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h i g h l i g h t s

� Developmental stuttering (DS) relies on dysfunctional neural exchange: the supplementary motor
area (SMA) may play a key role.

� We used combined TMS/EEG to investigate functional connectivity of the SMA ‘‘complex” in DS.
� Abnormal neural timing in DS is inferred which helps to understand the pathophysiology of DS and

develop new treatments.
Combined TMS/EEG
sLORETA
Neural dynamics
a b s t r a c t

Objective: Brain dynamics in developmental stuttering (DS) are not well understood. The supplementary
motor area (SMA) plays a crucial role, since it communicates with regions related to planning/execution
of movements, and with sub-cortical regions involved in paced/voluntary acts (such as speech). We used
TMS combined with EEG to shed light on connections in DS, stimulating the SMA.
Methods: TMS/EEG was recorded in adult DS and fluent speakers (FS), stimulating the SMA during rest.
TMS-evoked potentials and source distribution were evaluated.
Results: Compared to FS, stutterers showed lower activity of neural sources in early time windows: 66–
82 ms in SMA, and 91–102 ms in the left inferior frontal cortex and left inferior parietal lobule. Stutterers,
however, showed higher activations in later time windows (i.e. from 260–460 ms), in temporal/premotor
regions of the right hemisphere.
Conclusions: These findings represent the functional counterpart to known white matter and cortico-
basal-thalamo-cortical abnormalities in DS. They also explain how white matter abnormalities and
cortico-basal-thalamo-cortical dysfunctions may be associated in DS. Finally, a mechanism is proposed
in which compensatory activity of the non-dominant (right) hemisphere is recruited.
Significance: DS may be a disorder of neural timing that appears to be delayed compared to FS; new
mechanisms that support stuttering symptoms are inferred; the SMA may be a promising target for
neuro-rehabilitation.

ntal Stuttering; EEG, electroencephalography; EMG, electromyography; FAT, Frontal Aslant Tract; FDR, False Discovery
rs; ICA, Independent Component Analysis; MEP, Motor Evoked Potential; ROI, Region of Interest; RMT, Resting Motor
ography; SD, Standard Deviation; SSI-4, Stuttering Severity Instrument-4; SMA, Supplementary Motor Area; TEP, TMS-
tion.
de: 30126, Venice (Lido), Italy.
millo.net

(G. Arcara), pmanganotti@units.it (P. Manganotti), battagli@units.it (P.P. Battaglini).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinph.2018.10.005&domain=pdf
https://doi.org/10.1016/j.clinph.2018.10.005
mailto:pbusan@units.it
mailto:giovanni.delben@phd.units.it
mailto:giulia.natarelli@phd.unipd.it
mailto:giorgio.arcara@ospedalesancamillo.net
mailto:pmanganotti@units.it
mailto:battagli@units.it
https://doi.org/10.1016/j.clinph.2018.10.005
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


1. Introduction

Developmental stuttering (DS) is a disturbance of the normal
rhythm of speech that usually appears in childhood, where affected
persons know what they intend to say, but are not able to do it flu-

preferably connected with frontal and ‘‘cognitive” regions (deci-
sion making and planning of behavior; Zhang et al., 2012). The
SMA also has a role in speech control, often in relation to an
increase in task demands (Hertrich et al., 2016). This SMA ‘‘com-
plex” is involved in cortico-basal-thalamo-cortical networks: it
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ently. DS is characterized by dysfluencies such as blocks and repe- has an active role in tasks such as preparation of voluntary move-
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titions, often associated with movements, especially of the oro-
facial district. The majority of DS children are able to recover to
normal levels, while others remain stutterers into adulthood (per-
sistent DS). DS is related to abnormalities of the central nervous
system (Brown et al., 2005; Neef et al., 2015a), and can be consid-
ered as a neuro-developmental disorder where speech is mostly
affected, considering that it relies on motor skills for planning/exe-
cution of articulation (Smith and Weber, 2017). Reduced activity of
motor/speech regions has been demonstrated, especially in the left
(speech-dominant) hemisphere, during both stuttered and fluent
speech, as well as during motor tasks that are not strictly related
to speech (Braun et al., 1997) and during rest (Ingham et al.,
2012, 1996). On the other hand, frontal/temporal regions of the
DS right hemisphere show higher activations (see Etchell et al.,
2018 for review). This has been explained as being related to com-
pensation mechanisms (Neumann et al., 2003; Preibisch et al.,
2003; Kell et al., 2009), although activity in the right frontal cortex
(and its connections with the supplementary motor ‘‘complex”-
basal ganglia system) may have also a role in the pathophysiology
of DS (Neef et al., 2016) within the context of excessive motor inhi-
bition (see also Duann et al., 2009). These ‘‘neural markers” may be
a consequence of abnormal modulations in intracortical motor net-
works as demonstrated by TMS experiments (Busan et al., 2017,
2016, 2013, 2009; Neef et al., 2015a, 2015b, 2011; Whillier et al.,
2018). They may also be due to defective white matter, especially
in brain regions close to and around the left inferior frontal regions,
comprising motor/premotor structures, but also in fibers in long-
range neural pathways directed toward muscular effectors (Lu
et al. 2009; Sommer et al., 2002; Watkins et al., 2008). Finally,
other evidence has suggested that DS is related to a defective
cortico-basal-thalamo-cortical system (Alm, 2004; Craig-
McQuaide et al., 2014) and to dopamine over-activation in the
basal ganglia (Wu et al., 1997). These dysfunctions may be at the
basis of the speech/motor initiation and rhythm problems that
are typically observed in DS (see also Etchell et al., 2014; Smits-
Bandstra and De Nil, 2007).

Even if a large amount of research has been carried in DS, ques-
tions about the neural mechanisms behind it still remain. For
instance, it is not clear if functional deficits, such as white matter
abnormalities and cortico-basal-thalamo-cortical dysfunctions,
are related to each other or if they represent two different markers.
Moreover, uncertainty remains about the temporal neural dynam-
ics of abnormal activations, as well as their connections. In this
context, the supplementary motor area (SMA) is a fundamental
node: electrical stimulation of this region has been shown to
induce stuttering (Penfield and Welch, 1951). Seizures arising from
the SMA region have also been related to concomitant stuttering/-
gait disturbances (Chung et al., 2004). Stuttering may be the conse-
quence of a damage to the SMA (e.g. Ackermann et al., 1996;
Alexander et al., 1987), as well as damage to the thalamus by
impairing the cortico-basal-thalamo-cortical system (Abe et al.,
1993, 1992). The SMA is a key structure for planning/execution
of motor behavior. It is functionally connected with different
regions such as the frontal/premotor/sensorimotor, temporo-
parietal cortex, sub-cortical regions, and cerebellum, and plays a
role in motor/behavioral/cognitive tasks (Narayana et al., 2012).
It is subdivided in a ‘‘proper”, caudal, SMA region, which is
strongly connected with structures involved in motor
preparation/execution, and in a pre-SMA, rostral, region, which is
ments (e.g. speech) and in learning of sequential/rhythmic aspects
of movements, with particular regard to internally vs. externally
triggered movements (Nachev et al., 2008; Narayana et al., 2012).

Interestingly, DS may reflect a general impairment in (rhyth-
mic) motor skills (for a review see Etchell et al., 2014), which is
related to functional abnormalities in the SMA (e.g. Brown et al.,
2005; Etchell et al., 2018). Nevertheless, its role has been often
underestimated. Abnormal activity of the SMA in DS was recently
suggested to be a possible, adjunctive, ‘‘neural marker” of stutter-
ing (see Neef et al., 2015a). In the present work, we aimed to clarify
the neural dynamics related to activation of the SMA ‘‘complex” in
DS. Here, we hypothesize that DS is characterized by different
(temporal) neural dynamics and different connections (with
respect to fluent speakers [FS]) when the SMA ‘‘complex” is acti-
vated, with particular attention to neural structures devoted to
motor/speech preparation/planning. This is in accordance with
the hypotheses that DS might be an impairment of timed neural
(sensorimotor) integration, with abnormal communication among
different systems. To fulfil this objective, the inductive combina-
tion of transcranial magnetic stimulation (TMS) and electroen-
cephalography (EEG) seems to be an appropriate method. TMS/
EEG allows direct perturbation of neural networks, measuring
how their activity is modulated by a magnetic stimulus. The
dynamics and properties of the stimulated tissue may be investi-
gated starting from a basic, ‘‘default” state, i.e. when no tasks are
requested. Specifically, the analysis of TMS-evoked potentials
(TEPs) and reconstruction of their neural source distribution in
the temporal domain have been performed to obtain information
on the excitability/reactivity of the stimulated cortex and its func-
tional connectivity (see Ilmoniemi, 2016; Miniussi et al., 2013).

2. Materials and methods

2.1. Experimental groups

Twenty-eight right-handed adult males were recruited. Thirteen
were persistent DS from childhood (age range 24–47 years, mean
32.9 years, standard deviation [SD] ± 8.3), while 15 were FS (age
range 22–48 years, mean 30.4 years, SD ± 7.2). Groupswere compa-
rable for age, education, handedness, smoking habits, musical
expertise, migraine, and sports habits. Procedures were approved
by the regional Ethical Committee of Friuli-Venezia Giulia (Italy).
All procedures were in accordance with the Declaration of Helsinki.
Participants signed a written informed consent form before the
experiment. All participants had no psychiatric/neurologic con-
cerns, other than stuttering in the DS group, and were not taking
drugs that act on the central nervous system before experiments.
Stuttering was measured with the Stuttering Severity Instrument-
4 (SSI-4; Riley, 2009), and was excluded in FS. An audio–video sam-
ple of spontaneous speech and a reading passage was requested
from each DS participant to measure stuttering severity comprising
the percentage of stuttering events, the three longest stuttering
events, and physical concomitants. Handedness was evaluated by
the Handedness Edinburgh Inventory (Oldfield, 1971).

2.2. TMS

Each participant sat on a chair, at rest, and with open eyes. A tis-
sue cap with an equally spaced 1 cm grid was applied on the scalp.



TMS (Medtronic MagPro R30) was administered on the primary
motor cortex using a figure-of-eight coil (C-B60; diameter of every
wing 7 cm; biphasic waveform; first phase of current in the coil in
posterior-to-anterior direction) to find the position that allowed
for the most reliable/reproducible motor evoked potentials (MEPs)

2.4. Combined TMS/EEG

Participants were sitting in a chair at rest, with the chin placed
on a support of a customized table. We recorded the EEG using 31
Ag/AgCl electrodes equally distributed on the scalp (Fig. 1). Two

P. Busan et al. / Clinical Neurophysiology 130 (2019) 61–76 63
from the contralateral first dorsal interosseous (FDI) in both hemi-
spheres. Two Ag/AgCl electrodes were placed on both hands using
a tendon-belly montage. The TMS coil was maintained at 45� with
respect to the inter-hemispheric fissure, with the handle pointing
backwards. TMS was used to detect resting motor threshold
(RMT) of FDI by determining the intensity of stimulation that gave
contralateral MEPs of about 50 mV in half of stimulations. Elec-
tromyography (EMG) was recorded using a digital band pass filter-
ing of 20–2000 Hz (sampling rate 8000 HZ). Resting state was
assured by on-line visual inspection of EMG. This procedure was
carried out on the primary motor cortex of the left hemisphere
and, successively, on the right one. We obtained five contralateral
MEPs, from each hemisphere, stimulating at 150% of RMT and
recording from FDI, to compare data with those collected in
Busan et al. (2013). Thus, the SMA ‘‘complex” was roughly marked
on the cap using a system based on nasion-inion/bi-auricular dis-
tances. We stimulated in/around that region using RMT of the left
hemisphere primary motor cortex to verify that it was not possible
to evoke bilateral MEPs from FDI, abductor digiti minimi, abductor
pollicis brevis, muscles of forearm, biceps, deltoid, trapezius, or tib-
ialis anteriori.

2.3. Location of the coil

A neuronavigation system (Visor-2, ANT NEURO B.V., The

Netherlands) was used for the correct location of the coil during
TMS/EEG recordings. An EEG cap (Electro-Cap B.V., The Nether-

lands) was placed on the scalp, with sensors for detection of
nasion/bi-auricular points. A magnetic resonance model was used
for reconstruction: the scalp surface of each participant was repro-
duced to adapt the model. The SMA ‘‘complex” was individuated
on the basis of coordinates inferred by Zhang et al. (2012; MNI
coordinates: x = 0, y = 6, z = 66; Fig. 1), and marked on the EEG
cap. We chose a cortical target that allowed stimulation of the
bilateral SMA ‘‘complex” (i.e. ‘‘proper” SMA and pre-SMA regions).
Fig. 1. Representation of stimulation points and recorded EEG electrodes. The coordinate
y = 6, z = 66) is represented on a sLORETA anatomical model of the brain (A) and on a
indicated and superimposed on a scalp model (B); the corresponding stimulation point
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additional electrodes were used as the reference (nose) and ground
(below Oz) electrodes. Impedances were always maintained below
5–10 kX. Two Ag/AgCl electrodes were placed diagonally around
the right eye to record ocular movements/blinks. EEG was recorded
by a BASIS BE (EBNeuro, Italy) amplifier and digitally stored using
the MIZAR-SIRIUS system (Galileo NT software; EBNeuro, Italy).
Sampling rate was 4096 Hz (recording in DC) to limit TMS artefacts
on EEG (Veniero et al., 2009). The operational range of the amplifier
was set at ±65.5 mV to limit saturation; electrode wires were
arranged to limit the effects of the magnetic field on the EEG
(Sekiguchi et al., 2011). Raw data were recorded using analogic,
no band-pass filtering.

The center of the coil was placed on the individuated scalp posi-
tion, perpendicularly to the inter-hemispheric fissure, with the
handle pointing backwards. Six blocks of stimulation were per-
formed, with each block constituted of 50–60 single pulse trials.
The inter-stimulus interval was 2–8 sec. Three blocks were with
real TMS, while three blocks were with sham stimulation. Real
TMS and sham were always interleaved, and the sequences were
randomized. Sham was used to obtain a ‘‘model” of the acoustic
activity evoked by the pulse, and then ‘‘subtracted” from the real
TMS during analyses. Participants wore earplugs to limit evoked
acoustic activity. Sham TMS was carried out using a piece of wood,
about 3 cm in thickness, placed between the scalp and the coil,
thus reducing magnetic stimulation to the cortex, but allowing
acoustic stimulation (Zanon et al., 2013, 2010). A piece of foam
with thickness of about 5 mm was also applied between the coil
and scalp to limit somatosensory stimulation (Massimini et al.,
2005). The stimulation of a central scalp region allowed limited/
avoided artefacts related to muscular activation. Blink reflexes
related to TMS delivery were observed during preliminary proce-
dures, with poor adaptation. Thus, participants were asked to
remain at rest, with closed eyes during blocks, to limit these arte-
facts. They were also asked to avoid systematic cognitive activity
(such as counting the stimulations). These procedures allowed
activation of the SMA ‘‘complex” starting from a basic/default con-
s of the cortical target selected in the SMA (Talairach: x = 0, y = 9, z = 60; MNI: x = 0,
resonance model obtained from neuronavigation (C). Recorded electrodes are also
on the scalp is represented.



dition, thus better separating stimulation effects from unspecific
ones.

2.5. EEG off-line analysis

parametrical mapping (Nichols and Holmes, 2002), as available in
sLORETA, allowing for conservative corrections for multiple com-
parisons in space and time. Each analysis was carried out using
t-statistics/log of F-ratio to obtain comprehensive patterns of the
activations elicited by stimulations. The analysis was performed

Groups did not differ considering age, education, handedness,

epochs (SD ± 14.6) in sham. FS resulted in 84.7 accepted epochs
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EEG traces were analyzed off-line using Neuroscan (Com-
pumedics Neuroscan Inc., El Paso, USA), EEGLAB (Delorme and
Makeig, 2004), and erpR (Arcara and Petrova, 2017). Data were dig-
itally filtered by using a low pass IIR filter (edge at 200 Hz). Real
TMS and sham were marked to obtain epochs (time window of
interest between �200 and 500 ms), locked on TMS delivery.
Epochs were inspected to eliminate artefacts (ocular artefacts,
blinks, muscular artefacts, drift of the EEG, long-lasting TMS arte-
facts) and bad electrodes: 22 ‘‘singular” electrodes were individu-
ated as bad and interpolated. Data were then used for
independent component analysis (ICA; Jung et al., 2000), which is
useful to eliminate remaining artefacts. Components were dis-
carded if they represented artefacts only. The interval between
�10 and 20 ms with respect to TMS delivery was discarded consid-
ering the amount of TMS artefacts, which can corrupt the reliability
of ICA. Thus, data were averaged for each participant/condition by
using an average reference. A linear de-trend function was applied
to reduce the residual influence of the slow recovery of the ampli-
fier after TMS delivery. The resulting TEPs, sub-divided per group
(DS vs. FS) and condition (real TMS vs. sham), were inspected using
butterfly plots, where peaks of amplitude allowed the definition of
time windows of interest, defined as follows: 36–65 ms, 65–
144 ms, 144–256 ms, 256–350 ms, and 350–500 ms.

2.6. Neural source reconstruction (sLORETA)

Temporal windows were used to investigate the distribution of
the source reconstruction of TEPs. To obtain source models, we
used standardized low resolution electromagnetic tomography
(sLORETA; http://www.uzh.ch/keyinst/loreta.htm; Pascual-
Marqui, 2002). This algorithm allowed calculation of the standard-
ized, discrete, three-dimensionally distributed, linear, minimum
norm inverse solution of evoked potentials. sLORETA was used to
reconstruct sources of TEPs obtained in DS and FS during real
and sham TMS. To reduce localization errors, a regularization fac-
tor was applied by calculating the average of the TEPs signal-to-
noise ratio (all electrodes) of each temporal window, based on
the estimation of the 20th percentile. We also performed source
reconstruction of baselines to control for possible unspecific effects
related to the delivery of stimulation.

2.7. Statistical analysis

Data on characteristics of groups (i.e. age, handedness, educa-
tion, etc.) were compared using parametric (t-statistics/Welch’s
t-test) and/or non-parametric statistics (Mann-Whitney), after
checking for normality/homogeneity. TMS motor thresholds and
MEPs were analyzed by using similar methods; thresholds were
quantified as the percentage of the maximum output of the stimu-
lator; when considering MEPs, peak-to-peak mean amplitudes/
areas/latencies were considered. When considering TEPs, hierar-
chical levels of analysis (compare with Connally et al., 2018) were
provided: electrodes placed around the target scalp position (Cz,
Fz, FC1, FC2) were considered for descriptive EEG analysis (ampli-
tudes and latencies). Then, an exploratory, uncorrected statistical
analysis was performed on all electrodes (t-statistics/Welch’s t-
test), in which we considered mean amplitudes/areas of TEPs (rec-
tified and not) in the time windows of interest, from 36 to 500 ms.
Similar statistics were used for baseline data as a control. When
considering source analysis, a voxel-by-voxel comparison was per-
formed for each group (real TMS vs. sham) using statistical non-
by considering time frame-by-time frame and the mean neural
activity of the time windows of interest (a False Discovery Rate
[FDR] procedure was also applied to maximal activation findings,
in the case of mean neural activity). As a further correction, we
never considered maximal activations that were evident, in a
voxel, for less than nine consecutive time frames (�2 ms, i.e. less
than the duration of an action potential; Lodish et al., 2000), for
a second level analysis in which we compared DS vs. FS (real
TMS vs. sham). In fact, to reduce intra/intergroup variability, we
defined regions-of-interest (ROIs; 15 mm radius), by individuating
their center in MNI coordinates and considering the maximal acti-
vations of mean and/or time frame-by-time frame analysis. ROIs
were bilaterally calculated for real TMS and sham, in each group.
Sham activations were ‘‘subtracted” from the corresponding real
TMS activity, and the results were compared between groups (DS
vs. fluent speakers; t-statistic/Welch’s t-test, depending on vari-
ance homogeneity). Comparisons were performed on a time
frame-by-time frame basis, and on mean neural activity. The find-
ings resulting in significant activation of at least nine consecutive
time frames (>2 ms, i.e. a biologically plausible activation, not less
than the duration of an action potential) were considered: they
were clustered and a permutation/randomization test (9.999 ran-
domizations) was applied to face with multiple activations (see
Premoli et al., 2014; Zanon et al., 2018; an FDR procedure was also
applied to findings). Findings were further characterized by provid-
ing effect sizes using Hedges’ g/Cohen’s dunbiased (Hedges and Olkin,
1985; Cohen, 1988; Ellis, 2010; 0.2 < dunbiased < 0.5 = small effect;
0.5 < dunbiased < 0.8 = medium effect; dunbiased > 0.8 = large effect).
Baseline activity was also compared as a control analysis, between
groups and conditions, by applying similar procedures. Signifi-
cance was always set at p < 0.05. Please refer to the Supplementary
Material for further methodological details.

3. Results

3.1. Characteristics of groups
musical expertise, smoking and sport habits, and migraine. In the
DS group, stuttering severity was very mild in two participants,
mild in three, moderate in four, and severe in the remaining four.
RMTs did not differ between groups and/or hemispheres. FS had
higher excitability of the cortico-spinal pathway (MEPs ampli-
tudes/areas) when stimulating the primary motor cortex of the left
hemisphere at 150% RMT, and recording from the right FDI, repli-
cating the results of Busan et al. (2013). The results are summa-
rized in Table 1. Please refer to Supplementary Material (Tables
S1 and S2) for further characteristics of groups.

3.2. TEPs

When considering TEPs, DS resulted in an average of 93.2
accepted epochs (SD ± 17.8) in the real TMS condition and in 95.7
(SD ± 15.2) in the real TMS condition and in 89.1 epochs
(SD ± 11.8) in sham (no significant differences between conditions
and/or groups were seen when considering the number of accepted
epochs, p > 0.1). When considering electrodes placed around the
stimulation point on the scalp (Cz, Fz, FC1, FC2), a series of typical
TEPs were observed in both real and sham TMS (Fig. 2; e.g.
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Miniussi et al., 2012): a negative component at around 45 ms after
TMS (N45), and a positive one at around 60 ms (P60); a negative
component at around 100 ms (N100), and a positive one at around
180 ms (P180). A later negative component was also evident at
around 280 ms (N280). Thus, TEP components (butterfly plots)

3.3.2. Neural source reconstruction in DS
DS (mean neural activity) resulted in the maximal activation of

a region centered in the left inferior frontal and precentral gyrus
(36–65 ms; BA 6), followed by the maximal activation of regions
centered in the right precentral gyrus and the right prefrontal cor-

Table 1
Main characteristics of groups and participants. Characteristics of groups are indicated by reporting means and SD. Significant differences are in bold, trends toward significance
in italic.

Characteristic/Groups DS FS p-value

Age 32.9 ± 8.3 30.4 ± 7.2 p = 0.39
Education 17.3 ± 3.6 15.7 ± 2.2 p = 0.34
Handedness 84.4 ± 12.2 85.4 ± 12.6 p = 0.84
Smoke habits 0.24 ± 0.43 0.2 ± 0.41 p = 0.67
Musical instruments expertise 0.26 ± 0.42 0.23 ± 0.41 p = 0.60
Migraine 0.1 ± 0.28 0.07 ± 0.26 p = 0.58
Sport habits 6/7 12/3 p = 0.14
TMS resting motor thresholds 45.9 ± 10.3/

47.7 ± 9.3
48.8 ± 5.7/
48.1 ± 7.0

All p > 0.10

MEPs peak-to-peak (mV) 1757.3 ± 1154.1/
1587.2 ± 1466.6

3161.3 ± 1545.1/
2287.6 ± 1549.0

p (DS vs. FS LH) = 0.01 (t(26) = 2.688, p = 0.01)
p (DS vs. FS RH) = 0.25
p (DS, LH vs. RH) = 0.5
p (FS, LH vs. RH) = 0.06

MEPs area (V/s) 6688.6 ± 4845.0/
7310.2 ± 6627.6

12846.4 ± 6768.3/
8843.6 ± 5868.8

p (DS vs. fl LH) = 0.01 (t(26) = 2.727, p = 0.01)
p (DS vs. FS RH) = 0.52
p (DS, LH vs. RH) = 0.67
p (FS, LH vs. RH) = 0.052

MEPs latency (ms) 21.9 ± 1.0/
21.8 ± 1.3

21.4 ± 1.4/
21.8 ± 1.4

p (DS vs. FS LH) = 0.34
p (DS vs. FS RH) = 0.99
p (DS, LH vs. RH) = 0.90
p (FS, LH vs. RH) = 0.08
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allowed identification of five time windows of interest: 36–
65 ms, 65–144 ms, 144–256 ms, 256–350 ms, and 350–500 ms.
Detailed characterization of TEPs, and exploratory statistics are
reported in the Supplementary Material (Tables S3 and S4). In gen-
eral, the analysis resulted in differences in fronto-centro-parietal
electrodes, in both hemispheres, with higher neural activity mainly
evident in FS, especially in the first 150 ms after TMS delivery. On
the other hand, higher neural activity in DS was recorded starting
from about 150 ms after TMS.

3.3. Neural source reconstruction

In both FS and DS, real TMS always resulted in higher activa-

tions than sham. Significant neural activations reported by FS were,
in general, wider and more distributed than those reported by DS.

Groups were characterized by different neural dynamics of activity
(in terms of activated brain regions and the timing of activation)
related to the stimulation of the SMA ‘‘complex”. This allowed def-
inition of specific ROIs, exclusive for each group and time window,
which were useful for neural source reconstruction comparisons
between groups (see Tables 2 and 3, Figs. 3 and 4, and Tables S5,
S6, and S7; time frame-by-time frame analysis in the Supplemen-
tary Material).

3.3.1. Neural source reconstruction in FS
FS (mean neural activity) resulted in the maximal activation of a

region centered in the right superior frontal gyrus (36–65 ms; BAs

9 and 11) and of regions centered in the right parietal lobe (65–
144 ms; BA 40) and left prefrontal cortex (65–144 ms; BA 11). At

144–256 ms after TMS, the maximal activation of regions sur-
rounding the right middle temporal cortex (BA 21) and left supe-
rior parietal lobe (BA 7) was evident. The maximal activation of
regions around the right postcentral gyrus (BA 43) and the right
frontal cortex (BA 6) was evident at 256–350 ms. Regions around
the left middle temporal cortex (BA 21) and right supramarginal
gyrus (BA 40) were maximally activated at 350–500 ms after TMS.

5

tex (65–144 ms; BAs 6 and BA 10, respectively). Successively (144–
256 ms), the maximal activation of regions centered in the left
frontal cortex was evident (BAs 6 and 46), as well as activations
in regions close to the left temporal cortex (256–350 ms; BA 22)
and right superior frontal gyrus (256–350 ms; BA 6). Finally, at
350–500 ms, DS resulted in the maximal activation of regions cen-
tered in the right temporal cortex (BA 38) and in the right frontal
cortex (BA 6).

3.4. ROI analysis: DS vs. FS

Analyses of mean neural activity for each group allowed identi-
fication of 4 ROIs for each time window, which were considered
bilaterally. ROIs are summarized in Fig. 5 and Table S7 (Supple-
mentary Material). All statistics and the results are summarized
in Table 4 and Fig. 6.

3.4.1. FS > DS in the first 150 ms after TMS
A significant difference (lower activation in DS than in FS) was

evident in the ROI centered on the SMA (superior frontal gyrus,
BA 6) between 66–71 ms and between 75–82 ms. A similar differ-
ence in a region centered in the left precentral gyrus (BA 6), in a
successive time window between 91–102 ms was evident (a trend
was also observed in the mean neural activity of the entire win-
dow, 65–144 ms). Next, a significant difference was seen in the
region centered in the left inferior parietal lobule (BA 40), with
higher activity in FS (99–101 ms). Successively, the analysis
resulted in the activation of parietal regions of the right hemi-
sphere (center of the ROI in superior parietal lobule, BA 7; higher
activation in FS vs. DS) in a time between 149 and 152 ms. Finally
(and later in time), DS resulted in lower activation of the region
centered in the left middle temporal gyrus (BA 21) between 369
and 374 ms.

3.4.2. DS > FS starting from 250 ms after TMS
Given the above, the stuttering brain seemed to ‘‘react” to pre-

vious lacking of activation: significant differences were observed at



263–268 ms and at 273–280 ms in the right temporal cortex (ROI
centered in the superior temporal gyrus; BA 22), with higher activ-
ity in DS than in FS. This was also observed when considering a ROI
centered in the right parietal cortex (postcentral gyrus; BA 43),
with activations that resulted higher in DS, in a time between

4. Discussion

4.1. Summary of results

The present findings suggest that adults with persistent DS are

Fig. 2. Representation of TMS-evoked potentials in fluent speakers and in the stuttering group. (A) Real TMS vs. sham in the stuttering group; (B) real TMS vs. sham in the
fluent speakers group; (C) comparison of real TMS in the stuttering and fluent speaker groups. In each panel, electrodes placed around the coil are highlighted to represent
components of TMS-evoked potentials.
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265 and 268 ms, and between 274 and 277 ms. Closer regions of
the right hemisphere (ROI centered in the right middle temporal
gyrus, BA 21) were more activated in DS at 378–380 ms. Similarly,
the region centered in the right superior temporal gyrus (BA 38)
was also more activated in stuttering in a time between 378 and
380 ms, as well as in a time between 425 and 427 ms. Finally, DS
resulted in a higher neural activity in regions around the right mid-
dle frontal gyrus (BA 6) in a time between 454 and 462 ms. This
was similarly observed in the cortical surface surrounding the right
superior frontal gyrus (BA 6), at 456–463 ms (DS more activated
than FS), in a region that roughly corresponded to the initially
stimulated SMA ‘‘complex”.

When considering ROIs obtained from time frame-by-time
frame analyses, there were no significant differences in either
group, and thus further details are not specified.

3.5. Control analysis

Findings obtained from analysis of ROIs were used to verify

whether similar findings were evident when considering baseline
activity (from �200 to �10 ms before TMS delivery). No significant

6

differences were present between groups.
characterized by different neural dynamics in terms of time and in
brain localization. The DS brain was characterized by lower ‘‘reac-
tivity” after the stimulation of the SMA ‘‘complex”. TEPs resulted in
(exploratory) differences in specific electrodes: DS resulted in
lower activation of fronto-parietal electrodes, especially of the left
hemisphere, until about 150 ms after TMS (see Supplementary
Material). DS resulted in higher responses after this time. ‘‘Typical”
TEPs were observed in real/sham TMS (Miniussi et al., 2012): their
functional meaning is not fully clarified (Hill et al., 2016; Miniussi
et al., 2012) but, for example, N45 is modulated by GABA-ergic
activity (Premoli et al., 2014). N100 (TMS on the primary motor
cortex) is modulated by motor preparation, again reflecting inhibi-
tory activity of interneurons (Nikulin et al., 2003; Premoli et al.,
2014). This may also be evident in non-motor regions (Rogasch
et al., 2015). TEPs are further modulated by the acoustic response
to TMS (e.g. Nikulin et al., 1999) suggesting that components are
represented by different neuronal sources. Thus, neural source
reconstruction of TEPs allows identification of differences in neural
dynamics, comparing DS and FS. The SMA ‘‘complex” of DS ‘‘re-
acted” with a lower activation (vs. FS) at about 65–80 ms after
TMS. This pattern continued, at about 90–100 ms, in motor plan-
ning regions of the left hemisphere (precentral gyrus [BA 6], as well
as in the left inferior parietal lobule [BA 40]). This was counter-



Table 2
Mean neural activations obtained comparing real TMS vs. sham in fluent speakers. Mean neural activations obtained comparing real TMS vs. sham in fluent speakers, in the different time windows of interest, are reported.

Mean neural activity (sLORETA)

Time window of
interest

Maximal activation (BA; MNI x, y, z coordinates) Other brain regions activated (BA) Total number of voxels

t-statistic Log of ratio of averages t-statistic Log of ratio of averages t-statistic log of ratio of
averages

36–65 ms Right superior frontal gyrus
(9R; 45, 35, 35)

Right superior frontal
gyrus
(11R; 30, 55, �15)

4R, 6L/R, 8L/R, 9L, 10L/R, 11L/R, 13R, 20R,
21R, 22L/R, 24L/R, 25L/R, 28R, 32L/R, 33L/
R, 34R, 36R, 38R, 42R, 43R, 44L/R, 45R,
46L/R, 47R

9L/R, 10L/R, 11L/R, 13R, 20R, 21R, 22R,
24L/R, 25L/R, 28R, 32L/R, 34R, 36R, 38R,
44R, 45R, 46L/R, 47L/R

1317
(max stat.
p < 0.0002)

1024
(max stat.
p < 0.0002)

65–144 ms Right inferior parietal lobule
(40R; 65, �30, 40)

Left rectal gyrus
(11L; �5, 55, 25)

1L/R, 2L/R, 3L/R, 4L/R, 5L/R, 6L/R, 7L/R, 8L/
R, 9L/R, 10L/R, 11L/R, 13L/R, 18R, 19R, 20L/
R, 21L/R, 22L/R, 23L/R, 24L/R, 25L/R, 27R,
28L/R, 30R, 31L/R, 32L/R, 33L/R, 34L/R,
35L/R, 36L/R, 37R, 38L/R, 39R, 40L, 41L/R,
42L/R, 43L/R, 44L/R, 45L/R, 46L/R, 47L/R

3L/R, 4L/R, 5L/R, 6L/R, 7L/R, 8L/R, 9L/R,
10L/R, 11R, 13L/R, 20L/R, 21L/R, 22L, 24L/
R, 25L/R, 28L/R, 31L/R, 32L/R, 33L/R, 34L/R,
36R, 38L/R, 44L/R, 45L/R, 46L/R, 47L/R

4980
(max stat.
p < 0.0002)

2429
(max stat.
p < 0.0002)

144–256 ms Right middle temporal gyrus
(21R; 65, �50, �10)

Left superior parietal
lobule
(7L; �30, �70, 55)

1L/R, 2L/R, 3L/R, 4L/R, 5L/R, 6L/R, 7L/R, 8L/
R, 9L/R, 11L/R, 13L/R, 17L/R, 18L/R, 19L/R,
20L/R, 21L, 22L/R, 23L/R, 24L/R, 25L/R,
27L/R, 28L/R, 29L/R, 30L/R, 31L/R, 32L/R,
33L/R, 34L/R, 35L/R, 36L/R, 37L/R, 38L/R,
39L/R, 40L/R, 41L/R, 42L/R, 43L/R, 44L/R,
45L/R, 46L/R, 47L/R

1L/R, 2L/R, 3L/R, 4L/R, 5L/R, 6L/R, 7R, 8L/R,
9L/R, 13L, 18L, 19L/R, 20L, 22L, 23L/R, 24L/
R, 27L/R, 28L, 29L/R, 30L/R, 31L/R, 32L/R,
33L/R, 35L, 36L, 37L, 39L/R, 40L/R, 41L,
42L, 43L, 44L, 45L, 46L

5194
(max stat.
p = 0.0006)

2503
(max stat.
p = 0.0018)

256–350 ms Right postcentral gyrus
(43R; 65, �15, 15)

Right middle frontal
gyrus
(6R; 30, 10, 65)

1R, 2R, 3R, 4R, 6R, 10L/R, 11L/R, 21R, 22R,
37R, 40R, 42R

NA 194
(max stat.
p = 0.01)

1
(max stat.
p = 0.023)

350–500 ms Left middle temporal gyrus (21L; �65,
�15, �5)

Right supramarginal
gyrus
(40R; 65, �50, 30)

1L/R, 2L/R, 3L/R, 4L/R, 5R, 6L/R, 8R, 9L/R,
13L/R, 20L/R, 21R, 22L/R, 24R, 31R, 37R,
38L/R, 39L/R, 40L/R, 41L/R, 42L/R, 43L/R,
44L/R, 45L/R, 46R, 47L/R

1L/R, 2L/R, 3L/R, 4L/R, 6L/R, 8R, 9R, 13R,
20L/R, 21L/R, 22L/R, 24R, 31R, 39R, 40L,
41L/R, 42L/R, 43L/R, 44R, 45R

1637
(max stat.
p = 0.0018)

692
(max stat.
p = 0.004)
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acted by the later recruitment of regions of the right temporal cor-
tex, at times between 260–280 ms and 380–460 ms after TMS. DS
activated the right premotor cortex and right hemisphere regions
(very close to the stimulated SMA ‘‘complex”) at about 455–
460 ms after TMS. The excitability of the left primary motor cortex

self-initiated motor programs. The SMA is involved in the temporal
organization of sequential motor tasks for early planning and cod-
ing of multiple movements (Cona and Semenza, 2017; Coull et al.,
2015; Nakamura et al., 1998; Tanji and Shima, 1996, 1994), as well
as in the update of motor plans in subsequent movements (Shima

Table 3
Mean neural activations obtained comparing real TMS and sham in the stuttering group. Mean neural activations obtained comparing real TMS and sham in the stuttering group,
in the different time windows of interest, are reported.

Mean neural activity (sLORETA)

Time window of
interest

Maximal activation (BA; MNI x, y, z
coordinates)

Other brain regions activated (BA; left/right) Total number of voxels

t-statistic Log of ratio of
averages

t-statistic Log of ratio of averages t-statistic log of ratio of
averages

36–65 ms Left inferior frontal
gyrus
(6L; �60, 10, 30)

Left precentral
gyrus
(6L; �65, �5, 25)

1L, 2L, 3L, 4L, 8L, 9L, 13L, 20L,
21L, 22L, 36L, 37L, 38L, 40L, 41L,
42L, 43L, 44L, 45L, 46L, 47L

3L, 4L, 9L, 22L, 43L, 44L 610
(max stat.
p = 0.0014)

21
(max stat.
p = 0.026)

65–144 ms Right precentral
gyrus
(6R; 60, �5, 35)

Right medial
frontal gyrus
(10R; 5, 65, 20)

1L/R, 2L/R, 3L/R, 4L/R, 5L/R, 6L,
7L/R, 8L/R, 9L/R, 13R, 20R, 21R,
22R, 23L/R, 24L/R, 25R, 27R, 28R,
31L/R, 32L/R, 33L/R, 34R, 35R,
36R, 38R, 40L/R, 41R, 42R, 43R,
44R, 45R, 46L/R, 47R

9L/R, 10L, 11L/R, 46L 2369
(max stat.
p < 0.0002)

163
(max stat.
p = 0.0006)

144–256 ms Left precentral
gyrus
(6L; �65, �5, 30)

Left middle
frontal gyrus
(46L; �45, 45, 20)

1L/R, 2L/R, 3L/R, 4L/R, 5L/R, 6R,
7L/R, 8L/R, 9L/R, 10L/R, 11L/R,
13L/R, 17L/R, 18L/R, 19L/R, 20L/
R, 21L/R, 22L/R, 23L/R, 24L/R,
25L/R, 27L/R, 28L/R, 29L/R, 30L/
R, 31L/R, 32L/R, 33L/R, 34L/R,
35L/R, 36L/R, 37L/R, 38L/R, 39L/
R, 40L/R, 41L/R, 42L/R, 43L/R,
44L/R, 45L/R, 46L/R, 47L/R

6L/R, 8R, 9L/R, 10L/R, 11L/R, 19R,
32L/R, 45L, 46R

4920
(max stat.
p = 0.0006)

460
(max stat.
p = 0.0016)

256–350 ms Left superior
temporal gyrus
(22L; �65, �15, 5)

Right superior
frontal gyrus
(6R; 20, 5, 70)

3L/R, 4L/R, 6L/R, 9L, 21L/R, 22R,
38R, 40L/R, 42L/R, 43L/R, 44L/R,
45L/R, 47L/R

1L, 3L/R, 4L/R, 6L, 8L/R, 9L/R,
24L/R, 31L/R, 32L/R

185
(max stat.
p = 0.012)

665
(max stat.
p = 0.006)

350–500 ms Right superior
temporal gyrus
(38R; 55, 10, �15)

Right middle
frontal gyrus
(6R; 30, 10, 65)

1R, 2R, 3L/R, 4L/R, 6L/R, 8R, 9L/R,
10R, 11R, 13L/R, 20R, 21L/R, 22L/
R, 24R, 25L/R, 27R, 28R, 32R, 33R,
34R, 35R, 36R, 37R, 38L, 39R,
40R, 41R, 42L/R, 43L/R, 44L/R,
45L/R, 46L/R, 47L/R

6L, 8R, 9R, 24R, 32R 1598
(max stat.
p = 0.0012)

188
(max stat.
p = 0.0028)
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(MEPs from hand muscles) was lower in DS, with a lower domi-
nance of the left hemisphere.

These findings suggest that DS is a disturbance where dysfunc-
tional activation/communication among neural networks is
involved, not only related to speech, but also to more general
motor programming. DS consistently resulted in atypical activation
of brain regions such as the left inferior frontal regions and the
bilateral temporal cortex, and also showed abnormalities in con-
nectivity (e.g. to the SMA; see Etchell et al., 2018). As a conse-
quence, the present findings will be discussed by considering a
‘‘network” point of view, by following the ‘‘temporal” flow of the
present results. A comparison of present findings with previous
TMS and/or EEG works in DS, and with computational models of
DS, is present in the Supplementary Material.

4.2. SMA ‘‘complex” and DS: the role of motor timing in the cortico-
basal-thalamo-cortical network

The SMA has only recently been proposed as a ‘‘neural marker”
of DS (see Belyk et al., 2015; Budde et al., 2014; Neef et al., 2015a)
in addition to ‘‘classical” markers such as the lower activity of
speech/motor regions of the left hemisphere and higher activity
of the homologue regions of the right one (Brown et al., 2005;
Budde et al., 2014). Herein, we show that, after magnetic stimulus,
the SMA in DS is not able to activate as it does in FS, and this might
negatively influence the successive activation of the left
hemisphere fronto-temporo-parietal network. The SMA is part of
a cortico-striato-thalamo-cortical system that has a role in
et al., 1996). It has a role in monitoring motor performance (Shima
and Tanji, 2006) and in initiating actions on the basis of self-
generated temporal estimates (Mita et al., 2009). This region has
been shown to be part of a speech production system, together
with premotor and inferior frontal regions, even in DS (Brown
et al., 2005; Fox et al., 2000). Increased activations in regions such
as the basal ganglia, sensorimotor regions, and the SMA ‘‘complex”,
during rest, dysfluencies, speech tasks, and/or non-speech move-
ments, may be observed in DS, especially in the right hemisphere,
in contrast to lower activations in similar regions of the left one
(see Etchell et al., 2018 for an exhaustive review). Qiao et al.
(2017) reported abnormal functional connectivity in DS in the
SMA ‘‘complex” and primary motor cortex, as well as in inferior
frontal regions (especially in the left hemisphere) and basal gan-
glia. This was most evident for information flowing from inferior
frontal cortex to the SMA, and from the SMA to premotor cortex;
this was also true when considering neural flow from basal ganglia
to the cortex and vice versa. The lower activations of SMA reported
herein support the vision that DS is related to defective activation
of a system used to control an ‘‘internal timing network”, involved in
volitional movements (such as speech), in contrast to an ‘‘external
timing network”, more involved in movements that rely on exter-
nal/sensorial cues (Alm, 2004; Avanzino et al., 2016; Etchell
et al., 2014). A ‘‘delay” in the cortico-basal-thalamo-cortical system
may result in an insufficient movement initiation (compare with
Alm, 2004; Civier et al., 2013; Connally et al., 2018). The present
observation of an initial lack of activation in the SMA ‘‘complex”,
followed by higher activations of premotor regions of the right



hemisphere after about 400 ms from it, sustain this possibility.
Basal ganglia dysfunction is also commonly reported in DS (Alm,
2004; Craig-McQuaide et al., 2014), resulting in lower connectivity
of related circuits, including SMA (Chang and Zhu, 2013; Chang
et al., 2016) and influencing motor and/or large-scale networks

through the frontal aslant tract (FAT): Kronfeld-Duenias et al.
(2016) suggested that stuttering (i.e. speech fluency) is related to
fiber integrity of the FAT. Misaghi et al. (2018) reported higher
fractional anisotropy and higher axial diffusivity in the right FAT
of children who stutter. The FAT is involved in motor/speech pro-

Fig. 3. Representation of significant neural sources in the fluent speakers group comparing real TMS to sham in the different time windows of interest (mean neural activity).
Significant differences between real TMS and sham conditions in fluent speakers are reported with indication of the involved time windows of interest. For each time window
of interest, sources obtained by t-statistic and log of F-ratio are reported. Red/yellow colors indicate that real TMS resulted in higher activation than sham. Activations are
reported using relative scales to represent voxels that were significantly activated (p < 0.05, corrected); L = left hemisphere, R = right hemisphere. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Cantello et al., 2002; Lu et al., 2010b, 2009; Metzger et al., 2018;
Yang et al., 2016; Ziemann et al., 1997). Smaller cerebral volumes
may be evident after basal ganglia lesions in the SMA (Exner
et al., 2002). On the other hand, children recovering from DS show
a decreased gyrification of the SMA, suggesting a decreased local
connectivity and/or a better synaptic pruning of longer neural cir-
cuits favouring fluency (Garnett et al., 2018).

More importantly, SMA is strongly connected with regions of
the inferior frontal gyrus, which are part of the motor pathways,

9

duction and initiation (Kinoshita et al., 2015): Kemerdere et al.
(2016) observed that electro-stimulation of the left FAT in FS dur-
ing neurosurgery caused stuttering, while Neef et al. (2018)
reported that stuttering severity may be positively related with
the ‘‘strength” of neural pathways such as the right FAT and/or pro-
jections of the right precentral sulcus. A lower functionality of this
connection (e.g. reduced synchrony), in the left hemisphere, may
be related with slow transfer of neural information and/or abnor-
mal communication between regions such as the SMA and inferior



frontal cortex (devoted to speech/motor control), impairing plan-
ning/initiation/control of motor acts (compare also with
Kronfeld-Duenias et al., 2016). This is also supported by the pre-
sent findings, where ‘‘insufficient” activation of the SMA ‘‘com-
plex”, after TMS delivery, was followed by a similar ‘‘insufficient”

accompanied by similar under-activation of the left parietal cortex,
which is compatible with the suggestion that DS is an impairment
in mechanisms of planning/execution of movement and speech
(Civier et al. 2013, 2010; Howell, 2004; Lu et al., 2010a; Max
et al., 2004). Previous research in DS consistently reported diffuse

Fig. 4. Representation of significant neural sources highlighted in the stuttering group comparing real TMS to sham in the different time windows of interest (mean neural
activity). Significant differences between real TMS and sham conditions in stuttering are reported with indication of the involved time windows of interest. For each time
window of interest, sources obtained by t-statistic and log of F-ratio are reported. Red/yellow colors indicate that real TMS resulted in higher activation than sham.
Activations are reported by using relative scales, to represent voxels that were significantly activated (p < 0.05, corrected); L = left hemisphere, R = right hemisphere. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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activation of frontal/premotor regions of the left hemisphere
around the inferior frontal cortex. The potential role of the
fronto-striatal tract should also be considered when interpreting
the present findings (see Kinoshita et al., 2015).

4.3. Relation of the present findings with deficits in left inferior frontal
regions and white matter

Successive to the lower activation of the SMA ‘‘complex”, after
TMS delivery, our findings show that the premotor/inferior frontal
regions of the left hemisphere are also under-activated in DS, and
anatomo-functional abnormalities, which were especially evident
in regions such as the bilateral inferior frontal cortex, premotor
areas, medial frontal regions, temporal cortex, and sensorimotor
regions, as well as their connections, especially (but not exclu-
sively) during speech production (often in relation with stuttering
severity; see Etchell et al., 2018, for a recent review). The (left) infe-
rior frontal cortex has a role in several functions ranging from
action to rhythm processing and cognitive control (see Neef
et al., 2016, for a review related to DS). While the anterior part is
more related to cognition, the posterior regions may be more
related to motor/rhythmic skills (Clos et al., 2013), even in connec-



tion with the SMA ‘‘complex” (see Neef et al., 2016), as requested
by the production of fluent speech (compare with Restle et al.,
2012). It has been clearly demonstrated that the left inferior/me-
dial frontal cortex of DS is characterized by reduced activation,
especially (but not exclusively) in speech-related contexts (e.g.

etal lobule (see also Lu et al., 2010a), in agreement with the present
observations. Those authors stated that this network may be useful
to implement planning of speech movements (see also Hickok
et al., 2009) and in managing motor/rhythmic skills. They further
suggest that impaired connectivity of these structures with the left

Fig. 5. Representation of region of interests (ROIs) as individuated by analysis of
mean neural activity of real TMS vs. sham, in the different time windows of interest,
in fluent speakers and in stutterers. (A) ROI corresponding to stimulation point; (B)
ROIs obtained from source analysis in fluent speakers; (C) ROIs obtained from
source analysis in stuttering. Please compare with Table S6 (Supplementary
Material) for information about the different time windows of interest.
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Desai et al., 2017; Neef et al., 2016; Watkins et al., 2008), by
reduced resting state connectivity (Lu et al., 2012) and/or by the
presence of lower volume/thickness (Beal et al., 2013; Chang
et al., 2008; Garnett et al., 2018; Kell et al., 2009; Lu et al., 2012,
2010b), even in (negative) relation with stuttering severity (Kell
et al., 2009). Neef et al. (2016) demonstrated that DS is linked to
the reduced activation of left inferior frontal regions, and, specifi-
cally, to impaired coupling between them and the left inferior pari-

1

superior frontal gyrus (i.e. SMA) may be at the basis of the func-
tional impairments in DS (see also Chang et al., 2011; Neef et al.,
2015a). In fact, improvement and/or spontaneous recovery of DS
has been associated with functional changes in the dynamics of
these networks, also comprising the temporal cortex (e.g. Civier
et al., 2015; Kell et al., 2018, 2009; Stager et al., 2003). Compatibly,
abnormal and/or lower connectivity/white matter integrity in infe-
rior frontal regions, premotor cortex and in motor areas, also com-
prising the representation of speech muscles such as tongue and
larynx, as well as cortico-spinal/cortico-bulbar fibers (especially
in the left hemisphere), is a common finding in DS, involving path-
ways and regions that are useful for speech integration such as the
superior longitudinal fasciculus, the arcuate fasciculus, and the
angular gyrus (Cai et al., 2014b; Chang et al., 2011, 2008;
Connally et al., 2014; Cykowski et al., 2010; Sommer et al., 2002;
Watkins et al., 2008; see also Cieslak et al., 2015; Chang et al.,
2015; Chow and Chang, 2017; Neef et al., 2015a). The maturational
patterns of pars opercularis may be different, in DS, when consid-
ering gray matter (Beal et al., 2015): children with DS had less gray
matter volume in brain areas such as the inferior frontal regions
(Beal et al., 2013), while the persistent stutterers were character-
ized by slower growth of white matter even in brain regions such
as the left arcuate fasciculus and corpus callosum (Chow and
Chang, 2017). Generally, this evidence may result in lower
excitability of the left primary motor cortex (Busan et al., 2017,
2016, 2013; Neef et al., 2015b; Whillier et al., 2018; Neef et al.,
2015b; Whillier et al., 2018). Thus, the here reported lower activity
of the left premotor/inferior frontal regions (and parietal cortex)
may be the consequence, from a temporal point of view, of
under-activation starting from the SMA, likely driven through the
FAT. However, a mutual influence is more likely: children with per-
sistent DS show a reduced cortical thickness of the left motor/pre-
motor regions; such a difference is not evident in SMA (Garnett
et al., 2018).

4.4. Right-hemispheric activations: an attempt to recover proper
neural timing

Starting from about 250 ms after TMS, the stuttering brain ‘‘re-
act” to the initial lack of activation, and is consistently more acti-
vated than FS, albeit in the right hemisphere. This was evident
especially in temporal regions, such as in the superior and middle
temporal cortex, as well as in post-central regions. These higher
activations extinguished within 460 ms after TMS, when higher
activity was evident in motor regions of the right hemisphere, cor-
responding to the right dorsal premotor cortex and to the initially
stimulated SMA ‘‘complex”. Higher activation of fronto-temporal
regions of the right hemisphere has been consistently reported in
DS research (Brown et al., 2005; Budde et al., 2014; Ingham
et al., 2012; Neef et al., 2015a). However, the functional meaning
of this activity has not been fully clarified. It has often been sug-
gested it should have a compensatory role, trying to overcome dif-
ficulties of similar regions of the left one (Kell et al., 2009;
Neumann et al., 2005, 2003; Preibisch et al., 2003). Hartwigsen
et al. (2013) demonstrated that right frontal regions were able to
support adaptive plasticity in speech tasks after perturbation of
the left inferior frontal cortex. Braun et al. (1997) reported that
DS was positively related to the activity of the left hemisphere,
while a negative correlation was evident in the right one (see also
Fox et al., 2000). Chang et al. (2011) reported greater connectivity
in DS between the inferior frontal cortex and right sensorimotor



regions, while Chang and Zhu (2013) reported greater connectivity
of the latter with the left SMA and basal ganglia. On the other hand,
a pathological role of frontal activity in the right hemisphere has
been suggested, in terms of excessive inhibitory activity on normal
motor processes (Neef et al., 2016). In the present work, the conse-

et al., 2013; Chang et al., 2008), further sustaining the vision that
changes in these regions may be the result of compensation (e.g.
Neumann et al., 2003; Preibisch et al., 2003), which need time to
develop. Thus, in the end, abnormalities in the right hemisphere
of DS may be the consequence of abnormal functioning of the left

fere

)

72 P. Busan et al. / Clinical Neurophysiology 130 (2019) 61–76
quential activations of temporal regions and, finally, of motor asso-
ciative regions (after a lack of activity in similar motor regions of
the left hemisphere) sustain the vision of a compensative role of
the right hemisphere, in DS. This happens with a delay compared
to the activity shown by FS. This is well in accordance with evi-
dence suggesting that DS is a disturbance of correct motor timing
(Etchell et al., 2014), and is also supported by the evidence that
behavioral fluency-shaping intervention leads to activations that
point towards normalization of abnormal neural patterns (e.g.
Neumann et al., 2005, 2003; De Nil et al., 2004; Toyomura et al.,
2015, 2011; compare with Fox et al., 1996; Stager et al., 2003).
Compatibly, an increase in brain volumes is present in various
regions of the right hemisphere in DS (Jäncke et al., 2004), such
as the superior temporal gyrus, inferior frontal gyrus, and in senso-
rimotor regions (Beal et al., 2013, 2007; Cykowski et al., 2008;
Jäncke et al., 2004; Kikuchi et al., 2011; Lu et al., 2010b; Sowman
et al., 2017). DS may result in a higher asymmetry (i.e. right hemi-
sphere greater than the left one), and/or no leftward asymmetry, in
similar regions (compare with Foundas et al., 2004, 2001; Jäncke
et al., 2004), but contrasting reports are present (e.g. Gough
et al., 2018). Abnormal activations and/or increases in volumes of
the right hemisphere are less evident in DS children (e.g. Beal

Table 4
Significant differences between DS and fluent speakers considering ROIs. Significant dif
means and SD. Trend differences (p < 0.1) are in italic.

Time window of Center of ROI (BA; MNI Mean neural activity (TMS – sham

interest x, y, z)

66–71 ms
75–82 ms

Superior frontal gyrus
(6; 0, 6, 66)

0.097 ± 0.21 (DS)
0.441 ± 0.5 (FS);
0.166 ± 0.32 (DS)
0.668 ± 0.68 (FS)

91–102 ms Left precentral gyrus
(6L; �60, �5, 35)

0.102 ± 0.25 (DS)
0.516 ± 0.61 (FS);
0.151 ± 0.16 (DS; mean activity of 65–
144 ms window)
0.372 ± 0.37 (FS; mean activity of 65–
144 ms window)

99–101 ms Left inferior parietal
lobule
(40L; �65, �30, 40)

0.067 ± 0.23 (DS)
0.368 ± 0.44 (FS)

149–152 ms Right superior parietal
lobule
(7R; 30, �70, 55)

0.05 ± 0.24 (DS)
0.311 ± 0.34 (FS)

263–268 ms
273–280 ms

Right superior
temporal gyrus
(22R; 65, �15, 5)

0.176 ± 0.19 (DS)
0.037 ± 0.12 (FS);
0.204 ± 0.19 (DS)
0.055 ± 0.12 (FS)

265–268 ms
274–277 ms

Right postcentral gyrus
(43R; 65, �15, 15)

0.186 ± 0.19 (DS)
0.049 ± 0.11 (FS);
0.202 ± 0.2 (DS)
0.052 ± 0.15 (FS)

369–374 ms Left middle temporal
gyrus
(21L; �65, �15, �5)

0.015 ± 0.04 (DS)
0.082 ± 0.07 (FS)

378–380 ms Right middle temporal
gyrus
(21R; 65, �15, �5)

0.070 ± 0.09 (DS)
�0.009 ± 0.08 (FS)

378–380 ms
425–427 ms

Right superior
temporal gyrus
(38R; 55, 10, �15)

0.066 ± 0.09 (DS)
�0.012 ± 0.08 (FS);
0.066 ± 0.04 (DS)
0.013 ± 0.05 (FS)

454–462 ms Right middle frontal
gyrus
(6R; 30, 10, 65)

0.124 ± 0.15 (DS)
�0.004 ± 0.07 (FS)

456–463 ms Superior frontal gyrus
(6; 0, 6, 66)

0.128 ± 0.17 (DS)
�0.02 ± 0.1 (FS)
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one (Chang et al., 2011; Choo et al., 2016). This is also sustained by
the fact that DS is characterized by abnormalities in the structure
of the left temporal cortex (e.g. Chang et al., 2015; Garnett et al.,
2018; Lu et al., 2010b) and by an increase in white matter of speci-
fic parts (e.g. anterior) of the corpus callosum (Choo et al., 2016).
Sitek et al. (2016) showed that DS is characterized by decreased
connectivity in perisylvian regions related to auditory/motor/
speech function, although greater connectivity between basal gan-
glia and temporal cortex (bilaterally) was also observed. The tem-
poral cortex, especially in the right hemisphere, may have a role in
the management of temporal sequences, even from a motor/audi-
tory point of view (Bueti, 2011; Bueti et al., 2008; Davis et al.,
2009). Thus, higher neural activations of the right hemisphere in
DS could be an attempt of the stuttering brain to recover the cor-
rect flow of neural events, in order to favor correct activations of
motor programs for their prompt/accurate release. The fact that
this may happen in DS about 300 ms later than in FS offers the
basis for the appearance of stuttering symptoms such as blocks
and repetitions, because the realization of speech needs continued
and refined preparation/execution of complex motor programs.
Again, the evidence that the present findings are not related to
speech tasks confirm that DS may also represent a general motor

nces between DS and fluent speakers (FS), considering ROIs, are indicated by reporting

Statistics Effect
permutation test, p = 0.023; t(26) = 2.39, p = 0.024; Cohen’s
d = 0.878, large effect size;
permutation test, p = 0.018; t(26) = 2.51, p = 0.018; Cohen’s
d = 0.924, large effect size

DS < FS

permutation test, p = 0.031; t(26)= 2.34, p = 0.028; Cohen’s
d = 0.862, large effect size;
permutation test, p = 0.057; t(26) = 2.07, p = 0.049; Cohen’s d == 0.756,
medium effect size

DS < FS

permutation test, p = 0.039; t(26) = 2.27, p = 0.032; Cohen’s
d = 0.832, large effect size

DS < FS

permutation test, p = 0.029; t(26) = 2.29, p = 0.030; Cohen’s
d = 0.865, large effect size

DS < FS

permutation test, p = 0.023; t(26) = 2.39, p = 0.024; Cohen’s
d = 0.906, large effect size;
permutation test, p = 0.016; t(26) = 2.51, p = 0.018; Cohen’s d = =

0.956, large effect size

DS > FS

permutation test, p = 0.021; t(26) = 2.24, p = 0.034; Cohen’s
d = 0.904, large effect size;
permutation test, p = 0.025; t(26) = 2.29, p = 0.030; Cohen’s
d = 0.873, large effect size

DS > FS

permutation test, p = 0.006; t(26) = 2.98, p = 0.006; Cohen’s
d = 1.133, large effect size

DS < FS

permutation test, p = 0.017; t(26) = 2.50, p = 0.019; Cohen’s
d = 0.929, large effect size

DS > FS

permutation test, p = 0.025; t(26) = 2.35, p = 0.026; Cohen’s
d = 0.839, large effect size
permutation test, p = 0.008; t(26) = 2.85, p = 0.008; Cohen’s
d = 1.081, large effect size

DS > FS

permutation test, p = 0.004; t(26)= 2.71, p = 0.012; Cohen’s
d = 1.132, large effect size

DS > FS

permutation test, p = 0.005; t(26) = 2.83, p = 0.009; Cohen’s
d = 1.081, large effect size

DS > FS



deficit (Etchell et al., 2014; Smits-Bandstra and De Nil, 2007).
Finally, temporal regions are known to be involved in the elabora-
tion of acoustic information: DS has often been described as a dis-
turbance where impaired/weak/slow integration is evident at the
audio-motor level (e.g. Cai et al., 2014a; 2012; Daliri and Max,

a fundamental aspect in DS and that dysfunctions in neural sys-
tems are at the basis for the appearance/maintenance of DS symp-
toms (Etchell et al., 2014; Ludlow and Loucks, 2003; Neumann
et al., 2003; Salmelin et al., 2000). The dysfunctional activation of
the SMA may contribute to ‘‘delayed”/insufficient activation of

Fig. 6. Representation of significant differences in regions of interest (ROIs) between fluent speakers and stutterers. Significant differences between stutterers and fluent
speakers in ROIs are reported with indication of the involved time windows of interest. Blue colors indicate that fluent speakers were more active than stuttering, red/yellow
colors indicate that stuttering resulted in higher activation than in fluent speakers. Activations are reported by using relative scales to represent voxels that were significantly
activated (p < 0.05, corrected); L = left hemisphere, R = right hemisphere. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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2015; Kell et al., 2018; compare with Chang and Zhu, 2013). In line
with this, we also report that DS results in lower neural activity in
the left temporal cortex (compare with Brown et al., 2005; Kell
et al., 2018).

5. Conclusion and future perspectives

The present findings support the hypothesis that DS is a discon-
nection syndrome where large-scale deficits in neural networks are

present. They may be part of a stuttering ‘‘trait” (see Budde et al.,

3

2014), but, more importantly, could be related to DS symptoms
(i.e. stuttering ‘‘state”; compare with Connally et al., 2018): some
abnormalities may be the cause and/or the consequence of speech
dysfluency, while other may reflect an attempt to overcome it.
Speech/motor skills rely on widely distributed systems of brain
regions that exchange information in a rapid and synchronized
manner. Neural impairment anywhere at this level could result
in motor difficulties, such as stuttering, but also in slower and/or
more variable motor/speech initiation/execution (e.g. Adams and
Hayden, 1976; Bakker and Brutten, 1989; Hillman and Gilbert,
1977; Peters et al., 1989; Zimmermann, 1980) and in higher timing
asynchrony (van de Vorst and Gracco, 2017). The differences in
neural dynamics between the stuttering brain and FS seen herein,
sustain the suggestion that ‘‘time” (i.e. an effective neural synchro-
nization and exchange of information between different regions) is

1

motor structures of the left hemisphere, followed by an exagger-
ated ‘‘reaction” of temporal/motor structures of the right one, late
in time, interfering with correct motor response initiation (e.g.
Webster, 1998, 1993, 1990, 1988; Packman et al., 2007; Smits-
Bandstra and De Nil, 2007). Thus, the late activation of the right
supplementary motor cortex/premotor area in DS may favor com-
pensation of the previous lack of activity in fronto-temporo-
parietal regions of the left hemisphere. This ‘‘re-activation” may
be an attempt to ‘‘re-drive” effective motor firing in DS. Stuttering
may be the main symptom of a subtle motor syndrome that is most
evident during speech considering that it requires sequential/fast
coordination of different muscles. The present findings support this
vision: speech may be related with increased neural requests, thus
leading to higher variability in speech/motor coordination (see
Smith and Weber, 2017; Usler et al., 2017). Taken together, these
results may have a role in suggesting new and more focused reha-
bilitative solutions for persistent DS. Non-invasive behavioral and
neuro-modulation methods could be used in the attempt to mod-
ulate activity in the defective hubs of the DS neural networks (e.g.
Chesters et al., 2017, 2018; Yada et al., 2018).

In conclusion, the findings from the present study: (i) provide a
functional counterpart to the previously demonstrated white mat-
ter abnormalities in DS, especially those close to left inferior frontal
cortex, even at a wider network level; (ii) suggest that white mat-
ter abnormalities and dysfunctions of the cortico-basal-thalamo-



cortical system (where SMA is one of the main components) in DS
could be more overlapping than previously known; (iii) propose a
mechanism by which regions of the right hemisphere, usually con-
sidered as ‘‘compensatory” in DS, ‘‘react” to difficulties, i.e. as a
consequence of deficient motor activation of structures of the left

stuttering. An H2(15)O positron emission tomography study. Brain
1997;120:761–84.

Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT. Stuttered and fluent speech
production: an ALE meta-analysis of functional neuroimaging studies. Hum
Brain Mapp 2005;25:105–17.

Budde KS, Barron DS, Fox PT. Stuttering, induced fluency, and natural fluency: a
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hemisphere; (iv) sustain the vision of DS as a general motor disor-
der and a motor timing disorder, wherein the system is not able to
promptly respond to neural requests, thus impairing communica-
tion in larger networks; (v) propose dynamic mechanisms that
can justify the presence of DS symptoms; (vi) propose the SMA
as a possible target for neuro-rehabilitation of DS.
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