1
D θv . (3.15)
BR
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If p2q1 < (p − 1 − p1)(q − 1 − q2), p1 < p − 1, q2 < q − 1, then for all ε > 0 sufficiently small and R > 0
sufficiently large, we have

( inf
AR∩Tε

w)D ≤ cR−θw
, (3.16)

where

θw := qq3(p− 1 − p1) + pp3(q − 1 − q2) + r[(p− 1 − p1)(q − 1 − q2) − p2q1] + pp2q3 + qp3q1. (3.17)

Furthermore, if D > 0, for R large we

∫
BR

h(u, v, w) ≤ cRN−r− r−1
D θw . (3.18)

Proof. In order to prove (3.10), we distinguish seven cases.

Case 1. q1 > 0 and q3 > 0. By (3.4) and (3.3), we have

( inf
AR∩Tε

u)p2 ≤ cR−q (infAR∩Tε
v)q−1−q2

(infAR∩Tε
w)r2 ≤ cR−q−p

q−1−q2
q1

(infAR∩Tε
u)(p−1−p1)(q−1−q2)/q1

(infAR∩Tε
w)r2+r1

q−1−q2
q1

,

therefore

( inf
AR∩Tε

u)p2− (p−1−p1)(q−1−q2)
q1 ≤ cR−q−p

q−1−q2
q1 ( inf

AR∩Tε

w)−r2− r1(q−1−q2)
q1 . (3.19)

Similarly, (3.4) and (3.5) imply

( inf
AR∩Tε

w)r2−
(q−1−q2)(r−1−r3)

q3 ≤ cR−q−r
q−1−q2

q3 ( inf
AR∩Tε

u)−p2− p3(q−1−q2)
q3 , (3.20)

for all ε > 0 and R sufficiently large. Combining together (3.19) and (3.20), we get

( inf
AR∩Tε

u)p2− (p−1−p1)(q−1−q2)
q1

+ p2q3+p3(q−1−q2)
(q−1−q2)(r−1−r3)−r2q3

(
r2+r1

q−1−q2
q1

)
≤

≤ R
−q−p

q−1−q2
q1

− qq3+(q−1−q2)r
(q−1−q2)(r−1−r3)−r2q3

(
r2+r1

q−1−q2
q1

)
,

that is, by q3r2 < (q − 1 − q2)(r − 1 − r3),

( inf
AR∩Tε

u)(q−1−q2)D ≤ cR(q−1−q2)[−p(q−1−q2)(r−1−r3)+pr2q3−qq1(r−1−r3)−qq3r1−rr2q1−rr1(q−1−q2)].

Hence (3.10) holds, being q2 < q − 1.

Case 2. q1 = 0, q3 > 0 and r1 > 0. Therefore, as in the previous case, by (3.4) and (3.5), we obtain (3.20).
Therefore by using (3.3), from (3.20) we have,

( inf
AR∩Tε

u)p1−p+1 ≤ cR−p( inf
AR∩Tε

w)−r1

≤ cR−p+r1
qq3+r(q−1−q2)

r2q3−(q−1−q2)(r−1−r3) ( inf u)r1
p2q3+p3(q−1−q2)

r2q3−(q−1−q2)(r−1−r3) .

AR∩Tε
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That is

(inf
AR

u)D ≤ cR−p[(q−1−q2)(r−1−r3)−r2q3]−r1[qq3+r(q−1−q2)].

Case 3. q1 = 0, q3 > 0 and r1 = 0. In this case (3.3) reads as

( inf
AR∩Tε

u)p1−p+1 ≤ cR−p,

which, taking into account that (q − 1 − q2)(r − 1 − r3) − q3r2 > 0, implies the claim.

Case 4. q1 > 0, q3 = 0, and p3 > 0. Arguing as in the Case 1., by (3.4) and (3.3) we get (3.19) as before.
On the other hand since r3 < r − 1, from (3.5) we have

inf
AR∩Tε

w ≥ cR
r

r−1−r3 ( inf
AR∩Tε

u)
p3

r−1−r3 . (3.21)

Hence, combining together (3.19) and (3.21), it follows that

( inf
AR∩Tε

u)p2− (p−1−p1)(q−1−q2)
q1

+ p3
r−1−r3

(
r2+r1

q−1−q2
q1

)
≤ R

−q−p
q−1−q2

q1
− r

r−1−r3

(
r2+r1

q−1−q2
q1

)
,

which, since q1(r − 1 − r3) > 0, implies (3.10).

Case 5. q1 > 0, q3 = 0, and p3 = 0. Arguing as in the Case 1., by (3.4) and (3.3) we get (3.19) as before.
While, from (3.5) we have

inf
AR∩Tε

w ≥ cR
r

r−1−r3 ,

which plugged in (3.19) yields the claim.

Case 6. q1 = 0, q3 = 0 and r1 > 0. From (3.5) and then (3.3) we have

( inf
AR∩Tε

u)p3 ≤ cR−r( inf
AR∩Tε

w)r−1−r3 ≤ cR−r

(
R− p

r1 ( inf
AR∩Tε

u)
p−1−p1

r1

)r−1−r3

. (3.22)

From (3.22) we deduce

( inf
AR∩Tε

u)p3− (p−1−p1)(r−1−r3)
r1 ≤ cR−r−p

p−1−p1
r1 ,

which, together the fact that q − 1 − q2 > 0, implies the claim.

Case 7. q1 = 0, q3 = 0 and r1 = 0. As in the case 3.

To complete the proof it remains to show (3.12). Inequality (3.12) is an immediate consequence of (3.1)
and (3.10), namely

∫
BR

f(u, v, w) ≤ cR−p|AR|( inf
AR∩Tε

u)p−1

≤ cRN−p− p−1
D {rr1(q−1−q2)+qq1(r−1−r3)+p[(q−1−q2)(r−1−r3)−q3r2]+qq3r1+rq1r2}.

The proof of (3.13)–(3.18) follows the same pattern as above. So we omit the details. �
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Lemma 13. Assume that H1 and H2 hold. Let (u, v, w) be a non-trivial weak solution of (3.2). Then there 
exists a constant c > 0 such that for R > 0 sufficiently large the following inequalities hold,

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

p1
p−1

⎛
⎝ ∫

BR

g(u, v, w)

⎞
⎠

q1
q−1

⎛
⎝ ∫

BR

h(u, v, w)

⎞
⎠

r1
r−1

≤ cRα1−N

∫
AR

f(u, v, w), (3.23)

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

p2
p−1

⎛
⎝ ∫

BR

g(u, v, w)

⎞
⎠

q2
q−1

⎛
⎝ ∫

BR

h(u, v, w)

⎞
⎠

r2
r−1

≤cRα2−N

∫
AR

g(u, v, w), (3.24)

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

p3
p−1

⎛
⎝ ∫

BR

g(u, v, w)

⎞
⎠

q3
q−1

⎛
⎝ ∫

BR

h(u, v, w)

⎞
⎠

r3
r−1

≤ cRα3−N

∫
AR

h(u, v, w), (3.25)

where

α1 := N−p
p−1 p1 + N−q

q−1 q1 + N−r
r−1 r1,

α2 := N−p
p−1 p2 + N−q

q−1 q2 + N−r
r−1 r2,

α3 := N−p
p−1 p3 + N−q

q−1 q3 + N−r
r−1 r3.

(3.26)

Proof. Let us prove (3.24). Assume that p2 > 0 (the case r2 > 0 is similar). From (f0), (g0), (h0), it follows
that for a suitable c > 0 there exists ε > 0 such that,

f(τ, ξ, ζ) ≥ cτp1ξq1ζr1 , g(τ, ξ, ζ) ≥ cτp2ξq2ζr2 , h(τ, ξ, ζ) ≥ cτp3ξq3ζr3 , for ε > τ, ξ, ζ > 0. (3.27)

By (3.1), and Lemma 8 applied to the function u + v + w, for R large we have

∫
BR

f(u, v, w) ≤ cR−p|AR|(inf
BR

u)p−1 ≤ cR−p|AR|

⎛
⎝ 1
|AR ∩ Tε|

∫
AR∩Tε

up2

⎞
⎠

p−1
p2

≤ cR−p|AR|1−
p−1
p2

[ ∫
AR∩Tε

up2vq2wr2

(infAR∩Tε
v)q2(infAR∩Tε

w)r2

] p−1
p2

≤ cR−p|AR|1−
p−1
p2

[ ∫
AR∩Tε

g(u, v, w)
(infAR∩Tε

v)q2(infAR∩Tε
w)r2

] p−1
p2

≤ cR
−p− p−1

p2

(
qq2
q−1+ rr2

r−1

)
|AR|1−

p−1
p2

(
1− q2

q−1−
r2

r−1

)
·

·

⎡
⎢⎣

∫
AR

g(u, v, w)( ∫
BR

g(u, v, w)
) q2

q−1
( ∫

BR
h(u, v, w)

) r2
r−1

⎤
⎥⎦

p−1
p2

.

This completes the proof of (3.24).
If p2 = r2 = 0 then, by hypothesis H2 we have that q2 > 0 and the inequality follows the same pattern.

Namely, by (3.1), (g0) and Lemma 8, we have
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∫
BR

g(u, v, w) ≤ cR−q|AR|(inf
BR

v)q−1 ≤ cR−q|AR|

⎛
⎝ 1
|AR ∩ Tε|

∫
AR∩Tε

vq2

⎞
⎠

q−1
q2

≤ cR−q+N(1− q−1
q2

)

⎛
⎝ ∫

AR∩Tε

g(u, v, w)

⎞
⎠

q−1
q2

.

Since the proof of the remaining inequalities is similar to the one given above, we omit the details. �
4. Liouville theorems

In the previous results on a priori estimates as well as in the Liouville theorems we assume that infRN u =
infRN v = infRN w = 0. This hypothesis is quite natural. Indeed, when dealing with the prototype system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δpu ≥ f(u, v, w) in RN ,

−Δqv ≥ g(u, v, w) in RN ,

−Δrw ≥ h(u, v, w) in RN ,

u ≥ 0, v ≥ 0, w ≥ 0,

(4.1)

we see that, by changing the unknowns and the nonlinearities as follows,

ũ := u− inf u, ṽ := v − inf v, w̃ := w − inf w,

f̃(τ, ξ, η) := f(τ + inf u, ξ + inf v, η + inf w),

g̃(τ, ξ, η) := g(τ + inf u, ξ + inf v, η + inf w),

h̃(τ, ξ, η) := h(τ + inf u, ξ + inf v, η + inf w),

(4.2)

we deduce that (ũ, ̃v, w̃) solves the problem,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δpũ ≥ f̃(ũ, ṽ, w̃) in RN ,

−Δq ṽ ≥ g̃(ũ, ṽ, w̃) in RN ,

−Δrw̃ ≥ h̃(ũ, ṽ, w̃) in RN ,

inf ũ = 0, inf ṽ = 0, inf w̃ = 0.

(4.3)

On the other hand if (u, v, w) is a weak solution of (4.1) then, roughly speaking, the infima of u, v and 
w must be a zero of f , g, and h:

f(inf u, inf v, inf w) = 0, g(inf u, inf v, inf w) = 0, h(inf u, inf v, inf w) = 0.

Indeed we have,

Proposition 14. Let (u, v, w) be a weak solution of (4.1), then as (τ, ξ, η) → (inf u, inf v, inf w) we have

lim inf f(τ, ξ, η) = 0, lim inf g(τ, ξ, η) = 0, lim inf h(τ, ξ, η) = 0.

Proof. Suppose that lim inf f(τ, ξ, η) = c > 0 (possibly +∞) as (τ, ξ, η) → (inf u, inf v, inf w). A simple 
translation argument as in (4.2) shows that we can consider (u, v, w) a solution of (4.1) such that infRN u =
11



infRN v = infRN w = 0 and (f0) is fulfilled with p1 = q1 = r1 = 0. With the same notation of Lemma 10,
from (3.3) we have

ε−(p−1) ≤ ( inf
AR∩Tε

u)−(p−1) ≤ cR−p,

and letting R → +∞ we get a contradiction. �
In the proof of the following results, very often we prove for instance that, 

∫
RN f(u, v, w) = 0. This

information is enough to deduce that the solution is trivial. Indeed we the following lemma.

Lemma 15. Assume that H1, (f0), (g0) and (h0) hold. Let (u, v, w) be a weak solution of (3.2). If
f(u(x), v(x), w(x)) = 0 or g(u(x), v(x), w(x)) = 0 or h(u(x), v(x), w(x)) = 0 for a.a. x ∈ RN , then ei-
ther u = 0 or v = 0 or w = 0 a.e. in RN .

Proof. Suppose that f(u(x), v(x), w(x)) = 0 for a.a. x ∈ RN . Thanks to Proposition 7 we can apply 
Lemma 8 to the function u + v + w. Hence by (f0) we get,

(inf
BR

u)p1(inf
BR

v)q1(inf
BR

w)r1 ≤

≤ 1
|AR ∩ Tε|

∫
AR∩Tε

up1vq1wr1 ≤ c
1

|AR ∩ Tε|

∫
AR

f(u, v, w) = 0,

for R sufficiently large and ε > 0, where Tε = {x ∈ RN : u(x) + v(x) + w(x) < ε}. Using (WH) on u or
v or w, we conclude that either u = 0 or v = 0 or w = 0 a.e. in RN . The proof of the remaining cases 
g(u(x), v(x), w(x)) = 0 or h(u(x), v(x), w(x)) = 0 for a.a. x ∈ RN is similar. �
Theorem 16. Assume that H1, (f0), (g0) and (h0) hold. Assume that one of the following hypothesis holds

a) q3r2 < (q − 1 − q2)(r − 1 − r3), q2 < q − 1, r3 < r − 1 and DN−p
p−1 < θu (where θu is defined in (3.11));

or
b) p3r1 < (p − 1 − p1)(r− 1 − r3), p1 < p − 1, r3 < r− 1, and DN−q

q−1 < θv (where θv is defined in (3.14));
or

c) p2q1 < (p − 1 − p1)(q− 1 − q2), p1 < p − 1, q2 < q− 1, and DN−r
r−1 < θw (where θw is defined in (3.17)).

Then problem (3.2) has no non-trivial solution.

Proof. Suppose that (u, v, w) is a non-trivial weak solution of (3.2). Assume that a) is fulfilled. The proof 
in the remaining case is similar.

Case D = 0. If D = 0, letting R → ∞ in inequality (3.10) of Lemma 12, we reach the contradiction 1 ≤ 0.

Case D < 0. By (3.10) we get for all ε > and R sufficiently large

inf
AR∩Tε

u ≥ R− 1
D {rr1(q−1−q2)+qq1(r−1−r3)+p[(q−1−q2)(r−1−r3)−q3r2]+qq3r1+rq1r2}.

By letting R → ∞ we reach again a contradiction.
12



Case D > 0. As proved in Lemma 12, by (3.1) and (3.10), we have for all ε > 0 and R > 0 sufficiently large

∫
BR

f(u, v, w) ≤ cR−p|AR|( inf
AR∩Tε

u)p−1

≤ cRN−p− p−1
D {rr1(q−1−q2)+qq1(r−1−r3)+p[(q−1−q2)(r−1−r3)−q3r2]+qq3r1+rq1r2}.

Hence, letting R → ∞ it results that f(u, v, w) = 0 a.e. in RN . An application of Lemma 15, yields a 
contradiction concluding the proof. �

The estimates in Lemma 13 can be used to recover a critical case1 as the following results shows.

Theorem 17. Assume that H1, (f0), (g0) and (h0) hold with p1 = r1 = p2 = q2 = q3 = r3 = 0 and
p3q1r2 − (p − 1)(q − 1)(r − 1) > 0.

If

N

[
1 − (p− 1)(q − 1)(r − 1)

p3q1r2

]
≤max

{
p + r

p− 1
p3

+ q
(p− 1)(r − 1)

p3r2
,

q + p
q − 1
q1

+ r
(p− 1)(q − 1)

p3q1
, r + q

r − 1
r2

+ p
(q − 1)(r − 1)

q1r2

}
,

(4.4)

then problem (3.2) has no non-trivial solution.

Proof. Let (u, v, w) be a non-trivial weak solution of (3.2). If

p + r
p− 1
p3

+ q
(p− 1)(r − 1)

p3r2
= max

{
p + r

p− 1
p3

+ q
(p− 1)(r − 1)

p3r2
,

q + p
q − 1
q1

+ r
(p− 1)(q − 1)

p3q1
, r + q

r − 1
r2

+ p
(q − 1)(r − 1)

q1r2

}

Without loss of generality we prove the theorem only when

N

[
1 − (p− 1)(q − 1)(r − 1)

p3q1r2

]
= p + r

p− 1
p3

+ q
(p− 1)(r − 1)

p3r2
.

From (3.25), since p3 > 0, we have

∫
BR

f(u, v, w)

⎛
⎝ ∫

BR

g(u, v, w)

⎞
⎠

q3(p−1)
p3(q−1)

⎛
⎝ ∫

BR

h(u, v, w)

⎞
⎠

r3(p−1)
p3(r−1)

≤cR
N

[
1− p−1

p3

(
1− q3

q−1−
r3

r−1

)]
−p− p−1

p3

(
qq3
q−1+ rr3

r−1

)⎛⎝ ∫
AR

h(u, v, w)

⎞
⎠

p−1
p3

.

(4.5)

1 Here we refer to the critical case when in the nonexistence condition (4.4) the equality sign is allowed. See also Remark 18.
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From (3.24), since r2 > 0, we have

∫
BR

h(u, v, w)

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

p2(r−1)
r2(p−1)

⎛
⎝ ∫

BR

g(u, v, w)

⎞
⎠

q2(r−1)
r2(q−1)

(4.6)

≤ cR
N

[
1− r−1

r2

(
1− p2

p−1−
q2

q−1

)]
−r− r−1

r2

(
pp2
p−1+ qq2

q−1

)⎛⎝ ∫
AR

g(u, v, w)

⎞
⎠

r−1
r2

.

From (3.23), since q1 > 0, we have

∫
BR

g(u, v, w)

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

p1(q−1)
q1(p−1)

⎛
⎝ ∫

BR

h(u, v, w)

⎞
⎠

r1(q−1)
q1(r−1)

(4.7)

≤ cR
N

[
1− q−1

q1

(
1− p1

p−1−
r1

r−1

)]
−q− q−1

q1

(
pp1
p−1+ rr1

r−1

)⎛⎝ ∫
AR

f(u, v, w)

⎞
⎠

q−1
q1

.

By applying first (4.5), then (4.6) and (4.7), and taking into account that p1 = r1 = p2 = q2 = q3 = r3 = 0,
we get

∫
BR

f(u, v, w) ≤ cR
N

(
1− p−1

p3

)
−p

⎛
⎝ ∫

AR

h(u, v, w)

⎞
⎠

p−1
p3

≤ cR
N

(
1− p−1

p3

)
−p+

[
N

(
1− r−1

r2

)
−r

]
p−1
p3

⎛
⎝ ∫

AR

g(u, v, w)

⎞
⎠

(p−1)(r−1)
p3r2

≤ cR
N

[
1− (p−1)(q−1)(r−1)

p3q1r2

]
−p−r p−1

p3
−q (p−1)(r−1)

p3r2

⎛
⎝ ∫

AR

f(u, v, w)

⎞
⎠

(p−1)(q−1)(r−1)
p3q1r2

= c

⎛
⎝ ∫

AR

f(u, v, w)

⎞
⎠

(p−1)(q−1)(r−1)
p3q1r2

≤ c

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

(p−1)(q−1)(r−1)
p3q1r2

.

Hence, f(u, v, w) ∈ L1(RN ) and letting R → ∞ we get f(u, v, w) = 0 in RN . Therefore, we conclude that
u = 0, or v = 0, or w = 0 a.e. in RN , which contradicts our assumption.

The remaining cases can be proved similarly. �
Remark 18. Under the hypothesis p1 = r1 = p2 = q2 = q3 = r3 = 0, D = p3q1r2 − (p − 1)(q − 1)(r − 1) > 0
the condition “a) or b) or c)” in Theorem 16 can be formulated by (4.4) with the strict inequality. In this 
sense Theorem 17 is an improvement of Theorem 16.

The following improves, from several points of view, an earlier result obtained in [9, see Remark 2.2].

Corollary 19. Assume that H1, (f0), (g0) and (h0) hold with p = q = r, p1 = r1 = p2 = q2 = q3 = r3 = 0
and p3q1r2 − (p − 1)3 > 0. If
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(
p3q1r2 − (p− 1)3

) N − p

p(p− 1)
− (p− 1)2 ≤ max {q1(r2 + p− 1), r2(p3 + p− 1), p3(q1 + p− 1)} , (4.8)

then problem (3.2) has no non-trivial solution.

Theorem 20. Assume that H1, (f0), (g0) and (h0) hold with p1 > p − 1, q2 > q − 1 and r3 > r − 1.
If

N ≥ min
{
p1

N − p

p− 1 + q1
N − q

q − 1 + r1
N − r

r − 1 , p2
N − p

p− 1 + q2
N − q

q − 1 + r2
N − r

r − 1 ,

p3
N − p

p− 1 + q3
N − q

q − 1 + r3
N − r

r − 1

}
,

(4.9)

then problem (3.2) has no non-trivial solution (u, v, w).

Proof. Without loss of generality assume that

α1 = p1
N − p

p− 1 + q1
N − q

q − 1 + r1
N − r

r − 1 = min
{
p1

N − p

p− 1 + q1
N − q

q − 1 + r1
N − r

r − 1 ,

p2
N − p

p− 1 + q2
N − q

q − 1 + r2
N − r

r − 1 , p3
N − p

p− 1 + q3
N − q

q − 1 + r3
N − r

r − 1

}
.

From (3.23) that for R ≥ R0, we have

c1

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

p1
p−1

≤ cRα1−N

∫
AR

f(u, v, w) (4.10)

where c1 :=
(∫

BR0
g(u, v, w)

) q1
q−1

(∫
BR0

h(u, v, w)
) r1

r−1
> 0 for R0 large enough. Inequality (4.10) implies

c1

⎛
⎝ ∫

BR

f(u, v, w)

⎞
⎠

p1−p+1
p−1

≤ cRα1−N . (4.11)

Now if N > α1 the claim follows form (4.11) by letting R → +∞. While if N = α1, from (4.11) it follows
that f(u, v, w) ∈ L1(RN ), hence necessarily 

∫
AR

f(u, v, w) → 0, as R → +∞, which plugged in (4.10) implies
that f(u, v, w) = 0. �
Remark 21. A simple analysis of the proof of the previous result shows that the claim still holds if one of 
the following conditions is satisfied,

1. N ≥ α1, p1 ≥ p − 1 and at least one inequality is strict,
or

2. N ≥ α2, q2 ≥ q − 1 and at least one inequality is strict,
or

3. N ≥ α3, r3 ≥ r − 1 and at least one inequality is strict.

Acknowledgment

Enzo Mitidieri acknowledges the support from FRA 2020: Università degli Studi di Trieste.
15



References

[1] C. Azizieh, P. Clément, E. Mitidieri, Existence and a-priori estimates for positive solutions of p-Laplace systems, J. Differ. 
Equ. 184 (2002) 422–442.

[2] M.F. Bidaut-Véron, S.I. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math. 
84 (2001) 1–49.

[3] P. Clément, J. Fleckinger, E. Mitidieri, F. de Thélin, Existence of positive solutions for a nonvariational quasilinear elliptic 
system, J. Differ. Equ. 166 (2000) 455–477.

[4] L. D’Ambrosio, E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate 
elliptic inequalities, Adv. Math. 224 (2010) 967–1020, https://doi .org /10 .1016 /j .aim .2009 .12 .017.

[5] L. D’Ambrosio, E. Mitidieri, Entire solutions of quasilinear elliptic systems on Carnot groups, Proc. Steklov Inst. Math. 
283 (2013) 3–19, https://doi .org /10 .1134 /S0081543813080026.

[6] L. D’Ambrosio, E. Mitidieri, Quasilinear elliptic system in divergence form associated to general nonlinearities, Adv. 
Nonlinear Anal. 7 (2018) 425–447, https://doi .org /10 .1515 /anona -2018 -0171.

[7] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematical 
Studies, vol. 105, Princeton University Press, 1983.

[8] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ. 6 
(1981) 883–901.

[9] E. Mitidieri, Non existence of positive solutions of semilinear elliptic systems in RN , Differ. Integral Equ. 9 (1996) 465–479.
[10] E. Mitidieri, S.I. Pohozaev, Nonexistence of positive solutions for a system of quasilinear elliptic equations and inequalities 

in RN , Dokl. Math. 59 (1999) 351–355.
[11] E. Mitidieri, S.I. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and 

inequalities, Proc. Steklov Inst. Math. 234 (2001) 1–362.
[12] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964) 247–302.
[13] J. Serrin, Liouville theorems and gradient bounds for quasilinear elliptic systems, Arch. Ration. Mech. Anal. 66 (1977) 

29–310.
[14] J. Serrin, H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equ. 9 (4) (1996) 635–653.
[15] Ph. Souplet, Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices, Netw. Heterog. 

Media 7 (2012) 967–988, https://doi .org /10 .3934 /nhm .2012 .7 .967.
[16] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. 

Math. 20 (1967) 721–747.
[17] R. van der Vorst, E. Mitidieri, G. Sweers, Non existence theorems for systems of quasilinear partial differential equations, 

Differ. Integral Equ. 8 (1995) 1331–1354.
16

http://refhub.elsevier.com/S0022-247X(20)30369-3/bib0D8F980802951B40C8FA9E3D5DE6D587s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib0D8F980802951B40C8FA9E3D5DE6D587s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibEB83F13C287D64603462B964813444F1s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibEB83F13C287D64603462B964813444F1s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib2EDBCFE7B7FBB8E36DDC7119306C64F2s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib2EDBCFE7B7FBB8E36DDC7119306C64F2s1
https://doi.org/10.1016/j.aim.2009.12.017
https://doi.org/10.1134/S0081543813080026
https://doi.org/10.1515/anona-2018-0171
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibDFCF28D0734569A6A693BC8194DE62BFs1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibDFCF28D0734569A6A693BC8194DE62BFs1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib9EE9D85A86F0118C40BA2385BB314FD7s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib48D54F43C30A27137EDB383DE2605A86s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib48D54F43C30A27137EDB383DE2605A86s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib1F2DFA567DCF95833EDDF7AEC167FEC7s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib1F2DFA567DCF95833EDDF7AEC167FEC7s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib03C7C0ACE395D80182DB07AE2C30F034s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib67F6274E0AC0BD892F9B1EC09A2253FCs1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib67F6274E0AC0BD892F9B1EC09A2253FCs1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bib715F9A16AD2C8290EFE57B63D279D8FAs1
https://doi.org/10.3934/nhm.2012.7.967
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibE358EFA489F58062F10DD7316B65649Es1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibE358EFA489F58062F10DD7316B65649Es1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibED44955B5623D1FB4D6F00C38E9D5F18s1
http://refhub.elsevier.com/S0022-247X(20)30369-3/bibED44955B5623D1FB4D6F00C38E9D5F18s1

	On some multicomponent quasilinear elliptic systems
	1 Introduction
	2 Multicomponent quasilinear systems
	3 General a priori estimates
	4 Liouville theorems
	Acknowledgment
	References




