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An extensive amount of literature has been written on 
homocysteine (Hcy), a sulfur-containing amino acid, re-
lated to methionine metabolism [1], either degraded via 
the remethylation pathway or converted, via the trans-
sulfuration pathway, into cysteine. Nevertheless, once 
more, this biochemical compound is very well represent-
ed in a laboratory, and preclinically and pathologically, 
but the results deriving from its correction in clinical ex-
perience are poor [2].

Hcy and Biochemical Functions

Hcy is related to the production of 5,10-methylenetet-
rahydrofolate, a fundamental step for the synthesis of thy-
midylate and purines and methionine, employing vita-
min B12 and folate as cofactors [3–6]. The S-adenosyl-
methionine (SAM) to S-adenosyl-L-homocysteine (SAH) 
ratio defines the methylation potential of a cell [7]. If Hcy 
is allowed to accumulate in normal conditions, it will be 
rapidly metabolized to SAH [8, 9]. Whenever there is a 
methionine deficit, Hcy can be re-methylated to form 
methionine, by the employment of N5,N10-methylene-
tetrahydrofolate [10]. If there is an adequate amount of 
methionine, Hcy is employed for the production of cys-
teine, mediated by cystathionine-beta synthase, with pyr-
idoxine as a cofactor [10]. Therefore, the accumulation of 
Hcy is dangerous when it occurs in the absence of folate 
as a cofactor. Recent studies are generally confident with 
the fact that lifestyle conditions (such as smoking, alcohol 

consumption, physical inactivity) may help the elevation 
of Hcy [11–15]. Genetic condition of hyperhomocystein-
emia (HHcy) has been considered a significant risk and 
often fatal factor [5, 16]. Undoubtedly, the methylation 
reactions are strongly necessary for the brain, given that 
SAM is the sole donor in numerous methylation reac-
tions, involving proteins, phospholipids, and biogenic 
amines [16, 17], and for packaging of many phospholip-
ids [18]. This way, alterations of methylation with conse-
quent Hcy accumulation lead to many congenital neural 
tube and central nervous system alterations [19]. The 
causative factors of accumulation of Hcy in healthy adult 
life can be diverse, due to various genetic defects or to the 
defects of vitamin B12 and folate [20]. A physiological in-
crease of Hcy occurs in the brain (and CSF) and the plas-
ma, within the aging process, and more evidently inside 
several neurological diseases [21].

Hcy and Clinical Perspectives: Neurodegeneration

It has been proven that Hcy could be linked to neuro-
degeneration; Hcy (in tight relationship with higher gly-
cine levels in the brain) is an agonist of the endogenous 
glutamate receptors, NMDA receptors [22], influencing 
calcium influx [16, 23, 24], as well as through a direct ac-
tivation of the group I metabotropic glutamate receptors 
[25]. Much evidence suggests that Hcy potentiates the 
toxicity of Abeta 42 deposition [26–28] and increases am-
yloid’s toxicity on the smooth vascular cells in the brain 

1



[29]. Moreover, HHcy upregulates presenilin 1, which 
promotes APP synthesis [30, 31]. Finally, Hcy is related 
to the phosphorylation process of tau. The protein phos-
phatase methyltransferase 1, whose methylation is SAM-
dependent, regulates the activity of the protein phospha-
tase methyltransferase 2A, which acts as a dephosphory-
lating system for tau protein [32–34]. Hence, the reduced 
methylation capacity increases the hyperphosphorylation 
of tau protein, determining microtubule disaggregation, 
their precipitation, and the deposition of the neurofibril-
lary tangles.

Hcy and Clinical Perspectives: Inflammation and 
Oxidative Process

The most fascinating, irrefutable aspect of Hcy is its 
pro-inflammatory and pro-oxidative role. Being that the 
SAM-to-SAH ratio is the expression of the methylation 
potential of a cell, “HHcy tends to decrease the methyla-
tion potential” [10]. Therefore, Hcy can induce a global 
DNA hypomethylation and suppress the transcription of 
cyclin A in endothelial cells; at the same time, Hcy leads 
to upregulation of some other genes, causing an increase 
in p66shc expression in endothelial cells, inducing oxi-
dant stress [7, 10]. It is widely accepted that Hcy leads to 
an induction of m-RNA and protein expression of C-re-
active protein (CRP), augmenting the NR1 subunit of 
NMDA receptor expression; therefore, Hcy can promote 
a pro-inflammatory response in vascular smooth muscle 
cells of small brain arteries by stimulating CRP produc-
tion, usually enhanced by a combined NMDA-ROS-
erk1/2/p38-nfKBeta signal pathway [35]. Recently, a 
well-conducted study [36] demonstrated that cultured 
cell incubation with Hcy determined cell death at 80 μM 
Hcy exposure after 5 days; quite impressively, cell expo-
sure to Hcy at lower concentrations for 5 days raised to a 
4.4-fold increase in reactive oxygen species (ROS) pro-
duction. Hcy leads to a general upregulation of p21 and 
p-16 after 5 days of Hcy incubation, inducing a reduction 
of 35% of pRB, checkpoint regulators of G1 cell-cycle 
phase. In response to the HHcy level, endothelial cells 
produce nitric oxide (NO) to induce the formation of S-
nitrose-Hcy, which acts as a protector of endothelium; 
however, the chronic exposure to Hcy induces a final di-
minishment of NO [37]. Therefore, endothelial dysfunc-
tion due to HHcy results from a disruption in the cellular 
integrity, leading to impaired endothelium-dependent 
relaxation, mainly due to a reduction in the NO bioavail-
ability [37, 38], to a stimulation of muscle cells, and to the 

promotion of inflammatory response, testified by an in-
crease in C-reactive protein and cysteinyl leukotrienes, 
associated to an increment of HMG-CoA reductase activ-
ity [38]. The activities of methionine synthase that medi-
ate the clearance of Hcy are linked to the redox potential 
of the cells [39]; usually, more Hcy is converted into cys-
teine and glutathione. A disruption of the cystathionine-
beta synthase causes altered redox homeostasis and al-
teration of oxidative repairing process [40]. The disrup-
tion of the redox system in vascular and neuronal cells 
[41] accelerates the lipid peroxidation sequel of events 
[41–45].

Interestingly, multiple traumatism and secondary  
septic status associated with a systemic inflammatory re-
sponse have been associated with HHcy, and the constan-
cy of this report is related to a poor clinical outcome [46]. 
Curiously, this condition is not determined by a loss of 
folate and B12. Therefore, it can be argued that the pro-
inflammatory condition of these patients leads to strong 
activation of macrophage system cascade by Hcy, with a 
consequent release of ample amounts of ROS, potentiat-
ing the oxidative stress [46]. HHcy activates B lympho-
cytes; this process seems to determine an increase of  
pyruvate kinase muscle isozyme 2 (PKM-2) in B cells. 
PKM-2 seems to suggest the so-called metabolic acceler-
ated initiation of atherosclerosis cascade mediated by 
HHcy, in vivo and in vitro [47–49]. Cultured macrophage 
cells exposed to Hcy showed a memory response, proba-
bly induced by epigenetic mutations [48], which influenc-
es the expression of promoter genes regulating inflamma-
tory response and endothelium atherogenesis. A single 
study demonstrated an in vitro Hcy-dependent alteration 
of the transcriptional repression of fibroblast growth fac-
tor 2 [50]. As written above, Hcy acts on NMDA receptors: 
they are not only found in neurons but also on neutrophils 
and macrophages. The activation of these peripheral re-
ceptors, as well as in the cerebral context, rises the cyto-
plasmatic calcium influx and activates a pro-inflammato-
ry cascade, with an accumulation of ROS species [51, 52], 
which induces an upregulation of the nuclear factor kappa 
B, considered as one of “the master regulators of the ex-
pression of inflammatory genes” [52].

Hcy and Clinical Experiences

An increasing amount of evidence showed that Hcy is 
associated with different kinds of cardiovascular and 
cerebrovascular diseases [53, 54]. It has been reported 
that HHcy relates with stroke, promoting cerebrovascu-
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lar atherosclerosis and atherothrombosis via upregula-
tion of matrix metalloproteinases-9 (MMP-9) expres-
sion, which takes responsibility for atherosclerotic plaque 
instability and even their ruptures [55, 56]. Clinical trials 
and studies failed to demonstrate univocal and conclusive 
results, either preventing HHcy through the supplemen-
tation of vitamin B12, folate or both in patients or a healthy 
population, or considering HHcy as a real target of pre-
vention. Much criticism may be led towards the trials im-
plemented [15].

Take-Home Messages

In a debate which lasts many decades, at the moment, 
the only mandatory take-home messages are:
1 Hcy cannot be considered as a definite marker of vas-

cular risk factor or neurodegeneration.

2 Hcy can be employed as a target to prevent the increase 
of endothelial damage and of vascular comorbidities.

3 Hcy is an inflammation marker, which seems to define 
adverse or poor outcomes in many clinical scenarios 
(sepsis, stroke, hemorrhage).

4 More studies should be done, more data should be col-
lected, and more defined prospective population stud-
ies should be implemented, in order to finally have the 
solution of this enigma [57].
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