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As heart failure with preserved ejection fraction (HFpEF) rises to epidemic proportions, major steps in patient management and therapeutic
development are badly needed. With the current position paper we seek to update our view on HFpEF as a highly complex systemic
syndrome, from risk factors and mechanisms to long-term clinical manifestations. We will revise recent advances in animal model
development, experimental set-ups and basic and translational science approaches to HFpEF research, highlighting their drawbacks and
advantages. Directions are provided for proper model selection as well as for integrative functional evaluation from the in vivo setting to in
vitro cell function testing. Additionally, we address new research challenges that require integration of higher-order inter-organ and inter-cell
communication to achieve a full systems biology perspective of HFpEF.
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Introduction
After a long period of omission, past years have been prolific
in trials addressing heart failure with preserved ejection frac-
tion (HFpEF). Epidemiological trends suggest that with increased
longevity and escalating co-morbidity burden, the prevalence of
HFpEF may rise to epidemic proportions. Mortality ranges from
30 to 60% at 5 years, hospitalization rate is high and quality of
life (QOL) is severely impaired. Several randomized clinical trials
(RCTs) have attempted to halt disease progression and mitigate
morbidity and mortality targeting various potential pathophysiolog-
ical mechanisms, all with inconclusive or neutral results. A detailed
overview of these RCTs is out of the scope of the current work
and can be found elsewhere.1,2 Interestingly, changes in lifestyle
such as exercise training and caloric restriction have shown the
most promising results in short-term trials,3,4 raising the possibil-
ity that pleiotropic effects will be needed to change the course of
HFpEF.5 Lack of progress in pharmacological patient management
warrants not only for better designed trials with well defined enrol-
ment criteria and end-points, but also for a clearer understand-
ing of pathophysiology.6–8 To date, translational and basic science
were unable to support therapeutic development. Indeed, while
a multitude of data from experimental models has been gathered
from organ baths down to intracellular mechanisms involved in
cardiac relaxation and compliance, vascular function, and inflamma-
tion, these detailed mechanical, biochemical and molecular insights
derived from basic science are yet to be linked in a full extent to
preclinical models and sophisticated patient phenotyping. This posi-
tion paper focuses on current knowledge on the pathophysiology
of HFpEF, available animal models and experimental methodologies.
From these data, we propose directions for future research in the
translational field.

Diagnosis of heart failure with
preserved ejection fraction
Diastolic function is dictated by left ventricular (LV) relaxation and
compliance which jointly enable filling at low pressure9 (Figure 1).
Disturbances in any of these lead to diastolic dysfunction (DD).
Asymptomatic DD [by some denoted as preclinical heart fail-
ure (HF)] is common in the community. When carefully stud-
ied, patients often develop reduced QOL and show increased
cardiovascular risk.10 Importantly, follow-up studies revealed fre-
quent progression to HFpEF.11 Simplistically, the diagnosis of HFpEF
relies on signs and symptoms of lung congestion that cannot be
attributed to other causes, preserved or normal ejection fraction
and markers of diastolic function impairment.12 The gold standard
to diagnose HFpEF would be invasive haemodynamic evaluation
with exercise testing because it clearly documents cardiac failure
development (by rising filling pressures and inability to increase
cardiac output) during effort13,14 but clearly non-invasive surro-
gates are warranted because invasive testing carries risk and is
not feasible in every patient. The diagnosis of HFpEF remains
disputed. The 2016 ESC guidelines require at least symptoms, ..
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.. objective signs of HF, and some degree of structural or func-
tional deficit. The latter is usually measured by echocardiography,
and may include LV hypertrophy (LVH), increased left atrial vol-
ume, and various abnormalities associated with DD.15 Although
DD has always been considered a key element, only two-thirds of
patients show DD at rest in some RCTs.16,17 This simple observa-
tion underscores that there is no solid consensus on the diagnosis
of HFpEF. Indeed, although DD is a dominant feature of HFpEF,
most experts now view it as a complex syndrome in which mul-
tiple cardiac, vascular and non-cardiac determinants come into
play to impair cardiovascular reserve18,19 (Figure 2). While in HF
with reduced ejection fraction (HFrEF) a sudden insult leads to
myocyte loss, functional impairment and self-amplifying neuro-
humoral cascades, HFpEF is a slowly progressive process with-
out an index event. Ageing and co-morbidities progressively drive
dysfunction by way of altered load conditions, inflammation and
complex systemic changes. The direct effects of ageing explain
the predominance of HFpEF in the elderly, who have long-term
co-morbidities and impaired cardiovascular reserve. For practical
reasons in basic research a single organ–single stressor approach is
usually favoured. Indeed, ageing and multiple co-morbidities are dif-
ficult to mimic in the laboratory. Nevertheless, several new insights
from experimental studies on ageing and co-morbidities have now
emerged and could propel our knowledge of HFpEF. We will
discuss them.

It should be highlighted that ejection fraction (EF) is
load-dependent9 and overestimated in hypertrophy due to
increased myocardial thickening.20 Load-independent indexes
show impaired baseline contractility and poor response to
exercise.21,22 Regardless of its limitations, current guidelines15

base their diagnostic criteria on EF. Follow-up reveals that patients
classified under HFpEF or HFrEF would later fall in the opposite
category,23 echocardiography poorly tracks individual evolution,24

and reliance on resting parameters is inadequate because HFpEF
begins with effort intolerance. Guidelines poorly incorporate this
concept, relying mostly on data acquired from inpatients with
decompensated HF and unusually high natriuretic peptide levels.
Not surprisingly, sensitivity is poor when applied to RCTs enrolling
stable patients16 or outpatients with dyspnoea.25 Effort testing may
improve sensitivity of current ESC HFpEF diagnostic guidelines at
the expense of reduced specificity.14

Mechanisms and phenotypes
of heart failure with preserved
ejection fraction
Cellular mechanisms
Endomyocardial biopsies reveal more extensive cardiomyocyte
hypertrophy and myofibrillar density in HFpEF compared with
HFrEF but no difference in collagen volume fraction.26 Indeed, in in
vitro set-up, HFpEF patients’ cardiomyocytes are stiffer and more
Ca2+ sensitive.26 The sarcomeric protein titin is a key determi-
nant of cardiomyocyte stiffness, both by isoform shift favouring
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Figure 1 Cardiac mechanisms underlying diastolic dysfunction. Pressure and volume throughout the cardiac cycle are depicted as a function
of time (A) and as pressure–volume (PV) loops (B). The main mechanisms governing left ventricular (LV) relaxation and filling as well as atrial
contribution to LV filling are highlighted. Healthy (grey lines) and diastolic dysfunction tracings (black lines) are represented as dotted lines during
active contraction and continuous lines from the beginning of active relaxation. The timings of valve opening and closure are denoted by circles.
In (A) the corresponding aortic pressure tracings are also presented (light grey and grey dashed lines, respectively) whereas in (B) the end-systolic
and end-diastolic PV relationships are shown. Notice that in (A) high afterload and reflected waves lead to delayed start and course of relaxation
which along with lower compliance dictates slower filling at the expense of higher filling pressures and a proportionally larger dependence on
atrial contraction. In (B) notice the upward shift in end-diastolic PV relationship (EDPVR) as well as impaired ventricular–vascular coupling
due to the marked increase in effective arterial elastance (Ea) despite higher end-systolic elastance (Ees). CB, cross-bridge; CM, cardiomyocyte;
ECM, extracellular matrix; HR, heart rate; RV, right ventricle.

the (stiff) N2B and by hypophosphorylation,26 although hypophos-
phorylation seems to dominate. Other post-translational modifi-
cations may also contribute. Additionally, titin–actin interactions
account for 40% of LV viscosity and thus play a major role in
delayed relaxation.27 Further, experimental data from an aortic
banding model showed decreased Ca2+ transient amplitude and
decay, which may contribute to impaired relaxation. Likewise, the
ratio of sarcoendoplasmic reticulum Ca2+ ATPase to phospholam-
ban content in HFpEF was decreased compared with the HFrEF
patients’ myocardia.28 Various myofilamentary proteins may be
modified post-translationally raising diastolic stress in HFpEF29 as
well as impaired bioenergetics (particularly high ADP) by way of
actomyosin interactions.30

Interestingly, while fibrosis was held to be a major player, neither
HFpEF patient biopsies nor animal models strongly support this
hypothesis.31 Indeed, HFpEF patients’ biopsies demonstrate varying
degrees of myocardial interstitial fibrosis26 and autopsy studies
reveal only minor increases in fibrosis.32

Ageing
Ageing lengthens relaxation and increases LV stiffness by collagen
accumulation and cross-linking, cardiomyocyte loss, and reactive
hypertrophy.33 Neuroendocrine disturbances, mitochondrial dys-
function, increased oxidative stress, and fibroblast activation are ..
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.. well established ageing-associated pathways. Repeated heart beats

rupture the elastin laminae of central vessels leading to dilatation
and stiffening, loss of Windkessel effect and distal transmission of
pulsatile pressure.34 Increased wave velocity leads to earlier wave
reflection. Although initial studies on hypertensive patients have
shown that wall stress actually decreases in late systole, at the
time of wave reflection,35 population-based studies strongly suggest
that wave reflection and augmented wall stress in late systole con-
tribute to impaired relaxation.36 Moreover, in patients referred for
coronary angiography, wave reflection predicts worse cardiovas-
cular outcomes, particularly when systolic function is preserved.37

Indeed, augmented wall stress raises LV work, conversely decreas-
ing diastolic perfusion pressure. Increased wall stress in turn raises
end-systolic elastance and volume sensitivity while transmitted
pulsatile pressure evokes endothelial dysfunction (ED). Increased
arterial stiffening with exercise has been recently shown in HFpEF.38

Measures of LVH, left atrial size, DD but also natriuretic peptides
are age-dependent, which suggests that ageing represents to some
extent physiological HFpEF. Clearly, ageing is an autonomous pro-
gressive process, so the boundaries between ageing and HFpEF
remain uncertain. One of the main challenges, therefore, will be
to provide a more uniform description of the ageing cardiac phe-
notype, in order to set it apart from HFpEF.
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Figure 2 Time course of heart failure with preserved ejection fraction (HFpEF) evolution. The scheme highlights the long-term course and
hypothetical progression from established risk factors and mechanisms to impaired cardiovascular (CV) function, decreased CV reserve and
ultimately mortality. Timing of events and their order is of course variable between patients and still debatable, it is merely hypothetical. AF,
atrial fibrillation; ANS, autonomic nervous system; CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive
pulmonary disease; HF, heart failure; HR, heart rate; LA, left atrial; PH, pulmonary hypertension; PP, pulse pressure; QOL, quality of life; RV,
right ventricular; SM, skeletal muscle; VVC, ventricular–vascular coupling.

Gender
Although it is now realized that not only elderly females but also
younger obese and diabetes mellitus (DM) men constitute HFpEF
risk groups,39 women tend to predominate in HFpEF cohorts. This
finding may be explained because women more often reach an
advanced age, but also by pathophysiological mechanisms. Gender
differences in vascular biology and sex hormones may explain pre-
menopausal preservation of elasticity and postmenopausal aortic
stiffening. Aortic elasticity is lost after menopause, constituting a
potential explanation for hypertrophic remodelling and HFpEF.40

Loss of ovarian function also leads to ED and inflammation, which
entail co-morbidities and HFpEF.41

Co-morbidities
It is well recognized that a higher burden of co-morbidities exists
in HFpEF. The most prominent amongst co-morbidities are sys-
temic arterial hypertension, obesity and DM, but a long list of
other co-morbidities such as chronic obstructive pulmonary dis-
ease, renal dysfunction, sleep disordered breathing, hypothyroidism
and anaemia have also been well documented.42–44 Non-cardiac
adverse events, other than typical HF end-point such as pump
failure and sudden death are common45 but it remains unclear
whether they outweigh HF-related outcomes.46 Competitive risk
for non-cardiac death and events unrelated to the disease process ..
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. itself poses a major hurdle to survival analysis in RCTs,47 which may

warrant a focus on secondary outcomes such as functional capac-
ity. Conversely, co-morbidities themselves are an integral part of
the HFpEF syndrome, and actively contribute to dysfunction and
remodelling in HFpEF (Figure 2). Obesity and metabolic syndrome
associate with DD well before DM, while DM may ultimately lead
to cardiomyopathy.48 To revise how each co-morbidity contributes
to disease in the context of HFpEF is outside the scope of the
current work and detailed overviews can be found elsewhere.42

We must underscore, however, that HFpEF is not just the out-
come of co-morbidities. Abnormalities in cardiovascular structure
and function go beyond those explainable by co-morbidities alone.
Co-morbidities, however, do influence phenotype and outcomes
and should be aggressively managed.39

Microvascular and epicardial coronary
artery disease
Recent progress in HFpEF research has suggested that HFpEF
may in fact be a disease of the microvasculature. Studying the
role of co-morbidities and inflammation created a new hypothesis
based on coronary microvascular ED,49 which was supported by
findings at autopsy.32 HFpEF patients show systemic microvascular
dysfunction as well as coronary microvascular ED and rarefaction.50

Interestingly, epicardial coronary artery disease (CAD) prevalence
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was also higher at autopsy.32 CAD is documented in many of HFpEF
patients, pooled analysis of prospective HFpEF studies suggests that
it is present in approximately 50% of patients and contributes to a
worse prognosis.51 In a HFpEF cohort that underwent coronary
angiography, patients with CAD (68% of the cohort) showed
increased mortality and EF deterioration that was mitigated by
revascularization.52

Pulmonary hypertension and right
ventricular dysfunction
Large community studies demonstrate that pulmonary hyperten-
sion is prevalent, often severe and independently predicts mortality
in HFpEF.53 It may discriminate between HFpEF and hypertension
suggesting a role in symptom development. Moreover, symptoms
develop regardless of capillary wedge pressure, which further insin-
uates a pre-capillary component.53 More recently, right ventricular
dysfunction was documented in one-third of HFpEF patients under-
going right heart catheterization and shown to be an independent
predictor of mortality.54,55

Peripheral factors
Effort intolerance, which is the core HF sign and symptom in
HFpEF, is not solely due to low cardiovascular reserve but also to
poor peripheral oxygen extraction by the skeletal muscle.56 Indeed,
chronotropic incompetence and low systolic reserve lead to fur-
ther reliance on peripheral oxygen extraction to meet demands
in HFpEF but peripheral extraction also fails due to abnormalities
of both skeletal muscle and the microvasculature57 (see supple-
mentary material online, Figure S1). Of note, the improvements
in exercise capacity due to exercise training appear to derive pri-
marily from improved peripheral (arterial and/or skeletal muscle)
function, highlighting the important contribution and plasticity of
peripheral factors.58

Can we improve characterization
of heart failure with preserved ejection
fraction phenotypes?
Large cohorts and RCTs have established wide heterogeneity
in aetiology, remodelling patterns, stages of presentation, and
co-morbid conditions. It has been proposed that patient hetero-
geneity is in fact a central reason why so many studies had neutral
outcomes. A central challenge will thus be to identify relevant
subgroups in which specific therapeutic strategies may be tested.
A task that will require integration of clinical, structural and func-
tional data.6,59

Experimental models
Given its complex pathophysiology, none of the current models
fully emulates HFpEF and probably none ever will. Preclinical tests
should build upon robust features of each model.60 A detailed
overview of available animal models is provided in the supplemen-
tary material online, Table S1. ..
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Only salt-sensitive rats and obese hypertensive and diabetic ZSF1

rats have a clear demonstration of increased lung weight, which
could relate to HF.61 Salt-sensitive rats however have been criti-
cized because they develop LV dilatation and decreased EF.62 As for
ZSF1 obese rats, they have low peak maximum oxygen consump-
tion and effort intolerance, which puts the model one step ahead
towards clinical translation.63 Additionally, microvascular injury,
ischaemia, inflammation and titin hypophosphorylation have been
demonstrated.31,64 ZSF1 obese rats have a convenient hypertensive
lean control and mimic many features of HFpEF. Valuable insights
into alternatives to effort testing have been proposed.63 Neverthe-
less, we must highlight several drawbacks. They are young adults
with untreated metabolic syndrome and do not recapitulate the
scenario of an elderly patient, they progress to renal failure at
an older age, the full-blown phenotype is hard to recapitulate in
reproductive age females, and they show only mild extracellular
matrix changes. Animal models of pulmonary hypertension associ-
ated with HFpEF are also needed, a two-hit model was recently
proposed.65 As for mice, few models have been able to mimic
HFpEF. Myosin-binding protein C phosphorylation-deficient mice
develop LVH and stiffness, delayed relaxation, lung congestion, and
poor spontaneous activity, but unfortunately also slightly depressed
EF66 whereas obese and diabetic Leprdb/db mice develop LV stiffen-
ing due mainly to titin hypophosphorylation.67 The main issues with
Leprdb/db are marked changes in metabolism and later decline in EF.
Mice models may provide an invaluable contribution to pathophys-
iological studies by selective genetic manipulation of disease mod-
ifiers. Titin immunoglobulin domain-coding exon-deficient mice
develop cardiomyocyte stiffening with effort intolerance.68

Large animals
Large animal models are highly desirable because they better mimic
human physiology. HFpEF has been modelled in old hyperten-
sive dogs by renal wrapping.69 They show hypertrophy, fibrosis
and impaired relaxation. Recently, a new model was developed in
young female landrace pigs.70 Pigs were rendered hypertensive by
deoxycorticosterone coupled with a high-salt diet while hyperlipi-
daemia was induced by a high-cholesterol diet. They did not show
increased fibrosis, but did show concentric hypertrophic remod-
elling and stiffening. Although animals were not symptomatic, dis-
turbances were further aggravated at high pacing rates. Authors
attributed their findings to impaired PKG signalling, titin isoform
shift and hypophosphorylation.70 This model has drawbacks such
as marked hypercholesterolaemia, a young age and mild hyper-
tension. HFpEF was also mimicked in dogs by repeated coronary
microembolization, the only model that partly addresses the link
with CAD.71 Lastly, large animal models are essential for device
development and intervention therapies, as recently reported with
proof-of-concept percutaneous pericardiotomy in pigs.72

Skinned cardiac myocytes
Some of the most influential pathophysiology findings from
HFpEF patients have been obtained in skinned cardiomyocyte
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preparations.26 These studies indicate that LV stiffness is mostly
ascribed to passive stiffness of the cardiomyocytes themselves.
Mechanistically, a shift in titin isoforms and hypophosphorylation
was directly implicated in higher passive force. Findings were
reproduced in an animal model of HFpEF.31 Access to HFpEF
patients’ biopsies is scarce because there is no formal indica-
tion for endomyocardial biopsy other than clinical suspicion of
restrictive, infiltrative or inflammatory cardiomyopathy. This leads
to selection bias, because biopsies are usually collected in younger
patients without CAD. Another concern is the source of HFpEF
cardiomyocytes usually obtained from the endocardium and their
controls usually obtained from transplanted patients’ right ven-
tricle or donor hearts. Finally, studies have been performed with
expanded lattice spacing at low temperature. Works in intact car-
diomyocytes at physiological temperatures show that skinned car-
diomyocyte preparations miss the actomyosin contribution.29 Pros
and cons of various experimental set-ups from cell function to in
vivo cardiovascular function assessment are summarized in Table 1.

Given its growing health impact and current lack of
evidence-based therapy, it may be justifiable to extend biopsy
collection to a broader population of HFpEF patients in experi-
enced centres where reported complication rates are minimal,73

not only at catheterization laboratories but also in surgical
theatres.74 Whenever possible, findings from cardiomyocyte
preparations should be translated to larger set-ups as assessing
cardiomyocyte sarcomere shortening, which rarely spans more
than 15%, is a poor surrogate of cardiac function, which relies on
a complex architecture to achieve EF of over 50%.75,76

Intact cardiac myocytes
An important aspect of diastolic function is disturbed intracellu-
lar Ca2+ and Na+ handling. While in HFrEF, decreased amplitudes
of cytosolic Ca2+ transients play the dominant role for contractile
dysfunction, it is less clear to which extent alterations of cytosolic
Ca2+ (and Na+) handling actually contribute to DD in HFpEF. Cel-
lular ion handling is commonly analysed in isolated, intact cardiac
myocytes paced by electrical field stimulation, in particular from
animal models. The advantage of these studies over the skinned
cardiomyocyte preparations is that, together with cell shortening,
cytosolic ion handling and its alterations can be analysed by fluo-
rescent probes, while the skinned myocyte technique only analyses
sarcomeric function.

It is currently largely unclear how far mitochondrial dysfunction
and/or oxidative stress contribute to diastolic (and/or mild systolic)
dysfunction also in HFpEF. Studies on isolated cardiac myocytes
allow the investigation of the pyridine nucleotide redox state,
membrane potential and reactive oxygen species in mitochondria
integrated in their physiological cellular context using fluorescence
imaging combined with field stimulation.77,78

A drawback of both techniques is that myocytes usually lie slack
on a cover slip without any physical workload. This underestimates
physiological workload and may have important implications for
mitochondrial energetics and excitation–contraction coupling.79

A major recent advance was the development of techniques that
allow stretching and imposition of various degrees of preload and ..
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.. afterload on isolated cardiac myocytes upon attachment to thin
glass rods.29,79

Langendorff and working intact isolated
heart preparations
The Langendorff model can be used to assess end-diastolic
pressure–volume relationship and LV stiffness much in the way
pressure–volume catheters do in vivo, but devoid of systemic
effects. Technical challenges have been reviewed.80 This model
complements findings on cell/tissue preparations and constitutes
a bridge to whole-heart physiology.30

Assessment of heart failure with
preserved ejection fraction
in experimental models
Haemodynamic evaluation
This approach is invasive, requiring deeper anaesthesia which is
usually confined to terminal evaluation. Nonetheless, serial evalua-
tions and telemetry are feasible. Time-honoured approaches have
relied on a separate assessment of active relaxation and passive
end-diastolic stiffness9,81 but newer methods, based on global opti-
mization fitting, may be of added value.82 Methodological aspects
of open-chest and closed-chest approaches have been exten-
sively reviewed.83 Stiffness is usually derived from end-diastolic
pressure–volume relationships. In closed-chest preparations the
first beats after preload reduction are usually influenced by right
ventricular unloading which accounts for almost 30–40% of rest-
ing end-diastolic pressure,9 and this should be accounted for. The
LV stiffness constant has units of volume–1 and therefore depends
on LV geometry and size. Several approaches have been used to cir-
cumvent this problem. One approach is to derive stress–strain ana-
logues, including estimates of LV mass or wall thickness,81 another
is to index volumes.63 Assessment of a single point of end-diastolic
pressure and end-diastolic volume is highly load-dependent and
inaccurate. Despite its helpful use in large community studies, sin-
gle beat methods raise concerns in the experimental scenario. Even
after pressure correction for the active component of relaxation
they are prone to error in individual estimation, particularly in
closed-chest preparations.84 Methods based on volume-normalized
data acquired in various species are also better when applied to
groups rather than individuals, have bias in the high and low pres-
sure range, and limitations in HFpEF.85 Lastly, contractile reserve
is impaired in HFpEF and should also be appraised in experimental
models, sudden afterload unmasks low contractile reserve.86

Imaging methods
Non-invasive imaging methods are favoured both in clinical practice
and experimental research. Echocardiography is the first choice.87

Most of the standard clinical approaches can be translated to
animal research using high-frequency linear-array probes even with
common echocardiography machines.31,63 The E/E’ ratio has been
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Table 1 Experimental approaches to assess heart failure with preserved ejection fraction

Pros Cons
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Haemodynamics Gold standard to assess LV compliance and relaxation in vivo;
pharmacological manipulation (heart and vessels)

Requires anaesthesia, surgical preparation and mechanical
ventilation; open-chest deviates from physiology; need to
optimize fluid replacement

Muscle strip and
cardiomyocyte
preparations

Assessment of role of excitation–contraction coupling, in
particular, cellular ion handling, myofilament function, titin,
residual Ca2+ and cross-bridges, bioenergetics, and ECM;
extensive pharmacological manipulation (myocardium)

Temperature, pH and osmolarity may deviate from physiology;
cannot account for cardiac geometry and coronary
perfusion; skinned preparations cannot assess
membrane-dependent signalling pathways or Ca2+ handling

Langendorff and
working heart

Ex vivo bridge between haemodynamics and muscle
strips/cardiomyocytes; working heart allows for better
preload control; assess role of coronary perfusion; intrinsic
myocardial properties (without anaesthetics, systemic
influences, ventricular interdependence and pericardial
restraint); pharmacological studies (myocardium and
coronaries)

Deviates from in situ condition (without pericardium and
ventricular interdependence); cannot account for systemic
influences

Echocardiography
and MRI

Assess flows, dimensions and strain; serial non-invasive
evaluation under light sedation; MRI and MRS enable
whole-heart evaluation of fibrosis and bioenergetics,
respectively; possibility for 3D reconstruction and molecular
imaging

Pressures can only be estimated from surrogates; lower
time-resolution than pressure measurements

Effort testing Assess cardiovascular reserve and effort intolerance; treadmill
testing with gas analysis (V̇O2max and anaerobic threshold);
load, pharmacological or HR manipulations (reasonable
substitutes, should be employed in any functional evaluation
set-up)

Requires equipment not readily available in many laboratories
(treadmill couple to a gas analyser)

ECM, extracellular matrix; HFpEF, heart failure with preserved ejection fraction; HR, heart rate; LV, left ventricular; MRI, magnetic resonance imaging; MRS, magnetic resonance
spectroscopy; V̇O2max, maximum oxygen consumption.

extensively investigated as a predictor of LV filling pressures, with
conflicting results. It should be emphasized that relying on only
a single parameter is usually less informative than an integrative
analysis.87 Strain analysis is mainly a research tool, but it has
the potential to overcome tissue Doppler imaging. It can gauge
all myocardial segments and account for chamber geometry. It
remains to be established whether strain-derived echocardio-
graphic parameters may be of added value to HFpEF diagnosis.
Speckle tracking has advantages over tissue Doppler imaging, it
is unaffected by the angle of alignment but is also constrained
by lower time-resolution. In rodents, resolution must be high
enough to track speckles and demands high-frequency probes and
specialized machines.

Another interesting field of research is the left atrium. Left
atrial volume is a sensitive marker of severity and duration
of HFpEF and the left atrium actively modulates LV diastolic
function88 but even early disturbances in atrial function may
constitute markers of HFpEF.89 Application of magnetic reso-
nance imaging (MRI) in HFpEF remains limited. Although MRI
with through-plane-phase-contrast and myocardial tagging/feature
tracking matches most of echocardiography’s capabilities,87 MRI has
lower time-resolution and availability, inability to perform real-time
measurements, lack of dedicated software for diastolic function,
higher costs, and relative contraindications but it excels when the
acoustic window is poor, enabling better space-resolution and ..
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. universal estimation of pulmonary venous flow. MRI has extended

possibilities such as the ability to assess interstitial myocardial
fibrosis. The most divulged approach is late gadolinium enhance-
ment with T1-mapping, a technology that has been translated to
rodents90 enabling precise whole-heart quantification with repeat
evaluation; the extracellular compartment is likely to play an
important pathophysiological role and could be an important sur-
rogate end-point. Another possibility is the assessment of cardiac
bioenergetics by way of 31P magnetic resonance spectroscopy.91

How to assess heart failure in animal
models?
Several animal models have been proposed as HFpEF models
without objective evidence of HF. These should be viewed as
models of DD but whether it translates into HF is yet to be defined.
Lung congestion, as assessed by lung weight, was proposed as a
marker of HF.58 Because lung weights are prone to confounding
influences we propose that effort testing should be undertaken
and that no model should be presented as HFpEF without clear
documentation of effort intolerance.

Exercise testing (diastolic stress tests)
and alternatives
Several limitations to cardiovascular reserve have been shown in
HFpEF during dynamic exercise but their relative role is disputed.
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Table 2 Practical recommendations for translational research on heart failure with preserved ejection fraction

Robust in vivo documentation of a heart failure surrogate is warranted to establish any experimental model of HFpEF, we recommend effort testing
Cardiovascular phenotype should be extensively characterized in animal models of HFpEF and preclinical drug testing, we recommend using multiple

experimental set-ups from in vivo to in vitro
Research on the pathophysiological roles and impact in ventricular/vascular structure and function of co-morbidities, ageing and gender should be a

priority in available HFpEF models
New developments in imaging methods should continue to be applied to HFpEF experimental models in order to derive non-invasive assessment

methodologies
Discovery-driven genomics, transcriptomics and proteomics in HFpEF patient and HFpEF animal model samples and bioinformatics integration with

clinical/functional phenotype are warranted
Research on disturbed intercellular communication in HFpEF is a priority, assessment of engineered tissue from patient-derived induced pluripotent

stem cells may be a feasible approach
The role played by coronary and systemic microvascular dysfunction and the underlying mechanisms should be explored in HFpEF models
Systemic involvement should be further explored in models of HFpEF, focusing particularly on the adipose tissue, skeletal muscle, nervous system,

kidneys and lungs
Collaborations with clinical researchers are the key for clinically oriented research and easy translation of experimental findings

HFpEF, heart failure with preserved ejection fraction.

It must be emphasized that most HFpEF patients are elderly and
have various co-morbidities that may preclude dynamic exercise
or confound interpretation. Still, a cardiopulmonary exercise test
is an invaluable diagnostic tool,92 measures of submaximal and
peak effort were shown to be reliable in HFpEF patients93 and
have been used as strong end-points in RCTs.94 Stress and effort
testing is increasingly advocated also in echocardiography, but it
remains unclear which variables should be sought and under which
protocol.95 A reasonable alternative when dynamic exercise is not
feasible might be load or pharmacological manipulation. Although
it may be technically challenging to have joint hemodynamic evalua-
tion and effort testing with maximum oxygen consumption, such an
integrated evaluation of all determinants of effort intolerance could
be an important contribution from experimental models of HFpEF.
Joint afterload and preload elevation with selective vasopressors
is potentially helpful as appraised experimentally.63 Pacing-induced
tachycardia is another alternative, whereas the role of dobutamine
is debated, as some studies suggest it may impair E ́ response in
HFpEF, while others show smaller increases in systolic wall tension
than dynamic exercise, even decreasing end-diastolic volume and
myocardial oxygen consumption in the hypertrophic heart, without
worsening DD.63

Gaps in evidence, what do we
need for a systems biology
approach?
Due to the lack of availability of samples from HFpEF patients
and the lag in experimental modelling, our view on cellular and
molecular determinants of HFpEF is poorly formed. Ageing and
co-morbidities drive microvascular inflammation32 and myocardial
stiffness31,49 but this may be only one of the contributing processes.
Indeed, HFpEF carries an entirely distinct microRNA signature
when compared with HFrEF.96 Studies addressing proteomics ..
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are lacking. Moreover, it is likely that these pathways will diverge
according to underlying co-morbidities. The role of genetic vari-
ants is poorly understood and will require large discovery-driven
population-based studies such as those undertaken for LVH.97

Mimicking these gene variants in animal models may provide impor-
tant clues. The role of oxidative stress, mitochondrial dysfunction
and altered bioenergetics in ageing and co-morbidity-induced
myocardial remodelling is well established. Benefits of experi-
mental therapies directed at these targets have been reported in
hypertension and ageing models98 but clear documentation in clini-
cal or experimental HFpEF is needed. The role of afterload, loading
sequence and reflected waves should be addressed specifically on
HFpEF models. Indeed, a thorough characterization of vascular
and microvascular function in experimental HFpEF is warranted
and will pave the way for preclinical testing. Unveiling the complete
pathophysiological scenario, however, will require an in-depth
understanding of the cellular disturbances and complex interplay
between endothelium, cardiomyocytes, and fibroblasts99 as well as
the high-order interactions with other tissues (see supplementary
material online, Figure S1). Dysfunctional interactions between
cardiac cell-types have been proposed, but while various inter-
cellular communication disturbances have been well documented
in related experimental models and cell culture experiments, few
were documented in HFpEF.99 Further developments in co-culture
methods and conditioned medium exposure applied to HFpEF
samples may provide important clues, as well as research on
engineered tissues and human induced pluripotent cell-derived
cardiomyocytes.100 The high-order cross-talk between the heart
and lung, skeletal muscle, adipose tissue (AT), and kidney in HF is
increasingly acknowledged,99 but its particular features in HFpEF
remain poorly investigated. The lungs are the first organ that are
directly affected in HFpEF, pre-capillary and post-capillary compo-
nents, as well as pulmonary vascular ED have been well established.
The potential neuroendocrine contribution of endothelial lung
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cells and macrophages to LV disease progression in HFrEF101 will
likely also be involved in HFpEF. Growing evidence that supports a
role for lean body mass loss3 and histopathological and functional
disturbances in skeletal muscle biopsies has been documented.102

Chronic kidney disease is highly prevalent and constitutes a major
determinant of outcome in HFpEF, the common link may be
ED and inflammation. The interactive role of renal and cardiac
disturbances has been recognized in HFpEF models.103 Finally,
the AT may be an important contributor to HFpEF.104,105 The
ageing AT is infiltrated by macrophages and becomes highly active
as a source of adipokines/cytokines which may be enhanced by
co-morbidities.106 Adipokines may modulate HFpEF progression.
Epicardial AT has been associated with DD in metabolic syndrome.
Shared blood supply and neighbourhood epicardial AT may exert
important vasocrine and paracrine effects. An important note is its
virtual absence in small animals. Finally, a systems biology view of
HFpEF will require additional understanding of the roles of ageing
and gender in each HFpEF model or experimental set-up.

Conclusions
As the mechanisms and features of HFpEF are progressively
unveiled in clinical and epidemiological studies, basic and transla-
tional researchers must be aware of its complexity and may profit
from guidance both in terms of experimental model and experi-
mental set-up selection as in terms of the most relevant investiga-
tion topics. Further access to myocardial samples of representative
HFpEF patient cohorts that enable functional and molecular phe-
notyping is warranted. Animal models should be selected based
upon their specific features, favouring those that have effort intol-
erance or impaired cardiovascular reserve as a clinical counterpart,
at least for preclinical therapy testing. The roles of ageing, gender,
and specific co-morbidities in HFpEF progression have been poorly
explored and should be addressed in these experimental models.
Functional evaluation should rely on multiple experimental set-ups,
ideally ranging from in vivo organ function to ex vivo or in vitro
cell function tests. To attain a systems biology outlook of HFpEF,
systemic influences and higher-order cross-talk with other organs
should be further investigated, as well as disturbed intercellular
communication mechanisms within the heart. Practical recommen-
dations for translational researchers on HFpEF are provided in
Table 2.

Supplementary Information
Additional Supporting Information may be found in the online
version of this article:
Figure S1. Systemic changes and intercellular cardiac communica-
tion disturbances underlying heart failure with preserved ejection
fraction (HFpEF).
Table S1. HFpEF and HFpEF-related experimental models.
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