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A New Multi-objective Solution
Approach Using ModeFRONTIER and
OpenTrack for Energy-Efficient Train
Timetabling Problem

Giovanni Longo, Teresa Montrone and Carlo Poloni

Abstract Trains move along the railway infrastructure according to specific timeta-
bles. The timetables are based on the running time calculation and they are usually
calculated without considering explicitly energy consumption. Since green trans-
portation is becoming more and more important from environmental perspectives,
energy consumption minimization could be considered also in timetable calculation.
In particular, the Energy-Efficient Train Timetabling Problem (EETTP) consists in
the energy-efficient timetable calculation considering the trade-off between energy
efficiency and running times. In this work, a solution approach to solve a multi-
objective EETTP is described in which the two objectives are the minimization of
both energy consumption and the total travel time. The approach finds the schedules
to guarantee that the train speed profiles minimize the objectives. It is based on mod-
eFRONTIER and OpenTrack that are integrated by using the OpenTrack Application
Programming Interface in a modeFRONTIER workflow. In particular, the optimiza-
tion is made by modeFRONTIER, while the calculation of the train speed profiles,
energy consumption and total travel time is made by OpenTrack. The approach is
used with Multi-objective Genetic Algorithm-II and the Non-dominating Sorting
Genetic-II, which are two genetic algorithms available in modeFRONTIER. The
solution approach is tested on a case study that represents a real situation of metro
line in Turkey. For both algorithms, a Pareto Front of solution which are a good
trade-off between the objectives are reported. The results show significant reduc-
tion of both energy consumption and total travel time with respect to the existing
timetable.
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7.1 Introduction

As known, trains move along the railway infrastructure according to a specific
timetable. A timetable specifies all train movements which are to be operated in
a given time window and its generation is essential. Each timetable is based on the
calculation of the running times, which are the time needed to travel between two
stations where a train has scheduled stops. This timetables are usually calculated
without considering explicitly energy consumption, but another set of constraints
and goals mainly related to capacity utilization and timetable reliability. Since green
transportation is becoming more and more important from environmental perspec-
tives, energy consumption minimization could be considered also in timetable cal-
culation. In particular, Energy-Efficient Train Timetabling Problem (EETTP) has
been defined in the scientific literature. This problem consists in the energy-efficient
timetable calculation considering the trade-off between energy efficiency and run-
ning times. EETTP could reduce operating costs significantly and contribute to a
further increase of the sustainability of railway transportation. The EETTP has been
studied by many authors, and several solution approaches have been implemented to
solve it. Most of these approaches find the best time supplement distribution on the
minimum running times to calculate timetables that minimize energy consumption
or which are a trade-off between this and other objectives, as the timetable robustness
maximization. Other approaches, as the one introduced here, find the schedules to
ensure that the trains follow the optimal energy-efficient speed profiles. In particular,
the schedule is the sequence of entry times of the train itself in its each block section
of its journey, where a block section is a track segment delimited by main signals for
safe train separation.

In this work, a solution approach to solve a multi-objective EETTP is described,
which is an extension of the single objective version introduced in (Montrone et al.
[15]). The two objectives are the minimization of both energy consumption and the
total travel time, that is, the sum of running times over all the sections that form the
complete train itinerary. The approach finds the schedules to guarantee that the train
speed profiles minimize the objectives. In particular, this approach finds the optimal
driving regime combination in each block section to compose the train speed profiles.
The driving regimes followed by trains usually depend on to the infrastructure and
rolling stock characteristics. In each driving regime the energy consumption evolves
differently. As known, the four optimal driving regimes are acceleration, cruising,
coasting and braking. In particular, in the acceleration the energy consumption is
maximum and the maximum power is given to the engine to reach the maximum
possible speed, while in the cruising the energy consumption is smaller but the
speed is constant. Both in the coasting and in the braking, the energy consumption
is null. Precisely, the engine is switched off and the train moves by inertia in the
coasting, while the train brakes in the braking. These optimal regimes are found by
the Optimal Control Theory (Vinter [26]) according to the application of the Pon-
tryagin’s Maximum Principle (PMP) (Pontryagin [19]). The solution approach is
based on modeFRONTIER and OpenTrack. In particular, modeFRONTIER is an



integration platform for multi-objective and multi-disciplinary optimization devel-
oped by (Esteco S.p.A [7]) and (OpenTrack Railway Technology Ltd. [17]) is a
microscopic railway simulation tool. The optimization is made by modeFRONTIER,
while the calculation of the train speed profiles, energy consumption and total travel
time is made by OpenTrack. The two tools are integrated, by using the OpenTrack
Application Programming Interface (API), in a modeFRONTIER workflow, which
describes the model to formulate the problem and enables the interaction between
the optimization algorithms and OpenTrack. This approach is an extension of the
one introduced in (Montrone [14]) where an internal procedure for calculation is
used instead of OpenTrack. The approach is used with two optimization algorithms:
the Multi-Objective Genetic Algorithm (MOGA)-II and the Non-dominating Sorting
Genetic (NSGA)-II, which are two genetic algorithms available in modeFRONTIER.
The solution approach considers only one train traveling on the infrastructure and it
is tested on a case study that represents a real situation of metro line in Turkey. A
comparison between the results obtained by MOGA-II and NSGA-II is reported. For
both algorithms, the results show significant reduction of both energy consumption
and total travel time with respect to the existing timetable. A Pareto Front of solution
which are a good trade-off between the objectives are reported. Sometime EETTP
includes also the energy recovery, that is, an efficient use of regenerative braking
between trains. Indeed, when a train brakes, its mechanical energy can be fed back
to the overhead wire system to be used by other trains. The approach reported here
is not still able to handle EETTP with energy recovery but new modifications will
be added to include it.

The paper is organized as follows. Section 7.2 reports a detailed literature review
on the solution approaches to solve EETTP. Section 7.3 gives some notions about the
tools andx the optimization algorithms used in this paper. Section 7.4 introduces the
case study. Section7.5 describes the solution approach presented here to solve the
problem. Section 7.6 the applications, showing the obtained results on the case study
considered. Finally, Sect. 7.7 concludes the paper and introduces the future works.

7.2 Literature Review

The research on the EETTP started around 1990 and it is still a great concern. A
wide range of solution approaches to solve EETTP are defined until now. Some of
them are described here, but for more details see (Montrone [14]) and (Scheepmaker
et al. [20]).

Some solution approaches find the best time supplement distribution on the min-
imum running times to calculate timetables that minimizes energy consumption.
In general, the results for these approaches show significant reduction of energy
consumption with respect to the existing timetable. For example, (Ding et al. [6])
propose a two level iterative genetic algorithm to find time supplement distribu-
tion on the running times. In particular, the algorithm finds the train speed profile
between the stations, and then, between them it distributes the time supplement to



minimize energy consumption. The authors test the two level algorithm on a case
study with a single train. Reference (Su et al. [23]) propose a method which is com-
posed by three algorithms. The first algorithm finds the optimal speed profile with
a given schedule, without considering the variation of the slopes, the curves and
the speed limits. The second algorithm calculates the minimum running times given
constant speed limits. Finally, the third algorithm distributes the time supplements
to the running times for the energy-efficient timetable calculation. They test their
solution approach on the metro line from Beijing to Yizhuang in China and a single
train. Reference (Sicre et al. [21]) propose a solution approach based on simulation
and optimization. They consider a single train with intermediate stops along a high-
speed line. In particular, for each track between two stops, some possible train speed
profiles that imply different running times and energy consumption are computed
by a simulator. The solution approach finds the best trade-off between running time
and energy consumption minimization. Then, it distributes the time supplement to
the running times by an optimization model to calculate energy-efficient timetables.
The authors test their approach on the Spanish high-speed line of Red Nacional de
los Ferrocarriles Espanoles (RENFE) that links Madrid to Zaragoza with two stops
at Guadalajara and Calatayud, and a single train. In some solution approaches, the
time supplement distribution on the minimum running times is calculated taking
into account also other objectives, showing anyway significant reduction of energy
consumption with respect to the existing timetable. For example, (Albrecht and
Oettich [1]) focus on the addition of time supplements to define timetables that are a
trade-off between energy consumption minimization and the connections probability
with other public transport services maximization. The authors propose an algorithm
based on dynamic programming method to solve it and they test this algorithm on a
metro line of Dresden in Germany with a single train.

Other solution approaches find the schedules which assure that the trains follow
the energy-efficient speed profiles. For example, (Chevrier et al. [3]) present a model
that builds the optimal speed profile in each section in which the line is divided. In
particular, in each section the speed limit is constant and two target speeds are consid-
ered. The authors solve their model by a multi-objective evolutionary algorithm and
they test the algorithm on two lines and a single train. Other solution approaches find
the train speed profiles to find a timetable which minimizes the energy consumption
but also is robust, that is, it will be able to handle delay, if any. For example, (Cucala
et al. [4]) propose a fuzzy linear programming model to calculate both energy-
efficient and robust timetables, in which the speed profile calculation is based on a
genetic algorithm that makes use of the simulator introduced in (Sicre et al. [21]).
The authors test the method on a real Spanish high-speed line from Madrid to
Barcelona with four intermediate stops and a single train. The energy-efficient and
robust timetable calculation is studied also in the European rail project ON-TIME
(ONTIME Consortium [ 16]) where energy-efficient train speed profiles and adjusted
schedules on the corridor between two main stations are computed.

The solution approaches described so far take into account only one train at a time.
Instead, solution approaches to solve EETTP in which more trains at time are con-
sidered are recently studied and they show significant energy-saving compared to the



existing timetable. For example, (Zhang et al. [32]) present a bi-level model in which
the upper level of the model ensures the relative robustness of the timetable, while the
lower level of the model optimizes the train schedules among intermediate stations
to minimize energy consumption. The authors develop an iterative particle swarm
optimization algorithm to solve the model and they test it on the Beijing-Shanghai
high-speed railway. Reference (Wang and Goverde [27]) propose a solution approach
that first modifies the train schedules to relax the given timetable by defining relaxed
time windows. Then a train trajectory optimization method is developed to find
optimal schedules and optimal energy-efficient speed profiles within these relaxed
time windows. The train trajectory optimization includes multi-train trajectory opti-
mization which are reformulated as a multiple-phase optimal control problem and
solved by a pseudospectral method. The authors test their approach both on a single-
track railway corridor and on a double-track corridor of the Dutch railway. Reference
(Xu et al. [28]) present an integrated train timetabling and speed control optimization
model in discrete space-time-speed network to solve EETTP. The authors solve this
model by an iterative heuristic algorithm and they test it on some cases. Reference
(Goverde et al. [10]) propose a solution approach that integrates energy-efficiency
and robustness of the timetable, improving the dynamic programming algorithm
implemented in their previous work (ONTIME Consortium [16]). This algorithm
determines both the optimal distribution of the running time supplements and the
dwell times along the corridor. The authors test the algorithm on a case study on
the Dutch railway infrastructure with six trains. Reference (Su et al. [24]) improve
the previous solution approach introduced in (Su et al. [23]). This approach is based
on a model that distributes the time supplements to the running times by including
also the headway times, that is, the minimum time separation between consecutive
trains, to be able to deal with more that one train. They test the approach on the
metro line from Beijing to Yizhuang in China. Reference (Fabris et al. [9]) present
a solution approach which introduces a mesoscopic model. This model estimates
the headway times and the conflicts on lines and stations as well as a calculation of
running times and time-losses. The model is solve by a local search implemented
heuristic and this heuristic is tested on the rail network of the north-eastern part of
Italy. Reference (Li et al. [13]) propose a model to calculate the new schedules of
trains taking into account energy consumption, carbon emission cost and total travel
time minimization. They apply the LINGO fuzzy multi-objective optimization algo-
rithm (svMATH [25]) and they test the algorithm with multiple trains on a line with
10 stations.

Finally, some solution approaches try to solve the EETTP in which also the energy
recovery is considered. In particular, these approaches find timetables that synchro-
nize the processes of acceleration and regenerative braking of multiple trains to
minimize energy consumption. These approaches are mainly applied on the metro
lines where the train acceleration and braking are usually frequent and the trains
repeat the same, usually short, routes many times. Hence, the energy-saving due to
the synchronization may be significant. For example, the approaches reported in the
following are applied on the Beijing Yizhuang metro line in China where several
trains run simultaneously. Reference (Li and Lo [12]) present a convex optimization



model that extends the previous version introduced in (Li and Lo [11]) and divides
both the routes and the stations into several segments in which the speed limit is
constant. The segments from the up direction and down direction are assembled as a
cycle, in which the time required for completing the operations is called cycle time.
The model finds the optimal timetable by distributing times to different stations and
inter-stations under constraint which assure the minimum time separation between
consecutive trains. Reference (Yang et al. [29]) present a multi-objective integer pro-
gramming model which improve the one introduced in (Yang et al. [30, 31]) where
the two objectives are both regenerative braking maximization and passenger waiting
time minimization. The authors propose a genetic algorithm and an allocation algo-
rithm to solve this model. Reference (Fabris et al. [8]) present a solution based on
simulated annealing optimization algorithm, which can be used both for stochastic
simulation models and for timetable calculation. In particular, this approach finds
the best regression between calculated and measured train speeds. The approach is
tested on the north-eastern part of Italy as input for both running time calculation
and microscopic simulation.

7.3 ModeFRONTIER and OpenTrack

modeFRONTIER is a multi-disciplinary software developed by ESTECO S.p.A.
More details about ESTECO S.p.A. and its products are available in
(Esteco S.p.A [7]). modeFRONTIER optimizes the engineering design process
through the use of innovative algorithms and integration with leading simulation
tools. Specifically, an engineering design process is a series of steps that the engi-
neers must complete to find a solution of their design problem. modeFRONTIER
enables the definition of the details of engineering design processes through an intu-
itive interface called mode-FRONTIER workflow. The modeFRONTIER workflow
formulates all the logical steps composing the process and it defines the input and
the output variables. In particular, it combines the Data Flow and the Process Flow.
The Data Flow shows what data should be transferred from one step to the other.
The Process Flow shows the sequence of actions to be taken and the conditions that
have to be evaluated. The modeFRONTIER workflow allows the integration between
external simulation tools as a Black Box. The Black Box contains the procedures
that should be used to compute the values of the output variables according to the
input variables of the engineering design process. For instance, the Black Box can
be a calculator or an external tool, such as Computer-Aided Design (CAD) and
Computer-Aided Engineering (CAE) tools. The Black Box is defined in the mode-
FRONTIER workflow by means of particular nodes. Figure 7.1 shows this concept
of modeFRONTIER integration.

modeFRONTIER contains iterative optimization algorithms for both single and
multi-objective problems. Between them, there are MOGA-II and NSGA-II. Both
algorithms belong to the family of genetic iterative algorithms which are inspired by
the theory of Darwin on the evolution. Starting from an initial population, a genetic
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Fig. 7.1 modeFRONTIER Black Box

algorithm finds new individuals that represent the population offspring and should be
better than their parents. The reproduction is repeated until the maximum number of
iterations is reached. The best individuals are selected according to their fitness: the
more suitable they are, the more chances they have to reproduce. More details about
the genetic algorithm are described in (Sivanandam and Deepa [22]). MOGA-II is
an improved version of MOGA (Poloni and Pediroda [18]) developed by Poloni that
uses a smart multi-search elitism for robustness. Elitism is very important in multi-
objective optimization because it helps preserving the individuals that are closest to
the Pareto front and the ones that have the best dispersion. MOGA-II uses four differ-
ent operators for reproduction (two-point crossover, directional crossover, mutation
and selection). NSGA-II is developed by K.Deb (Deb et al. [5]) and it implements a
fast and clever non-dominated sorting procedure and elitism. It works with both dis-
crete variables and continuous: for the last case a particular crossover and mutation
operation for reproduction is performed based on a Deb probability function. More-
over, modeFRONTIER contains Design Of Experiments (DOE) algorithms which
are usually used to define the initial population for optimization algorithms.

Reference (OpenTrack Railway Technology Ltd. [17]) is a one of the most used
microscopic railway simulator tool created in the middle of the 19905 as a research
project at the Swiss Federal Institute of Technology. Figure 7.2 shows the simulation
process in OpenTrack as shown in Fig.7.2. For the simulation, OpenTrack requires
information about the rolling stock, the railway infrastructure and signaling system,
and the timetable. The simulation starts based on this information and OpenTrack
calculates the train movements under the constraints given by the signaling system
and timetable. After the simulation, OpenTrack returns the results in the form of
diagrams, train graphs and statistics. Today, OpenTrack is well-established and its
accuracy is high.
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7.4 Case Study

The case study reproduces a real situation of a metro line in Turkey. Figure 7.3 shows
the infrastructure considered in which physical characteristics are known. In particu-
lar, it is composed by a line with 15 block sections which can be very steep uphill and
downhill. Also the curves change along the line and the values of the curve radius
are known. The line contains 17 stations and each station from A to N is for specific
train activities, like boarding and unloading of passengers, while the others c1, c2,
¢3, ¢4, ¢5 are only for train technical operations. A train stops in each stations and the
dwell times is always 60s. The rolling stock characteristics are known. In particular,
the train mass, mass factor and length are, respectively, 270t, 1.06 and 120m. The
maximum acceleration is 1.1 m/s> and the maximum service braking is 1.1 m/s>.
Both the maximum tractive force and the resistance force are given, so the driving
regime combinations and the corresponding running times and energy consumption
can be calculated to feed the module. Precisely, the mass-indipendent Davis’s For-
mula is used to approximate the vehicle resistance with parameters A = 1500N,
B = 10.8Ns/m, C = 11.016 Ns%/m? and the maximum tractive force is reported in
the Table 7.1 and shown in Fig. 7.4. For more details about these forces and formula,
see in (Brunger and Dahlhaus [2]).
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Table 7.1 The maximum tractive force

v (m/s) Maximum tractive force (N)
0<v<472 432
472 <v <2222 7344000/ v

120 T T T T T T T T

Maximum Tractive Force [kN]

0 1 1 1 1

L
0 10 20 30 40 50 60 70 80 90
Speed [km/h]

Fig. 7.4 The tractive force on case study: the horizontal axis reports the speed, while the vertical
axis reports the force

7.5 Solution Approach

The solution approach solves EETTP in which the slopes, the curves and the
speed limits are not constant throughout the infrastructure and energy recovery is
neglected. The approach considers only single train travels along the infrastructure
and must stop at all intermediate stations along its route. The solution approach inte-
grates optimization and simulation by means of modeFRONTIER and OpenTrack
(through the OpenTrack API), respectively. This approach introduces a model and the
modeFRONTIER terminology is used to described it. In particular, the Black Box
of the solution approach is OpenTrack called by means of a particular custom node,
implemented here by means of OpenTrack API. The input variables are

e the cruising speed in each section which must be lower or at least equal to both
the maximum line speed in each section and the maximum vehicle speed

e the time in which engines are switched off (this means the time instant when
the cruising regime ends and starts the coasting one). The engines should not be

10
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switched off too in advance, otherwise the train is not able to reach the end of the
section nor too late otherwise the trains cannot stop in the following station.

The choice of these variables has been performed through optimization algorithms
which ensure the respect of these constraints and that the train reaches the end to
its journey. The output variables are the energy consumption and the travel time,
that is, the sum of running times for each train. The objectives are the energy con-
sumption and total time minimization. Of course these are two conflicting objectives
because the lower is energy consumption the higher is usually the travel time, and
vice versa. In this case, the aim, on the contrary, is the minimization of both of
them. The model is solved by two optimization algorithms, MOGA-II and NSGA-II,
respectively, which are two genetic algorithms available in modeFRONTIER. Given
arandom population for input variables, the genetic algorithm (MOGA-II or NSGA-
II) creates new individuals and calls OpenTrack to calculate the output variables, the
objectives and the energy-efficient train speed profiles. The process is iterated until
the maximum number of iterations is reached. The optimal solution minimizes the
energy consumption and the travel time. The modeFrontier workflow Fig.7.5 used
in this work is shown in Sect.7.6.

7.6 Application

The solution approach is tested on case study introduced in Fig.7.3. For both algo-
rithms, an initial population is composed by random individuals obtained by one
of DOE algoritms available in modeFRONTIER. Both algorithms are used with the
default values for their internal parameters.

7.6.1 ModeFRONTIER Workflow

Figure 7.5 shows the modeFRONTIER workflow which describes the model to rep-
resent the considered case study. From right to left is possible to follow the optimiza-
tion Data Flow: at the left there are the input variables, whereas at the right there
are the output variables and the objective on the output variables. The green icons
(square boxes with an incoming arrow) represent the input variables. The blue icons
(square boxes with an outcoming arrow) represent the output variables. Objectives
are represented by an arrow icon. The input variables are the cruising speed in each
section (v) and the time (offSet) in which engines are switched off. The output vari-
ables are the energy consumption (EnergyConsumption) and the travel time (Time).
The objectives are the energy consumption (MinEnergyConsumption) and total time
minimization (MinTime). In the center, from top to bottom the icons represent the
Process Flow composed by the SchedulingStart node, the OpenTrack node and the
logic end of the process. Precisely, first node calls the genetic algorithm, for which

12
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Fig. 7.7 MOGA-II and NSGA-II Pareto Fronts. In the legend, the prefix OT is added in the name
to underline that the algorithms are interacting with OpenTrack

the initial population is generated internally. The OpenTrack node calls the Open-
Track tool and the logic end terminates the process. The workflow is started by mean
of a run command, which allows the optimization process execution.
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Fig. 7.8 Comparison between the solution approach and OpenTrack with 100% and 90% of trains
performance. In the legend, the prefix OT is added before MOGA-II to underline that the algo-
rithms are interacting with OpenTrack. While, the suffix USER is added after OT to underline that
OpenTrack is used alone (by the user)

7.6.2 Results

Starting from the previous modeFRONTIER workflow, the optimization has been
performed by using MOGA-II and NSGA-II. In both cases the result is the identifi-
cation of the Pareto Front for the given problem, which is the set of solutions where
it is not possible to improve one objective without worsening the other considered
and conflicting objective. For example, Fig.7.6 shows the evolution of MOGA-II
algorithm in its convergence to the Front on case study considered: the horizontal
axis reports the energy consumption values (in Joule), while the vertical axis reports
the travel time values (in seconds). Blue bubbles represent the initial population and
the red bubbles the one of the last iteration. The solutions visited during intermediate
iterations are the bubbles between the blue an the red ones, which have different color
graduations (yellow and orange, etc). Figure 7.7 shows the Pareto Fronts found by
the two algorithms. In particular, the blue cross-shaped points represent the Pareto
Front found by MOGA-II, while the orange cross-shaped points the ones found by
NSGA-II. The analysis of this result shows that MOGA-II finds better solutions in
the energy consumption range between 500kJ and 750kJ while NSGA-II discovers
better solutions when energy consumption is lower than 500kJ or the time is less
then 1700s. This results will be further investigated in the future to verify if it is a
systematic feature of the proposed algorithms. According to the proposed approach,

14



Table 7.2 Time supplement distributions

Performance 100% Example MOGA-II Solution
Station Time Time Margins ATime %
A 01:00:00 01:00:00
B 01:01:22 01:02:22 01:01:27 01:02:27 00:00:05 5.81
C 01:02:54 01:03:54 01:03:00 01:04:00 00:00:01 1.16
D 01:05:09 01:06:09 01:05:28 01:06:28 00:00:13 15.127
E 01:07:08 01:08:08 01:07:43 01:08:43 00:00:16 18.60
C2 01:09:00 01:10:00 01:09:40 01:10:40 00:00:05 5.81
F 01:10:44 01:11:44 01:11:26 01:12:26 00:00:02 2.33
G 01:13:03 01:14:03 01:13:55 01:14:55 00:00:10 11.63
C3 01:15:00 01:16:00 01:15:54 01:16:54 00:00:02 2.33
H 01:17:04 01:18:04 01:18:00 01:19:00 00:00:02 2.33
I 01:19:05 01:20:05 01:20:08 01:21:08 00:00:07 8.14
L 01:20:58 01:21:58 01:22:09 01:23:09 00:00:08 9.30
M 01:23:12 01:24:12 01:24:29 01:25:29 00:00:06 6.98
Cc4 01:25:00 01:26:00 01:26:24 01:27:24 00:00:07 8.14
N 01:26:38 01:27:38 01:28:04 01:29:04 00:00:02 2.33
C5 01:27:54 01:29:20 00:00:00 0.00
Total 00:27:54 00:29:20 00:01:26 0.00

two set of simulations have been performed respectively considering 100% or 90%
of train performance in OpenTrack simulation. Figure 7.8 shows all results for these
two train performances. In particular, the horizontal axis represents the energy con-
sumption (in Joule), while the vertical axis the total travel time (in seconds). The
green and blue dots represent the Pareto Front found by MOGA-II (which interacts
with OpenTrack) with 100% and 90%, respectively. The red and yellow dots repre-
sents the results found by OpenTrack with 100% and 90%, respectively. Points A,
B and C refer to three operation situations with 100% of trains performance derived
from experience and the same meaning have points D, E and F for 90% of perfor-
mance. It can be noticed that the proposed approach allows both to find a possible
train speed profile with the same total travel time and lower energy consumption, or
with lower travel time given the same energy consumption. Time and energy- savings
vary between —1% and —9% in the considered case study.

Table 7.2 shows the distribution of time supplements over the sections. Indeed,
the definitions of new schedules involves a new distributions of time on each running
times. It is really interesting that these supplements are not distributed among the
section in a uniform way, but they depend on line configuration. This result may help
in distributing these time supplements in the planned timetable.
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7.7 Conclusion

The timetable calculation usually does not take into account the energy consumption.
Since green transportation is becoming a central issue, the attention for energy-
efficient timetable calculation is growing. This problem, called EETTP, could reduce
operating costs significantly and contribute to a further increase of the sustainability
of railway transportation. In this work, a solution approach to solve the EETTP is
introduced. This approach requires the integration between modeFRONTIER and
OpenTrack. In particular, the model is formulated into a modeFRONTIER workflow
in which the output variables are calculated by means of OpenTrack. The optimization
is based on MOGA-II and NSGA-II, which are two genetic algorithms available in
modeFRONTIER. Both the algorithms perform well on the case study considered. In
particular, MOGA-II finds better solutions in the energy consumption range between
500kJ and 750kJ while NSGA-II discovers better solutions when energy consumption
is lower than 500kJ or the time is less then 1700s. However, more tests will be done to
investigate the behavior of the two algorithms by increasing the number of repetitions
for each run of each experiment. Moreover, more tests will be done to improve the
optimization results by using other algorithms available in modeFRONTIER.

In this work, a single train running on the infrastructure is considered. Future
works will be devoted to test the behavior of this approach when more trains are
considered.

A particular procedure to take into account also the energy recovery is considered
and the first results seem to be promised. However, this procedure is not completed
and future works will be devoted to test it.
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