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Inflation solves several cosmological problems at the classical and quantum level, with a strong
agreement between the theoretical predictions of well-motivated inflationary models and observations. In
this Letter, we study the corrections induced by dynamical collapse models, which phenomenologically
solve the quantum measurement problem, to the power spectrum of the comoving curvature perturbation
during inflation and the radiation-dominated era. We find that the corrections are strongly negligible for the
reference values of the collapse parameters.
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Quantum mechanics is very successful, but also prob-
lematic. The trouble is that, in its standard formulation, the
theory introduces a division between the microscopic
quantum world of particles and atoms and the macroscopic
world of classical observers [1]. This division should not be
part of a fundamental theory of nature, even more so when
the theory is applied to the entire universe, where there are
no external observers; however, removing it proved to be a
difficult task, and no shared solution is yet available.
Models of spontaneous wave function collapse [2,3]

attempt to remove the arbitrary quantum-classical divide by
modifying the Schrödinger equation. Suitable nonlinear
and stochastic terms are added to the standard quantum
dynamics, whose effects scale with the mass of the system.
The resulting dynamics is such that microscopic systems
behave quantum mechanically, but if they interact to form
macroscopic objects, they behave the more classically the
more massive the objects.
In doing so, collapse models predict a dynamical

behavior for matter, which differs from the standard
quantum mechanical one: the stochastic terms blur the
quantum dynamics, and potentially can be spotted in
specific situations. An increasing number of experimental
investigations in highly controlled systems [4–21] have set
significant bounds on the collapse parameters, at the same
time leaving much freedom.
Also cosmology has been used as a playground for

collapse models [22–33]. Being the largest and oldest
physical system, the Universe can provide relevant infor-
mation about possible modifications of quantum theory,
whose effects would build up during the history of the
Universe and would be strongly constrained by the increas-
ing and more and more detailed number of cosmological
observations. Moreover, there is still an ongoing discussion
on how the inflationary quantum fluctuations evolve into
classical stochastic variables [34–41].

A recent paper [32] claims that a straightforward
application of the continuous spontaneous localization
(CSL) model [42,43], the reference collapse model in
the literature, to cosmic inflation, for the most natural
choices of the density contrast, leads to results which are
incompatible with experimental evidence. Specifically, the
CSL correction to the power spectrum of the comoving
curvature perturbation is calculated, leading to strongly
scale-dependent results, which are disproved by observa-
tions. To be quantitative, since during inflation the wave-
length of the cosmic microwave background (CMB) modes
becomes larger than rC ¼ 10−7 m, which is the reference
value of one among the two phenomenological parameters
of the CSL model, the authors find λ ≪ 5.6 × 10−90 s−1 as
a bound on the second CSL parameter. Therefore, the
analysis in [32] rules out a wide class of CSL theories,
since in order for the collapse to be effective,
λ > 10−20 s−1 [5].
In this letter, we reconsider the application of CSL to

standard cosmology, without entering the debate about its
foundations [36,38,44–47]. We show that a different, yet a
very natural choice of the collapse operator leads to
negligible corrections to standard quantum predictions.
Standard inflationary power spectrum.—We briefly

overview the standard inflationary dynamics, during which
the early Universe underwent an accelerated phase of
expansion [48–50], and derive the corresponding power
spectrum of the comoving curvature perturbation, for
which we will later compute the CSL correction. We refer
to [49–51] for a more detailed discussion, which is also
summarized in the Supplemental Material [52].
We reconsider the dynamics of the perturbation of the

scalar field ϕ on a flat Friedmann-Lemaître-Robertson-
Walker metric gμν ¼ a2ðηÞημν in the presence of a scalar
potential VðϕÞ, where ημν is the Minkowski metric, aðηÞ the
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scale factor, and η is the conformal time. In terms of the
gauge-invariant Mukhanov-Sasaki variable δϕG [53,54],
the action of the scalar perturbations is given by [53–55]

S ¼ 1

2

Z
dη

Z
dx

�
_u2 − δij∂iu∂juþ ̈z

z
u2
�
; ð1Þ

where we have introduced the rescaled field
uðη;xÞ ¼ aδϕG. Further, x are the comoving coordinates,
_u ¼ du=dη, and zðηÞ¼aMP

ffiffiffiffiffi
2ϵ

p
=cs. Here ϵ¼−H−2dH=dt

is the slow-roll parameter, H ¼ a−1da=dt is the Hubble
parameter, t is the cosmic time, and cs stands for the speed
of sound (cs ¼ 1 during inflation, and cs ¼ 1=

ffiffiffi
3

p
during

the radiation-dominated era). During inflation, we will
work under the slow-roll approximation assuming ϵ ≪ 1
and dϵ=dt ≈ 0. Moreover throughout this Letter, we
will work in reduced Planck units (ℏ ¼ 1, c ¼ 1,
and M2

P ¼ 1=8πG).
Upon quantization, ûðη;xÞ can be expressed in terms of

the creation and annihilation operators as

ûðη;xÞ ¼
Z

dk

ð2πÞ3=2 ½vkðηÞâke
ik·x þ HC�; ð2Þ

where HC denotes the Hermitian conjugate, the creation
and annihilation operators satisfy ½âk; â†k0 � ¼ δðk − k0Þ,
and the modes vkðηÞ are determined by

vkðηÞ ¼
e−ikηffiffiffiffiffi
2k

p
�
1 −

i
kη

�
; ð3Þ

under a perfect de Sitter approximation [49–51]. Given the
above definitions, one can compute quantities of interest
such as the variance of the comoving curvature perturbation
R̂ ¼ û=z. In the comoving gauge, where the comoving
observers measure zero energy flux (T0i ¼ 0), R deter-
mines the spatial curvature ð3ÞRcom on the hypersurface of
constant η through ð3ÞRcom ¼ ð4=a2Þ∇2R [51].
The mean squared quantum expectation value

h0jR̂2ðx; ηÞj0i ¼
Z

d ln kPRðk; ηÞ; ð4Þ

defines the corresponding power spectrum PR. The latter
reads

PRðk; ηÞ ¼
c2s

2ϵM2
P

k3

2π2
jvkðηÞj2
a2ðηÞ : ð5Þ

The modes probed by the CMB exit the horizon well before
the end of inflation. For these modes, the expectation values
are indistinguishable from classical stochastic averages
[34,35]. This allows us to use the expression in Eq. (4)
and relate it to observations [34,35,37]. In general, the

power spectrum can be parametrized as PR ¼
A�
Rðk=k�Þn

�
R−1 where the values of A�

R and n�R are deter-
mined by Planck data [56] at the pivot scale k� ¼
0.05 Mpc−1 to be A�

R ¼ ð2.099� 0.014Þ × 10−9 and n�R ¼
0.9649� 0.0042 at the 68% confidence level. We remark
that the expression for PR in Eq. (5) is valid not only for
inflation, but also for the radiation-dominated era. Both
stages will be of interest in this Letter.
Cosmological application of collapse models.—The

application of collapse models to cosmology has been
previously considered, with motivations ranging from
explaining the origin of the cosmic structure [36,65–69]
and constructing chronogenesis and cosmogenesis models
[70], to implementing an effective cosmological constant
[71]. In particular, the phenomenological parameters of the
CSL model have been previously constrained through a
consideration of the heating of the intergalactic medium
[22–24] and spectral distortions of the CMB radiation [26].
Moreover, previous works have studied the modifications
due to CSL to the spectra of primordial perturbations at a
scalar and tensorial level [27–30,32,33].
In this Letter, we study the CSL correction to the

power spectrum of the scalar perturbations during inflation
and the radiation-dominated era. As discussed in detail in the
Supplemental Material [52], the CSL dynamics can be
mimicked by adding a stochastic Hamiltonian ĤCSL to the
standard quantum Hamiltonian Ĥ0. The former is given by

ĤCSLðηÞ ¼
ffiffiffi
λ

p ð4πr2CÞ3=4
m0

Z
dxξηðxÞL̂CSLðη;xÞ; ð6Þ

where m0 is a reference mass set equal to that of a nucleon,
L̂CSLðη;xÞ is theCSL collapse operator yet to be chosen, and
ξηðxÞ is awhiteGaussiannoise characterizedbyzeroaverage
E½ξηðxÞ� ¼ 0 (E denotes the stochastic average over the
noise) and the correlation function

E½ξηðxÞξη0 ðyÞ� ¼
δðη − η0Þ
aðηÞ

e−a
2ðηÞðx−yÞ2=ð4r2CÞ

ð4πr2CÞ3=2
: ð7Þ

Note that the model is defined in terms of two parameters λ
and rC, which are the collapse rate and the space correlator of
the noise, respectively. The numerical values of these
parameters are constrained by experimental evidence. We
will come back to this later.
By considering ĤCSL as a small perturbation to the full

dynamics, one can exploit the standard perturbative
approach in the interaction picture and compute the time
evolution of a general operator ÔðηÞ to the leading order.
By following standard calculations [57], one can express
the expectation value of ÔðηÞ as

Ō≡ EhÔðηÞi ¼ hÔðηÞi0 þ δŌðηÞCSL; ð8Þ
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where we account also for the stochastic average E. Here,
hÔðηÞi0 is the expectation value given by standard cosmol-
ogy, and δŌðηÞCSL stands for the CSL correction, which
reads

δŌðηÞCSL ¼ −
λ

2m2
0

Z
η

η0

dη0

aðη0Þ
Z

dx0dx00e
−a2ðη0Þðx00−x0Þ2

4r2
C

× hψ j½L̂I
CSLðη0;x00Þ; ½L̂I

CSLðη0;x0Þ; ÔIðηÞ��jψi;
ð9Þ

where the superscript “I” indicates that the operators are
evaluated in the interaction picture and jψi is the initial
state of the system, which we will later set equal to the
Bunch-Davies vacuum state j0i [49–51].
We now turn to the specification of the collapse operator

L̂CSLðη;xÞ. In standard nonrelativistic CSL, L̂CSLðη;xÞ is
defined as the mass density operator mâ†â [42,43].
Although to this date there is no satisfactory generalization
of collapse models to the relativistic regime [2,72–82],
different choices for the collapse operator have been
proposed in the cosmological setting. Nevertheless, to
our knowledge, all such choices are either linear or, to
leading order, linearized in the field perturbation û and its
conjugate momentum [83]. Some authors have chosen the
collapse operator to be the rescaled variable û itself [33,46],
while others have chosen the perturbed matter-energy
density δ̂ρ [32], which to leading order, is linear in û
and _̂u in standard cosmological perturbation theory. With
these choices of the collapse operator, when one describes
the cosmological perturbations in the Fourier space, the
corresponding modes evolve independently, exactly as in
standard cosmology [50,51,55]. However, when general-
izing a model, one should retain its characteristic traits. In
the case of a generalization of the CSL model, one would
like the collapse operator to couple different Fourier modes
as in the standard case [17], which is not possible when the
collapse operator is linear in the fields.
Here, we take the collapse operator to be

L̂CSLðη;xÞ ¼ Ĥ0ðη;xÞ, the Hamiltonian density operator
of scalar cosmological perturbations, which is identified by
Ĥ0ðηÞ ¼

R
dxĤ0ðη;xÞ. This choice is a natural, though not

unique, relativistic generalization of the nonrelativistic
mass density. Indeed, in flat spacetime, there is no
distinction between the Hamiltonian density of the system
and the matter-energy density ρ which, in turn, was
considered as a possible generalization of CSL even in
Friedmann–Lemaître–Robertson–Walker cosmology [32].
The role played by gravitational degrees of freedom in the
reduction of the quantum mechanical wave function is still
a subject of active debate [84–88]. In this light, and given
that the unitary part of the time evolution is governed by the
full Hamiltonian of the system, we find it more natural for
the collapse operator to be given by Ĥ0ðη;xÞ. This choice
contains contributions from the perturbations of both the

standard Einstein-Hilbert term and the matter sector of the
full action, while the perturbed matter-energy density δρ is
obtained only from the latter [50]. In addition, even in
standard perturbation theory, Ĥ0ðη;xÞ is quadratic in the
field variable û and its conjugate momentum, and therefore
is also quadratic in the creation and annihilation operators,
analogous to the mass density of the standard CSL model.
CSL and inflation.—During inflation, the Hamiltonian

density operator reads [51] ĤI
0ðη;xÞ ¼ 1

2
f _̂u2ðη;xÞþ

½∇ûðη;xÞ�2 − ð2=η2Þû2ðη;xÞg, which is the Hamiltonian
density of the scalar perturbations in the Heisenberg picture
in standard cosmology, where one does not have additional
contributions coming from collapse dynamics. Taking into
account Eq. (2), we have

ĤI
0ðη;xÞ ¼

Z
dqdp

eiðpþqÞ·x

2ð2πÞ3 ½bp;qη âpâq þ dp;qη â†−qâp

þ bp;q�η â†−pâ
†
−q þ dp;q�η â†−pâq�;

where we have defined

�
bp;qη

dp;qη

�
¼

�
jp;qη

lp;qη

�
−
�
ðp · qÞ þ 2

η2

��
fp;qη

gp;qη

�
; ð10Þ

and

fp;qη ¼ vpvq; gp;qη ¼ vpv�q; jp;qη ¼ _vp _vq; lp;qη ¼ _vp _v�q:

ð11Þ

We can now compute the corrections δPR to the power
spectrum of the curvature perturbation R̂ at the end of
inflation. The first step of the procedure, which is fully
reported in the Supplemental Material [52], is to compute
the correction to the evolution of R̂2 ¼ ðû=zÞ2 due to CSL,
by evaluating δR̄2ðηÞCSL according to Eq. (9), for the given
choice of the collapse operator, starting from the Bunch-
Davies vacuum state j0i. We find

δR̄2ðηeÞCSL ¼ Cηe

Z
dqdp

Z
ηe

η0

dηe
−
r2
C
ðpþqÞ2
4a2ðηÞ F p;q

η ; ð12Þ

where ηe is the conformal time at the end of inflation,
Cηe ¼ −λr3C=ð8ϵinfM2

Pa
2ðηeÞm2

0π
9=2Þ, and

F p;q
η ¼ Re½bp;qη dq;pη ðfq;qηe Þ� − bp;qη ðbq;pη Þ�gp;pηe �: ð13Þ

To provide an estimate of Eq. (12), we first notice that,
during inflation, the scale factor is inversely proportional to
the conformal time aðηÞ ≃ −ðHinfηÞ−1, with the Hubble
parameter Hinf that can be approximated to a constant.
Thus, the argument of the Gaussian in Eq. (12) becomes
−r2CH2

infη
2ðpþ qÞ2. To get a feeling of the orders of
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magnitudes involved, the typical value of rC ¼ 10−7 m ∼
1027M−1

P is much bigger than Hinf ∼ 10−5MP, so one has
rCHinf ≫ 1. This implies that the Gaussian in Eq. (12) will
suppress the integrand for all values of p and q except for
those where pη ≪ 1 and qη ≪ 1. Under such conditions,
we can safely expand F p;q

η for small pη and qη and
determine the leading contribution to Eq. (12). Thus, we
obtain

F p;q
η ≃ −

1

8p3q4η8

�
4p3qη6

η2e
þ 32q4η6

9η2e

�
: ð14Þ

By substituting Eq. (14) in Eq. (12), we find the leading
order correction due the CSL to the mean squared value of
the comoving curvature perturbation:

δR̄2ðηeÞCSL ¼
Z

d ln kδPRðk; ηeÞ; ð15Þ

with

δPRðk; ηeÞ ≃ −
17

36

λH3
inf

ϵinfπ
2M2

Pm
2
0

ln

�
ηe
η0

�
: ð16Þ

This is the CSL correction to the power spectrum PR
computed during inflation. We notice that δPRðk; ηeÞ is
independent from k and rC. This is just an artifact of the
leading order expansion in kη. Indeed, by looking at the
exact expression for F p;q

η presented in the Supplemental
Material [52], it is clear that the exact expression for
δPRðk; ηeÞ depends both on rC and the modes k. Moreover,
the leading order expansion was justified by noticing that
rCHinf ≫ 1, and therefore indirectly relies on the largeness
of rC compared with the length scale H−1

inf .
Equation (16) can be used to set upper bounds on λ.

To obtain the numerical value of δPR, we set
η0 ≈ −k−1� ≈ −1060M−1

P , where k� ¼ 5 × 10−60MP is the
pivot scale, which first crosses the horizon at the e-folding
number N� satisfying aðN�Þ ¼ k�=HðN�Þ. In this way the
dynamics is restricted up to the time at which the largest
scales of interest 2 × 10−4 Mpc−1 ≲ kCMB ≲ 2 Mpc−1 exit
the horizon during inflation. The e-folding number N�
satisfies 50 ≤ N� ≤ 60 [56]. We fix N� ¼ 60. The scale
factor at the end of inflation aðηeÞ can then be determined
from the relation aðηeÞ ¼ aðN�Þ expðN�Þ. By setting
ϵinf ¼ 0.005 [32], we find

δPRðk; ηeÞ ∼ λ=λGRW × 10−34; ð17Þ

where λGRW ¼ 10−16 s−1 [2]. By comparing δPRðk; ηeÞ
with the observational error of PR, which is of order
≈10−11 [56], one obtains an upper bound λ≲ 107 s−1,
which is 17 orders of magnitude weaker than the state-of-
art result λ≲ 10−10 s−1 [21].
CSL and the radiation-dominated era.—In standard

cosmology, the power spectrum is frozen at the end of

inflation for large scales [51]. However, as pointed out in
[32,89], this may not be the case when the collapse
dynamics is also taken into account. We now calculate
the CSL contribution to the evolution of R̂2 during the
radiation-dominated era, which lasts from time ηe to ηr ¼
3 × 1060M−1

P which is estimated by using the fact that
aðηrÞ=aðηeÞ ≈ 3 × 1026 [90]. Notice that, as a first approxi-
mation, we are not including effects due to the reheating
stage [90], and directly consider the radiation-dominated
era as following the inflationary one.
During this era, the Hamiltonian density reads

ĤI
0ðη;xÞ ¼ 1

2
f _̂u2ðη;xÞ þ 1

3
½∇ûðη;xÞ�2g, where the quan-

tized field ûðη;xÞ can still be expressed as in Eq. (2), and
related to R̂ via û ¼ zR̂, but now the modes vkðηÞ are
determined as the solutions of the equation
v̈kðηÞ þ 1

3
k2vkðηÞ ¼ 0. By solving this equation and match-

ing the curvature perturbation and its derivative with those
at the end of inflation [32], one can obtain the explicit form
for vkðηÞ, which we report in the Supplemental Material
[52]. By following the same choice as for inflation, we fix
the collapse operator as L̂CSL ¼ Ĥ0. Therefore, in the
interaction picture, the collapse operator can be rewritten
as in Eq. (10), where bp;qη and dp;qη now follow

�
bp;qη

dp;qη

�
¼

�
jp;qη

lp;qη

�
−
1

3
ðq · pÞ

�
fp;qη

gp;qη

�
; ð18Þ

where jp;qη , lp;qη , fp;qη , and gp;qη are defined in terms of the
radiation-dominated eramodevkðηÞ as described inEq. (11).
It follows that the CSL correction h0jδR̂2

CSLðηrÞj0i to the
mean squared value of the comoving curvature perturbation
generated during the radiation-dominated era has the same
structure as in Eq. (12), with ðηe; ηrÞ substituting ðη0; ηeÞ and
CðηrÞ ¼ −λr3C=ð48M2

Pa
2ðηrÞm2

0π
9=2Þ replacing CðηeÞ.

To quantify the effect, we first notice that during this era
the scale factor is proportional to conformal time:
aðηÞ ¼ ðη − 2ηeÞ=ðHinfη

2
eÞ. This expression for the scale

factor neglects possible effects during reheating, as it is
obtained by matching the well-known expressions for aðηÞ
and its derivative during inflation and the radiation-
dominated era, as it was also derived in [32]. For times
η close to ηe, all the modes of cosmological interest are
outside the horizon and satisfy the condition pηe ≪ 1
and qηe ≪ 1.
As was the case in the inflationary era, the leading order

contribution to δPR is now obtained by expanding in
pηe ≪ 1, pη ≪ 1 and pηr ≪ 1. This justification comes
from looking at the exact functional form of F p;q

η during the
radiation-dominated era where the pη and pηr terms lead to
rapid oscillations of the integrand in the limit pη ≫ 1 and
pηr ≫ 1. This is in contrast to the inflationary era, where the
subhorizon contribution pη ≫ 1 is instead suppressed by the
exponential term. For more details we refer to the discussion
in the Supplemental Material [52]. Within this
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approximation, F p;q
η is given to leading order by

F p;q
η ≃ −

54

ϵ3infη
4
eq3

: ð19Þ

By following the procedure delineated above for inflation
and reported in detail in the Supplemental Material [52], we
derive the CSL correction to the power spectrum of the
curvature perturbation at the end of the radiation-dominated
era:

δPRðk; ηrÞ ¼
9λH3

infη
2
e

2ϵ3infM
2
Pðηr − 2ηeÞ2π2m2

0

ln

�
2ηe − ηr

ηe

�
:

ð20Þ
As for the CSL contribution during inflation, we notice that
δPRðk; ηrÞ is independent from k and rC. This occurs for the
same reasons as during the inflationary stage. In terms of
λGRW, the correction in Eq. (20) reads

δPRðk; ηrÞ ∼ λ=λGRW × 10−81; ð21Þ
which can be safely considered as negligible with respect to
the contributionobtainedduring inflation reported inEq. (17).
Discussion.—Although there is no general consensus on

how to generalize the CSL model to a relativistic scenario
as required in a cosmological setting, some requirements
have already been pointed out [32,33,72,73]. We propose a
different generalization of the CSL model and study its
effects on the scalar curvature perturbations and corre-
sponding power spectrum. We find that the corrections,
when compared with observations [56], provide upper
bounds which by the end of inflation are already 17 orders
of magnitude weaker than those from state-of-art ground
based experiments [21]. A detailed study concerning
possible modifications of other features of the CMB
pattern, such as the presence of acoustic peaks, clearly
goes beyond the scope of this letter. However, in light of the
negligible corrections obtained in Eqs. (17) and (21) to the
standard quantum mechanical power spectrum, we expect
our choice of the collapse operator to be fully compatible
with observations. Furthermore, the negligible corrections
obtained in our work are in strong contrast to those
obtained in Ref. [32]. As our calculations show, this
difference is a consequence of the fact that the
Hamiltonian density of the perturbations is several orders
of magnitude smaller than the perturbed matter-energy
density in standard cosmology. This difference in results for
the two choices of the collapse operator is also confirmed in
our analysis performed using the perturbative approach
within the interaction picture framework [52].
Moreover, we find that the stringent constraints set on the

collapse parameters in Ref. [32] are not fully self-consistent
for the following reason. The measure of cosmological
perturbations is quantified by the power spectrum which
is defined in Eq. (5). In addition to the standard dynamics,
collapse also contributes to the value of the power spectrum

with δPR proportional to λ. Working within perturbation
theory limits the magnitude of the possible collapse induced
corrections that can be trusted and hence the range of λ that
can be observationally constrained. Indeed, if δPR is much
greater than the classical value ϕ2=M2

P then the assumption
of δϕ being much smaller than ϕ, which is fundamental for
the application of linear cosmological perturbation theory,
breaks down. We suspect that the application of linear
perturbation theory in Ref. [32] is not valid for the entire
range of λ values that the authors have excluded. For
example, for λ ¼ 10−16 s−1 they find δPR ¼ 10∼50 that
should be compared to the classical value of ϕ2=M2

P ∼ 1
which is typically the case during inflation.
We briefly comment on the claims made by the authors

of Ref. [32] in their recent work of Ref. [58]. There, it is
claimed that the power spectrum vanishes for our choice of
the collapse operator. However, as our results show, this is
not the case. Moreover, the proof provided in Ref. [58]
relies on the assumption that the collapse operator leads to a
fully localized wave function, which does not hold in
general, and in fact needs not be applied to calculate the
variance [52]. We have considered a physically consistent
definition of the power spectrum, and with a well-motivated
choice of collapse operator obtained theoretical corrections
that are consistent with observations.
Finally, our work stresses that any eventual validation or

discard of the CSL model cannot be made without
addressing the issue of its generalization to the relativistic
regime, which—without question—is becoming the sub-
ject of present and future research.
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