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Abstract. Establishing the structural integrity of an airport pavement is crucial to assess its 

remaining life and implement strategies or priorities for action. In this context, the elastic 

modulus represents an effective indicator of the condition of the pavement which can be 

calculated through back-calculation procedures starting from surface deflections, obtained from 

a non-destructive test (such as the Heavy Weight Deflectometer). Nevertheless, the 

conventional inverse engineering analysis involves the use of an axial-symmetric pavement 

finite-element program able to evaluate stiffness values exclusively at the deflection measuring 

points. This study presents an alternative methodology for spatial modelling of the load-

bearing capacity of the runway surface pavement layer from deflection data measured at 

specific points, using Shallow Artificial Neural Networks. The search of the optimal neural 

model hyperparameters has been addressed through a Bayesian Optimization procedure and a 

5-fold cross-validation has been implemented for a fair performance evaluation, given the 

limited number of deflection measures available. Once the optimal model has been defined, the 

measured surface deflection data were linearly interpolated and resampled gridding data were 

used as a new input matrix of the neural model to predict the expected value of elastic moduli 

at non-sampled points on the runway. The optimal BO model has returned very satisfactory 

results with a value of Pearson Coefficient R averaged over 5-fold equal to 0.96597 and of 

Mean Squared Error averaged over 5-fold equal to 0.01849. In such a way, a contour map of 

the runway stiffness has been drawn, to provide a support tool for the planning of intervention 

priorities. 

1.  Introduction 

Airport infrastructures are indeed economic activities capable of generating profits and attracting 

private investors. However, they have to meet increasing mobility and territorial development needs. 

In order to guarantee a constant level of service, transportation agencies and airport companies need 

increasingly reliable methods and tools for pavement management. In this context, non-destructive 

analyses represent an essential practice for the acquisition of data and information on the conditions of 

asphalt concrete and, therefore, for the definition of intervention priorities in management systems. 

The Heavy Weight Deflectometer (HWD) is the most widely used test to determine the structural 

integrity of a runway in a non-destructive manner and differs from the Falling Weight Deflectometer 

(FWD) due to the higher intensity of the loads. The HWD test allows to measure the deflection basin 
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generated by the application of an impulsive load. This load simulates the effects impressed by a 

moving wheel under dynamic conditions and is generated by dropping a suspended mass on a plate 

that rests on the pavement surface. The deflection basin, measured by means of geophones placed at 

different radial offsets, represents an overall pavement response to an applied load. For this reason, it 

is common practice to use deflections or a combination of them, through Deflection Basin Parameters 

(DBPs), as predictors of the pavement mechanical behavior [1]. In the literature about this topic, the 

back-calculation method is probably the best known and long-established in practice. This procedure 

is based on the multilayer elastic theory (MLE) in which stresses and strains are characterized by 

differential equations of the 4th order [2] and the solution of the inverse problem is sought. The first 

step involves the calculation of the deflection basin of the pavement according to the thickness of the 

layers, to the elastic modulus of the single layers (assuming values based on experience and best 

engineering practices) and to the magnitude of load. Once the theoretical deflection surface is 

calculated, the features are varied until the best match between the computed pavement deflections 

and the F/HWD measured pavement deflections is achieved [3]. However, some studies have observed 

discrepancies between back-calculated moduli and those obtained from laboratory tests. In particular, 

the back-calculated moduli of the surface layers are often within the accepted tolerance limits while 

those for base and subgrade layers are either underestimated or overestimated [4]. This is mainly due 

to the simplifications related to the MLE theory which does not take into account the effect of 

temperature and load frequency on the deformation of the different layers. In other words, traditional 

back-calculation methods neglect the dynamic effects of F/HWD loadings. Implementing these factors 

in conventional back-calculation software would lead to an excessive complexity of the model, with 

considerable computational cost [5]. Moreover, there is the problem that different back-calculation 

software provide solutions with different accuracies, depending on the pavement structures [6]. 

In recent years, soft computing techniques such as Artificial Neural Networks (ANNs) have been 

used in the pavement moduli back-calculation because they are able to identify the relationship 

between the variables of interest regardless of the physical nature of the problem. ANNs are highly 

recommended due to three merits over traditional back-calculation such as: less error, high efficiency, 

and output uniqueness [7]. Another important benefit of applying an ANN based back-calculation 

technique in routine F/HWD evaluations comes from the very high-speed data processing and analyses 

that can even be performed in the field [8]. Meier [9] experimented with an ANNs-based approach to 

back-calculate modulus pavement-layers through deflections obtained by FWD analysis: a 

feedforward back-propagation neural network was used and its performance was validated by field 

measurements (the Mean Squared Error was about 0.005). A few years later, Lee et al. [10] developed 

a neural model that used DBPs to back-calculate elastic moduli in asphalt and unbound material layers 

(the Root Mean Squared Error, or RMSE, was about 6.6 percent for the unbound layer and about 11.6 

percent for the asphalt layer). However, an extensive experimental data set is necessary to successfully 

train a neural network and, for this reason, synthetic databases generated using finite element software 

are often used. In fact, traditionally ANN models are trained based on data obtained through multiple 

FE simulations using different combinations of material property, layer thickness, HWD loading 

magnitude and pavement temperature [11].  

In this study, the objective was to identify a neural model able to predict the elastic modulus of the 

surface layer of the runway of Palermo airport as a function of the deflection measured below the 

point of application of the load as well as the spatial distribution of the measurement points. Moreover, 

in order to calculate the modulus value at an unsampled point (and therefore for the use of the model 

itself) the input vector of the neural model has been defined by means of a spatial interpolation. In 

particular, during the model definition phase, a procedure has been developed that takes into account 

the limited number of measurement points in common experimental campaigns (the k-fold cross-

validation) and the difficult definition of the ANN model's structure (Bayesian optimization, BO). This 

model could therefore be an effective tool in airport infrastructure management systems. 
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2.  Measurement Campaign 

 

2.1. In situ Investigations 

The international airport "Falcone e Borsellino" of Palermo-Punta Raisi is an Italian airport located 35 

km west of the city of Palermo. The airport has two intersecting runways: the main one "RWY 07/25" 

and the secondary one "RWY 02/20". 

 
Figure 1. Layout of Palermo Airport. 

The HWD tests were performed on the RWY 02/20 with the Dynatest 8000 from header 02 to 

header 20 (figure 1) on five measuring lines (represented on the 𝑥-axis): runway central axis (0 m), ±3 

m and ±6 m from the center of the runway. Each measure was taken by using a 100 m pitch between 

two tests along the runway. The portion of runway considered is 1800 m long (represented on the 𝑦-

axis) for a total of 19 beating points for each measurement line. These data correspond to deflections 

measured automatically by means of accelerometric transducers, one of which is positioned in the 

center of the load plate (𝑑0) and the others aligned radially at different distances – in mm – from the 

load axis (i.e., 𝑑200 represents the deflection at 200 mm from the load axis, 𝑑300 at 300 mm, etc.). The 

following figure shows the deflections 𝑑0 expressed in μm obtained through tests performed on the 

above-mentioned measuring lines. The 𝑦-axis was appropriately scaled for representativity reasons. As 

shown in figure 2, the highest deflections are concentrated near the central axis of the runway. Moving 

away toward the ends of the runway, instead, the deflections tend to decrease in absolute value. This 

allows us to identify the "Touch-down zones" (TDZs) which are the impact areas between the 

aircraft's tires and the runway pavement during the landing phase. 

 

Figure 2. Contour map of the deflections 𝑑0 on the runway measurement sections. 
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2.2. Back-calculation Process 

The RO.M.E. (Road Moduli Evaluation) method was considered for the determination of the 

pavement dynamic elastic moduli. Such calculation procedure allows the different surface layers’ 

moduli to be calculated starting from the tests carried out with the H.W.D. and from the thickness 

measurements of the pavement layers. The RO.M.E. relies on the elastic multilayer theory, the 

Boussinesq-Odemark equation and the Equivalent Thickness (ET) method to determine the 

stress/deformation state at each point of the bituminous layer, outlined as an infinite, isotropic, and 

homogeneous material. Once estimated the pavement layers’ moduli, the RO.M.E. makes the 

theoretical deflection basin congruent with the one measured in the experimental investigation, by 

means of an iterative procedure. An exhaustive description of the RO.M.E. back-calculation method 

can be found on the work of Battiato et al. [12]. It was then possible to draw the back-calculated 

moduli contour map shown in figure 3. A clear evidence is that the zones characterized by the highest 

deflections (TDZs) have lower modulus values. Similarly, lower deflections are associated with higher 

moduli. 

 
Figure 3. Contour map of the back-calculated moduli. 

3.  Theory and Calculations  

 

3.1. Neural Modeling 

ANNs are mathematical models that try to simulate the information processing and learning processes 

that occur in biological neural systems. Just like the human nervous system, an artificial neural 

network consists of multiple neurons connected by more or less reinforced connections. Through these 

artificial synapses, neurons are able to "communicate" by sending signals each other, processing the 

information and producing an output. They can be interpreted as logistic regression models provided 

with nonlinear activation functions. Typically, neurons are arranged in layers and connected through 

weighted and biased connections that progressively evolve according to a learning algorithm. In fact, 

during the usual training phase, the connections are gradually adjusted allowing the network to 

replicate the outputs associated with the inputs. As the complexity of the problem to analyze increases, 

it is advisable to add one or more layers between the input and the output ones. These additional layers 

are called "Hidden Layers". However, one hidden layer with a sufficient number of neurons allows the 

network to solve many multi-dimensional input-output fitting problems [13]. These structures are 

called "Shallow Neural Networks" (SNNs). 

In the proposed SNN, the input layer consists of 3 neurons representative of the input features; the 

hidden layer is equipped with N neurons and 4 hypothetical activation units (AU): the hyperbolic 

tangent sigmoid (𝑡𝑎𝑛𝑠𝑖𝑔), the exponential linear unit (𝐸𝐿𝑈), the positive linear (𝑝𝑜𝑠𝑙𝑖𝑛) and the linear 

(𝑝𝑢𝑟𝑒𝑙𝑖𝑛) [14]; the output layer is realized with 1 neuron and the 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 function has been taken as 

activation. The input parameters considered were the deflection immediately below the loading plate 

(𝑑0) and the coordinates (𝑥, 𝑦) of the correspondent measuring point along the runway. The output 
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evaluated was the calculated elastic moduli of the surface course. Before being inputted to the SNN 

both inputs and outputs were standardized, i.e., subtracted from the respective average and divided by 

the respective standard deviation. The SNN learns its weights and biases 𝑊 through a supervised 

training phase. It is composed by a "forward pass" followed by a "backward pass" [15]. The former 

consists in using the features vector as input layer of the network and therefore computing, through the 

elaborations of the hidden layer, the output 𝒚̂ of the network. The latter consists in comparing the 

target vector 𝒚 with the output just calculated through a loss function 𝐿(𝒚̂, 𝒚). In the current study, the 

training process uses the Mean Squared Error (MSE) as loss function, along with the Levenberg-

Marquardt (LM) algorithm which is one of the fastest optimization methods for training shallow 

neural networks [16]. The LM algorithm (hereafter referred to trainlm) can be expressed as follows: 

 𝑊(𝑒) = 𝑊(𝑒−1) − [𝐽𝑇(𝑊(𝑒−1))𝐽(𝑊(𝑒−1)) + 𝜇(𝑒−1)𝐼]
−1

𝐽𝑇(𝑊(𝑒−1))𝑞(𝑊(𝑒−1)) (1) 

where 𝑒 ∈ {0, ⋯ , 𝐸 − 1}, 𝐽 is the Jacobian matrix of the training loss 𝐿(⋅) with respect to 𝑊(𝑒−1), 𝐼 is 

the identity matrix and 𝑞 = 𝒚(𝑑)̂ − 𝒚(𝑑) is the vector of network errors. The scalar 𝜇 (or learning rate) 

determines the algorithm's rate of convergence. However, when 𝜇 increases, the LM algorithm takes a 

small step in the steeper direction of the loss function gradient and, on the contrary, the convergence 

becomes faster when 𝜇 decreases. As a result, the LM algorithm needs an initial value of 𝜇 at the first 

step, set in the current study at 0.001, and then increases (or decreases) the 𝜇 value multiplying it by 

the factor 𝜇_𝑖𝑛𝑐 > 1 (or 𝜇_𝑑𝑒𝑐 < 1) if the previous step did not lead to a smaller MSE (or if it led to a 

smaller MSE). In this way, the value of the loss function tends to progressively decrease step by step. 

It is also necessary to set a 𝜇 maximum value (𝜇_𝑚𝑎𝑥) in order to stop the training if it is exceeded. 

Once the best weights and biases are found, they are fixed and the training loss function can finally be 

calculated:  

 𝐿(𝒚(𝑑)̂ , 𝒚(𝑑))  =  ||𝒚(𝑑)̂ − 𝒚(𝑑)||2
2 (2) 

3.2. SNN Regularization 

When a neural model adapts too much to the learning dataset during the training phase, it loses its 

generalization ability with following poor performance in the testing phase. This situation is called 

overfitting. To avoid such a problem, the early stopping procedure has been implemented in the 

current study. It consists in dividing the dataset into three groups (the training set, the validation set, 

and the testing set). In this way, in fact, the first set allows to calculate the loss function as shown 

above. The second is instead used to control the model's generalization capabilities during the training 

process. In fact, in overfitting situations, the validation error increases and if this happens for a certain 

number of consecutive iterations 𝛿 (assumed as model parameter), the learning phase stops. The 

parameter of the neural model is therefore set up referring to the minimum validation error. Finally, 

the testing set is used to evaluate the model's predictive capabilities on data it has never seen before. 

3.3. k-fold Cross-Validation 

Even before training the net, the k-fold Cross-Validation (CV) was planned: it is a resampling 

technique often used to elaborate an actual model on a limited data sample [17], such as the one in the 

current study. This procedure has only one parameter, k, which refers to the number of partitions into 

which a given data sample set must be divided. The k-fold CV is a commonly used method because it 

is easy to understand and it generally gives a better estimate rather than the one obtained by other 

models that divide the data by performing a simple "train/test" subdivision. The procedure is as 

follows: first mix the data randomly; then divide the dataset into k-partitions. Next, for each individual 

partition: take the individual group as a validation dataset; take the remaining partitions as a training 

dataset; create a model on the training set and evaluate it on the validation set; keep a record of the 
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validation score and then discard the model; summarize the skill of the models using the previously 

determined score sample. The average validation score is given as general performance of the model 

[18]. It is important to note that each observation in the data sample is assigned to a single group and 

remains in that group for the duration of the procedure. This means that it has been given to each 

sample the opportunity to be used once as a "validation dataset" and k-1 times as a "training dataset". 

It was, finally, decided to give a k-value equal to 5, consistently with the relevant literature [19]. As a 

consequence of the regularization and k-fold CV, the dataset is split as follows: 64% of the available 

data for the training set, 16% for the validation set and 20% for the testing set. 

3.4. Bayesian Hyperparameters Optimization 

The definition of hyperparameters represents a crucial phase of modeling. The standard methodologies 

involve a random search or, starting from pre-established and well-known intervals of variation, a grid 

search. Recently, some automatic systems of hyperparameters research (based on Bayesian methods) 

have been introduced [20]. In Bayesian optimization processes, the main objective is to minimize one 

function 𝑓(𝒙), where 𝒙 belongs to some bounded set 𝒳 ⊂ ℝ. To determine which set of 

hyperparameters 𝒙𝒏𝒆𝒙𝒕 ∈  𝒳 should be investigated next during the optimization, a function 𝑎 ∶  𝒳 →
 ℝ+ is used [21]. It is usually called Expected Improvement (EI) and it solves the equation 𝒙𝒏𝒆𝒙𝒕 =
 𝑎𝑟𝑔𝑚𝑎𝑥𝒙𝑎(𝒙). Consequently, the function 𝑓(⋅) is defined as 𝑓: 𝑋𝑁 × 𝑋𝐴𝑈 × 𝑋𝛿 × 𝑋𝜇 × 𝑋𝐸 ×

𝑋𝜇_𝑖𝑛𝑐 × 𝑋𝜇_𝑑𝑒𝑐 × 𝑋𝜇_𝑚𝑎𝑥 → [0, ∞] and it has to be minimized when the trainlm algorithm is used 

with 𝑁, 𝐴𝑈, 𝛿, 𝜇, 𝐸, 𝜇𝑖𝑛𝑐 , 𝜇𝑑𝑒𝑐 , 𝜇𝑚𝑎𝑥 as hyperparameters. 𝑓(⋅) will return a scalar that expresses the 

average MSE obtained by the SNN on the 5 test folds set before. The number of iterations performed 

by the Bayesian optimization algorithm has been fixed at 300. Iteration by iteration, the model learns 

which are the best areas of the given hyperparameters ranges to sample from. 

In the current study, the hyperparameters to be optimized through Bayesian procedures are varied 

within the following ranges: the integer range 𝑋𝑁 = {4, ⋯ ,40} for the number of neurons in the 

hidden layer; 𝑋𝐴𝑈 = {𝑡𝑎𝑛𝑠𝑖𝑔, 𝐸𝐿𝑈, 𝑝𝑜𝑠𝑙𝑖𝑛, 𝑝𝑢𝑟𝑒𝑙𝑖𝑛} is the set of activation functions that can be 

applied after the hidden layer; the integer range 𝑋𝛿 = {5, ⋯ ,10} for the maximum number 𝛿 of 

validation failures; the range 𝑋𝜇 = [10−4, 10−2] for the scalar 𝜇; the integer range 𝑋𝐸 =

{500 , ⋯ , 5,000} for the number of learning iterations; the range 𝑋𝜇_𝑖𝑛𝑐 = [101, 103] for the increase 

factor 𝜇_𝑖𝑛𝑐; the range 𝑋𝜇_𝑑𝑒𝑐 = [10−3, 10−1] for the decrease factor 𝜇_𝑑𝑒𝑐; the range 𝑋𝜇_𝑚𝑎𝑥 =

[108, 1010] for the maximum 𝜇. It should be pointed out that all the features outlined above have been 

implemented in MATLAB® software [14]. 

3.5. Linear Interpolation 

To get the information about the modulus value in non-sampled points of the runway, the neural 

model needs in input the deflection value at the same point and his 𝑥, 𝑦 coordinates. For this reason, a 

grid of 13x361 nodes with a spacing of 1 m along the x-axis and 5 m along the y-axis was generated. 

Consequently, it was decided to connect the deflections through a linear structure. This methodology 

is among the most used ones for the development of digital surface models: to connect two or more 

sampled points, it would be necessary to introduce a statistical function, a priori unknown (because it 

depends also on the non-sampled points), which can be concave or convex, simple (e.g., linear) or 

complex (e.g., polynomial). The linear interpolation allows the uncertainty on the definition of the 

most suitable statistical function to be reduced (i.e., the accuracy of the interpolating map to be 

increased), which in most cases is chosen in a purely subjective way. Therefore, the deflections linear 

interpolation allows the presented neural model to be validated with respect to a dataset never been 

considered before. 
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4.  Results and discussions 

Although there was great variability in the data set, justified by the different mechanical behaviors 

along the runway, the optimal BO model returns satisfactory results on all the 5 folds, here expressed 

in terms of Pearson coefficient (𝑅) scores. It expresses (if any) a linearity relationship between two 

statistical variables (in this case the back-calculated moduli and those predicted by the SNN model) 

and R values that exceed 0.8 are typical of a satisfactory correlation [22]. The actual model gives a 𝑅-

score of 0.93310 in the worst case (fold 1), while in the best case (fold 5) it gives a score of 0.98933 

(figure 4). Averaging the results over the 5 folds, the predictive capabilities of the proposed SNN 

model can be correctly evaluated: 

 𝑅𝑘−𝑓𝑜𝑙𝑑 = (0.93310 + 0.96887 + 0.95456 + 0.98399 + 0.98933) 5⁄ = 0.96597 (3) 

These results were obtained over 300 iterations of the BO process that, starting from a random 

hyperparameters set within the aforementioned variability ranges, have identified the best set for the 

current study problem. The optimal SNN is characterized by 𝑁 = 30  neurons in the hidden layer and 

an 𝐸𝐿𝑈 activation function. Such neural network is trained according to the LM algorithm for 𝐸 =
 1051 iterations with an initial learning step size 𝜇 = 7.8𝑒 − 4. The parameter 𝜇 is modified at each 

iteration by 𝜇𝑖𝑛𝑐 = 297.14 or 𝜇𝑑𝑒𝑐 = 0.02 to reduce the convergence time and to avoid local minima. 

The training process is stopped when the maximum number of iterations is reached or 𝜇𝑚𝑎𝑥 = 1.4e9 

which denotes the convergence of the regularization process. However, the network properties set out 

above may be different if the proposed procedure is applied to a different experimental data set. The 

average MSE-score performed by using the LM algorithm over the 5 folds was  0.01849. 

 

Figure 4. Summary of SNN performance. 

The optimized neural model allowed to predict the modulus values at each point of the runway 

(figure 5). Therefore, it has been possible to compute the percentage variation between the back-

calculated moduli and those predicted by the SNN model, which has been represented by means of the 

contour map shown in figure 6. 
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Figure 5. Contour map of the Dynamic Elastic Moduli predicted by the optimized SNN. 

 
Figure 6. Contour map of Percent Variation between back-calculated and predicted moduli. 

Although the neural model was trained on the back-calculated moduli and has achieved a 𝑅-score 

equal to 0.96597, the comparison between the contour maps of figure 3 and 5 shows the existence of 

runway areas where the percentage variation (figure 6) can be even higher than 50%. However, to 

confirm the results shown in figure 6 and validate the proposed SNN model, it would be necessary to 

carry out a further investigation in those points of the runway that show the major differences between 

the load-bearing capacity obtained from the interpolation of the back-calculated data and those 

predicted by SNN. In fact, differences pointed out in figure 6 could be related to the different 

modeling approach offered by the two presented methods: although it is possible to obtain a contour 

map of the moduli starting from the back-calculated data by means of a spatial interpolation technique, 

the result will be purely geometric and cannot account for the deflections variation along any direction 

of the runway, while the presented neural model provides in a generic point of the runway the value of 

the elastic modulus as a function of the deflection at that point (which in the current study was 

calculated by means of the linear interpolation method). Therefore, the results of a further 

experimental investigation are necessary to assess if the differences between the maps are due to 

methodological deficiencies of the spatial interpolation or to a biased prediction of the SNN model. 

5.  Conclusions 

The Experimental data from Heavy Weight Deflectometer investigation has been analyzed. More 

attention was paid for the deflection at the center of the HWD loading plate (𝑑0). A neural modeling 

approach was adopted using three-layer SNNs. Bayesian Optimization procedures and k-fold cross 

validation were implemented in order to enrich the model and to guarantee the best predictive 

performance. There have been many advantages derived from the integration of SNNs with traditional 

backcalculation methodologies. Although the SNNs models represent a not physically based "black 
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box" method, this main disadvantage has been largely compensated by the possibility to obtain 

satisfactory predictions of the mechanical parameter in a relatively simple way. Compared to a 

traditional backcalculation procedure that allows the evaluation of a single beat point, the proposed 

methodology is able to manage a grid of points simultaneously. It has very short processing times 

while maintaining a similar reliability in terms of predictions (as confirmed by the very high R-

values). A simple interpolation would estimate the modulus value through other modulus data: it 

would represent a purely mathematical method that estimates a parameter starting from the same 

parameter and does not keep minimally account of other factors. The neural model proposed, instead, 

provides at a generic point on the runway the value of the elastic modulus as a function of the 

deflection at that point, which can be derived from spatial interpolation (or through field 

measurement). It establishes a relationship between a measured parameter (the deflection) and an 

estimated one (the elastic modulus), trying to approximate the constitutive law with an analytical 

relationship. The map of the moduli that would be obtained by simple interpolation would certainly 

allow data to be extrapolated from any location, but it would be blind to the deflection basin. The 

neural model proposed instead, predicts the modulus value but requires the deflection data in input. It 

is a bit more onerous, but it is definitely sounder from an engineering point of view because it 

maintains the logic of a phenomenological relationship between modulus and deflection basin. It is 

worth pointing out that the proposed model has been applied to the case of Palermo runway only, but 

the procedure presented can be applied to any runway. At this stage, the current study does not 

consider the relationship between a combination of the deflections measured at each step and the 

dynamic elastic modulus. For future developments, it is recommended to study this effect by 

integrating new input variables such as the Deflection Basin Parameters (DBPs) that may be more 

closely related to the structural conditions of the pavement. It would be also relevant to analyze 

runway deflections historical series, obtained by the surveys periodically carried out for maintenance 

purposes. In this way, neural models could be used to predict the future trend of pavement deflections 

and the corresponding moduli, thus establishing intervention priorities over time. 
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