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Chapter 1

Introduction

1.1 Energy consumption overview

Worldwide energy consumption and CO2 emissions are constantly increasing year by year during the
last decades as described in the latest reports of the International Energy Agency [1]. Moreover,
forecasts for future show a continuation for this trend, mainly due to the raising energy demand of the
emerging economies and to the increase of world population [1]. During year 2020 Green House Gas
(GHG) emissions and energy requests were affected by the COVID-19 pandemic, hitting respectively
a -4.00% and -6.00% variation compared to the previous year [2]. However, thanks to the recover-
ing economy and to the lessening of the pandemic effects on transport and productive sectors, both
parameters started to rise again in 2021, with energy demand surpassing the 2019 levels and GHG
emissions being slightly below [2].

The forecast for the next years shows an increase of fossil fules demand, with natural gas request being
on course for the greatest rise among them. Also electricity demand is heading for its fastest growth
in more than ten years [2]. The positive aspect is that more than half of the electricity demand is
espected to be supplied through renewable sources.

Regarding the energy final use, building heating and cooling proved to be one of the most rapidly-
increasing components. In fact the building sector energy consumption covers nearly 33% of the total
energy [3] and more than 40% of the world primary energy [4]. Regarding the energy sources, it
exploits more than half of the electricity and one-third of the global natural gas demand [5].

For what concerns the situation in the European Union, it is again widely assessed that the residential
sector accounts for a great part of the total energy usage [6, 7], and of Green House Gas emissions
[8], covering a 26-28% percentage for the former and 19% for the latter. In Italy, this feature is even
more relevant because of the residential sector accounting for about 36% of the total national energy
consumption [9].

The building energy performance however also has a significant potential of investment: in fact in the
fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) it is indicated
among the energy sectors as the one with the highest economic mitigation potential [10]. Thanks
to refurbishment interventions on both envelope and plants and to the development of cutting-edge
technologies regarding plants performances and management, the energy consumption of new and
existing buildings can be reduced by about 50% and 30% respectively [11].

1.2 Building energy simulations

Many researches have been carried out to reduce the impact of the residential sector on the natural
environment and, at the same time, to make building-plant systems resilient to climate changes. About
this scope, it has to be considered that many factors influence the energy performance of a building;
the International Energy Agency (IEA) Annex 53 [12] identified the most influential ones [4]:
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1. INTRODUCTION

� Climate;

� Building envelope;

� Building equipment;

� Operation and maintenance;

� Occupant behaviour;

� Indoor environmental conditions.

It is evident that is fundamental to properly assess the correlations and reciprocal influences that
all these aspects have on each other. About this matter, it is important to consider that buildings
behavior is complicated, non-linear and dynamic [3]. Moreover, a reliable prediction of the long-term
energy behavior of the buildings is fundamental to reach good energy performances. To fulfill all these
purposes, simulation softwares have been developed and used in the last decades [10, 13]. Through
these tools, simulations of building-plant systems can be carried on with different levels of accuracy
depending on the type of analysis chosen. About this scope, three main types of energy simulation
can be identified based on the timestep considered during the process:

� Stationary: it uses annual averages of the climatic parameters values throughout all the year,
regardless of the analyzed timeframe. As a consequence it requires little computational power
but also has poor precision of the results and therefore is rarely used;

� Semi-stationary: this type of analysis uses monthly averages of the climatic parameters values
for every month of the year. It requires more computational power than the stationary one but
provides good quality of the results. Because of this balance between computational burden and
output precision, and of its utility in certificating the compliance with legal regulations, it is
widely used in the common design practice;

� Dynamic: the dynamic type uses values of the climatic parameters computed on hourly bases.
This leads to high-precision results although requiring great computational power; because of
this, it is usually carried on only for research purpose.

These tools are valuable methods to predict the future performance of the buildings [3, 14, 15] and
can be used to carry on processes like building design or retrofit, overheating risk evaluation, heating
and cooling system design, new system installation impact and many more [10]. The simulation codes
are also very useful because they take into account solar radiation, thermal mass, air humidity and
other important parameters not considered in simplified analysis [10, 16].

1.3 Detecting climatic data

To properly assess the evolution of climate and of buildings-plant systems performances, the availabil-
ity of extensive and reliable historic climatic data is fundamental. About the former aspect, it becomes
easier to calibrate the climate models using the recordings if the historical data have a good quality.
Regarding the second issue, having reliable data means being able to impose the correct boundary
conditions in which the building-plant systems are working.

Because of this requirements, the climate conditions need to be measured and recorded for as many
locations as possible and for the longest timeframes available. This task is fulfilled by the detecting
stations, defined as ”meteorological stations at which observations are made and trasmitted automat-
ically” [17].

Most of the climatic parameters are reported as 1 to 10 min averages, obtained through a linearisation
of the dedicated sensor output. In Table 1.1 are reported the parameters that are usually detected by

2



1. INTRODUCTION

the meterological stations with the associated detection ranges and uncertainties due to the instru-
ments used. However, it has to be specified that not all the stations detect the same parameters pool
or use the same units of measure, thus leading in some cases to less information available or to the
need to convert data to the appropriate units of measure.

Table 1.1: Climatic parameters usually detected by meteorological stations.

Variable Range Uncertainty

Atmospheric pressure 500 - 1080 hPa 0.15 hPa
Temperature -80 to 60 °C 0.2 K
Humidity 0 - 100 % 3%
Wind speed 0 - 75 m/s \
Wind direction 0 - 360 ° 5 °

Precipitation 0 - 500 mm max(5 %, 0.1 mm)
Sunshine 0 - 24 hours max(2 %, 0.1 hours)
Solar radiation \ 5 - 8 %
Cloud height 0 - 30 km 10 m
Visibility 0.01 - 100 km max(20 %, 0.02 km)

Tipically the required parameters used in simulations are: temperature, humidity, solar radiation and
wind characteristics, being consequently the most detected ones. In the following a brief description
of the instruments used to detect these parameters is reported.

� Temperature: many established measurement techniques exist, however those usually adopted
in meteorological stations are resistance thermometers or thermistors [18]. This measurements
usually requires linearisation and the instrument has to be shielded from solar radiation and
artificially ventilated, avoiding aerosol and drizzles content in the ventilation air flow rate [18].

� Humidity: it is usually detected by using a hygrometer, an instrument that can measure
different air properties such as wet-bulb temperature, relative humidity, humidity ratio and
dew-point temperature. Among these, the preferred parameter to be detected is the relative
humidity, because of the sensors assigned to its detection having a very reduced cost. However,
critical aspects may occur when dealing with pollutants in the air or with air temperatures below
0 °C. On the other hand, dew-point temperature measurement is the most promising technique
although it presents high sensibility to power failures and, since the detected parameter is a
temperature, radiation shields and ventilation are required, as already stated above.

� Radiation: the most common measurements performed by meteorological stations regards the
global value of the solar radiation, usually recorded on horizontal plane. This is the total irradia-
tion evaluated in a specific point and it is the sum of the direct, diffuse and reflected components.
These three elements can be directly measured however, because of the high cost of the required
instruments to detect these components, usually only the global value is detected through the use
of pyranometers, with the meteorological stations usually having at least two of them installed
upon. The pyranometers are characterized by an hemispherical field of view [19] and can also
measure diffuse horizontal radiation, if installed with a shadowing ring. Regarding the direct
horizontal radiation it can be obtained, assuming the absence of the reflected component, by
subtraction between the global and the diffuse values. The direct normal radiation or DNI is
defined as the direct irradiance received on a plane normal to the sun [20] and it is measured
through the use of the pyrheliometer, an instrument characterized by a narrow field of view [19]
and by the need of being installed on a solar tracker to measure the DNI during the day because
of the solar apparent path.

� Wind: two wind characteristics are recorded: speed and direction. Regarding the former,
the instrument most widely used to detect it is the anemometer, composed by three or four
hemispherical cups, radially displaced from a vertical support and stimulated to rotate by the
wind [21]. The main issue regarding this tool is related to the risk of mechanical parts freezing
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1. INTRODUCTION

during cold periods; however this issue can be solved by using electric heating resistances [18].
Wind velocity values are reported as 2 to 10 minutes averages, while wind gusts are usually
based on 3-second measurements. Regarding the wind direction, it is detected through wind-
vane devices with digital encoders [18].

It has to be noted that, among the climatic parameters used in the energy simulations, the solar
radiation, fundamental to carry on these analysis, has been disregarded for a long time in the climatic
datasets. Nowadays it has been included in nearly all the meteorological stations but it remains the
most problematic parameter to deal with [5].

It is then evident that climatic data must be carefully checked and, if necessary, treated before being
used in energy simulations.

1.4 Climate evolution and its impact on building-plant systems

As already stated, climate is one of the most influential factors for the building energy simulation
and, among the required inputs in simulation tools, the climatic data are one of the highest source of
uncertainty [5]. In fact the simulation codes need several data like the hygrometric air conditions, the
solar and wind data, affecting both the building energy behaviour [4] and the HVAC sizing outcomes
[3]. Therefore, deepening the analysis of the mutual interactions between building energy performance
and climate is fundamental.

However, only in the last decades the analysis of climate and of its changes has surged to a global
attention. Today, the world scientific community has recognized the impact of the human activities on
global warming and climate in general [22]. In literature, several authors focused their studies on the
global warming effects on building energy performances, showing that climate change has significant
impacts on building energy consumption [3, 16, 23, 24, 25] and that has become crucial for both mit-
igation and adaptation purposes [26, 27]. In fact, even if sometimes the projections show a reduced
impact of climate change in the short term for many aspects, significant variations are forecasted for
long term scenarios and should be taken into account into the design procedures. Generally, depending
on the climate type, a decrease of the heating energy consumption and an increase of the cooling one
is forecasted [10]. The overall energy consumption trend is also strongly influenced by the climate
typology [25, 28]: in fact an energy reduction is estimated for cold climates [29], whereas an increase
may occur for warm areas [10, 29].

Due to the recent climatic changes recorded around the globe, with an increasing trend of temperatures
[30], the importance of the cooling performance of the buildings has considerably grown. In fact, if
in the recent past the main trend was to insulate the buildings envelope to decrease winter heating
energy usage [31], nowadays the designers are more concerned about cooling related problems.

1.5 Adapting to climate change: from worldwide to local projects

1.5.1 The Paris Agreement

Climate change is becoming more and more a difficult task to deal with, causing frequent extreme
events, altering the balance of the ecosystems, affecting the availability of natural sources for large
parts of human population. As a consequence it is greatly influencing many aspects of human life like
food and water availability, energy consumption rates, health issues, damages to vital infrastructures.
It has then become of the utmost importance for the public institutions to be able to prevent and
adapt to these phenomena, thus minimizing the effects and damages on human society. Within this
context, many initiatives have already been developed, both on worldwide and local scales. About the
former, the most notorius initiative developed is the Paris Agreement on Climate, adopted in 2015
and aiming to limit global warming compared to the pre industrial age below 2 °C and pursuing efforts
to limit it to 1.5 °C. It also aims to improve the capacity of countries and local governments to deal
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1. INTRODUCTION

with the inevitable effects of climate change and support them in their efforts [32].

Regarding this last aspect the Paris Agreement is coupled with the Covenant of Mayors, launched
in 2008 in Europe, and with the development of local plans to adapt to and mitigate climate change
effects. This interconnection allows to develop action plans and strategies on both worldwide and local
scales to obtain the greatest benefit for both people and environment.

1.5.2 Glasgow COP26

In November 2021 the COP26, the twenty-sixth United Nations Climate Change Conference, has been
held in Glasgow. The Climate Change Conferences were established in 1994 and are held annually
in order to analyze the progresses in tackling climate change and establish legally binding actions for
developed countries to reduce GHG emissions.

The expectation for the COP26 was that the parties would commit themselves to more ambitious
goals than those set by COP21. At the end of the conference an agreement was reached, signed by
the 197 countries participating, and known as the Glasgow Climate Pact. The Pact aims to limit
the increase in global temperature to 1.5 °C, already foreseen by the Paris Agreement, and therefore
points out to the necessity to halve GHG emissions in the next decade and to reach zero net carbon
emissions by the middle of the century. The countries that have already signed the Paris Agreement
have also committed in updating the Nationally Determined Contributions (NDCs).

The Glasgow Climate Pact strongly encourages the signing countries to develop mitigation and adap-
tation policies; the first ones to reduce the impact of human activities on the environment and the
second ones to adapt to the changing climate and reducing its effects on human life. Moreover, great
attention is posed also on the financial aspect of the topic, encouraging the governments to invest
much more in the transition to a green economy and also to involve private investors in the process.

1.5.3 The European Covenant of Mayors

The European Covenant of Mayors aims to bring together local governments (mainly on city scale)
to implement measures to tackle and adapt to climate change. It was launched in 2008 with the aim
to reach and if possible exceed the European climate and energy standard targets. The project had
and it’s still having great success, counting nowadays more than 10,000 local and regional partners
scattered across 53 different countries. Within this context, Italy plays the main part with 4,891
signatories, accounting for almost half of the total. The main objectives of the Covenant of Mayors
can then be summarized as:

� Increasing the decarbonisation of the territories;

� Grant to the citizens a secured access to renewable and sustainable fonts of energy;

� Implementing adaptation strategies for climate change effects.

In order to achieve such results, the signatories pledge action to support the European objective of
40% Green House Gas emissions reduction within 2030 and to develope an approach to draft both
mitigation and adaptation strategies to tackle climate change. This political goal have to be trans-
lated into practical measures and projects, therefore the signatories commit to submitting, within two
years following the date of the local council decision, a Sustainable Energy and Climate Action Plan
(SECAP), highlighting the key actions they plan to develop [33].

An important aspect of this process is the tracking of the progresses made by the municipalities to-
wards their objectives. To do so the signatories are requested to submit a Monitoring Report every
second year after the adoption of the SECAP plan; moreover every four years the emission inventory
of the plan has to be updated in order to highlight the progress related to Green House Gas emissions
and energy consumption reduction.
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Figure 1.1: Covenant of Mayors statistics [https://www.eumayors.eu/about/
covenant-initiative/covenant-in-figures.html].

Another fundamental characteristic of the Covenant is the sharing of key actions between the munic-
ipalities in order to provide to all the participants good practice measures as sources of inspiration to
develop their own SECAPs.

1.5.4 The Interreg ITA-SLO Secap Project

Within the broader context of the Covenant of Mayors, many fellow projects have been developed on
a regional scale to sustain this kind of initiative; the Interreg ITA-SLO Secap Project is one of them.
The purpose of this project is to stimulate the sustainable development of human activities within the
cross-border territory composed by the metropolitan city of Venice, the Friuli Venezia Giulia region
and the western part of Slovenia, as it can be seen in Figure 1.2.

Figure 1.2: Interreg ITA-SLO Secap Project program area. [https://www.ita-slo.eu/sites/
default/files/progetti/SECAP%20POSTER%20approved_0.pdf].

The project aims to develop, as already stated in the Covenant, adaptation and mitigation measures to
tackle climate change. This have been done also by sharing instruments, methodologies and datasets
between the cross-border entities, thus generating positive effects on the local pianification for all the
program area.

The transition towards a low-emission society will be carried on also by evolving the current SEAPs
(Sustainable Energy Action Plans) into SECAPs (Sustainable Energy and Climate Action Plans) for
some municipalities located in the program area [34]. In Figure 1.3 the progress state of the adaptation
and mitigation policies for Friuli Venezia Giulia region is reported.
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1. INTRODUCTION

The main objectives of the Project can then be resumed as follows:

� Developing scenarios illustrating the possible impact of climate change on the territory and
laying the foundations for the cross-border strategy;

� Developing a single cross-border strategy for climate change mitigation and adaptation;

� Guiding and accompanying municipalities in drawing up plans that combine mitigation/adaptation,
with a view to integrated, low-carbon planning, typical of the Mayor Adapt model.

Many important actors are included like the Universities of Trieste and Venice, the Friuli Venezia
Giulia, Veneto and Ljubljana Regions, Area Science Park, Italian and Slovenian regional agencies for
energy and others. This compound of both institutional and research partners made it possible to
generate innovative methodologies easily applicable in the future by public institutions on a local scale.

Important results have already been achieved within the Project like the study on the impact of cli-
mate change on the program area with methodological reports for the involved municipalities or the
creation of an inventory of strategies, measures and projects, which can be used to increase settlements
resilience to climate change. Another important achievement is the development of a bilingual online
database regarding energy, climate and environment informations and of an Italo-Slovenian atlas of
territorial vulnerability for both present and future climate phenomena. All of this will be used as a
basis to evolve the SEAPs of the program area into SECAPs, promoting at the same time the entry
of the municipalities still outside of the SEAP-SECAP process.

The Project however does not aim to fully develop the adaptation and mitigation strategies, but rather
to provide reliable bases and experiences that could help, both directly and indirectly, the cities to
reduce their energy use in public and private buildings [34].

Figure 1.3: FVG municipalities that signed the Covenant of Mayors 2020 (light green), SEAP
presented to the Covenant of Mayors but not monitored (green), SEAP approved by the Covenant
of Mayors and monitored (dark green), municipalities that signed the Covenant of Mayors 2030
(light blue), SECAP presented to the Covenant of Mayors 2030 (dark blue)
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1.6 Research objectives

This research falls within the Interreg ITA-SLO Secap Project, being the author included in it as a
research fellow for all the duration of the PhD cycle. Therefore, the main objective of this work is
to develop a workflow that could be used as a starting point by the municipalities of the program
area for drafting part of their energy and climate adaptation policies, focusing on the energetic as-
pect of the topic. The other partners treated many other aspects of the project for which they were
more suited. Dynamic simulations of building-plant systems have been carried on and applied to the
different topics of this research in order to provide support for the presented methodologies and results.

Being this research included in the Interreg ITA-SLO Secap Project, the performed studies mainly
focus on Italy and on the Project’s program area, aiming to tackle some of the principal topics that the
municipalities should take care of when developing their SEAPs and SECAPs by proposing practical
approaches, and their results, regarding important arguments like:

� The main issues regarding actual climatic data and their treatment. When developing
climate mitigation policies, the base material to work with is climatic data. A workflow was
then developed in this research to perform climatic data quality assessment to obtain usable
data for every required simulation. Moreover, given the increasing importance of buildings
cooling performance, as already stated in Section 1.4, a review of the European standard to
compute climatic data used in cooling plants sizing has been carried on. Finally, a process to
properly represent actual climate was developed and applied to a sample location included in
the Project’s program area;

� The modeling of climate change. To support the development of mitigation measures that
have to consider the evolution of energy consumption patterns in the future, an analysis of
climate change has been carried on in this research. This led to a standard procedure that
municipalities could follow when dealing with this kind of analysis, starting from the correction
of climate models results, all the way to the analysis of extreme events evolution and to the
projection of actual climatic data into the future;

� The assessment of the real performances of insulating systems. Being the improvement
of thermal characteristics of buildings one of the main tools municipalities could exploit to
reduce human cities impact on climate, it is of the utmost importance to correctly assess the
performances of the technologies used in this field. In this research an analysis of internal
insulating systems performance has been carried on to highlight how much a wrong evaluation
of its behavior could affect the final result of a refurbishment and giving the municipalities an
approach to exploit to properly assess insulating packages performances;

� The optimization of building-plant systems energy refurbishments. The real perfor-
mance of a building-plant system is affected by many variables and it is important to consider
this aspect when dealing with refurbishment practices. Being climate change one of these vari-
ables, it is essential for municipalities to develop refurbishment measures that could deal well
with various climatic boundary conditions; this research then proposes an approach to tackle
such problem.

Although many researches are already present in literature on how to tackle the single topics presented
here, a comprehensive approach to address all of them together with the specific aim to develop
mitigation and adaptation policies has not been developed yet. Being these policies a crucial part of
the process to counter climate change, this research aims to be a valuable basic tool to be exploited,
extended and improved to help countering climate change.
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Chapter 2

Climatic data treatment

2.1 Problem definition

As already described above, dynamic energy simulations are heavily influenced by climate and are
usually carried on by using climatic datasets collected on hourly bases. The sets mainly include pa-
rameters like dry-bulb temperature, solar radiation, relative humidity and wind speed.

The availability of extensive and reliable climatic data is crucial and this necessity could often be a
problem because of both poor quantity and/or quality of available material. In fact, usable data for
different locations always vary in length, with some sites having long timeframes of detected material
and others having only few years of recording. This could be an important limitation when choosing
a location to analyze because of the international standards recommending minimum amounts of de-
tected data to be used [35]. Moreover, it is essential to have usable material to work with, implying
high quality of raw information, however the datasets often present unusable, unreadable, or poor data.

These issues are caused by the operation of meteorological stations, which are subject to many po-
tential problems like, for example, black outs, severe working conditions and storage software failures.
Furthermore, it sometimes happens that during the data collection and the subsequent post-processing,
human and software errors may cause the loss or corruption of some information. Finally, as stated
before, the solar radiation parameter proved to be the most problematic parameter to deal with [5].

Considered all these critical issues, it is of particular importance to carry out a qualitative analysis of
the available raw data in order to assess which one can be used for energy simulations and which one
to discard because of their low quality. In fact, the use of unchecked climatic data could lead to large
discrepancies between the predicted and measured performance of the building systems [36, 37].

Many authors have faced these issues using different approaches. Regarding the importance of data
availability on energy simulations, Murano et al. [38] compared three official climatic databases to
highlight the main differences between them. Datasets were obtained from the national standard UNI
10349-1:1994 [39], from the ENEA database [40] and from the EPW files of EnergyPlus climatic data
[41]. A quasi-steady-state analysis was then performed for an NZEB building case study, showing rele-
vant differences in energy performances for both heating and cooling due to the different datasets used.

In order to tackle the common scarcity of climatic data, Cannistraro et al. [42] approached the problem
in a particular way; instead of selecting the widest dataset available and filling the possible gaps with
interpolation-like methods, they decided to reduce the amount of data to be used. In fact, through
the methodology proposed by Erbs et al. [43], they calculated the hourly values of temperature for
29 European locations starting from the mean monthly temperatures and from the amplitude of di-
urnal variations leaving unchanged all other climatic parameters. By using the original and modified
climatic data they carried on energy simulations of three sample modules, showing differences of the
final energy consumption below 9% between the results obtained by applying the two climatic datasets
to the three modules.
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2. CLIMATIC DATA TREATMENT

Another approach was carried on by Yang et al. [44] that developed an automated system for climatic
data scraping, filtering and displaying, originally created for climatic analysis applied to agricultural
prediction. The tool checks for erroneous information (like relative humidity over 100%), removes them
and treats them as missing and fills the gaps in the dataset using methods like Linear Interpolation,
Adjusted Historic Average, Spatial Interpolation, Functional Estimation or Weather Data Generator
on the bases of gaps length and parameter to be treated.

2.2 Analysis scope

In order to support the development of the Interreg ITA-SLO Secap Project, a quality check of the
available Italian climatic data has been carried on in order to evaluate the overall status of the ma-
terial detected by the meteorological stations located in the Italian territory. This work should give
an overview of the stations functioning and of their eventual failures in order to address the main
issues in detecting climatic data. Moreover, another aim is to create a standard review process of the
climatic data to exploit when dealing with this procedure.

Moreover, given the increasing importance of the cooling component for building energy consumption,
a review of the EN ISO 15927-2 standard method for selecting Cooling Design Days has been devel-
oped, leading to a sensitivity analysis of its results and to the development of an alternative selection
method in order to make the process clearer for the users and easier to automate.

Finally a procedure for representing actual climate through the generation of a Test Reference Year
has been developed.

2.3 Italian raw data quality analysis

Raw climatic data were obtained from local meteorological stations operated by Italian regional agen-
cies for climate. The stations are placed in 108 sites throughout Italian territory and record the values
of dry-bulb temperature, total solar global radiation, relative humidity and wind speed on hourly
bases. Raw climatic data have been measured according to the methods specified in the World Mete-
orological Organization Guide.

As previously stated, this material cannot be directly used for energy simulations because of the
common issues affecting this kind of data, like having many missing values in the datasets. In fact
days in which there are too many data gaps cannot be used as reliable inputs for whatever analysis
because they cannot precisely represent the real climate of that timeframe. Moreover, writing and
syntax errors are also detected in the climatic sets. Therefore, in order to obtain a solid and computable
data pool for energy analysis, a data quality treatment is necessary.

2.3.1 Quality filters

After a preliminary correcting action on syntax and writing errors, every dataset has been treated
through the imposition of four quality rules, described below, in order to obtain a database of days
valid for energy analysis. The four rules that are to be fulfilled for a day to be considered valid are:

� Rule A: Every climatic parameter has to be valid in at least 18 hours during the day. This
condition has to be satisfied in order to have consistent data to be used in the computation and
avoids the presence of too many gaps to be filled with interpolation in the following steps [45];

� Rule B: The first and last values of the whole dataset have to be valid for all parameters, if not
the first and/or last day of the set have to be considered invalid. This requirement is necessary
because, if interpolation of values is to be taken in the first/last day, a valid data may be required
in the first/last hour to compute the interpolated values;
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� Rule C: For every climatic parameter, a maximum of 6 consecutive hours of invalid data is
acceptable across two contiguous days. This limitation aims to avoid the problem of interpolating
data across too long time intervals as, for example, near stocks of 5+5 hours of invalid values
[45];

� Rule D: Solar radiation values have to be valid in all the hours comprised between sunrise and
sunset. This rule is the most restrictive one because if solar radiation is invalid in just one hour,
the whole day is to be considered unacceptable. This is due to the fact that data gaps are filled
through linear interpolation and, if this approach is consistent for parameters like temperature
and relative humidity, it cannot be extended to solar radiation because the latter does not vary
on linear bases.

Through the application of these rules on the 108 Italian stations, the pool of valid data for each one
has been obtained. In first instance, it has been noted that the number of detected days varies greatly
between the sets, depending on the recording time of the station itself. This fact is an additional aspect
to be carefully considered when dealing with climatic data, since a minimum amount of recorded days,
ten years to be precise, is recommended to obtain reliable datasets in representing the actual climatic
situation [21]. In Figure 2.1 the total amount of detected data is reported for each station.

Figure 2.1: Italian meteorological stations detected data amount.

As it can be seen, approximately half of the stations (55) don’t reach ten years of recorded data. Most
of these stations (35) are located in the southern part of Italy, thus highlighting major problems in
having long timeframes of recording in this part of the nation.

2.3.2 Results

The percentage of days rejected because of the quality rules greatly varies between the Italian stations,
however data quality have been discretized in three main categories: a good one displaying less than
25% of rejected days, the acceptable one that shows an amount between 25 and 50% of rejected days,
and the bad one, characterized by more than 50% of rejected days. Figure 2.2a presents the percentage
of locations falling in each category. It can be noted that the majority of sites presents a good data
quality, a quarter of them an acceptable behavior and only 5% of locations falls into the bad category.

The influence of the four quality rules on the rejection process can be observed by the inspection of
Figure 2.2b, which reports the relative occurrence of each rule considering the total number of not
respected rules in the various datasets. The first notable feature is that Rule B, applied to the first
and last days of a dataset only, obviously has the lowest effect on the quality check. Generally, rules
A, C and D show a similar impact in rejecting values from each dataset, with the latter having a
slightly minor impact than the other two. This last one is an interesting feature because Rule D,
regarding the solar radiation, is the most restrictive one but does not demonstrate a predominance
over the others. This reflects an overall good quality of the instruments devoted to the detection of
this climatic parameter.
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(a) Percentages of locations having good (green),
acceptable (orange) and bad (red) data quality.

(b) Average quality rules influence on the rejection
of days among all the locations.

Figure 2.2: Quality check results for 108 Italian meteorological stations.

Once having defined the days that can be used for simulations, there are still gaps in the pool to be
filled to obtain continuous sets. This is done through the linear interpolation of values; the number
of interpolated hours for each parameter, solar radiation excluded, are reported in Figure 2.3.

Figure 2.3: Hours of interpolated data for temperature (blue), relative humidity (orange) and
wind speed (green) after the application of the quality filters.

At a first glance it is evident that four locations, highlighted in Figure 2.3, Aquila (AQ), Bolzano (BZ),
Prato (PO) and Trento (TN), have a relevant amount of hours being interpolated, reaching peaks of
over one thousand hours in Bolzano and Prato. All the other locations, however, show a much smaller
amount of interpolated hours, with, at worst, three hundred filled gaps. It can then be deduced that,
once the invalid days are removed from the dataset, the quality of the remaining ones is fairly high.

An interesting feature is that all the four worst stations mentioned above are located in hilly or moun-
tain environment, thus highlighting the possibility of a correlation between this kind of environment
and the major issues in detecting climatic parameters. It can also be noted that the majority of the
gaps to be filled regards relative humidity and wind speed data, while air temperature needs only
minor adjustments.

The qualitative analysis of raw climatic data highlighted a heterogeneous behavior throughout the 108
Italian locations. One problem highlighted by this research is the amount of data available, with many
locations presenting less than ten years of data recorded, the minimum time length recommended by
the standards to have reliable data. On the other hand, more than 70% of the stations present a good
data quality, with less than 25% of days rejected, showing a good detection and storage capacity of
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the meteorological station system. Finally, the interpolated hours display that major number of gaps
are present in relative humidity and wind speed values, then highlighting the presence of diffuse and
recursive criticalities concerning the instrumentation dedicated to the detection of these parameters.

2.4 Heading to warmer temperatures: the importance of cooling
plants sizing

As already stated, the recent climatic changes leading to increasing temperatures in all seasons have
heavily enhanced the importance of the cooling performance of the buildings. Because of this pattern,
it becomes more and more important to correctly size the cooling systems, even more in refurbished
buildings, where overheating risk due to major envelope insulation is higher [46, 47].

In order to determine the cooling load the definition of the external boundary conditions, that are a
series of data defining the solar and thermo-hygrometric parameters of the external climate, is obvi-
ously fundamental. They affect the heat gain terms and the cooling load results: as a consequence,
climatic data is a fundamental factor when sizing an HVAC system [3].

The climate parameters used in the sizing process can be obtained with different statistical methodolo-
gies and they represent extreme conditions assessed with confidence levels or percentiles. Regarding
the hourly data for design cooling load, the reference method for European users is the one proposed by
the EN ISO 15927-2 standard [35]. For every calendar month the standard aims to identify real days
within the analyzed dataset that impose a cooling load likely to be exceeded for very low percentages
of cases. These days are named Cooling Design Days and their selection process is here described,
analyzed and formally reformulated.

This study supports the updating of the national technical standard on climate data for the design
of technical building systems. The Italian Thermotechnical Committee Energy & Environment (CTI)
[48], a not-for-profit organization which is part of UNI (Italian Certification Body), is currently work-
ing on updating the UNI/TR 10349-2 [49] technical report which represents the national reference
document which provides climatic input data for the application of technical standards that support
the EPBD Directive. Due to this aspect and to the Cooling Design Days being the main method to
size cooling plants in European practice, the analysis were centered on this particular sizing method,
leaving out other approaches like the one focusing on the Cooling Degree Hours.

2.4.1 The EN ISO 15927-2 Cooling Design Days selection method

Despite being the reference method for Europe, the process described in the EN ISO standard is
difficult to interpret and is based on a cyclical process challenging to implement. The methodology to
extract monthly Design Days for cooling systems from measured data proceeds as follow.

It first defines a set of parameters to be used in each calendar month (i.e. all the January data taken
together, all the February data taken together, etc.) to obtain individual days of hourly data that
impose three different risk levels, RL5, RL2 and RL1, defined through a cooling load likely to be
exceeded by 5%, 2% and 1% of cases respectively. To select the monthly Design Day, two parameters
are strictly required: daily mean dry-bulb temperature and daily total global solar radiation. Other
parameters can be optionally used, like daily mean dew-point temperature, daily dry-bulb tempera-
ture swing and daily mean wind speed or any other parameters the designer considers relevant for the
case study analyzed.

The first step is to calculate the daily values of the considered parameters for each day of the dataset.
Then, for each calendar month and for each one of the three risk levels RL, the percentiles of the used
parameters and reported in Table 2.1 must be computed. The method then defines for each parameter
an initial neighborhood of the aforementioned percentiles using the ranges listed in Table 2.1.
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Table 2.1: EN ISO 15927-2 order (i), parameters, ranges, steps and percentiles.

i Parameter EN ISO range (Ri) EN ISO steps(si)
Percentiles Pi [%]
RL1 RL2 RL5

1 Daily mean dry-bulb temperature ± 0.5 °C ± 0.1 °C 99 98 95
2 Daily total global solar radiation ± 0.05 kWh/(m2 day) ± 0.01 kWh/(m2 day) 99 98 95
3 Daily mean dew-point temperature ± 0.5 °C ± 0.1 °C 99 98 95
4 Daily dry-bulb temperature swing ± 0.5 K ± 0.1 K 1 2 5
5 Daily mean wind speed ± 0.5 m/s ± 0.1 m/s 1 2 5

For each calendar month, once defined the percentiles and relative ranges, the days for which all
parameters fall within the ranges of Table 2.1 are identified. Following this scheme, three events could
happen:

1. Exactly one day is identified;

2. No day is identified;

3. Two or more days are found with all the parameters within the ranges.

In the first case scenario, the identified day can be directly used as monthly Cooling Design Day with
no further selection work. If no day is identified, the initial range for each variable is increased using
the steps defined in Table 2.1 and following the parameter order there reported, until one day is found.
On the other hand, if two or more days are initially found, the ranges are reduced using the same
steps and order of Table 2.1, until only one day remains.

Such method presents two main issues: the first is the iterative nature of the process that leads to
an unpredictable number of cycles to be completed to achieve the goal; the second is the trouble to
interpret the method itself following the explanation given in the standard. Moreover, it does not
define the reference precentiles and the steps to use for other parameters considered in the analysis.
In order to resolve some of these issues a new process is here proposed: the Coordinates Method. This
process maintains the theoretical principles established by the standard, but tries to reformulate them
in a clearer and more direct way to give users a more friendly and straightforward selection method,
also easier to implement in numerical codes.

2.4.2 Proposal of an alternative process: the Coordinates Method

A new Cooling Design Day selection process, called Coordinates Method, has been developed during
this research. The coordinates are an alternative description of the range enlargement/shrinkage mod-
ification process. In fact the new method keeps the calculation of the daily climatic parameters and of
the monthly reference percentiles as presented in the standard but replaces the concept of ranges and
steps with the one of coordinates. Therefore coordinates represent, for each daily climatic parameter,
the difference between its value and the reference percentile, normalized using the step values reported
in Table 2.1. The greater the coordinate, the greater the difference between the daily parameter value
and the monthly percentile.

All the parameters and the reference percentiles described by the standard for all risk levels have
already been reported in Table 2.1. The standard gives the opportunity to use less or more than five
parameters, with a minimum of two: dry-bulb temperature and total global solar radiation. In this
case, the Coordinates Method here described still holds; it is simply applied to the required number of
parameters. As reported in the following procedure, the monthly Design Day refers to each calendar
month and each risk level RL.

The first step of the procedure is to compute the five daily coordinates Ci,d, referred to the five climatic
parameters of Table 2.1 and identified by the i-index having values 1 to 5, computed for every day d
of the analyzed calendar month of the dataset using Eqn. 2.1:
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Ci,d =
|Vi,d − Pi|

si
d = 1, . . . , nm (2.1)

Where Vi,d is the i-th parameter value in the analyzed day, Pi is the monthly reference percentile of
the parameter, si is the step defined by the standard and reported in Table 2.1, and nm the total
number of days of the dataset included in the analyzed calendar month. The coordinate Ci,d represent
the number of enlargement steps required by the standard method to include the i-th variable of day
d, but starting from a null initial neighborhood of the reference percentile. A practical example of the
application of this step of the process is reported below in Example 1.

Once having computed the coordinates, the selection method proceeds as follows: first a Reference
Coordinate is extracted for every day of the dataset following Eqn. 2.2:

Cref,d = max[Ci,d] d = 1, . . . , nm (2.2)

Then a Selection Coordinate is computed as reported in Eqn. 2.3:

Csel = min[Cref,d] d = 1, . . . , nm (2.3)

The Selection Coordinate represents the minimum number of steps required to have at least one day
discovered by the iterative enlargement method of the standard assuring that all the i-th variables
of Table 2.1 fall inside the selection ranges of the standard. Therefore, only the days that have the
Reference Coordinate equal to the Selection Coordinate, i.e. satisfying Eqn. 2.4, are suitable as
Cooling Design Days for that month:

Cref,d = Csel d = 1, . . . , nm (2.4)

However, the standard method also introduces a precedence in the enlargement of the ranges, following
the i-index order of Table 2.1. To take into account this imposition the following steps are therefore
needed. The first one is to determine for every day selected through Eqn. 2.4 the maximum positional
index of the Reference Coordinate, here named as Reference Index, as stated in Eqn. 2.5. This index
represents the i-th variable to be selected last during the final iteration of the enlargement loop of
the standard. This passage accounts also for the possibility of different variables sharing the same
Reference Coordinate.

Iref,d = max(i) : Ci,d = Cref,d d = 1, . . . , s (2.5)

Where s represents the total number of days selected through the imposition of Eqn. 2.4. Similarly
to the Selection Coordinate, a Selection Index is then computed, as reported in Eqn. 2.6:

Isel = min[Iref,d] d = 1, . . . , s (2.6)

As stated in the standard, the monthly Design Days are the ones that first satisfy the selection ranges
for all the parameters and in the order imposed by the standard, i.e. the ones for which Eqn. 2.7
apply:

Iref,d = Isel d = 1, . . . , s (2.7)

One or more monthly Cooling Design Days are obtained and can be used to size the cooling systems.

Figure 2.4 shows a comparison between the Coordinate and original method workflows. The presented
process follows exactly the iterative approach of the standard, but can be easily automated and modi-
fied as needed. A practical sample of the complete application of the Coordinates Method is reported
below in Example 2.

The new selection method was applied to the 108 Italian datasets and, as expected, gave exactly the
same results as the ones obtained using the EN ISO 15927-2 method, demonstrating the complete
equivalence of the two processes.

15



2. CLIMATIC DATA TREATMENT

Figure 2.4: Workflow of the Coordinates and EN ISO methods.

2.4.2.1 Coordinates Method: Applicative Example 1

Applicative example of the Coordinates Method for the calculation of the coordinates for a sample
day. The climatic parameters for the analyzed day and the reference percentiles for the analyzed
month are computed according to paragraph 4.2.2 and 4.2.3 of EN ISO 15927-2 standard respectively
and are reported in Table 2.2.

Dataset timeframe: 01/01/2004 – 31/12/2009
Sample Day: 15 July 2005

Table 2.2: Daily parameters and reference percentiles for 15 July 2005.

i Parameter Vi

Pi
U.M.RL1 RL2 RL5

1 Daily mean dry-bulb temperature 25.39 29.32 28.82 28.04 °C
2 Daily total global solar radiation 7.89 8.26 8.25 8.12 kWh/(m2day)
3 Daily mean dew-point temperature 11.13 18.45 17.68 15.97 °C
4 Daily dry-bulb temperature swing 12.3 5.27 5.94 6.6 K
5 Daily mean wind speed 2.37 1.75 1.82 1.95 m/s

By applying Eqn. 2.1 the coordinates of the analyzed day are computed and reported in Table 2.3.

By analyzing Table 2.3, a clearer explanation of the coordinates concept can be given. Considering
for example risk level RL1, the first coordinate states that 40 steps of 0.1 °C are needed to reach P1

starting from V1, as reported in Table 2.2, and so on for the other parameters. This means that the
maximum coordinate, C3 = 74, represents the parameter that is last included in the selection range
defined by the standard and, consequently, is the most influential coordinate for the identification of
a day suitable as monthly Cooling Design Day.
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Table 2.3: Coordinates for 15 July 2005.

i Parameter
Ci

RL1 RL2 RL5

1 Daily mean dry-bulb temperature 40 35 27
2 Daily total global solar radiation 37 36 24
3 Daily mean dew-point temperature 74 66 49
4 Daily swing in dry-bulb temperature 71 64 58
5 Daily mean wind speed 7 6 5

2.4.2.2 Coordinates Method: Applicative Example 2

Applicative example of the whole Coordinates Method for the identification of the monthly Cooling
Design Day for July for risk level RL1. The procedure for the other percentiles is identical.

Dataset timeframe: 01/01/2004 – 31/12/2009
Month: July –> m = 7 (number of months in the dataset)
nm = 186 (total number of days of July in the whole dataset)
RL1 = risk level where the cooling load is likely to be exceeded in 1% of cases

After having calculated the coordinates Ci,d of every July day in the dataset following the procedure
reported in Example 1, the determination of the Reference Coordinate for every day is carried on by
applying equation 2.2:

Cref,d = max[C1;C2;C3;C4;C5]d d = 1, ..., 186

After this, it is then possible to compute the Selection Coordinate for July using equation 2.3:

Csel = min[Cref,d] = 58 d = 1, ...186

The Selection Coordinate value for July for RL1 is 58. The first selection of days is now carried on
applying the condition reported in equation 2.4:

Cref,d = Csel d = 1, ..., 186

There are three days that meet the aforementioned condition, as reported in Table 2.4, where the
Reference Coordinate is higlighted in green.

Table 2.4: Days selected through the Selection Coordinate condition.

d ID Day C1 C2 C3 C4 C5

1 566 20/07/2005 58 58 30 36 1
2 921 10/07/2006 47 58 50 49 13
3 1277 01/07/2007 58 57 54 44 5

As it can be seen in Table 2.4, the three selected days all have a Reference Coordinate equal to 58,
meaning that fifty-eight enlargement cycles would be required to find these days if the method of the
standard were used starting from a null neighborhood.

The final step is to choose, between these selected days, the one that displays the Reference Coordinate
at the minimum i-index, thus representing the first day to satisfy all the parameters ranges following
the modification order given by the standard. The Reference Index for every remaining day is then
obtained using Eqn. 2.5:

Iref,d = max(i) : Ci,d = Cref,d d = 1, ...3
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The result of the application of the equation is also evident by looking at Table 2.4, leading to Reference
Index equal to 2 for the days with ID 566 and 921 and to 1 for the day with ID 1277. Subsequently,
the Selection Index is obtained using Eqn. 2.6:

Isel = min[Iref,d] = 1 d = 1, ..., 3

By imposing the condition of Eqn. 2.7 the second and last selection is carried on, leading to the final
result of day 1277, 01 July 2007, as the Cooling Design Day for July.

Iref,d = Isel

In the following table the daily climatic parameters of the selected Cooling Design Day are reported.

Table 2.5: Daily climatic parameters of the Cooling Design Day for July month.

Parameter Value U.M.

Daily mean dry-bulb temperature 23.55 °C
Daily total global solar radiation 7.69 kWh/(m2day)
Daily mean dewpoint temperature 13.14 °C
Daily dry-bulb temperature swing 9.6 K
Daily mean wind speed 2.16 m/s

An interesting output of this example is that the selected Design Day, ID 1277, is characterized by
coordinates values that are generally higher than the ones of the other two days, ID 566 and 921,
that made it to the final stage of selection, as it can be seen in Table 2.4. This means that generally
the selected Design Day is more distant from the reference percentiles than the other two days are.
However, because of it having the same Reference Coordinate of the other two and having the minimum
Reference Index, it has been the one finally selected. This demonstrates how the method proposed
by the EN ISO standard does not assure that the selected Design Day is the one that best fit the
reference percentiles and therefore it is also not sure that the risk levels RL defined by the standard
are respected. This aspect will be further analyzed in the next section.

2.4.3 Review of the Cooling Design Day selection process results

2.4.3.1 EN ISO results sensitivity analysis

Because of the standard giving the possibility to use different climatic parameters when searching the
monthly Cooling Design Days, the improved flexibility of the new selection method has been exploited
to carry on a sensitivity analysis of the whole process to assess how the use of different climatic pa-
rameters could influence the results of the selection workflow.

Different Cooling Design Days selections have been carried on for the 108 Italian locations, already
analyzed in terms of data quality, by considering all the possible combinations of parameters. As a
consequence, eight different sets of results have been compared and the percentages of Design Days
shared by the different sets across all the locations have been computed. The sets with the parameters
involved in the analysis are defined in Table 2.6.

Table 2.6: Parameters included (V) in the possible combination sets.

Set
Dry-bulb Solar Dew-point Temperature Wind

temperature radiation temperature swing velocity

Tmp rad V V
Tmp rad tdp V V V
Tmp rad tsw V V V
Tmp rad vel V V V
Tmp rad tdp tsw V V V V
Tmp rad tdp vel V V V V
Tmp rad tsw vel V V V V
Tmp rad tdp tsw vel V V V V V
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The analysis of the results highlighted some interesting characteristics as it can be deduced by in-
specting Figure 2.5 which reports the matching percentage for each combination of sets, defined as the
number of Cooling Design Days selected from both sets compared to the total amount of selected days.

Figure 2.5: Cooling Design Days matching percentage between all combinations of parameter
sets across 108 Italian locations.

The first feature to note is the low number of coincident Design Days between each set, with some
notable exceptions. Analyzing for instance the case with only two parameters, Tmp-rad, including
dry-bulb temperature and solar radiation, it shares very few Design Days with every other set, with
the exception of the case Tmp-rad-vel, where the wind speed is added to the analysis. This consider-
ation leads to another interesting behavior: the wind speed parameter, vel, has very reduced effects
on the choice of Design Days. This is demonstrated by the high matching percentages, generally over
90%, between the sets where the unique difference is the presence of this parameter. An explanation
to this behavior is that generally the wind speed presents values very near to the reference percentiles,
with very low coordinate values, as it can be seen in the example reported below in Table 2.7.

Another interesting behavior is that when adding the dew-point temperature, tdp, to an analysis that
already includes the dry-bulb temperature swing, tsw, the matching rate tends to be higher than in
other cases, generally amounting to around 45%. This is predictable because the dew-point tempera-
ture is physically related to dry-bulb temperature and relative humidity. Regarding their coordinates,
tsw and tdp parameters often have values that are close to each other as it can be seen in the example
shown below in Table 2.7.

To further highlight the effects of different parameter sets on the selection of Cooling Design Days, a
case study is reported as an example. It considers the location of Rome, risk level RL1, and identifies
for every parameter set the Design Day for July month. The process results, i.e. the Design Days and
their coordinates, are reported in Table 2.7.

Table 2.7: Rome Cooling Design Days coordinates values for every parameter set for July and risk
level RL1.

Parameter set Cooling Design Day C1 C2 C3 C4 C5

Tmp-rad
18/07/2003

19 25 \ \ \
Tmp-rad-vel 19 25 \ \ 13

Tmp-rad-tdp
21/07/2006

15 45 47 \ \
Tmp-rad-tdp-vel 15 45 47 \ 1

Tmp-rad-tsw
02/07/2003

31 2 \ 57 \
Tmp-rad-tsw-vel 31 2 \ 57 11

Tmp-rad-tdp-tsw
04/07/2006

44 13 63 61 \
Tmp-rad-tdp-tsw-vel 44 13 63 61 14

As it can be noted, the chosen Design Day is the same for the parameter sets where the only difference
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is the presence of the wind speed in the analysis. This further highlights that wind velocity has a
very low impact on the choice of the Design Day, confirmed by the low coordinate values for every
set. Table 2.7 moreover highlights that the coordinates C3 and C4, related to dew-point temperature
and temperature swing respectively, show the highest values. Therefore, if considered in the analy-
sis, these are the most influential parameters in the selection of the Design Days for this particular case.

The hourly values of the climatic parameters of the Cooling Design Days of the case study, with the
exception of the temperature swing, are graphically reported in Figure 2.6. For dry-bulb, dew-point
temperature and wind speed the reference percentiles are also reported. As already stated, the results
are coincident for the couples of sets where the only difference is the presence of the wind speed in
the selection process so only four distributions are presented for the eight sets.

Figure 2.6: Hourly values of climatic parameters of Rome Cooling Design Days for every param-
eter set for July and risk level RL1.

As it can be seen in Figure 2.6, the selected Design Days regarding the four couples of sets show
different distributions of the parameters, solar radiation excluded. The dry-bulb temperature displays
differences up to almost 8 °C between the Tmp-rad-tdp and Tmp-rad-tdp-tsw sets at 3 p.m. as it
can be noted in Figure 2.6a). The dew-point temperature also shows remarkable variability, with
differences of up to almost 11 K between the Tmp-rad-tsw and Tmp-rad-tdp cases, as highlighted in
Figure 2.6c).

2.4.3.2 Output sizing powers: a case study

To further study the behavior of the Cooling Design Days an analysis of the computed sizing powers
for a test building applied to three sample locations, Milan, Rome and Palermo, has been carried on.
According to ISTAT data [50], the 1961 - 1975 period includes the majority of the existing Italian
buildings. Therefore two versions of the test building, representative of the insulated and uninsulated
configurations of buildings related to this period was analyzed in this case-study.

The main characteristics of the test building for both cases were obtained from the Tabula Web Tool
of the Tabula Project [51]. The floor area of the building is of 934 m2, leading to a heated/cooled air
volume of 3,074 m3, while the Heat Loss Surface (HLS) accounts for 1,667 m2, leading to a Surface
Area to Volume Ratio (SV) of 0.54. Finally, the Window-Wall Ratio (WWR) is 9.33%. The model
was not divided into zones to speed up the calculation, instead a fixed space distribution was set: 50%
bedrooms, 35% kitchen and living room and 15% other areas with no internal gains. No shadings were
modeled during simulations to avoid human behavior influences. Opaque constructions and windows
characteristics are illustrated in Table 2.8.
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Table 2.8: Opaque construction and windows characteristics for uninsulated and insulated models.

Case

U M
SHGC Uw

Wall Roof Floor Wall Roof Floor
[W/(m2K)] [kg/m2] \ [W/(m2K)]

Uninsulated 1.15 1.1 0.94
194 406 478

0.7 2.2
Insulated 0.23 0.21 0.21 0.398 0.8

Figure 2.7: Test building geometry model.

Time-varying heat gains were modeled. Electric heat gains can be summarized into a maximum design
power of 4.6 W/m2. Occupancy was set to a maximum of 0.04 people/m2 between 05:00 p.m. and
08:00 a.m. and to 0.01 people/m2 between 08:00 a.m. and 05:00 p.m. Cooling system availability
was modeled as always-on during the whole year. Heating and cooling systems types were modeled
as ideal with 100% convective effects, therefore air temperature was preferred over the operative one
to fix the cooling set-points. These were fixed to 26 °C from 8 a.m. to 10 p.m. and to 28 °C for the
remaining time.

In order to model an ideal system, EnergyPlus object ZoneHVAC:IdealLoadsAirSystem was used. It
provides a model for an ideal HVAC system and it supplies cooling or heating air to a zone in sufficient
quantity to meet the zone load. Cooling design supply conditions were modeled with 12°C air temper-
ature and 8 gw/kgda humidity ratio. Since cooling supply air conditions are far below zone internal
air saturation conditions, latent gains were considered: the cooling system provides dehumidification
even if there is no dehumidification set-point. The ZoneHVAC:IdealLoadsAirSystem object is modeled
as an ideal VAV terminal unit with variable supply air temperature and humidity. The supply air flow
rate varies between zero and the maximum in order to satisfy the zone cooling load. Outdoor air flow
rate, intended as intentionally or inadvertently introduced into the building, was set to 0.3 ACH.

Using the climatic data available for the three locations, sizing simulations were run for every day
of the dataset included in June, July and August months using EnergyPlus software. Subsequently,
the 99th, 95th and 91th monthly percentiles of the sizing outputs were computed for the three months
analyzed, to identify the reference values for the three risk levels RL. Then the Cooling Design Days
were identified for the three months using the Coordinates (i.e. the EN ISO) method.

The sizing powers obtained through the Design Days were then confronted with the percentiles to
evaluate how the CDDs really work within a dataset for both uninsulated and insulated configurations
of the test building. The results are reported in Table 2.9 and 2.10 respectively.
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Table 2.9: Test building cooling sizing powers [W] for three sample locations. Uninsulated configura-
tion

MILAN
RL1 RL2 RL5

Month %ile CDD %ile CDD %ile CDD

June 52378 50195 51542 47758 48363 47758
July 50901 40923 49423 40923 46104 42464
August 45790 44326 44574 44326 41789 44326

ROME
RL1 RL2 RL5

Month %ile CDD %ile CDD %ile CDD

June 49894 43474 47801 43474 45889 43474
July 50296 37648 49669 41538 47848 41538
August 47791 36441 47171 36441 43949 36441

PALERMO
RL1 RL2 RL5

Month %ile CDD %ile CDD %ile CDD

June 48212 40981 47164 40981 43349 39382
July 47570 42910 45234 41037 42538 41037
August 45093 41850 44604 41850 43556 41850

Table 2.10: Test building cooling sizing powers [W] for three sample locations. Insulated configuration.

MILAN
RL1 RL2 RL5

Month %ile CDD %ile CDD %ile CDD

June 25020 25027 24567 25006 23813 25006
July 23569 20576 23469 20576 22968 21105
August 23472 22507 22728 22507 22250 22507

ROME
RL1 RL2 RL5

Month %ile CDD %ile CDD %ile CDD

June 25623 22380 25320 22380 24688 22380
July 27135 18821 26649 21643 25406 21643
August 25122 19116 24860 19116 23911 19116

PALERMO
RL1 RL2 RL5

Month %ile CDD %ile CDD %ile CDD

June 29771 21607 27568 21607 24756 20320
July 26605 22868 26079 22855 24546 22855
August 25924 23910 25520 23910 24699 23910
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As it can be seen in Tables 2.9 and 2.10 the sizing powers are different from the reference percentiles
of the three risk levels RL. Moreover in many cases, highlighted in orange in the tables, CDD com-
puted for different risk levels lead to the same sizing power, thus indicating that the same CDD
was selected for different risk levels. This aspect highlights the difficulty of the EN ISO method to
effectively appreciate the differences between the risk levels and to subsequently differentiate the CDD.

However, this is not even the worst problem that emerges from this analysis. In fact, in some cases,
highlighted in red in the tables, the sizing power computed for risk levels that refer to lower percentiles
are greater than the ones computed for risk levels referring to higher percentiles. This is the exact
opposite of the expected behavior, meaning that the EN ISO method could sometimes give unreliable
results in terms of sizing power.

2.4.3.3 Conclusions

The sensitivity analysis highlighted large differences in terms of chosen Design Days when using differ-
ent sets of parameters in the selection process, thus assessing the importance for the users to carefully
evaluate the effects that different choices about the parameters to be analyzed could have on the
results and, consequently, on the sizing of a cooling system.

The analysis of the computed sizing powers for a case study highlighted important issues about the
results obtained through the application of the EN ISO method. This leads to the conclusion that
a major review of the standard should be carried on in the near future to properly address this
criticalities and to give users a more reliable selection method for Cooling Design Days.

2.5 Representing actual climate: a case study for Trieste

Simulations actually used to assess building energy [52, 53], solar systems performances and other
aspects of building-plant systems need accurate climatic data to be accomplished. According to
Keeble [54], regarding building energy simulation weather files, three typologies can be identified:

� Multi-year weather data AMY;

� Representative days;

� Typical or reference years like TRY, TMY or DRY, 8760 hours long.

Actual meteorological years, or AMY, are single-year series of wheather data for a specific location.
Typical years gained great consensus compared to multi-year weather data mainly because of the lower
computational work needed; a crucial aspect to consider when dealing with the limited computational
power available in the past. Today, multi-core processors are common, therefore parallel simulations
and single-simulation times have greatly decreased, allowing to perform multi-year simulations when
analysing building energy behavior. Regarding these ones, several authors studied and compared
multi-year and TRY simulations outcomes [3, 36, 55]. Cui [3] performed an analysis related to the
Chinese territory, writing a deep introduction, first highlighting reference years’ critical aspects which
can be summarized as follows:

� Typical year is derived from actual months that are selected using weighting factors that enhance
some climate aspects over others. The factors’ choice is related to a specific building or system
typology that is somehow “an average building”;

� Typical years are expected to represent long-term climate conditions; while several authors
confirmed this aspect [56, 57], others found significant variations [55];

� Reference years represent typical conditions, therefore they are not suitable to study buildings
response to extreme conditions.

23



2. CLIMATIC DATA TREATMENT

Regarding the latter issue, a solution has been proposed by Nik et al. [58, 59] when trying to properly
represent climatic data generated by Regional Circulation Models (RCMs). The method consisted in
representing climate using three distinct TRYs: the typical one describing the mean behavior of the
analyzed period, the Extreme Cold Year (ECY) and the Extreme Warm Year (EWY), representative
of the extreme situations of the dataset. Nik showed that by considering TRY, ECY and EWY to-
gether (which is called Triple), it is possible to achieve a probability distribution of climatic conditions
which is very similar to the full set of 30 years RCMs data.

Cui [3] highlighted the multi-year simulations benefits as well, emphasizing that studying a longer
period leads to a more comprehensive and thorough analysis and that building designers and policy
makers can employ result-based regulations. Barnaby and Crawley [60, 61] highlighted that using
single-year simulations doesn’t allow to show the long-term variations and the peak energy consump-
tion. However, when dealing with a multi-year approach, the wrong or missing data represent an issue
[55] that needs to be treated with interpolation methods [62].

According to Skeiker [63], reference years consist of 8670 hourly values made of single-month climate
data selected from different years within a reasonably long [64] dataset. There are several versions
with major or minor differences in the statistical methods used to generate them. They include:
TRY, TMY, DRY and others. Even though these datasets sometime contain synthetic solar data,
they share a common feature: the selected months that compose the reference year are obtained from
actual recordings [65, 63]. Although a multi-year approach shows undeniable benefits [3], at the state of
the art, reference years are generally preferred [61, 66]. Several authors studied the variability between
single-year and multi-year energy consumption [67, 68, 69], generally finding differences around 10%
for U.S. and Hong Kong climates. Therefore, single-year simulations can be used to obtain typical
building energy performances [55] and are reasonably accurate [60].

2.5.1 Test Reference Year generation

According to UNI EN ISO 15927-4 [64], a reference year is an artificial year suitable to determine the
average annual energy for heating and cooling. It is a representative database that is usually known
as typical meteorological year (TMY) in the U.S.A. and test reference year (TRY) in Europe [63].

In literature, several methodologies were proposed; one of the first was released in 1976 by National
Climate Data Center: these weather files are called TRY-US. Unlike more modern methods, the out-
come does not consist of a collection of months, but rather of an entire year that actually occurred,
that is not an artificial year. In this case, the selected year is identified gradually removing the years
that ones containing months with outliers mean temperatures. Since they are obtained from totally
different approaches, the TRYs and TRY-US are not comparable.

Another widely used approach was developed in the same years, based on Filkenstein–Schafer statistic
[70] and on the selection of single months from different years of the dataset [63]. The outcome was
an artificial year that collected the most representative months of the dataset [55]. According to Lund
[71], the approach allowed to maintain the cross-correlation between the variables.

Other methods present a roughly equivalent procedure, but they differ for several aspects like the
weighting factors, used to select reference year months [3, 55] or the number of parameters to consider
[3]. Another difference could be the statistic used; many of the methods use the Finkelstein-Schafer,
while others [72] use the Kolmogorov–Smirnov [55]. Essentially all these methodologies are intended
to identify hourly data, from a much wider dataset, that are representative of a specific location climate.

In this research a Test Reference Year is generated for the location of Trieste, the regional capital of
Friuli Venezia Giulia region, through the following steps:

� Raw data quality check;
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� Additional quality check on monthly bases and removal of unsuitable months if the following
two conditions are not met;

1. Less than 15% of gaps in the raw data [73];

2. Absence of invalid days in the treated data.

� Computation of the daily means of the analyzed parameters;

� Creation of the TRY through the selection of real months within the dataset using the Finkelstein-
Schafer statistic;

� Smoothing of data at the interface between TRY months;

� Calculation of derived parameters like dew-point temperature, etc.

The analyzed period spans from 1995 to 2019. The raw data quality check was performed using the
rules described in Section 2.3. In the additional quality check the imposition of having less than 15%
of gaps for every month inside the original raw data aims to avoid too many interpolated values in the
treated dataset and therefore a not so good representation of the real climate of that month. This is
the same reason for the condition of not having invalid days within the treated data.

2.5.2 The Finkelstein-Schafer statistic

The Finkelstein-Schafer statistic compares for every calendar month m the yearly and the long-term
CDFs of the daily means of the analyzed parameter.

FSm =
n∑

i=1

δi (2.8)

Where FS is the value of the Finkelstein-Schafer statistic, m is the calendar month (January, Febru-
ary,...,December), n is the number of daily readings for that month (e.g. for January, n=31) and δ is
the absolute difference between the long-term and the yearly CDF at i value of parameter x (Ti in
the example reported in Figure 2.8).

Figure 2.8: Example of delta computing by comparing yearly (CDFs) and long (CDFl) cumula-
tive distribution functions for temperature T.

The FS scores were computed for dry-bulb temperature, solar radiation and relative humidity. In
Table 2.11 the FS scores for the former are reported as an example; the missing values are from
months considered not suitable for the analysis. For every calendar month and parameter analyzed,
the FS scores are then used to rank the yearly months of the dataset in order to search for the ones
that best fit to the overall behavior for said parameter. The lower the FS score, the better (lower)
the ranking, the better the fitting of the analyzed month. Three distinct rankings were computed
for temperature, solar radiation and relative humidity. In Table 2.12 the FS ranking for dry-bulb
temperature is reported as an example.
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Table 2.11: Dry-bulb temperature Finkelstein-Schafer scores.

Gen Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1995 / / / / / / 6.32 / 9.49 13.85 / /
1996 / 8.36 9.1 5.09 5.78 13.28 10.07 10.19 / 13.13 15.98 11.8
1997 / 5.65 12.35 11.95 8.66 7.15 7.71 8.88 15.26 18.56 13.19 10.87
1998 13.33 / 11.73 / 9.7 7.86 / / 13.95 13.08 15.72 8.22
1999 13.36 9.34 / 9.5 / 11.56 9.45 11.21 9.31 10.52 16.12 14
2000 11.5 7.4 6.88 3.63 / 9.56 14.3 9.16 10.24 / / /
2001 / / 7.48 7.56 6.57 / 6.1 / 13.17 13.73 / 14.43
2002 7.1 / 11.65 5.72 5.39 / / 9.05 14.21 9.02 8.46 9.33
2003 9.67 8.76 / 5.88 8.38 9.81 7.53 / 8.84 / 8.23 10.84
2004 11.07 9.21 6.23 / / / / / / 10.85 / 13.24
2005 / / / 6.5 5.46 / / 11.92 15.08 / / 13.82
2006 11.57 9.47 9.01 5.01 7.09 3.48 7.21 11.34 9.75 11.83 6.8 14.65
2007 13.81 7.62 13.55 7.45 9.15 5.77 7.5 8.33 10.56 16.38 12.17 13.06
2008 9.81 / 9.71 7.61 4.68 5.88 10.52 12.09 19.91 10.95 15.95 12.91
2009 5.8 12.03 7.71 9.65 / / 8.48 10.97 / / 5.6 13.64
2010 13.12 5.5 / / 6.39 8.32 13.97 8.57 11.5 14.12 12.59 12.28
2011 12.55 10.76 4.47 7.59 6.06 6.18 13.37 8.41 12.07 15.8 14.13 14.51
2012 13.75 / 5.93 6.86 10.74 5.17 12.01 11.81 12.47 / / 7.83
2013 12.49 9.25 / 4.49 12.18 / / 16.29 / 5.41 14.25 7.13
2014 15.06 9.72 10.27 / 5.83 9.17 10.41 14.44 11.94 17.3 14.24 13.8
2015 11.61 3.97 4.72 / 10.35 12.97 12.98 16.07 13.18 13.05 / /
2016 / 8.8 5.99 10.68 6.51 5.7 8.73 9.5 14.95 10.82 9.73 8.56
2017 13.02 7.16 6.29 11.09 3.7 7.03 9.72 13.16 12.77 11.24 / 10.14
2018 10.18 11.66 / 6.29 9.54 10.72 / / / 12.83 16.33 12.57
2019 10.24 / 7.5 7.41 11.5 6.63 / / / / / /

Table 2.12: Dry-bulb temperature Finkelstein-Schafer ranking.
Gen Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1995 / / / / / / 1 / 2 13 / /
1996 / 6 11 3 4 17 10 7 / 11 13 8
1997 / 2 16 18 12 8 5 3 17 18 7 7
1998 14 / 15 / 15 9 / / 13 10 11 2
1999 15 11 / 14 / 15 8 9 1 2 14 17
2000 7 4 6 0 / 12 17 5 4 / / /
2001 / / 7 11 9 / 0 / 11 12 / 18
2002 1 / 14 4 2 / / 4 14 1 3 4
2003 2 7 / 5 11 13 4 / 0 / 2 6
2004 6 9 4 / / / / / / 4 / 13
2005 / / / 7 3 / / 12 16 / / 16
2006 8 12 10 2 10 0 2 10 3 7 1 20
2007 17 5 17 10 13 3 3 0 5 16 5 12
2008 3 / 12 13 1 4 12 13 18 5 12 11
2009 0 16 9 15 / / 6 8 / / 0 14
2010 13 1 / / 7 10 16 2 6 14 6 9
2011 11 14 0 12 6 5 15 1 8 15 8 19
2012 16 / 2 8 17 1 13 11 9 / / 1
2013 10 10 / 1 19 / / 17 / 0 10 0
2014 18 13 13 / 5 11 11 15 7 17 9 15
2015 9 0 1 / 16 16 14 16 12 9 / /
2016 / 8 3 16 8 2 7 6 15 3 4 3
2017 12 3 5 17 0 7 9 14 10 6 / 5
2018 4 15 / 6 14 14 / / / 8 15 10
2019 5 / 8 9 18 6 / / / / / /
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An overall ranking was then obtained by summing up the three distinct rankings, thus identifying
the months that best fit to the overall behavior for all three parameters as reported in Table 2.13.
For every calendar month the three best ranked yearly months are selected as suitable for the TRY
generation and are reported in green in Table 2.13.

Table 2.13: Overall Finkelstein-Schafer ranking. In green the three best ranked years for every calendar
month. In bold, underlined green the years chosen for TRY generation.

Gen Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1995 22 25 31
1996 22 25 19 23 38 27 21 18 26 25
1997 16 34 39 21 27 15 18 38 37 22 25
1998 33 31 37 34 26 33 33 15
1999 24 22 26 32 34 32 13 19 23 38
2000 28 21 26 16 30 25 24 20
2001 31 25 29 8 22 30 50
2002 19 32 11 29 18 34 10 16 22
2003 10 17 14 38 26 18 4 20 30
2004 23 34 13 26 38
2005 23 23 23 37 33
2006 31 29 30 28 32 4 23 23 34 27 13 33
2007 44 22 44 26 32 12 19 15 23 43 24 27
2008 26 29 31 15 17 33 30 50 22 36 33
2009 19 33 29 44 20 13 15 34
2010 27 16 27 23 28 26 22 33 22 30
2011 30 39 18 36 25 19 32 17 29 39 19 40
2012 40 16 19 47 18 36 32 22 20
2013 24 24 13 40 42 10 23 21
2014 41 24 18 20 29 30 45 18 35 17 31
2015 28 13 18 32 35 35 33 40 21
2016 34 15 41 22 23 25 21 28 22 19 28
2017 31 13 21 46 18 23 29 26 28 33 28
2018 17 29 27 18 44 24 32 29
2019 18 29 29 42 25

The final step for each calendar month is to choose, among the three best ranked yearly months, which
one best represent the long-term behavior of wind speed. This means choosing the one having the
monthly mean value of wind speed that is closest to the mean value of wind speed computed over all
the dataset for that particular calendar month.

It is worth noting that wind was not included in the Finkelstein-Schafer statistic because of its extreme
variability, thus probably leading to relevant differencies between short and long-term CDFs. This
characteristic could have led to an alteration of the statistic results, worsening the quality of the
finished TRY. Because of this, it has been chosen to disregard wind speed evaluation in the first step
of the procedure and applying it only to the best three ranked yearly months, already showing high
performances in representing the climate of the overall period.

2.5.3 TRY smoothing

Because of the TRY creation method, based on the selection of real months from various years, dis-
crepancies could emerge at the interface between months, like for example unphysical temperature
leaps around the midnight between the last and first days of contiguous months.

To avoid this type of situation a smoothing procedure was conducted at the interfaces of the TRY
months. This operation included the removal of the data located in the first and last eight hours of
every month e their substitution through second degree spline interpolation methods. Through this
process the discrepancies between months were reduced and brought back to values more appropriate
for a real physical behavior of climatic parameters.

The smoothing procedure was conducted for temperature and relative humidity values; it was not
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applied to wind speed because of the latter parameter not being affected by this kind of problems, nor
to solar radiation having null values during the hours object of the correcting operation.

The effects of the smoothing procedure can be observed in Figure 2.9 where the original and smoothed
values for temperature are reported for the interface between November and December months of the
TRY generated for Trieste. As it can be seen, near the midnight of November 30th temperature values
present a nearly immediate drop of almost 7 °C, highlighting then an unphysical pattern. Through the
smoothing procedure this drop is modified and brought back to more appropriate, and more physical,
values.

Figure 2.9: Temperature smoothing at the interface between November and December months
of Trieste’s TRY.
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Chapter 3

Climate change

3.1 Modeling climate evolution

Climate change is becoming more and more a concerning problem for many aspects of human life
and activities. The growing trend of temperature has been widely assessed throughout many studies
in the latest years and a valuable summary of these researches can be found in the 2014 Fifth [30]
and in the newly published 2021 Sixth [74] Assessment Reports of the Intergovernmental Panel on
Climate Change. These documents report that Earth surface temperature has increased on average
0.85 °C since 1880, speeding up in the last three decades. This strong increase is said to be due to the
anthropogenic Green House Gas emissions that trap the solar radiation in the atmosphere causing ex-
cessive warming. In fact, many aspects related to human presence like the continuous growth of global
population, the economic activities, the energy consumption and land use patterns heavily influence
the concentration of GHG in the atmosphere. However, some actions like technology evolution and
the drafting of climate and adaptation policies could be developed to counterbalance this effect.

In order to properly assess the future effects of human actions on the atmosphere, the IPCC consid-
ers all the GHG emissions human-related drivers to create Representative Concentration Pathways
(RCPs) to make projections of future GHG emissions, air pollution and land use. The RCPs are
divided into a mitigation scenario (RCP2.6), two intermediate ones (RCP4.5 and RCP6.0) and a high
emission one (RCP8.5) also defined as ”business as usual”. These scenarios are then applied to General
Circulation Models, or GCM, developed by exploiting numerical codes, to carry on forecasts about
global climate evolution. The GCMs are in fact defined as “numerical models representing physical
processes in the atmosphere, ocean, cryosphere and land surface, for simulating the response of the
global climate system to increasing greenhouse gas concentrations” [75]. They divide the planet in a
three-dimensional grid having a horizontal resolution between 250 and 600 km and 10 to 20 vertical
layers for air and to 30 for oceans. For every block of the grid they compute all the climatic parameters
that represent the climatic situation of that particular location. The four primary GCMs are [10]:

� HadCM3 (United Kingdom);

� CSIRO2 (Australia);

� CGCM2 (Canada);

� PCM (USA).

These GCMs, applied to the RCPs scenarios, are exploited to make predictions about the future sur-
face temperature variations to year 2100 as it can be seen in Figure 3.1. The IPCC predicts an increase
in surface temperature by the end of the century (2081-2100) of 0.3 °C to 1.7 °C (RCP2.6) and 2.6
°C to 4.8 °C (RCP8.5) in comparison to the reference 1986-2005 period. These evolution will lead to
several collateral effects like fewer cold and more frequent and longer hot extremes, including intense
heat waves [76]. The oceans will continue to warm and could double in acidity. Global glacier volume
(excluding Greenland and Antarctic ice sheets) could decrease by 85%, near surface permafrost by
81% and the Arctic Ocean could be ice free by mid-century. RCP8.5 scenario estimates a rise in sea
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water level of more than 0,8 m [30].

Figure 3.1: Global average surface temperature change from 2006 to 2100 for all RCP senarios. All
changes are relative to 1986–2005 period. Time series of projections and a measure of uncertainty
(shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). The mean and associated
uncertainties averaged over 2081–2100 period are given for all RCP scenarios as coloured vertical
bars at the right hand side of the panel. [IPCC: Climate Change 2014: Synthesis Report. https:

//ar5-syr.ipcc.ch/ipcc/ipcc/resources/pdf/IPCC_SynthesisReport.pdf]

When dealing with climate forecasts, the most used RCP scenarios are the 2.6 and 8.5. This because
the first one represents the target situation of all the mitigation measures to be developed by the gov-
ernments, aiming to keep the increase in global temperature under 1.5 °C at the end of the century.
The latter instead represents the future evolution of climate if no mitigation measure is developed at
all in the next decades, approximately representing the actual global situation.

Regarding the Global Circulation Models, they are characterized by a coarse resolution of the com-
putational grid, not fit to properly represent many local climate phenomena, happening on a much
smaller scale. Therefore, when applied to studies on local climates, they are downscaled into Regional
Circulation Models, or RCMs. A regional climate model is generated from a GCM by imposing specific
working conditions and simulates atmospheric and land surface processes to make a detailed forecast
for a given limited area of interest by focusing resolution over it and accounting for high-resolution
topographical data, land-sea contrasts, surface characteristics, and other components. RCMs thus
downscale global GCM runs to simulate climate variability with regional refinements. It should how-
ever be noted that solutions from the RCM may be inconsistent with those from the global model,
which could be problematic in some applications.

3.2 Analysis scope

The aim of this research is to provide to the municipalities included in the Interreg ITA-SLO Secap
Project a general overview of the situation of climate change in this region and a procedure to exploit
when studying climate change and its effects. To do this, a literature review of the studies developed
for this topic has been carried on in collaboration with other actors of the Interreg Project like Area
Science Park, Metropolitan City of Venice, ARPA FVG and others. Within the program area of the
project, the research here presented focused on the analysis of Friuli Venezia Giulia region itself, leav-
ing to the other actors the analysis for their target territories. The overall review led to the creation
of the ”Preliminary Context Analysis” document [77] of the Secap project.
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Furthermore, because of the possibility of the climate models to provide considerable errors in pro-
jecting climatic data, a procedure to calibrate them is here proposed. This will give on municipalities
the possibility to exploit a calibration method before using the models to project climatic data and
therefore obtain more reliable results.

Moreover, in continuity with the procedure for the generation of the Test Reference Year presented
in Section 2.5.1 a process to project the TRY into the future is here developed. This aims to couple
the two methods to give the municipalities a complete methodology to properly consider both present
and future climate in their analysis for the development of mitigation policies.

Finally, an analysis of climatic extreme events has been carried on within the Secap project, considering
phenomena like heavy precipitations, floods, sea level rise, droughts, wild fires, extreme heat and
cold. The research here presented focused on heat waves and cold spells, for both actual and future
timeframes, leaving the other hazards to the project actors more suited to study that particular
phenomena. This analysis also led to a methodology that municipalities could exploit to compile the
Risk & Vulnerabilities Assessment within their Secap plans.

3.3 Climate change in Friuli Venezia Giulia

The main study on past and future climate changes in this region has been carried on by the Regional
Agency for Environment Protection of Friuli Venezia Giulia region, ARPA FVG, leading to the cre-
ation of the “Studio conoscitivo dei cambiamenti climatici e di alcuni loro impatti in Friuli Venezia
Giulia” [78]. This document first displays a report of the climate changes detected during the 1961 –
2016 period then, through the analysis of Regional Climate Models (RCM), provides future climate
change projections for the investigated region.

Friuli Venezia Giulia (FVG) region has peculiar geographic position and orography that influence its
meteorology. The region is situated at mid latitudes where a strong contrast between polar and tropical
air masses is present, thus causing strong atmospheric perturbations. In addition, the northern moun-
tain reefs significantly influence the atmospheric circulation, with wide effects on both temperature
and rain. The Alps impede the flux of particularly cold air masses thus mitigating the temperature
and retaining the fluxes of humid air from south-west and south-east. Very important is also the
presence of the Adriatic Sea which also mitigates the temperature (particularly in the coastal area),
allowing for cooler summers and warmer winters.

Similarly to the national scale, in FVG an increasing trend of temperature has been detected and
reached almost +1.5 °C since 1960. The yearly mean temperature increased 0.3 °C per decade over
the last fifty years with a significant trend to accelerate in the last decades. This tendency is even
more remarkable in the Alps, where the mean temperature at 2,200 m of altitude grew up to +1.7
°C if compared to the 1851 values, showing almost a double increase compared to the global values [78].

In the analysis of the heat waves, compared with the mean temperatures of 1961-1990 period, there
is a significant evidence of an increasing trend. In particular, during the summer season the number
of days where the maximum temperature is over 30 °C increased from 30 to 50, while the number of
”tropical nights”, defined as the ones when the minimum temperature is above 20 °C, increased from
5 to 15. Moreover, during winter season frost days, having temperature below 0 °C, diminished from
60 to 40 [78].

As regards climate change projections in FVG, since many coupled Global-Regional circulation models
are available, ARPA FVG chose the most representative ones that featured data availability for all
RCP scenarios, availability of models having high, medium and low climate sensitivity, and good
performance while reproducing climatology during the chosen reference period (1970 – 2005). Because
of these prerequisites, five different GCM-RCM couplings in the CORTEX database were selected:

1. HadGEM2-ES RACMO22E;
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2. MPI-ESM-LR REMO2009;

3. EC-EARTH CCLM4-8-17;

4. EC-EARTH RACMO22E;

5. EC-EARTH RCA4.

The models reference period covers the years between 1976 and 2005 while the projections cover the
years 2006 to 2100. The scenarios used are the RCP2.6, RCP4.5 and RCP8.5. The future projections
were compared with the reference period data in order to obtain the predicted changes. The future
anomalies of the relevant climatic parameters are then computed for every RCP scenario using every
model listed above. The different RCP scenarios for FVG show that in winter, the mean value of the
investigated models for what concern temperature is predicted to increase from 1.3 °C (RCP2.6) to
5.3 °C (RCP8.5) at the end of the century as it can be seen in Figure 3.2a.

(a) Winter season.

(b) Summer season.

Figure 3.2: Temperature anomalies in FVG to 2100 for RCP2.6 (blue line), RCP4.5 (orange
line) and RCP8.5 (red line) scenarios. [ARPA FVG. https://www.meteo.fvg.it/clima/clima_

fvg/03_cambiamenti_climatici/01_REPORT_cambiamenti_climatici_e_impatti_per_il_FVG/

impattiCCinFVG_marzo2018.pdf]

Summer temperatures show a similar trend, with a possible increase up to 6 °C for the RCP8.5 as
reported in Figure 3.2b. In the RCP8.5, the temperature continues to rise until 2100, while in the
other two scenarios it tends to stabilize in the second part of the century. The five models used show a
spread around the mean value of about +/- 1.5 °C for winter and of +/- 2 °C for summer temperature
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predictions. This is due to the different representation in the models of the investigated processes;
moreover, this spread tends to increase in time, especially for summer season projections [78].

The evolution of extreme temperature events was also considered in the analysis by ARPA FVG.
Some of the phenomena considered by ARPA were the ”hot days” and the ”tropical nights”, defined
before. For these events, five FVG locations were analyzed: the four province capitals (Trieste, Udine,
Pordenone, Gorizia) and the town of Tolmezzo, representative of the mountain territory. In the
following tables, the number of hot days (Table 3.1) and tropical nights (Table 3.2) for the reference
period (1976-2005) are reported, as well as the ones predicted at the end of the century for the three
RCP scenarios and the percentage of variation.

Table 3.1: Number of ”hot days” in the reference period and predicted with all RCP scenarios and
relative percentage of variation.

Location Reference RCP2.6 RCP4.5 RCP8.5

Trieste 20 30 (+50%) 40 (+100%) 70 (+250%)
Udine 30 50 (+65%) 60 (+100%) 90 (+200%)
Pordenone 30 55 (+85%) 65 (+115%) 95 (+215%)
Gorizia 25 50 (+100%) 60 (+140%) 95 (+280%)
Tolmezzo 15 30 (+100%) 40 (+160%) 70 (+360%)

Table 3.2: Number of ”tropical nights” in the reference period and predicted with all RCP scenarios
and relative percentage of variation.

Location Reference RCP2.6 RCP4.5 RCP8.5

Trieste 40 70 (+75%) 90 (+125%) 120 (+200%)
Udine 5 20 (+300%) 35 (+600%) 70 (+1300%)
Pordenone 5 25 (+400%) 35 (+600%) 75 (+1400%)
Gorizia 5 20 (+300%) 35 (+600%) 70 (+1300%)
Tolmezzo 3 5 (+65%) 15 (+200%) 45 (+800%)

Trieste, representative for the coastal area, is the location having the major number of tropical nights,
40, and the minor of hot days, 20, for the reference period. This is also the location affected by the
minor percentage changes in the various RCP scenarios for 2100, showing an increase of tropical nights
between 75% and 200% and of hot days between 50% and 250%. This is mainly due to the mitigation
effect of the sea.

Regarding Udine, Pordenone and Gorizia, representative of the plains environment, in the reference
period they display a relevant number of hot days, about 30, but very low values of tropical nights
(5). This represents the typical temperature swing that occurs between day and night in the plains
environment. Regarding the number of hot days predicted by the RCP scenarios, the three locations
show a similar behavior, with an increase of hot days between 65% and 280%. About tropical nights,
the behavior is essentially identical in all three locations, showing a huge increment in their number,
between 300% and 1400% [78].

Finally Tolmezzo, representative of the mountain environment, shows the lowest number for both hot
days, 15, and tropical nights, 3, coupled with the greatest percentage increase of hot days, between
100% and 360%, and an intermediate increase of tropical nights, between 65% and 800%.

Global warming, besides increasing the number of hot days and tropical nights, will also reduce the
frost days in which minimum temperature falls below 0 °C. In Trieste, the reference number of frost
days is 10 - 20 per year and is predicted to diminish in 2100 to less than 10 for RCP2.6 and 4.5
scenarios, and even to 0 for RCP8.5. Regarding Gorizia, Udine and Pordenone, the reference number
of frost days is 60 - 70 per year, predicted to diminish in 2100 to a 30 - 50 range for RCP2.6 and 4.5
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scenarios and about 10 for the RCP8.5. Finally, Tolmezzo will see a reduction from 80 days per year
(reference value) to 10 for the RCP8.5 scenario in 2100 [78].

3.4 Climate models quantile correction

Simulations from global and regional climate models (GCMs and RCMs) may differ from local mea-
surements generating a bias error, and will therefore influence the expected climatic output [79]. The
difference can be more evident for long-term scenarios as highlighted by Grenier [80]. A better ex-
planation of this problem is reported in Figure 3.3, where a sample comparison between hypothetical
measured and modeled values distribution is reported.

quantile - quantile plot
• Reports the quantile of measured and model data for the same value vy

• If the measured and model data have the same quantile value the point lies on the diagonal 

• If the quantile values are different the same value is located outside the diagonal

• Quantile correction tries to bring the value points near the diagonal
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Figure 3.3: A sample comparison between measured and modeled data statistical distributions.

As it can be seen, the two CDFs are not equal, highlighting different statistical distributions of mea-
sured and modeled data. In fact the same variable x is associated with different CDF values in
measured and modeled situations. This underlines that the model is unable to properly reproduce
the statistical pattern of the measured data. The comparison of the two CDFs reported in the right
graph would be coincident with the diagonal line if the two statistical distributions would have been
equivalent. Instead, because of the bias generated by the model the comparison is shifted, in this
case under the diagonal. This highlights that the model generally tends to give lower values than the
measured ones (it reaches higher CDF values with the same value x ), creating then a systematic bias.

Because of this possible issue regarding the models, also the climate projections for the Friuli Venezia
Giulia region could be affected by systematic biases. In order to assess if this problem could emerge, a
comparison between measured and modeled temperatures was carried on for Trieste. The timeframe
considered was the one comprised between 2006 and 2019, period for which the projected values of
the models could be compared with measured data. As it was done in the previous example, the
analysis was carried on by confronting for the check period the statistic distributions of measured
and modeled data, in this case focusing on minimum, mean and maximum daily temperatures values.
The analysis highlighted relevant discrepancies for all models and RCP scenarios, especially pertain-
ing minimum and mean daily temperatures, while the maximum daily one showed no significant issues.

In order to correct the bias in models outputs from simulations, available measurements for typical
climatic variables can be used. A common form of bias correction is the quantile mapping which
accounts for models errors assuming that biases in historic observations will be repeated during the
projections [81]. The method corrects models data so that they match the quantiles obtained from
measurements, leading to a projection more adherent to the data detected by meteorological stations.
The correction of models data can be done through addittive or multiplicative operations, depending
on the parameter analyzed. The quantile correction process can also be used to correct inaccuracies due
to different positioning between model grid points and data collection units. The method consists of
two parts, a first one of data training and a second one of adjustment, referring to distinct timeframes.

The temperature, relative humidity and atmospheric pressure values for Trieste obtained through the
climate models have been bias corrected by using the quantile delta mapping correction [82] which
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preserves relative or absolute changes in modeled quantiles while correcting systematic biases. An ad-
ditional feature of the method is that it automatically deals with projected values outside the range of
the historical period. The correction was not performed on the solar radiation, because of this param-
eter presenting minor issues and of the quantile mapping not performing well in correcting radiation
biases. The quantile correction was performed on the daily temperature range through a multiplicative
operation and on the daily maximum temperature through an addittive one. The corrected mean and
minimum temperatures were subsequently obained by subtracting from the corrected maximum one
half and all the corrected temperature range respectively. The mean and minimum temperatures were
not directly modified through the quantile correction because that approach proved to sometimes
lead to minimum temperatures greater than the maximum ones. Regarding relative humidity and
atmospheric pressure, the correction was performed through multiplicative and addittive operations
respectively. However, in the following the whole correction process is reported for temperature only
to preserve clarity of presentation.

The data training has been performed by comparing models and detected data for 1995-2005 period,
while the adjustments were performed on the models for the timeframe between 2006 and 2100 (the
projection period of the models). Moreover, to check the performance of the procedure, the corrected
and original model values have been compared to the measurements for the period comprised between
2006 and 2019, timespan for which the projected values of the models could be compared with measured
data as already stated. All the timeframes are reported in Figure 3.4.

Climatic Data Treatment
TRY projection
Historical TRY is projected through the Morphing Process that adjusts TRY data using the 
projections of climate models:
1. Shift 𝑥 = 𝑥 + 𝛥𝑥

2. Linear Stretch 𝑥 = 𝛼 , · 𝑥

3. Shift + Linear Stretch 𝑥 = 𝑥 + 𝛥𝑥 + 𝛼 , · (𝑥 − �̅� , )

The impact of climate change on the reliable optimization for energy and economic refurbishment of a residential building in Italy

Amedeo Pezzi, University of Trieste

Measured data

Models data

Models quantile correction

1971 1995 2005 2019 2100

Historical Projected

Training Correction + Check Correction

Figure 3.4: Measurements, models data and quantile correction timeframes.

A sample of the correction results for the check period for daily minimum temperature are reported
in Figure 3.5, where the quantile-quantile plot (qqplot) of measurements and original (a) or corrected
(b) values of HadGEM2-ES RACMO22E climate model applied to RCP2.6 scenario for Trieste, is
reported. The qqplot is another way to represent the measured-modeled data comparison and is es-
sentially the opposite version of the CDF comparison reported in Figure 3.3. Rather than having on
the axes the CDFs values of the same variable x, the qqplot reports on the axes the variables sharing
the same CDF value. In this way was reported the comparison between measured and modeled daily
minimum temperature in Figure 3.5.

As in the example reported in Figure 3.3, a perfect equivalence between model and measured data
quantile distributions is represented by the diagonal line reported in Figure 3.5. By observing Figure
3.5a however, it is evident that original model tends to provide lower temperature values than the
measured ones, showing a distribution located below the diagonal. Through the quantile correction
instead, modeled temperature trend better imitates the measured data behavior, as highlighted by
the distribution reported in Figure 3.5b, closely sticking to the diagonal.

To further highlight the effects of the quantile correction, monthly temperature averages have been
computed for the observed, original model and corrected model values for the check period, as reported
in Figure 3.6, highlighting the beneficial effect of the correction on the projections performances. As
it can be seen in Figure 3.6 and as already stated, the most troublesome parameter to deal with was
the daily minimum temperature, while mean and maximum ones showed minor issues. It can also
be noted that the quantile correction greatly improves the capability of the model to stick to the
measured data during the check period.
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Figure 3.5: Minimum daily temperature quantile distribution comparison between measurements and
original (a) or corrected (b) values of HadGEM2-ES RACMO22E climate model applied to RCP2.6
scenario for Trieste, 2006-2019 period.

Figure 3.6: Trieste monthly mean values of minimum, mean and maximum daily temperatures
computed during 2006-2019 period for measurements, original and corrected data of HadGEM2-
ES RACMO22E climate model applied to RCP2.6 scenario.

36



3. CLIMATE CHANGE

Finally, in order to provide a concise description of the quantile correction effect on the prevision of
the climate models, the Root Mean Square (RMS) error of monthly values has been computed using
the original and corrected models values through Equation 3.1, where the subscript j can be m for
the original and q for the corrected models values.

RMSj =

√∑ (vo − vj)2
n

(3.1)

Figure 3.7 reports the distribution of the monthly mean RMS values for minimum, mean and maximum
daily temperatures of the HadGEM2-ES RACMO22E climate model applied to RCP2.6 scenario for
Trieste. This figure further highlights the major problems concerning the modeling of minimum and
mean temperatures and the better performance in modeling the maximum one. Moreover, it further
underlines the effects of the correcting actions of the quantile mapping process. Table 3.3 reports the
mean RMS values for every model for mean, minimum and maximum temperature. From the table it
can be seen that the correction reduces the bias error for every model and variable considered.

The corrected models where then used to perform all the analysis reported in the following sections.

(a) Original model data. (b) Quantile corrected model data.

Figure 3.7: Distributions of the mean monthly RMS errors for minimum, mean and maxi-
mum daily temperatures of HadGEM2-ES RACMO22E climate model applied to RCP2.6
scenario for Trieste, 2006-2019 period.

Table 3.3: RMS of the five models, original (m) and corrected (q), for the check period (2006-2019).

RCM
Tmin Tmean Tmax

RMSm RMSq RMSm RMSq RMSm RMSq

HadGEM2-ES RACMO22E 4.03 2.08 2.93 2.12 2.36 2.24
MPI-ESM-LR REMO2009 2.56 2.06 2.35 2.09 2.31 2.2
EC-EARTH CCLM4-8-17 2.56 2.07 2.35 2.07 2.31 2.13
EC-EARTH RACMO22E 6.00 2.03 4.63 2.02 3.58 2.08
EC-EARTH RCA4 5.66 1.98 4.51 1.96 3.4 2.02
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3.5 Analysis of extreme thermal events for Trieste

As already stated in Section 3.2, an analysis of climatic extreme events was carried on within the
Interreg Secap Project, regarding many different aspects like heavy precipitations, floods, sea level
rise, droughts, wild fires, extreme heat and cold. In this work the research is focused on the last two
phenomena, for both actual and future situations.

There is not a unique definition for heat waves and cold spells in literature, in fact many works present
different representations for these phenomena. In this research were selected the definitions proposed
by Casati et al. [83] and Robinson [84]. The heat wave is described as an event where the minimum
and maximum daily temperature exceed a given threshold for a consecutive number of days. In this
work the threshold were defined as follows:

� Minimum temperature: 22 °C;

� Maximum temperature: 30 °C;

� Number of consecutive days: 3.

Obviously different thresholds values could lead to different results. Heat waves frequency, HWfreq,
given by the number of events in a determined period, heat waves maximum, HWlen,max, and total,
HWlen,tot, length were also considered in this research.

Alongside with the high temperatures, an analysis regarding low temperatures was also carried on,
probably of little interest for Trieste, being located at sea level, but which could become important
for the settlements located on the Karst plateau. The cold spells are then defined as events where
the mean daily temperature is lower than a given threshold for a consecutive number of days. In this
work the threshold used is -5 °C and the number of consecutive days is set to 3. In addition, also the
pattern of the frost days, defined as the ones where the minimum daily temperature falls below 0 °C,
have been studied.

3.5.1 Actual heat waves and extreme colds phenomena

Through the imposition of the aforementioned thresholds, an assessment of the actual situation of
extreme thermal events in Trieste was carried on. Figure 3.8 shows the trend of heat waves, as defined
previously, using the climatic data collected by the Trieste meteorological station between 1995 and
2019.

By analyzing the graph, it can be immediately noted the intense heat event of 2003, presenting a great
number of days included in heat waves, 25, and also a remarkable maximum length of a single event,
14 days. A slightly smaller event is present in 2015 and is also immediately noticeable, as well as the
2006 and 2018 events, while in the other years these phenomena have very reduced occurrence, nearly
always presenting only one heat wave per year.

The pattern of extreme cold events is described in Figure 3.9 where the cold spells frequency, CSfreq,
is reported alongside with the maximum number of consecutive frost days, FDcons,max, and their total
number, FDtot, all computed year by year.

It can be quickly noticed that there are no cold spells in the analyzed period although frost days were
recorded, in particular is evident the event of 2012 counting fourteen consecutive frost days. It can be
noted however that this was an extraordinary event, never replicated in the analyzed timeframe. This
results then highlight the behavior of a climate heavily influenced by the sea presence, not allowing to
reach very cold mean temperatures for relevant amount of days, although displaying some days having
minimum temperature below zero.
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Figure 3.8: Heat waves phenomena in Trieste during 1995-2019 timeframe.

Figure 3.9: Cold spells and frost days phenomena in Trieste during 1995-2019 timeframe.

In order to better highlight the particular configuration of the environment in which Trieste is placed,
an analysis of the extreme cold events was carried on also for Sgonico municipality, located on the
Karst plateau. Although being distant only 9 kilometers as the crow flies from Trieste, Sgonico is
located 278 meters above sea level and it is much less influenced by the sea presence. Moreover, this
location is more affected by the Bora, a northerly to north-easterly wind, characteristic of Trieste and
of its surrounding areas. These effects can be appreciated by analyzing Figure 3.10, where cold spells
and frost days behavior is reported as it was done in Figure 3.9 for Trieste.

It can be immediately noticed that cold spells were detected, although in reduced numbers, in years
1996, 2012 and 2018, highlighting a mean daily temperature well below 0 °C for a considerable number
of days. Moreover, also the frost days display totally different occurrencies than in Trieste case study,
often reaching a total yearly number near 50 with an extreme peak of 70 in 2005. This kind of behavior
then describes a more continental climate, characterized by minimum temperatures frequently below
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0 °C but relatively low amount of cold spells, this is due to a great daily temperature range, typical
of continental climates, despite the analyzed location being so near to the seashore.

Figure 3.10: Cold spells and frost days phenomena in Sgonico during 1995-2019 timeframe.

3.5.2 Analysis of extreme events future evolution

By exploiting the projections of the climate models a study of the future evolution of extreme thermal
events for Trieste was carried on. Because of the great number of configuration considered, fifteen
cases, due to the five models applied to the three RCP scenarios, in order to keep the exposition clear
and easy to understand boxplot graphs were used.

A boxplot is a standardized way of displaying the distribution of data based on five reference values of
the distribution itself: minimum, first quartile, median, third quartile, and maximum. By analyzing
a boxplot the outliers values can be immediately identified and the data distribution characteristics
can be quickly guessed, like data symmetry, or how tightly the data is grouped, and so on.

In the analysis of the heat waves only the yearly frequency, HWfreq, was reported to simplify the
exposition. Figure 3.11 reports the boxplots describing the distribution of heat waves frequency for
RCP2.6 (a), 4.5 (b) and 8.5 (c) scenarios. The HWfreq yearly distributions for 2006 - 2100 timeframe
are given by the five climatic models considered in the analysis applied to the reference scenario.
Moreover, also the distribution of HWfreq for the historical timeframe, 1995-2019, is reported on the
left of each graph to highlight the differences between the two periods.

As it can be seen by analyzing Figure 3.11a, for RCP2.6 scenario the number of events will increase
but will keep relatively low values, with only some isolated peaks. Moreover, a well defined increasing
trend is not present within the century. Finally, the five models seem to give results near to each
other, as it can be appreciated through the vertical extension of the boxplots.

Regarding RCP4.5 scenario, presented in Figure 3.11b, an increasing trend across the century is well
established. HWfreq will reach high values more often than in the RCP2.6 case and the overall
situation will get worse in the second part of the century, where all the climate models tend more
to higher values, in contrast with the first part of the period. Finally, through the analysis of the
boxplots it can be appreciated that the dispersion between models results is greater than in RCP2.6
case.
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Figure 3.11: Heat waves yearly frequency distribution for Trieste for RCP2.6 (a), 4.5 (b) and
8.5 (c) scenarios. Distributions for 2006-2100 timeframe were obtained through the five climatic
models. Distribution for historical timeframe, 1995-2019, is also reported.
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Finally, the extension of whiskers in RCP8.5 scenario represented in Figure 3.11c, shows a relevant
increasing trend for heat waves frequency, strengthening in the second part of the century. HWfreq

values will be definitely higher than in the historical period, reaching frequent peaks during the future
timeframe.

For what concerns cold spells the analysis highlighted that no significative variations are forecasted in
any combination of climate models and RCP scenarios. As an example, within all future projections
the maximum number of days included in cold spells for Trieste between 2006 and 2100 is 26 for
climate model EC-EARTH RACMO22E applied to RCP2.6 scenario. It is evident that such a small
number cannot be considered a significant variation compared to the historical situation; since all
the other cases have numbers lower than this it is evident that in no situation there are significant
variations.

3.5.3 Methodology for compiling the SECAPs Risk & Vulnerability Assessment

The process to define heat waves and cold spells described above was exploited to determine the Risk
& Vulnerability Assessment (RVA) for such events for Trieste.

First of all, the actual risk of danger due to these events has been determined, following what is stated
in the Reporting Guidelines of the Covenant of Mayors [85], defining two parameters that represent
the actual level of risk:

� Probability of hazard;

� Impact of hazard.

Both parameters have four different levels of importance that could be associated to, High, Moderate,
Low and Not Known. To determine these levels for the probability of hazard the instructions proposed
by the Guidelines [85] have been exploited, defining the different levels as follow:

� High: extremely likely to happen, having occurence possibility greater than 5%;

� Moderate: likely to happen, having occurence possibility between 0.5% and 5%;

� Low: unlikely to happen, having occurence possibility between 0.05% and 0.5%;

� Not Known: the analyzed location has not observed such phenomena in the past or does not
have the possibility to accurately report these informations based on reliable data.

In order to obtain values to compare with the limits defined by the Guidelines, the total amount of
days included in heat waves have been compared with the total number of days included in the sum-
mer months, 92 days for June, July and August months. Referring to the data measured at Trieste
between 1995 and 2019, 173 days were included in heat waves phenomena. Considering a total of
2,300 summer days for the analyzed timeframe, a percentage of occurrence of 7.52% was obtained,
superior to the limit of 5%; therefore the actual probability of these events is High.

In the same way the cold spells occurrence has been computed. Because of the total absence of such
phenomena in the 1995-2019 timeframe, the occurrence probability is 0%, therefore the actual proba-
bility of these events is Low.

Regarding instead the impact of actual extreme events the choice of the importance level is delegated
to the municipalities, folllowing what is reported in the guidelines of the Covenant of Mayors [85].

To evaluate the future risk of danger due to these events three parameters are used in the Risk &
Vulnerability Assessment:

� Expected change in hazard frequency;

42



3. CLIMATE CHANGE

� Expected change in hazard intensity;

� Timeframe(s).

For what concerns the first two parameters, the guidelines of the Covenant of Mayors provide a choice
between three options: Increase, Decrease and Not Known. However, no instructions are reported
on how to choose between the proposed options. Regarding the timeframes in which the changes are
expected, the guidelines define three periods;

� Short-Term: within 20-30 years from now;

� Mid-Term: after 2050;

� Long-Term: within 2100.

To determine the future evolution of heat waves and cold spells, the Modified Mann-Kendall Trend
Test (MMKT) was used, in the version proposed by Hamed et al. [86] derived from the modification
of the original Mann-Kendall Test [87, 88]. The Modified Mann-Kendall is a non-parametric test used
to analyze data collected over time presenting constant monotonous trends of the analyzed variable.
It is based on the concept of ”ranking”, i.e. on the sorting characteristics of the analyzed series. As
an example, a time series that presents a ”perfect” upward trend is characterized by the fact that
given any observation x(t), carried out at time t, all observations made for t > t will have values
greater than x(t) and all observations made for t < t will have values less than x(t). The test is then
constructed to quantify how close the analyzed historical series can be to a series characterized by a
”perfect” ascending (or descending) trend.

This test was first conducted on the frequency of extreme events, defined before as the total number
of days included in the extreme heat (cold) events compared to the total days of the summer (winter)
months. The evolution of the frequency was studied in relation to the five climatic models defined in
Section 3.3 for each RCP scenario for 2020-2045, 2046-2070 and 2071-2100 periods, representative of
the Short, Mid and Long Term respectively. In addition to identifying the trend, the Theil-Sen (T.S.)
indicator, representative of the change in magnitude of the analyzed event, was also computed. Only
the test results having a statistical significance value p less than 0.05 were considered significant.

As regards the heat waves, the test revealed statistically significant changes already in the 2020-2045
period for all cases except for the EC-EARTH RACMO22E model in the RCP4.5 scenario, having
p = 0.095. As reported in Table 3.4, all cases except the latter show an increase in the frequency of
events, as it can also be deduced from the values of the Theil-Sen indicator. Consequently, for heat
waves the choice for the expected frequency variation is the Increase option, while for the Timeframe
the choice falls on Short-Term.

As regards the cold spells, the test did not identify any statistically significant variation in the fre-
quency of the phenomena in any of the periods analyzed for every combination of climate models and
RCP scenarios. Consequently, for cold spells the choice regarding the frequency variation is the No
Change option, while for the Timeframe choice falls on Long-Term. Table 3.5 shows the results of
the MMKT for the frequency of cold spells.

Subsequently, the MMKT was also applied to the trend of events intensity, defined in this research as
the maximum duration of the single extreme event detected in each season. This step has been applied
only to heat waves since cold spells did not show any significant variation in terms of frequency if
compared to the current situation, characterized by null phenomena. Consequently the options chosen
for the cold spells frequency variation can also be applied to the intensity variation, i.e. No Change
and Long-Term.

The results of the MMKT for heat waves instead denote an increase in the intensity of the phenomena
already in 2020-2045 period, for almost all the climate scenarios and models analyzed, as reported in
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Table 3.6. As a consequence of these analysis, the choice for the variation of intensity of heat waves
is seto to Increase, while for the timeframe the choice falls on Short-Term.

The future behavior of both heat waves and cold spells was already highlighted in the analysis con-
ducted in Section 3.5.2, by studying different parameters.

Finally, it has to be specified that the methodology here described exploits the total amount of days
included in heat and cold extreme phenomena instead of the frequency of such events in order to have
a usable parameter to compute the percentages of occurence defined by the guidelines of the Covenant
of Mayors [85]. Then, having used these parameters to assess the current level of risk, in order to keep
a coherent method, they were also used to assess the future situations.

Table 3.4: Modified Mann-Kendall Test results for heat waves frequency for 2020-2045 timeframe.

Model/Scenario
RCP2.6 RCP4.5 RCP8.5

Trend T.S. Trend T.S. Trend T.S.

HadGEM2-ES RACMO22E Increase 0.18 Increase 0.18 Increase 0.18
MPI-ESM-LR REMO2009 Increase 0.32 Increase 0.57 Increase 0.58
EC-EARTH CCLM4-8-17 Increase 0.18 Increase 0.19 Increase 0.17
EC-EARTH RACMO22E Increase 0.17 No Change 0.06 Increase 0.28
EC-EARTH RCA4 Increase 0.35 Increase 0.26 Increase 0.37

Table 3.5: Modified Mann-Kendall Test results for cold spells frequency for all the considered time-
frames.

Model/Scenario
RCP2.6 RCP4.5 RCP8.5

Trend T.S. Trend T.S. Trend T.S.

HadGEM2-ES RACMO22E No Change 0.00 No Change 0.00 No Change 0.00
MPI-ESM-LR REMO2009 No Change 0.00 No Change 0.00 No Change 0.00
EC-EARTH CCLM4-8-17 No Change 0.00 No Change 0.00 No Change 0.00
EC-EARTH RACMO22E No Change 0.00 No Change 0.00 No Change 0.00
EC-EARTH RCA4 No Change 0.00 No Change 0.00 No Change 0.00

Table 3.6: Modified Mann-Kendall Test results for heat waves intensity for 2020-2045 timeframe.

Model/Scenario
RCP2.6 RCP4.5 RCP8.5

Trend T.S. Trend T.S. Trend T.S.

HadGEM2-ES RACMO22E Increase 0.09 Increase 0.11 Increase 0.08
MPI-ESM-LR REMO2009 Increase 0.10 Increase 0.21 Increase 0.20
EC-EARTH CCLM4-8-17 Increase 0.07 Increase 0.07 Increase 0.05
EC-EARTH RACMO22E Increase 0.08 No Change 0.00 Increase 0.12
EC-EARTH RCA4 Increase 0.16 Increase 0.11 No Change 0.19

3.6 Test Reference Year projection

As already stated in Section 2.5.1, the Test Reference Year is a valuable way to compactly represent
climate for a location, and it is also the main source of climatic data for the softwares that carry
on the energy simulation of building-plant systems. Therefore, if building simulation has to consider
also incoming evolutions of climate, a TRY representing the future situation is needed to perform the
analysis. In this section the process to obtain a TRY for future climatic data is reported.
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Two main methods are commonly used to create future weather files: the first one combines climate
projections with a weather generator to allow the creation of typical future weather years data. The
second one applies a mathematical transformation, i.e. morphing, to the actual climatic data using
climate change scenarios. Weather generators use algorithms that produce long time-series of climatic
variables with statistical properties comparable to existing historical records. The morphing process
instead uses high-resolution climatic data for a specific site and transforms them using the projections
from a GCM or RCM. Another possible approach is to apply the Finkelstein-Schafer statistic, described
in Section 2.5.2, to the projected data of the climatic models to generate future TRYs [89]; however,
this approach tends to be more troublesome to implement. In this research the morphing process was
used to project into the future the Test Reference Year for Trieste.

3.6.1 The Morphing process

The morphing process adjust the current climatic data through the method developed by Belcher et al.
[90]: once having obtained high-quality climatic data for a specific location, they are morphed using
the projections of a Global-Regional Circulation Model (GCM-RCM). The main benefit from using
this method is that it maintains the consistency of the historic data. On the other hand, one of its
limitations is that some climatic variables are produced individually and then the relationship between
them in the projected data could not be the same as in the historic series [91]. Once having chosen the
reference and future timeframes of the climate model to be considered, the first step is to compute the
monthly mean values of the required climatic parameters for the selected model timeframes. Every
observed hourly climatic variable (x0) is then projected into the future (x ) through one of the following
operations:

� Shift;

� Linear stretch;

� Shift + Linear stretch.

The shift is used for variables for which an absolute monthly variation (∆xm) to the mean between
future and reference timeframes is computed from the climate model, as in the case of atmospheric
pressure and relative humidity and is defined as:

x = x0 + ∆xm (3.2)

The linear stretch is used when the projections are obtained as a fractional monthly change between
future and reference timeframe, as in the case of the solar radiation and wind speed. A scaling factor
for the m-month, αx,m, is obtained through the following equation:

αx,m = 1 +
∆xm
x0,m

(3.3)

Where x0,m is the monthly mean of the climatic parameter from the observed historic timeframe. The
scaling factor is then applied to all the hourly data to be projected using the following equation:

x = αx,m · x0 (3.4)

The combination of a shift and a linear stretch is used for variables where it is important to highlight
changes in both mean, maximum and minimum daily values, as in the case of dry-bulb temperature.
Therefore, in addition to the monthly variation to the mean ∆xm, also the monthly variation to the
daily maximum, ∆xmax,m, and the monthly variation to the daily minimum, ∆xmin,m, are computed.
The scaling factor, αx,m, is then obtained through the following equation:

αx,m =
∆xmax,m −∆xmin,m

x0,max,m − x0,min,m
(3.5)

Where x0,max,m and x0,min,m are the monthly mean of the observed daily maximum and minimum
values respectively. Afterwards, the projected parameter can be computed as:
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x = x0 + ∆xm + αx,m · (x0 − x0,m) (3.6)

Where x0,m is the monthly mean value for the m-month of the observed variable. In Figure 3.12 the
workflow of the morphing process is reported.

Figure 3.12: Morphing process workflow.

In order to assess the possible climatic evolutions, the models described above were used to project the
current TRY for Trieste into the future. The five models referred to the RCP8.5 scenario were used
as baseline to obtain the morphing parameters for all the considered climatic variables. The RCP8.5
scenario was chosen in order to reflect the actual situation where no relevant worldwide mitigation
measures have been developed yet. In this work the chosen reference period for every climate model is
1995-2005. For the future two timeframes, 2021-2035 and 2036-2050, were chosen to further highlight
the climatic evolution in the near term, therefore two different future TRYs were generated for every
model disregarding the long-term projection for this case study. This choice has been done to better
focus on the timeframe considered by the SECAPs projects, centered on the first half of the century.
Table 3.7 summarizes how the climatic parameters of the future TRYs were obtained.

Table 3.7: Methods used to obtain future TRY climatic parameters.

Climatic parameter Methodology

Dry-bulb temperature Shift + Linear stretch
Relative humidity Shift

Dew-point temperature
Recalculated from morphed dry-bulb temperature

and morphed relative humidity
Atmospheric pressure Shift
Global radiation Stretch

Direct radiation
Recalculated from morphed global

radiation using split methods

Diffuse radiation
Recalculated from morphed global
and recomputed direct radiation

Wind speed Stretch

3.6.2 Results for Trieste case study

A quick method to evaluate the overall behavior of a Test Reference Year is to compute its Degree
Days. These are measures of how cold or warm a location is. A Degree Day compares the mean outdoor
temperatures recorded for a location to a standard one. The more extreme the outside temperature,
the higher the number of Degree Days. A greater value of Degree Days generally results in higher
levels of energy use for space heating or cooling. In this case the Heating (HDD) and Cooling (CDD)
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Degree Days were computed for all the TRYs generated for Trieste, using a reference temperature of
20 °C. The results are reported in Figure 3.13.

Figure 3.13: Heating (a) and Cooling (b) Degree Days of the historical and
projected TRYs for Trieste.

As it can be seen the TRY referring to the historical timeframe, 1995-2019, proved to be the coldest
among all, as expected. In fact, it had the highest amount of HDD and the lowest of CDD. Regarding
the future TRYs generated through the five circulation models the Degree Days values are reported for
the two future timeframes previously described, 2021-2035 and 2036-2050. As it can be seen in Figure
3.13, in all the projections the temperature will rise, leading to lower values of HDD and higher ones
of CDD. An interesting feature is that the increase in temperature will not be constant in time, be-
ing greater in the first period, 2021-2035, for some models and in the second one, 2036-2050, for others.

Finally, it can be seen that the TRY generated through HadGEM2-ES RACMO22E model is the
hottest among all for all timeframes, while the one created using the MPI-ESM-LR REMO2009 model
proved to be the coldest among the projected TRYs.

In Figures 3.14 and 3.15 the mean daily patterns for dry-bulb temperature for all months are reported
using data from the original TRY, the hottest and coldest future ones, considered for both the future
timeframes defined before. As already stated, the overall climate will be warmer in the future however,
the pattern will not be constant across the months and the timeframes considered in the analysis. In
fact, through the inspection of Figures 3.14 and 3.15, different behaviors can be highlighted.
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Figure 3.14: Historical, hottest and coldest future TRYs mean daily temperature patterns for January
- June months. 48
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Figure 3.15: Historical, hottest and coldest future TRYs mean daily temperature patterns for July -
December months. 49
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First of all, as already highlighted through the analysis of the Degree Days, the temperature rise will
not be constant in time. The case analyzed in Figure 3.14 and 3.15, shows that the temperature
increase will be greater in the first period for HadGEM2-ES RACMO22E, slowing down in the second
one; an opposite behavior is instead highlighted for MPI-ESM-LR REMO2009 model. This can be
noted by comparing the patterns of the future TRYs for 2021-2035 period (dotted lines), where the
values for HadGEM2-ES RACMO22E model are always higher than the MPI-ESM-LR REMO2009
ones, with the exception of July month. By comparing the 2036-2050 values it can be immediatly
noted that the gap between the two models nearly always decreases, and in some months it is even
canceled.

Another interesting feature is that sometimes the temperature computed for the two timeframes is
nearly coincident, thus locating all its variations in the first period analyzed. Sometimes it even de-
creases in the second timeframe, like in February and June months for HadGEM2-ES RACMO22E
and MPI-ESM-LR REMO2009 models respectively.

Moreover, the MPI-ESM-LR REMO2009 model forecast a decrease of temperature for the period
from April to June for 2021-2035 period and a slight to no increase for 2036-2050 timeframe, thus
highlighting a discontinuous trend across the year.

Finally, the variations between the historical and projected TRYs are more evident in the second part
of the year, where the forecasts always give higher temperatures than in the historical case, while in
the first part of the year the projections tend to stick more to the measured data.

3.6.3 Approach limitations and future improvements

The approach here described presents some important limitations. First of all the projections are
carried on by exploiting the morphing process, characterized by the issues described in Section 3.6.1;
moreover the climatic data are projected only until 2050, disregarding the second half of the century.
Finally the intrinsic nature of the TRY leads to a representation of the mean behavior of climate,
leaving out the analysis of its possible extremes.

Further improvements for this method will then focus on resolving these issues; other projection
methods will be used and their results will be compared to assess the quality of the various methods
to project climatic data into the future. Moreover the projections will be extended to year 2100 and for
more locations included in the Interreg ITA-SLO Secap Project program area. Finally the approach
developed by Nik et al. [58, 59] will be exploited to create different TRYs, representative of the mean
and extremes behaviors of climate for the analyzed periods.
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Chapter 4

Analysis of buildings internal
insulation system performance

4.1 Problem definition

Within the SECAP projects a fundamental practice to carry on when developing climate adaptation
and mitigation measures is the improvement of the building stock energy performance. Regarding
this, the municipalities developing their SECAPs normally focus on the building stock of their own
property, as it was found in the work of Palermo et al. [92], where they analyzed the plans of 315
signatories of the Covenant of Mayors classifying their policies according to the fields of action. They
highlighted that the municipalities mostly concentrate their efforts on their own building sector, ac-
counting for a remarkable 46 % of the total of implemented policies. In fact this is the sector where
they can intervene through a more systematic approach, having a full knowledge and control of their
own buildings and equipment. Therefore, they can directly implement measures and monitor the
results accurately; all without having to involve private actors in the process. This process can be
carried out by refurbishing old buildings or by replacing them with new ones. In the second case,
where new buildings are involved, the fabric and system plants can be accordingly designed, also ex-
ploiting renewable energy resources. The approach is quite more difficult for existing buildings where
the interventions can be limited by technical reasons and national regulations. However, because of
the building stocks owned by the municipalities being predominantly composed by historical buildings,
the focus is often placed on this category.

As stated before, for existing buildings the design choice among the available interventions is usually
restricted because of the working boundary conditions. This is the case, for example, of buildings
where plant and envelope modifications are troublesome because they conflict with the bearing struc-
ture. Another major issue could emerge when dealing with the refurbishment of historical or old
buildings featuring particular facades, where attention is required as described in a guideline by De
Santoli [93]. In fact is often impossible to modify the facades due to the national regulations usually
imposed for the preservation of fine arts. Sometimes this also applies to the substitution of windows,
thus limiting the possible interventions on a great part of the envelope.

This last case is very common for Italian municipalities, characterized by a huge number of historical
buildings within their stocks, thus leading to major issues when tackling refurbishment practices. Due
to the impossibility of using external insulations, often prohibited by regulations, the internal ones
assume great relevance in this context, despite being characterized by some criticalities. The main
issues regard the possibility of mold formation at the interface between the insulating panels and the
structural layer of the wall and the loss of livable space due to the presence of the additional internal
insulating layer.

Given the wide applicability of this refurbishment practice in Italy, it should be carefully analyzed how
reliable this intervention could be, that is, to assess whether the characteristics shown in the technical
data sheets are correct or if they provide values that do not properly reflect the real performance of this
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technology. In fact, a common mistake about the thermal losses computation in buildings refurbished
through internal insulating systems is to evaluate the envelope thermal resistance omitting the effect
of the structural studs used to build the insulating structure, as described in [94] for light steel frame
structures. This aspect is of particular importance because if a discrepancy between design and real
values is present, the performance of the real refurbished building could be very different from the
design one, therefore leading to major energy consumption and economic losses.

4.2 Literary review

Being the internal insulation of walls one of the main refurbishment practice, an extensive litera-
ture has been developed about this topic, often focusing on the possibility of increasing the thermal
properties of the solution through the insertion of low emissivity sheets. In fact, in many cases, this
insulation system presents air gaps, therefore one way to increase its thermal performance is to reduce
the radiative heat exchange in the air cavity by applying low-e thin layers to one or both air gap
surfaces.

A laboratory setup conducted by Johansson et al. [95] demonstrated the suitability of Vacuum Insula-
tion Panels applications. They analyzed four brick and six mortar wall typologies by using numerical
simulations. Moreover, they tested the material impact in a climatic chamber comparing wall per-
formances with and without interior Vacuum Insulation Panels, they measured relative humidity in
thermal bridges and performed hygro-thermal numerical simulation and measurements. The results
showed that interior insulation significantly reduced the wall temperature, while increasing its ther-
mal resistance of a range between 60% and 100%, but causing at the same time condensing phenomena.

Eben Saleh [96] used the NBSLD numerical tool to investigate the effect of different insulation config-
urations on the daily cooling and heating demand of a typical 125 m2 residence in Saudi Arabia. In all
the 10 different wall configurations studied, the external insulation of walls was found to outperform
the internal insulation configuration. However it was also noticed that, during the summer period,
thermal comfort conditions could be achieved faster using the internal insulating systems.

Galatioto et al. [97] reviewed some technologies for retrofitting historical buildings emphasizing the
difficulties in adopting renewable energy sources in historical city centers and the particular attention
required to preserve the cultural heritage.

Ibrahim et al. [98] demonstrated, through a numerical simulation, the correlation between differ-
ent insulation thicknesses and surfaces emissivity in determining the energy savings in a building,
highlighting that with high levels of insulation the influence of surfaces emissivities becomes nearly
negligible.

Saber [99] conducted a parametric study to investigate the effects of inclination angle, foil emissiv-
ity and heat flow direction for an isolated air cavity inside a shell structure. He evidenced that by
decreasing the foil emissivity from 0.90 to 0.05 in a horizontal building component with downward
heat flow, representative of a typical summer season roof case, the structure’s thermal resistance, R,
increased by 26.10%. Considering the same solution with an upward heat flow, i.e. winter season roof
case, the R-value increased by 8.90%. Instead, with an inclination of 30°, the decrease in emissivity
led to a R-value increment of 17.65% and 10.50% for downward and upward heat flux respectively.

Despite the great amount of studies dealing with walls internal insulation systems, no extensive infor-
mation is available in literature about the overestimation of the thermal performance of the internal
insulation packages applied to massive constructions. As already stated, this issue happens because
the presence of the structural steel studs is neglected when computing the thermal performance of
the structure, despite the possibility of them leading to the formation of thermal bridges. However,
this problem is well known in light frame and light steel frame constructions. Kosny et al. [100] nu-
merically analyzed various metal frame walls configurations highlighting the difference between clear
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wall and frame R-values. In another study, De Angelis et al. [101] displayed the necessity of using
numerical methods to obtain the correct U-value of light frame walls and discouraged the application
of simplified calculation methods. Another work [102] explained the problem related to heat exchange
in such structures and how thermal bridges created by metal studs affect the whole system.

Regarding massive constructions, Manzan et al. [103] studied the effect of structural elements with
internal compact insulation without air gaps. They used simplified methods to compute the overall
conductance of the insulated wall; the results showed that the conductance of the system was 6.60%
higher for wooden studs and 32.80% higher for metal studs if compared with the clear wall values.

In another work [104] the metal studs case was studied by using numerical techniques, highlighting
the influence of the steel studs on the total performance of an internal insulation wall package. It was
proved that the correct evaluation of the whole insulation system displayed a mean conductance 20%
higher than the one computed using the one-dimensional clear wall values.

4.3 Analysis scope

Energy refurbishment of buildings is one of the most important mitigation and adaptation measures
to tackle climate change and in Italy one of the most widely applicable interventions to improve build-
ings thermal performance is the application of internal insulating packages. Because of the importance
of this insulation technique for the Italian municipalities drafting their SECAPs, in this research an
impact assessment of steel studs presence inside the air cavities on the overall system performance is
carried on for internally insulated massive structures with variable insulating thicknesses.

Moreover, because of the extended presence of solutions including low emissivity layers applied to the
air gaps of the insulation package, the combined effect of steel studs and surfaces with low values of
emissivity have been studied.

This study aims to give the municipalities a clue on how to assess the real performances of the insulating
techniques used in their refurbishment plans of their building stock, also highlighting the errors that
could emerge by taking for granted the performances described in the producers data sheets. It has
also to be pointed out that this analysis focuses on the assessment of the discrepancies between the
real performance of the package and the one declared in the technical data sheets. Therefore the
analysis are carried on in a stationary condition, with fixed boundary conditions, not considering the
real climate in which the package will operate in the reality.

4.4 Numerical simulation

In order to assess the effect of the steel studs within a range of possible thicknesses of the insulating
layer and their interaction with surfaces having different emissivity, a 3D model has been created to
accurately represent the heat transfer phenomenon. The model was developed using ANSYS Fluent, a
software that employs a finite volume discretization and has the ability to consider the coupled effects
of radiative and convective heat transfer.

4.4.1 Model geometry

For what concerns the geometry of the numerical model, the dimensions have been resumed from the
work previously developed by Manzan et al. [103, 104], in which experimental tests have been con-
ducted at Edilmaster building school in Trieste where, inside a controlled laboratory, a reproduction
of a typical massive wall used in historical buildings was realized. The structure was provided with
an internal insulation system to replicate a refurbishment activity on an existing building. The setup
was composed by two cells maintained at constant different temperatures separated by the studied
wall. Electrical resistances warmed up the hot chamber, while a refrigerator unit cooled down the
other one. This research started from the aforementioned work in order to continue the study on such
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topic through a unique and continuous workflow [105].

The test cell was 4.70 m long, 2.24 m wide and 2.20 m tall; the tested wall had dimensions of (1.90 x
1.93) m for a total area of 3.67 m2. The specimen consisted in a massive brick wall 51 cm thick with
plaster layers on each side. The internal insulation system was composed by an insulating layer and
an air gap both 3 cm thick, and 1.25 cm of plasterboard panels as reported in Figure 4.1a. To fix the
plasterboard panels to the wall, vertical C-shaped 0.60 mm thick steel studs were placed at a distance
of 56 cm between each other as presented in Figure 4.1. The C-shaped (6 x 3) cm metal studs were
fixed in place by two metal clamps, 6 cm wide each, fixed to the underneath wall. The stiffness of the
structure was obtained through U-shaped (3 x 3) cm metal profiles located at the top and bottom of
the tested wall as it can be seen in Figure 4.1b.
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Figure 4.1: Experimental test characteristics.

Starting from the experimental study dimensions and setup, the geometry for the 3D model was
developed. Compared to the sperimental case, the geometry was simplified and modeled as reported in
Figure 4.2 in order to speed up the calculation process. This led to the representation of a symmetric
portion of the wall considering a width of 1.24 m. 2D thin layers have been used to model the
horizontal and vertical metal studs, having a thickness of 0.6 mm, in order to effectively consider
the heat conduction. This option allows Fluent to compute heat transfer through these components
without generating a true 3D geometry for elements with excessively low thickness. In this way were
modeled all the horizontal U-shaped, the vertical C-shaped steel studs present in the air cavity and
the clamps that intersect the insulating layer all the way to the brick wall. The insulated structure,
from cold to hot side, is composed by the following layers:

� Bricks - 0.51 m;

� Insulation - 0.03-0.08 m;

� Air cavity - 0.03 m;

� Plasterboard - 0.0125 m.

The characteristics of the materials used in the model are reported in Table 4.1.

4.4.2 Numerical model

In the numerical model great attention was posed on the definition of the calculation mesh inside
the air cavities formed by the steel studs due to the presence of convective effects caused by the
temperature differences. Moreover, Navier-Stokes equations were used in the computation of these
spaces and, to properly consider the buoyancy-driven nature of air, the Boussinesq approximation was
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(a) Model geometry.
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(b) Steel studs positions. (c) Plasterboard surface used to com-
pute average output values.

Figure 4.2: Numerical model characteristics.

Table 4.1: Model material properties.

Material
Density Specific heat Conductivity
[kg/m3] [J/(kg K)] [W/(m K)]

Air 1.225 1006.43 0.0242
Brick 1200 840 0.8329
Insulation 30 1450 0.035
Plasterboard 700 1000 0.2
Steel 7800 500 50

used to compute air density inside the cavities. Instead in solid domains steady state energy equations
were solved. The simulation was carried on in a steady state condition.

To obtain computation convergence and reliable results, residuals limits of 10−5 were set for continuity
equation, radiation model and fluid velocity in all directions, while a limit of 10−10 was set for the
energy equation.

In order to consider the radiative heat transfer process occurring in the air cavities the Surface to Sur-
face (S2S) calculation model was set up in Fluent. This model calculates the radiative heat transfer
between the cavity surfaces depending on their size, separation distance, orientation and emissivity.
The geometrical part of the model was considered automatically by Fluent through the calculation
of the view factors between the surfaces interested by the radiative heat transfer. The emissivity of
stud and clamp metal surfaces was set at εst = 0.23 and the plasterboard one at εpl = 0.95. The
emissivity of the insulation panel surface facing the air cavity was set at εins = 0.95 for not treated
case and εins = 0.10 when coated with low-e sheets. The boundary conditions and surface emissivities
are reported in Figure 4.3.

As already stated, in order to reduce the computational time, the geometry of the model was simpli-
fied. Therefore, only a periodic portion of the wall has been modeled through the use of symmetry
boundary conditions applied to the lateral surfaces, showed with dashed lines in Figure 4.3. However,
the S2S model does not perform correctly alongside symmetry conditions, since near the boundary the
radiative contribution of the not modeled surfaces outside the boundary itself is lost. However, thanks
to the reduced thickness of the air cavity, the effect is restricted to a strip located near the lateral open
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Figure 4.3: Numerical model boundary conditions.

boundary. Because of this issue, two vertical studs were inserted in the model to accurately consider
the radiative heat exchange in the central portion of the geometry. Therefore, only the central part
of the model, delimited by the two vertical studs, and highlighted in Figure 4.2c, is considered to
compute the thermal behavior of the wall.

The presence of hot and cold chambers on the two sides of the wall was modeled through a convective
heat transfer wall boundary condition applied to the surfaces as shown in Figure 4.3 . Regarding the
hot chamber a temperature of θh = 26 °C with a convective heat transfer coefficient of hh = 8.546
W/(m2K) was chosen. Regarding the cold side instead, it was modeled with a temperature of θc = 5.01
°C and convective heat transfer coefficient of hc = 14.06 W/(m2K). The heat transfer coefficients
have been computed using the experimental data obtained by Manzan et al. [103] for temperature
and specific heat flux at the center of the insulation board where one dimensional heat flux is expected
to occur.

4.4.3 Numerical analysis

In order to assess the reliability of the 3D model, a simplified geometry having 3 cm of insulation
without steel studs was first created. This model allowed a direct comparison with the conductance
CISO computable through the procedure reported in the EN ISO 6946:2018 standard [106]. This
procedure consisted in an iterative calculation used to evaluate the thermal resistance of an air cavity
with various emissivity values and homogeneous stratigraphy. The method proposed by the standard
is considered to be very reliable however, as stated by Escudero et al. [107], great attention has to
be set on the determination of surfaces emissivity. Escudero considered an emissivity varying from
0.03 to 0.30 for low-e surfaces to determine air cavity thermal resistance and found that little changes
of emissivity led to considerable variations of the thermal resistance; this effect also became more
important when increasing the air gap thickness.

Calculations conducted through the EN ISO method led to a conductance of the simplified version of
the wall of 0.5902 W/(m2K) for normal emissivity surfaces and of 0.4540 W/(m2K) for low-e solution.
At the same time, the Fluent model of this version of the wall led to conductance values of 0.5320
W/(m2K) and 0.4467 W/(m2K) for normal and low-e solutions respectively. It can be noted that
the results are quite similar, therefore assessing the reliability of the Fluent model for a homogeneous
stratigraphy of the wall system.

To accurately evaluate the combined effects of the steel studs and of air cavity surfaces emissivity
variation, different analysis were carried on. In order to generalize the results, configurations with
insulating layer thickness varying between 3 and 8 cm with 1 cm steps were considered. For each
insulating panel thickness, simulations were carried on considering first high emissivity surfaces only,
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i.e. Case 1, and then the configuration with a low-e surface on the insulation panel side of the air
cavity, i.e. Case 2. This led to a total of 12 different simulations.

4.5 Results

To properly evaluate the performance of the internal insulation of the wall, the main parameter
considered in the results was the conductance calculated in three significant points through Equation
4.1, where q is the heat flux in W/m2 , θh and θc are the hot and cold chamber temperatures, hh and
hc are the hot and cold convective coefficients in W/(m2K):.

C =

[(
q

θh − θc

)−1
− 1

hh
− 1

hc

]−1
(4.1)

The analyzed points are the center of the plasterboard where the steel studs effect is nearly negligible,
the center of one of the steel studs themselves, and where the stud connects with the clamp. These
three points were chosen to highlight the variation of the conductance along the geometry of the
analyzed system. However, the most important output to be analyzed is the difference between the
conductance computed through standard formulas, as happens in the technical data sheets provided
by the producers of the insulating packages, and the numerical conductance weighted on the domain
surface highlighted in Figure 4.2c, including the central part of the plasterboard and one of the steel
studs. The analysis performed in this way allowed then to evaluate the difference between the declared
values used on the market, which neglect the effect of metal studs, and the correct one that instead
considers all the components of the internal insulation system.

Table 4.2 reports the Fluent simulations results for Case 1 and Case 2 with insulating layer thickness,
sins, varying from 3 to 8 cm. The presented values were detected at mid-height of the plasterboard,
but in the three different locations described before. In the middle of the plasterboard CCW , identified
as a clear wall position, in correspondence of the steel stud Cst, and at the connection between the
steel stud and the clamp that fixes it to the brick layer Ccl.

Table 4.2: Conductance numerical results.

Ccl [W/(m2K)] Cst [W/(m2K)] CCW [W/(m2K)]
sins[cm] Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

3 1.01 0.97 0.60 0.65 0.57 0.40
4 0.93 0.90 0.51 0.57 0.49 0.35
5 0.86 0.86 0.45 0.52 0.42 0.32
6 0.79 0.79 0.40 0.47 0.37 0.29
7 0.73 0.74 0.36 0.44 0.34 0.27
8 0.69 0.71 0.34 0.47 0.31 0.25

As expected the highest conductance value is detected at the connection between the clamps and the
studs, while the lowest on the plasterboard, having an intermediate value on the mid-height point of
the steel stud. It can also be highlighted that, as expected, increasing the thickness of the insulation
led to an overall reduction of the conductance values.

The inspection of Table 4.2 reveals also that the conductance at clamp position does not significantly
change between Case 1 and Case 2. The presence of values higher than the clear wall case can be
justified by the presence of a point thermal bridge going from the plasterboard to the underneath
cold wall by means of conductance heat transfer along the clamps. Different results are obtained
for the conductance computed in correspondence of the vertical studs: Case 1 Cst values are always
lower than the ones obtained for Case 2, and it is interesting to note how the difference raises with
increased insulation layer thickness. As a consequence, it is important to account for the tendency of
the conductance to increase in stud, Cst, and stud-clamp, Ccl, positions when lowering the emissivity
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of the insulating surface of the air cavity.

In Figure 4.4 conductance trends are reported along the z-axis of the model. The main characteristic
noted is that the trends show disturbances in correspondence of the horizontal studs for both plas-
terboard and steel stud distributions and at the clamps positions only for the latters. Moreover, it
can be noted that the clamps presence has a way greater influence on the system than the horizontal
U-shaped supporting frames. This because the clamps create a thermal bridge all the way to the
underneath wall, while the horizontal U-shaped studs behave like linear thermal bridges only up to
the internal insulation panel surface.
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Figure 4.4: Conductance trend along z-axis. On the center of the plasterboard for Case 1 (a) and
Case 2 (c) and in correspondence of the stud for Case 1 (b) and Case 2 (d).

The inspection of Figure 4.4 highlights that the presence of low emissivity surfaces increases the
disturbance caused by studs and clamps. The high emissivity case shows a more uniform distribution,
while in the low-e one it appears tilted, suggesting a different behavior of heat transfer inside the
cavity for standard and low-e cases.
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Conductance vertical distribution reported in Figure 4.4 suggests the convection phenomenon to be
stronger in Case 2 than in Case 1. It is expected that temperature difference between air gap surfaces,
i.e. the hot one formed by the plasterboard and the cold one by the insulation panel, generates a
circulation flow inside the air gap typical of differentially heated cavities where, the higher the tem-
perature difference, the stronger the air circulation that is generated.

All these results highlight the requirement to include the studs effect in the computation of the overall
insulation package performance and the possibility of errors when this effect is discarded using clear
wall values only.

The numerical computation of the heat flux through the surface highlighted in Figure 4.2c allows the
definition of an average conductance of the wall, CAV G, which correctly considers the presence of the
metal studs. Therefore, a result to account for is the comparison between the values obtained applying
the international standard method [106] in computing the conductance, CISO, and the ones obtained
considering the average value, CAV G. To evaluate the difference between the results, the error respect
the international standard value is introduced with Equation 4.2.

EISO =
CISO − CAV G

CISO
· 100 (4.2)

All these outputs are reported in Table 4.3, where the influence of both the steel studs, the surfaces
emissivity and their interaction can be appreciated. With normal values of emissivity, i.e. Case 1,
the error that occurs disregarding the effect of the steel studs varies in a range between ≈ 0.20% and
≈ 4.00% showing an increasing trend with the insulation thickness.

Considering instead the low-e solution, the error grows consistently reaching a value between ≈ 8.00%
and ≈ 16.00% . A common behavior is evident: the more the system is insulated, regardless of the
insulation method, the more the influence of the steel studs becomes evident and influential.

Table 4.3: Comparison between standard and average numerical conductance values.

Case 1 Case 2
CISO CAVG EISO CISO CAVG EISO

sins[cm] [W/(m2K)] [%] [W/(m2K)] [%]

3 0.590 0.591 0.23 0.473 0.511 7.97
4 0.505 0.508 0.56 0.414 0.450 8.72
5 0.441 0.443 0.41 0.369 0.403 9.17
6 0.392 0.397 1.22 0.332 0.367 10.61
7 0.353 0.359 1.72 0.302 0.341 12.98
8 0.320 0.333 4.10 0.278 0.322 15.77

However, differences also occur between the results obtained from a numerical computation of a clear
wall for the simplified geometry and the average ones, therefore Equation 4.3 presents the error between
the average conductance CAV G and the numerical computed clear wall value CCW .

ECW =
CCW − CAV G

CCW
· 100 (4.3)

Table 4.4 reports the difference between clear wall and average values obtained using Fluent. This
comparison has been done to highlight the different behavior of the two situations if both are computed
through numerical simulation. In this manner some simplifications introduced by the standard to
represent the heat transfer phenomena are bypassed.
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Table 4.4: Comparison between clear wall numerical and average numerical conductance values.

Case 1 Case 2
CCW CAVG ECW CCW CAVG ECW

sins[cm] [W/(m2K)] [%] [W/(m2K)] [%]

3 0.573 0.591 3.28 0.399 0.511 28.00
4 0.487 0.508 4.21 0.353 0.450 27.66
5 0.422 0.443 4.88 0.320 0.403 25.79
6 0.374 0.397 6.00 0.290 0.367 26.68
7 0.338 0.359 6.24 0.270 0.341 26.46
8 0.312 0.333 6.88 0.255 0.322 26.41

Results show that in this case differences between clear wall and average values are even greater,
ranging from ≈ 3.20% to ≈ 7.00% for Case 1 and from ≈ 25.80% to ≈ 28.00% for Case 2. Table 4.4
inspection then shows that using a numerical method, but disregarding the presence of the steel studs,
could lead to a performance evaluation error up to a remarkable 28%.

As a final remark some guidelines for designers can be drawn. In order to reduce heat losses into
refurbished buildings internal insulation systems can be applied, but with carefulness. The formation
of air gaps in the insulation structure isolates the metal studs from the cold underneath wall reducing
the thermal bridge effect in fact, for high emissivity surfaces, the stud effect is rather low with a
maximum value of 4.1%.

The adaption of low-e surfaces is a practical and economical way to increase the insulation effect.
However, in this case the influence of metal structures cannot be disregarded since the error in com-
puted conductance can be up to 28%. However, even if the effect of metal studs is taken into account,
using low-e surfaces is beneficial in decreasing the overall conductance of the wall since the CAV G

values for Case 2 are always lower than the ones computed in Case 1 as reported in Tables 4.3 and
4.4.

4.6 Conclusions

The analysis here presented allowed to carry on the correct evaluation of internal insulation systems
performances for building refurbishment. This system features an insulating layer positioned on the
wall, an air gap, required to accommodate structural metal studs for supporting the finishing layer,
and the plasterboard itself. Since the air gap in the structure contributes to the heat exchange with
both convection and radiation heat transfer, two cases have been analyzed: the former with high emis-
sivity surfaces and the latter with a low emission layer installed on the cold side of the gap. Different
insulation layer thicknesses, ranging from 3 cm to 8 cm, have been analyzed.

A numerical model has been first validated using experimental results obtained using heat flow meter
measures in a controlled setup, then used to evaluate the effect of low emission coatings in the air gap
and the effect of the interaction of structural metal studs into the air gap layer. The results revealed
that for the high emissivity case the impact of the metal studs is negligible, however the use of low
emissivity coatings dramatically changes the panorama.

Although the use of low emissivity layers is beneficial, increasing the thermal resistance of the system
for clear wall values, the interaction with the metal studs decreases the effectiveness. Taking into
account the metal studs the overall thermal conductance shows an increase up to 28.00%. The results
show that the use of clear wall values for evaluating the thermal resistance of an internal insulation
system may lead to an overestimation of the energy savings for a refurbished building, especially if
low emissivity layers are inserted in order to increase the overall thermal resistance.

It is then evident that in an environment like Italy, where this technology is widely exploited due to
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the presence of many historical buildings, additional caution should be posed on the determination of
the performance level of this insulation technique. Taking for granted the performance values exposed
in the producers technical data sheets, without further analyzing the particularities of this technology
before applying it to a refurbishment process, could lead to serious design mistakes, thus neglecting
or reducing the beneficial effect of the refurbishment practice itself.
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Chapter 5

Optimization of a building-plant
system refurbishment

5.1 Problem definition

All the analysis described in the previous Chapters have been used for the simulation of a building-plant
system, a cornerstone for the development of every adaptation and mitigation policy. Building-plant
systems simulation is in fact essential to carry on evaluations about the current buildings energy
consumption patterns, how they will change because of climate evolution and how to reduce them
to more sustainable levels. It also allows to assess the current and possible future level of ther-
mal comfort perceived by people when using the buildings, therefore giving a wider overview of the
interactions between climate and human activities. They also allow to preview the effects of energy
refurbishment practices and their results are also the base to perform cost evaluation procedures [108].

Energy simulation techniques are nowadays widespread: in fact, they are fundamental to carry on
refurbishment practices on existing buildings or to design new ones. In the common practice these
simulations are carried on by considering all parameters as deterministic, however in reality this is
not correct. In fact no input parameter can be considered completely known and reliable about its
value and behavior. As examples, energy price and investment costs could vary in time, reaching very
different values from the ones considered during the design phase. Also material characteristics could
be very different than expected. This is particularly true in existing buildings, where often the struc-
tural composition of the envelope is hypothesized, and therefore subject to errors and imprecisions.
Other unpredictable parameters are the internal heat gains of buildings; these are considered during
the design phase and commonly computed basing on predefined people behaviors, despite being very
difficult to properly represent the true usage pattern of a building. Finally climate data, a fundamental
input for energy analysis, is nearly always considered known, while it is evident that climate changes
and can greatly influence the building-plant systems behavior.

All these input uncertainties lead to a great issue: the finished product could not met the fixed ob-
jectives or performances because it was designed assuming definite values of the input parameters,
without considering their possible variations. This can lead to performances that greatly differs from
the expected ones, thus causing unexpected consequences. In the particular case of building-plant
systems this could lead to different energy consumption, CO2 emissions, perceived thermal comfort,
and, last but not least, economic performances.

It is then evident that, in order to obtain the best results, a classic approach to the problem is not
advisable. Therefore the best method to take into account all the uncertainties influencing the design
or retrofit of building-plant systems is the optimization under uncertainties process. In fact optimiza-
tion models coupled with numerical simulation of buildings proved to be a valuable tool for predicting
the behavior of the building taking into account uncertainties [109].

Optimization techniques are currently gaining importance in the engineering practice since they allow
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to restrict the possible solutions of a design or a retrofit to an optimal subset, based on specified
goals. When dealing with buildings refurbishment, one of the optimization goals usually takes into
account the economic return of the intervention, driving the users to select solutions with a convenient
trade-off between the energetic and economic perspectives [110].

Usually optimization techniques apply a deterministic approach, using fixed values for some param-
eters, while changing others during the optimization process. However, it is common to incur in
situations where the parameters are not constant and can vary during the time, especially when an-
alyzing the long building’s lifetime. In order to consider this aspect into an optimization process,
uncertainty in searching optimal designs should be added to the process. This is even more important
when optimizing a refurbishment process, for which an investor requires not only a cost analysis, but
also an evaluation of the economic risk intrinsic in each investment proposed. While in literature the
sensitivity analysis of energy building simulation is a well established research field, the problem of
the optimization under uncertainties has gained interest only recently.

A study by Cano et al. [109] applied a stochastic multi-staged optimization algorithm, highlighting
the requirement to introduce stochastic variables for risk assessing and decision making.

Also the effect of boundary conditions can affect the results of an optimization. Lu et al. [111]
performed an optimization taking into account the uncertainties of the parameters; however the un-
certainty was not directly modeled into the optimization loop, but the authors performed a parametric
analysis introducing uncertain quantities. An interesting results of this research was that, when the
optmimization considered the uncertainties, in some cases it led to optimized solutions performing
worse than the starting one.

Various authors pointed out the importance to analyze the effect of uncertain parameters in building
simulation. Sun et al. [112] used a probabilistic method for risk assessment in computing the energy
requirement and utility cost using a reference commercial building; they computed mean values and
standard deviation to identify the risk associated with a project. Another work [113] carried on a
stochastic assessment of buildings energy performance considering twelve different regions in Europe
and identifying the factors wich more impacted on energy use. Prada [114] analyzed the material
properties uncertainty propagation in energy simulations, emphasizing the issue of a correct assess-
ment of physical properties in existing buildings in order to optimize energy refurbishment.

Other studies highlighted the effects of climate data on the optimization loop results for the refurbish-
ment of a social house [115, 116], using as optimization objectives the overall energy consumption and
the Net Present Value of the investment. Other researches worked on a sensitivity analysis to identify
the main parameters affecting the Life Cycle Cost of a building [117], thus identifying financial factors,
inflation, discount rate and energy trend uncertainty as the most influential parameters.

5.2 Analysis scope

In order to provide to the municipalities involved in the Interreg ITA-SLO Secap Project a case study
to exploit when developing their mitigation and adaptation policies, an optimization of a refurbish-
ment process for an existing builiding in Trieste was carried on. The aim of the research reported
in this Chapter is to highlight the importance of considering all the uncertainties regarding the in-
put parameters used in the classic building-plant analysis. In particular the influence of a stochastic
variation of economic parameters in an optimization loop applied to the refurbishment of an existing
social housing building is analyzed.

Moreover, in Italy the common habit is to focus on the winter energy performance of buildings, there-
fore many of the refurbishment interventions aim to heavily insulate the envelope to reduce heating
energy usage [31]. The problem of such approach is that the summer performance is commonly disre-
garged in the analysis, therefore often leading to overheating problems in refurbished buildings [46, 47].
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In this research this problem is studied by considering the effects of a winter-centered refurbishment
intervention not only on heating energy usage and cost, but also on the indirect effect it could have
on the summer performance of the building.

Finally, as stated before, the common practice is to compute the performances of the refurbished
or designed buildings referring to the actual climatic data, without considering its possible future
evolutions, likely leading to performances that greatly differ from the design phase ones. To highlight
the issues that could emerge because of this practice, this research also investigates the effects of data
uncertainty on the aforementioned optimization process, focusing on the effects produced by climate
change.

5.3 Optimization under uncertainties

The optimization under uncertainties is becoming more and more acknowledged in the design practice;
this because most of the human activities are characterized by uncertainties, especially when dealing
with long-term projects and designs. Regarding building constructions for example, the manufactured
product is generally different from the design one mainly because of assembly imperfections. Also in
energy economics issues the parameters are not deterministc, but are characterized by some fluctua-
tions that can change the problem outcome.

As already stated, input uncertainties are transferred to the performance of the system, which cannot
therefore be determined with an exact and single value, but can be better described through a statis-
tical distribution. Another frequent design objective is the compliance of constraints and/or limits,
which normally should be obtained for a predefined percentage of the performance distribution. An-
other way to consider this condition is to compute what solutions percentage does not satisfy the limits,
i.e. the failure probability, that must be minimized as much as possible to improve the reliability and
quality of the product [118]. This approach can be extended to buildings energy optimization, where
different solutions must be compared, and where the design parameters can variate with a statistical
distribution.

In literature, two main types of optimizations exist for this kind of problems. The first is the Robust
Design Optimization [118, 119], which consists in evaluating, for each candidate design proposed by
the optimization algorithm, the stochastic distribution of its performances, and in defining objectives
based on the mean and standard deviations of the same distribution. For instance, an objective could
be the maximization of the mean performances and the minimization of their standard deviations,
in order to optimize the results stability under input fluctuations. The strategy is particularly effi-
cient, also because it can take advantage of the Polynomial Chaos Expansion [120], a methodology
which exploits proper ortho-normal Polynomials to analytically estimate with high accuracy mean
and standard deviation through a reduced number of sampling evaluations. However a limitation of
this approach is that it normally requires to double the number of objectives for each performance
criteria, having to optimize both the mean performance and to minimize its standard deviation, thus
normally producing relevant computational efforts to solve the optimization problem.

The other main approach described in literature is the Reliability-Based Design Optimization, or
RBDO, which implements methodologies like the first and second order reliability methods [121],
which evaluate the failure probability of any candidate design on the basis of its uncertainties distri-
bution and of the given limits to be respected. The negative side of this methodology is given by the
high number of evaluations that may be required by the algorithm to compute the failure probability
with accuracy, which often makes practically unfeasible its application to optimization problems of
industrial relevance.

In this Chapter, a Reliability-Based Design Optimization (RBDO) approach is proposed. Therefore,
the optimization results are obtained by integrating a genetic algorithm with a stochastic output de-
riving from stochastic inputs related to economic parameters. As a consequence the results are not
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reported as a set of optimized solutions, but instead as solutions that can be obtained with a defined
probability given the possible values of the stochastic inputs. In particular, the research focused on
the refurbishment of an existing building considering also the economic impact of energy conservation
measures.

However, since the RBDO presents the computational limitations previously described, in this research
an alternative formulation of a reliability-based optimization problem is used, introducing a method
which accomplishes good accuracy through a reduced number of evaluations. The methodology takes
advantage of the Polynomial Chaos Expansion (PCE) regression model [120, 122], normally applied to
robust design problems. The PCE is used to evaluate the complete cumulative distribution function
of the performances of the design, from which it is possible to accurately retrieve the percentiles of
designs not meeting the goal, i.e. the failure probability, for the predefined objectives/constraints.
Through this approach it is possible, for each performance criterion, to define a single objective, i.e.
the maximization/minimization of the percentile, instead of two, i.e. mean and standard deviation
treatment.

5.3.1 Modeling stochastic parameters: the Polynomial Chaos Expansion

As already stated, in order to describe in a probabilistic way the response of a system subject to uncer-
tainties, one of the most efficient methodologies that can be exploited is the non-intrusive Polynomial
Chaos Expansion (PCE) [120]. Through the sampling of the uncertain input parameters accordingly
to their probabilistic distribution the PCE regression model, described by Equation 5.1, allows to
accurately compute the system performance probabilistic distribution Φ. This is a function of the
input variables of the optimization problem, x, and of the distribution ξ of the uncertain variables θ.

Φ(x, θ) =
∞∑
i=0

φi(x) · ψi(ξ(θ)) (5.1)

In Equation 5.1, the spectral expansion is given by the combination of the ψi Polynomials, function
of the uncertain variables θ and which are orthogonal to their corresponding distribution function ξ.
In the case of a Normal distribution, the Polynomials are called Hermite Polynomials. For practical
reasons, the series is usually truncated to a finite number of terms, which is function of the Polynomial
order considered and of the number of uncertain parameters analyzed.

The weight functions, φi are computed for each design proposed by the optimization algorithm (x
being fixed), through the minimization of the Φ function regression error, computed by the sample
points, and evaluated accordingly to the distribution ξ of the uncertain variables θ.

The accuracy of the regression model is usually evaluated by performance indexes like Leave-one-out
R-square, which consists in iteratively leaving one design out of the training set and evaluating the
R-square index by training the regression model with the remaining part of the set, and then averaging
the results. It can be proved [123] that the convergence rate to the exact momentum of distributions
using polynomial chaos regression is exponential with the number of samples, therefore assuring a
high accuracy through a low number of sampling points evaluation.

By applying this evaluation to the baseline version of the building analyzed in this research, it was
possible to achieve a Leave-one-out R-square index of over 0.99, with only 40 samples for design and
a polynomial degree of the third order.

Through this approach it is then possible to reduce the computational load, being the evaluation of the
performance function required only to determine the coefficients of the Polynomial Chaos Expansion,
in the sampling phase. Once the coefficients are found, it is possible to express the CDF (Cumulative
Distribution Function) of any system response using directly the PCE polynomial, which can be
considered as a meta-model of the response, practically free in terms of CPU load. Once the CDF is
accurately obtained, the value corresponding to the needed percentile of the distribution can be easily
retrieved, to define the objective to be minimized.
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5.4 Optimization of a social housing building refurbishment

5.4.1 Building description and numerical modeling

The building analyzed for the refurbishment optimization is an existing one located in Trieste, city
included in the Interreg ITA-SLO Secap Project program area. It is a social housing building managed
by the Territorial Company for Public Housing of Trieste (ATER Trieste) and it is composed by four
adjacent blocks, as it can be seen in Figure 5.1, with apartments adjacent to each other. Every block
is formed by four floors with two small flats each. The ground floor apartments consist of a kitchen,
a bathroom and a bedroom. Every level above the ground floor features two apartments containing
one and two bedrooms respectively, a bathroom and a kitchen.

(a) (b)

Figure 5.1: Overview (a) and numerical model (b) of the analyzed building.

The ground level floors and the third level ceilings are adjacent to unheated aerated spaces. The base
building is characterized by massive structures without insulation. The external wall is composed
by two layers of full-bricks, each 25 cm thick. The ground floor, the roof and the third level ceilings
present a concrete structure whose thickness varies from 15 cm to 22 cm. External fenestrations consist
of a single-layer glass with high SHGC and thermal transmittance. Two windows sizes are present; the
first type presents a surface of 1.65 m2 and is placed on both north and south walls; the second one,
having surface of 0.262 m2, is present on south wall only. The energy refurbishment has been carried
on by windows substitution and by adding insulating layers to the internal vertical and horizontal
surfaces in order to preserve the facades, as commonly happens in the Italian area. Windows and
opaque surfaces characteristics before and after the refurbishment are reported in Section 5.4.2.

Regarding the internal distribution of spaces, a total of five types of flats have been identified and
reported in Table 5.1, presenting the distribution of spaces for each type.

Table 5.1: Spaces distribution for each flat type.

Configuration Living Room + Kitchen Other Conditioned Spaces

Apt 1 34.00% 66.00%
Apt 2 30.00% 70.00%
Apt 3 26.00% 74.00%
Apt 4 28.00% 72.00%
Apt 5 31.00% 69.00%

The base building model was developed using DesignBuilder software, leading to the creation of an
.idf file describing the building-plant system. This file was then used as input in EnergyPlus software
to carry on the energy simulations. During the optimization cycle, this base file was continuously
modified according to the refurbished configurations and the calculation phase used EnergyPlus as
the simulation engine. The simulation was also allowed to operate in parallel during the optimization
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GROUND FLOOR

FIRST, SECOND AND THIRD FLOOR

Apt 1
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Apt 3
Apt 4
Apt 5

Figure 5.2: Building planimetries and flat types.

runs by exploiting the multicore features of the hardware.

In order to speed up the computation, the partition of interior spaces has been simplified. Every
single apartment has been modeled as a unique space while keeping partitions between each other
and between apartments and common spaces. However, in order to consider the physical presence
of the partitions inside each apartment, equivalent internal masses were added to assure the correct
thermal inertia of the system. Internal gains due to people and equipment were computed basing on
the pattern for residential buildings of EN ISO 13790 standard [124]. The internal gains defined by
the standard were weighted through the areas percentages reported in Table 5.1 to obtain the total
internal gain for every type of apartment, presence of people included, as presented in Table 5.2. No
gains were modeled for entrances, circulation spaces and bathrooms. Lighting gains are included in
internal gains.

Table 5.2: Internal gains patterns.

Day Hours

Flat Type
1 2 3 4 5

W/m2

Mon - Fri

07:00-17:00 3.38 3.10 2.82 2.96 3.17
17:00-23:00 7.46 6.70 5.94 6.32 6.89
23:00-07:00 4.64 4.80 4.96 4.88 4.76

Sat - Sun

07:00-17:00 4.04 3.8 3.56 3.68 3.86
17:00-23:00 9.44 8.80 8.16 8.48 8.96
23:00-07:00 4.64 4.80 4.96 4.88 4.76

Air infiltration has been computed in a simplified manner during winter season, considering an air
change rate of 0.50 vol/h for each apartment, while a variable airflow was computed during summer-
time in order to model the windows opening. This approach aims to better model the occupants
behavior during summer period, also highlighting the eventual collateral effects of the envelope insu-
lation level on the thermal comfort of the users. Windows were considered open when the external
temperature fell below 2 K than the internal operative temperature. The opening of windows was
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scheduled to occur only from May to September and when internal temperatures exceeded 24 °C.
The WindandStackOpenArea model of EnergyPlus software was used to compute the ventilation phe-
nomenon, considering wind effect only [125].

The building blocks have separate heating plants which were modeled with HVAC systems composed
of gas boilers and water radiators as terminals in each flat. Circulation pumps were modeled as vari-
able speed ones. According to Italian regulations for climatic zone E, the boiler availability was set
from the 15th of October to April 15. The heating system water temperature was modeled as modu-
lating through an outdoor air temperature sensor. Circulation spaces and entrances were considered
as unheated. Heating set-point temperature has been set to 20°C from 7 a.m. to 2 p.m. and from 4
p.m. to 11 p.m., while during the remaining time a setback temperature of 18°C was set. No cooling
system was considered, therefore free floating temperatures were present during the summer season.
Finally, domestic hot water has not been included into the simulation, therefore energy consumption
takes into account heating energy only.

The weather input file was a TRY generated for Trieste using the data recorded between 2001 and
2010, following the procedure described in Section 2.5.

5.4.2 Refurbishment interventions

As previously mentioned, the refurbishing activities focus on the envelope insulation and on windows
substitution. Vertical walls were internally treated with different insulation thicknesses considering
their different exposition, as well as roof, floors and ceilings that separate the heated areas from crawl
spaces. Table 5.3 reports the opaque surfaces thermal transmittances, for base and refurbished con-
figurations. Regarding the latter, Table 5.3 reports the lowest and highest possible values, correlated
to the thickness of the insulating layer applied which can be changed with discrete values with 1 cm
steps. The insulating material characteristics and costs are reported as well.

Table 5.3: Opaque overall thermal transmittances and insulation layers characteristics and costs.

Opaque Ubase Uref tins Costins λins ρins cins
constr. [W/(m2K)] [W/(m2K)] [cm] [¿/m2] [W/(m K)] [kg/m3] [J/(kg K)]

max min min max min max

Wall 1.55 0.822 0.215 2 14 9.24 40.60 0.035 25 1,400
Ceiling 14.71 1.565 0.173 2 25 4.93 39.61 0.036 140 1,030
Roof 5.88 1.350 0.170 2 20 13.07 71.15 0.035 25 1,400
Floor 2.89 1.090 0.165 2 20 9.42 53.49 0.035 35 1,400

Regarding glazed surfaces, three different types of new windows have been considered to substitute
the low performing existing ones: a double-glass with air gap, a double-glass with Argon filled gap
and a triple-glass with Argon filled gaps. The characteristics of existing and new widows are reported
in Table 5.4, as well as the costs.

Table 5.4: Windows properties.

Window type Ug[W/(m2K)] SHGC [-]
Cost [¿]

Small Large

Base 5.7 0.870 - -

Type 0 1.4 0.660 226.2 417.8
Type 1 1.2 0.425 227.3 423.2
Type 2 0.8 0.398 244.3 500.6

As a consequence of the supposed refurbishment interventions, ten optimization parameters have been
considered, each representing a different refurbishment action on building elements; seven are related
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to the opaque surfaces and three to the transparent ones. Investment cost are computed taking into
account the costs of the material of insulation layers along with the cost of installation. Prices were
obtained from the public regional administration price list ”Prezzario Regionale dei Lavori Pubblici”
[126]. Window prices were instead acquired from real quotes considering transport and installation
costs.

5.4.3 Optimization methodology

The optimization was carried out using modeFRONTIER software [127]. Because of some input vari-
ables, more precisely the investment cost and the energy price trend, being considered not as fixed
values but following a probabilistic distribution, also the outputs of the optimization process have a
distribution that can be evaluated by the user. A reliability-based optimization has been performed
by considering a stochastic normal distribution for the energy price increasing rate and a normal
distribution for the investment costs. However, this two parameters have an effect only on the compu-
tation of the economic part of the problem. This suggests a two-step approach for implementing the
optimization loop. First the numerical solution with EnergyPlus is performed once per design, then
the energy consumption is used to compute the cash flow Si and, thanks to the Polynomial Chaos
Expansion, to generate the NPV distribution from which it is possible to obtain the desired percentiles.

Once the NPV percentiles have been computed, a RBDO can be performed by applying suitable
optimization algorithms. modeFRONTIER allows us to operate with nested projects so this capability
has been exploited to carry on the optimization: an external project carries on the true optimization
step while an inner project performs the Polynomial Chaos Expansion on the economic computation,
providing the external one with the NPV 10th percentile value to be used as objective. In Figure 5.3
the optimization workflow is reported.

σNPV

PE

N
28

Figure 5.3: RBDO simulation workflow.

As it can be seen, a Python script has been created in order to allow modeFRONTIER to drive the
optimization. The Python script implements the “eppy” library [128] using the parameters provided
by the optimizer. As described before, it modifies the building model characteristics, creating new
.idf objects; then the script runs the EnergyPlus simulation, and reads the results of a single run,
providing the optimizer with the Primary Energy PE, the number of discomfort hours in summer
period N28, and the computed investment cost C0.

The second modeFRONTIER project is then invoked, where C0 is changed through a uniform distri-
bution, generated considering a variation of +/-10% of the computed value, and the other economic
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parameters are computed. Using the generated input statistical distributions, the NPV output dis-
tribution is computed applying what is reported in the following in Section 5.4.3.1, obtaining the
objective percentile that is transferred to the outer project. Primary energy, the number of summer
discomfort hours, and Net Present Value 10th percentile are used as optimization objectives by mode-
FRONTIER external project in order to define new designs. In the computation workflow represented
in Figure 5.3 the little Gaussian shape identifies the input and output of parameters with stochastic
distribution while the part enclosed into the dotted line performs the stochastic simulation. The com-
putation of NPV percentiles has been carried on using the PCE implemented in modeFRONTIER.
However, it is worth mentioning that as an alternative solution, a Monte Carlo approach could have
been implemented, but with a far slower convergence.

5.4.3.1 Net Present Value computation

The evaluation of the economic performances of the proposed technological solutions was carried out
using discounted cash flow (DCF) analysis with reference to the Net Present Value (NPV) of the flow
of costs and savings generated by the various solutions, discounted at an appropriate discount rate
r. The costs are essentially due to the investment, C0, necessary to implement the refurbishment,
while the savings are computed as the differences Si between the current operating costs and those
of the refurbished solutions. The operating costs usually refer to management, maintenance and
energy consumption. However, in this research they refer to energy consumption only. Assuming an
evaluation at constant prices, it is necessary to adopt a real discount rate rr, obtained by removing
the effect of inflation ri from the nominal value rn, using the following equation:

rr =
rn − ri
1 + ri

(5.2)

The Net Present Value is then computed through Equation 5.3:

NPV = −C0 +

n∑
i=1

Si

(1 + rr)
i

(5.3)

Moreover, hypothesizing constant savings, Si, during the analyzed period, Equation 5.3 becomes:

NPV = −C0 + Si ·
(1 + rr)

n − 1

rr · (1 + rr)
n (5.4)

However this formulation does not take into account the possibility of variation and the future trends
of the main components of the operating cost, energy above all. To do this, Equation 5.4 is modified
through the insertion of the real annual rate of increase in operating costs, re, becoming:

NPV = −C0 + Si ·

(
1+rr
1+re

)n
− 1

rr−re
1+re

·
(
1+rr
1+re

)n (5.5)

That can be rearranged as:

NPV = −C0 + Si ·
1 + re
rr − re

·
[
1−

(
1 + re
1 + rr

)n]
(5.6)

The simulation of the economic performances of the refurbished solutions was carried out assuming
the economic values reported in Table 5.5. Most of the economic parameters have been assumed
constant and equal to the average of the values recorded in the last ten years. However, in order
to investigate the influence of stochastic variables, the future trend in the energy price re and the
investment cost C0 were supposed to variate following a stochastic normal distribution and a normal
distribution respectively. The investement cost should be known in advance however, as stated by Di
Giuseppe et al. [117], prices often change between the time of the design and the final construction.
The introduction of stochastic input variables obviously leads a stochastic output. This implies the
definition of a “decision rule” to use when dealing with the uncertainty induced by the stochastic
variables on the computed NPV.
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Table 5.5: Economic parameters used in the optimization. (*) Mean of the last 10 years prices for household
consumers, all taxes and levies included. (**) Mean of the last 10 years.

Parameter Value Unit Source

Gas* 0.899 ¿/m3 Eurostat

Electricity* 0.255 ¿/kWh Eurostat

Inflation rate ri** 1.173 % Worldwide Inflation Data; www.inflation.eu

Discount rate rn 4.090 % Bank of Italy

Energy price trend re 1.59 (s.d. 1.40) % Energy Information Administration

There are various ways to introduce the effect of uncertainty in a DCF analysis [129]:

� Computing a deterministic DCF where the inputs are fixed, the risk is represented by the
incremental risk premium on the risk free discount rate and the output is a fixed NPV;

� Computing a deterministic DCF where the inputs are fixed and valued at “certainty equivalent”,
the discount rate is risk free and the output is a fixed NPV [130];

� Computing a probabilistic DCF where the inputs are distributions, the discount rate is risk free
and the output is a NPV distribution.

In this research, the optimization process was carried on by implementing the third approach, therefore
aiming at the identification of a confidence limit to be associated with the stochastic objective to be
optimized, in this case the NPV. Assuming a risk-neutral decision maker and a stochastic distribution
of the NPV, the value to be optimized is the average or modal one. Normally, the decision maker
is risk-adverse and therefore optimizes a value with a probability to be overcame more than 50%.
Unfortunately, to our knowledge, there are no studies that have examined this aspect with reference
to the energy requalification choices. Therefore, a very cautious attitude was assumed, hypothesizing
a reference NPV with a 90% probability of being exceeded.

5.4.3.2 Optimization settings and objectives

Two optimization runs were performed with two and three objectives, respectively. The first run took
into account the economic and environmental impact of refurbishment activities by maximizing the
tenth percentile of the Net Present Value (NPV ) of the investment and by minimizing the building
Primary Energy (PE ) consumption. The second optimization considered an additional objective
inherent to the minimization of the maximum number of hours during which the operative temperature
of each apartment is higher than 28 °C, named N28. This objective takes into account the possibility
of overheating problems during summer season as a consequence of the major enevolpe insulation
implemented through the refurbishment activities. Overheating was chosen instead of the cooling
demand as a defining parameter because usually this kind of building does not present centralized
cooling plants. The three optimization objectives can then be summarized as follows:

� The minimization of the building primary energy consumption;

� The maximization of the 10th percentile of the NPV;

� The minimization of the summer discomfort hours.

Regarding the first objective, conversion factors to Primary Energy were set to 3.167 and 1.084 for
electricity and natural gas respectively. Standard cubic meters of natural gas were calculated consid-
ering the lower heating value of natural gas equal to 9.94 kWh/sm3. Moreover, it is worth noting
that the NPV objective is a statistical one, with the meaning that 90% of the solution are expected
to have a value greater than the objective one. As already pointed out, the choice has been made in
order to replicate the decisions of an investor with a low-risk attitude.
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The optimization process has been performed using the NSGA II optimization algorithm, starting with
an initial Design of Experiments of 24 individuals. The genetic optimization has been performed for 50
generations. Since the numerical computation with EnergyPlus and the stochastic optimization have
been decoupled the genetic algorithm has been the straightforward choice. However, if the stochastic
approach would be extended to parameters affecting directly the simulation with EnergyPlus, other
algorithms, such as response factors or the modeFRONTIER FAST algorithm [131] would be more
appropriate in order to obtain solutions in reasonable time.

5.4.4 Results

Optimizations results are reported using bubble plots to present up to four variables. The bubble
diameters are proportional to the external walls thermal conductance, whose maximum and minimum
values are graphically and numerically reported in the charts for clarity. Bubble colors represent win-
dow types that is, grey is Type 0, magenta is Type 1 and turquoise is Type 2. The 10th percentile of
the NPV and the Primary Energy are the axes of the plot. Since the abscissa is the 10th percentile
of NPV, it is worth noting that the reported value means that the 90% of the possible solutions will
show higher values of economic return, depending on the real behavior displayed by the stochastic
parameters.

Figure 5.4 presents the comparison between the Pareto fronts of the solutions related to the North
and South facades for the two-objective optimization: the figure shows how the optimization selects
opaque walls transmittance and drives window selection. Window Type 1 is seldom selected and never
for solutions pertaining to the Pareto front. For the South wall facade, the solution for windows is
always the Type 0, with the highest value of transmittance. On the other hand, on the North wall
windows, Type 2 are selected for the low energy case, while Type 0 is the one selected for the high
NPV case.
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Figure 5.4: Two-objective optimization Pareto fronts for South (a) and North (b) facades.

Finally, two designs from the Pareto front are compared for each case, representing the solutions that
grant the minimum NPV greater than zero, A2obj and the maximum NPV, B2obj . The chosen designs
are highlighted by squares in Figure 5.4. It can be noted that design B2obj grants the maximum NPV
but with a greater energy consumption than A2obj . This is due to the fact that B2obj uses low levels of
insulation for the South wall and less performant windows for the North one, leading to an increased
energy consumption but less expensive refurbishment solutions. The shape of the Pareto fronts shows
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as a conflict emerges between the minimization of Primary Energy consumption and NPV maximiza-
tion. However, Figure 5.4 shows that a significant increase in NPV with small increases in Primary
Energy consumption is achievable. Only when the NPV increases above 30 k¿ also the Primary
Energy consumption increases significantly. In other words, it is possible to identify technological
solutions which at the same time have low energy consumption and good economic performances.

Figures 5.5 and 5.6 present the Pareto fronts for the three-objective optimization for South and North
facades respectively. As already stated, the additional objective is represented by the minimization
of the maximum number of hours over 28 °C, namely N28, for each apartment of the building. In
order to highlight the correlation between the parameters and the number of exceeding hours, in both
figures the designs are categorized as the ones with N28 over 480 h (a), between 380 and 480 (b), and
under 380 h (c). As before, the results are reported through bubble plots representation: as before,
the circle diameter is proportional to wall conductance, while the color identifies the window type.

Figure 5.5: Three-objective optimization Pareto fronts for South oriented wall with different number
of N28: greater than 480 (a); between 380 and 480 (b); less than 380 (c).

It is worth comparing the results with the ones obtained with two objective optimization and reported
in Figure 5.4. For instance, the Pareto front of Figures 5.5a and 5.6a are quite similar to the results
presented in Figure 5.4a and b respectively, instead the results of Figures 5.5c and 5.6c show com-
pletely different patterns. In order to obtain results with low values of N28 the optimization selects
solutions with low conductance value for both North and South walls and, above all, windows Type
1 and Type 2 for the South-oriented windows. As a side effect, the energy consumption during the
winter heating period increases due to the lower solar heat gain from the windows on the south wall
with low SHGC.

For completeness it has to be pointed out that the results reported for the two-objective optimization,
not considering the minimization of the summer discomfort hours, nearly always fall into the higher
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Figure 5.6: Three-objective optimization Pareto fronts for North oriented wall with different number
of N28: greater than 480 (a); between 380 and 480 (b); less than 380 (c).

range of N28, further assessing the aforementioned similarities with case (a) of Figures 5.5 and 5.6.

It is clear that, if it is deemed important to improve the summer internal conditions, reducing the
N28 objective during summer season, the preferred solutions are the ones less performant regarding
the NPV and the PE objectives. Therefore, it is very important to correctly weight the importance
of each objective of the optimization in order to obtain reliable and efficient performances.

In order to understand the different behavior of the designs and how they are influenced by the inser-
tion of the summer performance objective, Table 5.6 reports six different designs, their performances
in terms of PE and NPV and the features of the parameters applied. The corresponding solutions are
graphically reported in Figures 5.4, 5.5 and 5.6. Two designs, A2obj and B2obj , have been selected for
the two objective optimization and four designs have been selected for the three objective optimiza-
tion: two for low PE and with high (A3obj) and low (C3obj) N28 value, other two with the highest
NPV, again with high (B3obj) and low (D3obj) N28 value.

By analyzing Table 5.6, it can be noted that the solutions of the two-objective analysis, A2obj and
B2obj , are similar to those of the three-objective one with high values of N28 A3obj and B3obj . Instead
the selected designs with low N28 values, namely C3obj and D3obj , are characterized by lower levels of
insulation on opaque walls but with more performing windows applied, namely Type 1 and 2. It is
then evident the purpose to reduce the overheating problem by limiting the envelope insulation and
decreasing the solar heat gains through the usage of low SHGC windows.

The results highlighted three different approaches a decision maker can have regarding the problem
of building refurbishment. The energy-aware approach implies that the solutions with the higher in-
sulation and higher cost are chosen; for instance, this means applying the triple glazing windows and
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Table 5.6: Selected designs.

Parameter A2obj B2obj A3obj B3obj C3obj D3obj

Uwall,S [W/(m2 K)] 0.23 0.47 0.23 0.47 0.23 0.31
Uwall,N [W/(m2 K)] 0.21 0.28 0.21 0.42 0.21 0.42
Uwall,E [W/(m2 K)] 0.24 0.28 0.28 0.28 0.24 0.28
Uwall,W [W/(m2 K)] 0.21 0.42 0.21 0.42 0.23 0.37
Uceiling [W/(m2 K)] 0.15 0.2 0.14 0.39 0.14 0.39
Uroof [W/(m2 K)] 0.41 1.35 0.33 1.35 0.76 1.35
Ufloor [W/(m2 K)] 0.19 0.49 0.15 0.49 0.23 0.49

Window1,N Type2 Type0 Type2 Type0 Type2 Type1
Window1,S Type0 Type0 Type0 Type0 Type2 Type1
Window2,S Type0 Type0 Type0 Type0 Type2 Type1

PE [MWh] 25.8 32.98 25.8 37.45 28.6 39.64
NPV [k¿] 10.69 41.83 3.29 44.54 11.38 36.11
N28 [hours] 466 528 481 519 353 377

higher insulation thicknesses. However, in this case, the return of the investment can be poor and,
in some cases, depending on the economic stochastic parameters, there is a risk to obtain negative
NPV, so the energy savings are not sufficient to compensate the initial costs. The solutions identified
as A2obj and A3obj follow this pattern.

Another approach aims at having the highest NPV possible, so the reduction in energy consumption
is less important; this means that the less expensive solutions are the preferred ones, so designs such
as B2obj and B3obj are selected. However, the results may be excluded due to the regulation require-
ments which fix minimum threshold values for energy performance. In this case, the limits can be
incorporated into the optimization process by introducing suitable constraints.

A different approach can also take into account the effect of insulation on summer conditions, which
leads to a change in preferred designs, since a lower value of overheating hours drives the solutions
towards higher energy consumption, such as C3obj or a lower NPV, as the D3obj case.

However, irrespective of the preferred solution, a decision maker using the presented approach has the
feeling of the economic risk involved in carrying out the refurbishment. For each design, there is a high
probability to have an economic return of the invested money, for instance the optimization could have
used higher values of NPV percentiles (less risk-adverse decision maker) resulting in higher expected
returns but with a lower chance. In fact, the convenience of an energy saving investment depends
on climate, economic and technological uncertainties. It follows that the choice of an investment
affects both the expected NPV and the probability of reaching it. In this work, a high risk-adverse
decision-maker has been hypothesized and therefore the proposed efficient solutions are very prudent
in economic terms.

5.5 Climate change influence on the optimization process

As previously stated, one of the research objectives is to assess the influence of climate change on the
optimization of the refurbishment process of an existing building. The possible evolution in climate
conditions introduces an additional uncertainty that can influence energy savings, but that can also
indirectly influence the economic and comfort aspects of the problem.

Ascione et al. [110] considered in a simple way the effect of increasing temperatures in the future,
highlighting the necessity to perform a robust optimization in order to obtain resilient solutions. Shen
et al. [132] analyzed the impact of the future climate scenarios in a retrofit analysis, realizing that
the changing climate scenarios increase the complexity of decision-making models for building refur-
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bishment. Moazami et al. [59] analyzed the effects of climate change on various building typologies
highlighting considerable variations in primary energy, especially regarding the cooling component.

In this research the climatic variability was considered through the use of six different climatic situa-
tions, analyzed to evaluate the influence of various boundary conditions on the optimization process.
The analyzed climatic sets were the TRY generated for Trieste using the data collected between 1995
and 2019, whose creation process is reported in Chapter 2, and its projections into the future whose
generation is reported in Chapter 3.

As it can be noted, the actual TRY refers to a different timeframe than the one used in the previous
optimization runs, referring to the 2001-2010 period. This has been done to also highlight how choos-
ing different data source periods to generate the actual TRY could influence the simulation results.

Regarding the projected TRYs, as already stated in Chapter 3, they represent the 2021-2050 period,
splitted in two to better assess climate evolution in the near future. Each TRY couple has been
used to represent a possible evolution of climate in the next 30 years.The choice of using TRYs to
represent such a long future period, 30 years, is due to the computational burden of the optimization
process. This would have made troublesome to perform the optimizations if the models projections
were used to run year-by-year simulations for the considered timeframe. However, the TRYs have
widely demonstrated to be able to well represent the overall behavior and the main characteristics of
climate for the timeframes they represent. The six climatic sets used in this optimization process can
then be summarized as:

1. Historical TRY (1995-2019);

2. Projected TRYs (2021-2035 + 2036-2050) using HadGEM2-ES RACMO22E model applied to
RCP8.5 scenario;

3. Projected TRYs (2021-2035 + 2036-2050) using MPI-ESM-LR REMO2009 model applied to
RCP8.5 scenario;

4. Projected TRYs (2021-2035 + 2036-2050) using EC-EARTH CCLM4-8-17 model applied to
RCP8.5 scenario;

5. Projected TRYs (2021-2035 + 2036-2050) using EC-EARTH RACMO22E model applied to
RCP8.5 scenario;

6. Projected TRYs (2021-2035 + 2036-2050) using EC-EARTH RCA4 model applied to RCP8.5
scenario.

Six distinct optimizations were carried on for every climatic dataset used in this work in order to
highlight the effects of different climates on the whole optimization process. The optimization approach
remained almost totally unchanged, with only some upgrades needed to consider the presence of two
TRYs for the future scenarios.

5.5.1 Methodology modifications

First of all, the energy simulation carried on by EnergyPlus for the future climates has been performed
twice because of the two timeframes, 2021-2035 and 2036-2050, considered in this work. Therefore,
the Primary Energy consumption takes into account the changes between these two periods and the
values reported in the results refer to a whole period of 30 years. Regarding the actual climate instead,
the original TRY was applied to the whole 30 years timeframe.

In this way, it was possible to consider different climates for the next 30 years, supposing that no
changes will happen respect to the actual situation, i.e. climatic set 1, or that various evolutions could
happen, discretized in two timeframes of 15 years, i.e. climatic sets 2-6. The possible different evo-
lutions are then represented by the distinct climate models used to project the TRY, giving different
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results for the same period.

Because of the energy analysis being split in two periods as stated above, also the NPV computation
had to be divided in two terms. Defining m and n as the duration in years of the first part and the
total time of calculation respectively, the Net Present Value is then given by:

NPV = −C0 +
m∑
i=1

Si

(1 + r)i
+

1

(1 + r)m
·

n∑
i=m+1

Si

(1 + r)i
(5.7)

Where the remaining parameters were already defined in Section 5.4.3.1. As already stated in that Sec-
tion, in order to properly evaluate the NPV the discount rate had to be corrected removing the effects
of inflation from the nominal value, obtaining the real discount rate. This was done using Equation 5.2.

As before, the computation must also take into account the future variability of the main components
of operating costs. Assuming again equal to re the real annual rate of increase in operating costs,
considering the correction of the discount rate and hypothesizing Si constant from 1 to m (Sa) and
from m+1 to n (Sb), Equation 5.7 can be rearranged as:

NPV = −C0 + Sa ·
1 + re
rr − re

·
[
1−

(
1 + re
1 + rr

)m]
+ Sb ·

1 + re
rr − re

·

[
1−

(
1 + re
1 + rr

)n−m
]
· 1(

1+rr
1+re

)m (5.8)

The evaluation of the economic performances of the refurbished solutions considered the values of the
parameters reported in Table 5.5.

The optimization process was still performed using the NSGA II optimization algorithm, starting with
an initial design of experiments of 24 individuals and performing the optimization for 40 generations.

5.5.2 Results

Optimizations results are again reported using bubble-plots to present up to four variables. How-
ever, because of the great amount of information to be reported, the results are not divided by wall
orientation but regards the behavior of all the building. As a consequence, in this case the bubble
diameters are no more proportional to the external walls thermal conductance, but to the overall mean
heat transfer coefficient of the building H ′t, whose maximum and minimum values are graphically and
numerically reported in the charts for clarity. The H ′t coefficient has been calculated for every output
design using Equation 5.9:

H ′t =

∑P
j=1Aj · Uj +

∑Q
k=1Ak · Uk · bk∑P

j=1Aj

(5.9)

Where P is the total number of surfaces facing the outside, both opaque and windowed, Aj , Uj are the
area and transmittance of the j-th surface respectively. Q is the number of surfaces facing unheated
spaces or the ground and bk is the correction factor for the transmittance accounting for the presence
of unheated spaces or of the ground, depending on the case as defined in the UNI-TS 11300-1 standard
[133].

Also bubble colors have a different meaning in this case, representing four ranges of N28 value that is,
the blue is range 650-1150, green 1150-1300, orange 1300-1450 and red is range 1450-1550. As before,
the 10th percentile of NPV and Primary Energy consumed over 30 years are the axes of the plot.

Figure 5.7 shows the Pareto fronts resulting from the optimizations carried on with the original TRY
(a) and the five climate models (b-f) for the 30 years timeframe. The most evident, and most expected,
feature synthetized by Figure 5.7 is the great difference between the case with actual TRY (a) and
the other cases computed with the climate models (b-f).
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Figure 5.7: Pareto fronts for original TRY (a) and for future TRYs generated with climate models
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Great differences can be detected in all the three objectives of the optimization: the Primary Energy
consumption is notably higher in case (a) because of the climate analyzed being colder than the others.
Despite the greater energy consumption, the optimization solutions perform better than in the other
cases, showing significantly higher NPV values for all the designs.

Also the hours of discomfort detected during summer season, N28, display significantly lower values
than the other situations, being this case the only one with N28 values falling in the lowest range.
Also in the cases were climate models were used, from (b) to (f), the optimizations results show very
different behaviors depending on the climatic model used. In fact, the simulations performed with
HadGEM2-ES RACMO22E (b), MPI-ESM-LR REMO2009 (c) and EC-EARTH RACMO22E (e) dis-
play N28 values falling in lower ranges (green and orange), than the ones performed with the models
EC-EARTH CCLM4-8-17 (d) and EC-EARTH RCA4 (e) showing N28 values falling in higher ranges
(orange and red). It is also very interesting to note that the two models having the higher values of
N28 are also the colder ones within the five projections, as if the optimization underestimated the
summer comfort objective. The real explanation is the choice of less performant windows in these
two cases in order to exploit the solar heat gains to reduce winter heating energy consumption. As it
can be seen in Figure 5.7, this choice also had beneficial effects on the NPV because of these windows
being cheaper, but obviously it reduced the performance during summer season.

The Primary Energy is the output that is least affected by the different climatic conditions. This
proves that the optimization often succeeds at finding solutions that are reliable through different
boundary conditions in terms of energy consumed, confirming the resilience of energy measures to
climatic conditions. On the other hand, the NPV and N28 objectives are much more influenced by
the climate model used in the optimization. About the former, it performs in very different manners,
showing minimum and maximum values that vary in a range of about 25 k¿ and 13 k¿ respectively.

Another relevant output is that the results obtained through the actual TRY generated using climate
data from 1995-2019 period (Figure 5.7a), are quite different from the ones computed in Section 5.4
with the TRY obtained through 2001-2010 historical data. Primary Energy consumption over 30 years
is lower, leading also to lower NPV values. Moreover, if with the 2001-2010 TRY the summer discom-
fort hours reached values of at most 530, by using the 1995-2019 TRY, N28 values ranged between
650 and 1150. It is then evident how using various historical data timeframes to create the TRY
leads to very different results in the simulation of building-plant systems, therefore highlighting the
importance to carefully choose wich period consider when creating the weather input file for energy
simulations, even if climate change is not involved.

Finally, an interesting feature can be detected in all the six optimization results: there are cases of
more insulated solutions that have higher PE consumption than less insulated ones, while falling in
the meantime in a lower range of N28. The higher-insulated designs feature high quality windows
in their refurbished configuration; because of the characteristics of these windows, the solar gains
are consistently reduced throughout the year. This implies less solar heat gains in both winter and
summer seasons, thus leading to greater heating energy consumption and less number of discomfort
hours (N28) during summer season.

To further highlight this feature, a correlation matrix is reported in Figure 5.8, representing the re-
lationships between the reported variables that are primary energy (PE), Net Present Value (NPV),
wall insulation (insN) and windows performance (winN) of the North facade, wall insulation (insS)
and windows performance (winS) of the South facade.

In Figure 5.8a are reported the minimum values of the Pearson correlation coefficients among the six
optimizations, while Figure 5.8b reports the maximum ones. It can be noted that, generally, there
is a relevant difference between the minimum and maximum values of almost all the correlation co-
efficients, highlighting then different reciprocal influences between the parameters depending on the
climate chosen for the simulation.
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PE 0.034
NPV 0.287 0.509
insN -0.646 -0.787 -0.608
insS -0.504 -0.787 -0.674 0.236

winN -0.680 -0.549 -0.598 0.083 -0.106
winS -0.655 0.011 -0.389 0.051 -0.316 -0.035

N28 PE NPV insN insS winN

(a)

PE 0.484
NPV 0.634 0.656
insN -0.309 -0.611 -0.436
insS -0.009 -0.641 -0.382 0.549

winN -0.500 0.120 -0.076 0.495 0.689
winS -0.547 0.310 -0.131 0.261 0.136 0.233

N28 PE NPV insN insS winN

(b)

Figure 5.8: Parameters correlation matrix, minimum (a) and maximum (b) correlation values among
the six optimizations.

The correlation matrix provides also a clearer explanation for the aforementioned phenomenon of
higher-insulated solutions having greater PE consumption and lower N28 values than less insulated
ones. In fact, by analyzing the correlation between winS, N28 and PE, a negative correlation coefficient
is detected in all cases between the first two. It is then evident that as winS increase, i.e. as more
efficient windows are selected, N28 decreases. Instead, the correlation coefficient between winS and
PE is always positive, therefore more efficient windows lead to major energy consumption. It is also
interesting to note that the absolute value of the first coefficient is way greater than the second one.
Therefore, as it can be deducted also by the bubble charts inspection, the benefic effect of a more
efficient window on N28 is way greater than the penalizing effect that it has on the PE consumption.

5.6 Conclusions

In order to provide the municipalities an applicative example to exploit when drafting their mitigation
and adaptation policies, a Reliability-Based Design Optimization for a social housing building energy
refurbishment has been carried out. The choice fell on a social housing building because of this typol-
ogy being the most probable to be included in refurbishment initiatives and not being provided with
centralized cooling plants.

Data uncertainty was taken into account for economic parameters and climatic data. About the
formers, the uncertainty was considered through the assumption of a stochastic distribution of the
investment cost and of the increase in energy prices during the building lifetime. Regarding the latter,
seven different climatic inputs were used for different optimization runs: of these inputs, two referred
to the actual climatic situation and have been obtained through the data detected during 2001-2010
and 1995-2019 timeframes respectively. The other five inputs were obtained through the projection
of the 1995-2019 dataset by using five different climate models applied to the RCP8.5 scenario. The
objectives of the optimization reflected the stochastic nature of the problem by maximizing the NPV
with a probability of being exceeded by 90% in order to model the choices of a prudential decision-
maker.
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Two first optimization runs have been performed using as input the TRY obtained through the 2001-
2010 historical data. The former used two objectives related to Primary Energy consumption and
Net Present Value, the latter added a third objective in order to search solutions able to minimize
overheating problems during summer season, identified as the number of hours in which the operative
temperature of the apartments was greater than 28 °C. The optimizations led toward solutions with
different choices between North and South facades, thus highlighting how important is to consider the
orientation of the envelope when dealing with refurbishment practices. Moreover, the introduction of
an additional objective in the second optimization gave rise to a set of solutions quite different from
the ones obtained with only energy and economical objectives, leading to the use of more performant
windows, irrespective of the wall orientation. This represents an important outcome, since economic or
energy-related objectives are usually not sufficient parameters to be taken into account when dealing
with building refurbishment. This also highlights the importance of considering the building perfor-
mance during the whole year, even when dealing with seasonal-centered refurbishment interventions.
In fact, as seen in this research, the characteristics of the winter-centered refurbishments greatly in-
fluenced the perceived thermal comfort during summer season.

After that, six more optimization runs, considering all three objectives, have been carried on using the
TRY obtained through the 1995-2019 historical data and its future projections computed through five
different climate models applied to the RCP8.5 scenario. The results showed important differences for
the three objectives behavior due to the various climatic datasets used. In particular great differences
are highlighted between the optimization carried on with the historical TRY and the ones exploiting
its projections, leading to very different performances for all three objectives. Moreover, notable dis-
crepancies are detected also between the optimizations developed with the 2001-2010 and 1995-2019
historical data, thus highlighting the importance of carefully choosing the climatic input data of the
energy simulations even when dealing with actual climate. Finally, the implementation of some re-
furbishment interventions led to unexpected counterintuitive results in terms of energy consumption,
with more performing refurbishment solutions leading to higher energy consumption.

Summarizing what emerges from this research, it is evident the necessity of carefully weighting which
objectives pursue when dealing with buildings refurbishment, because of the capacity of said objectives
to greatly influence the final design solutions. Moreover, it is of the uttermost importance choosing
the correct climatic boundary condition to set for the simulation, let this be an actual or future sit-
uation. Furthermore, it is highlighted that it should not be taken for granted that more performing
refurbishment solutions necessarily lead to better performances for the refurbished building. Finally,
this work also emphasizes the importance of considering the performances all over the year, even when
dealing with a seasonal-centered refurbishment design.

As a footnote, the results also show that the designs can be variegated and depend on the level of
acceptable risk. In this research, a 10% risk has been selected, meaning 90% of the solutions may give
NPV values greater than the ones computed. However, other values can be chosen depending on the
amount of risk a possible investor could accept. The use of Polynomial Chaos Expansion in evaluating
the stochastic functions allows, with few computations for each design, to determine the percentiles
to be used in the optimization, allowing an easy extension to problems which are more demanding in
terms of computational resources.
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Chapter 6

Conclusions and future developments

The research described in this thesis is placed within the Seap-Secap transition process. Starting from
the needs of the municipalities that have joined the project or are willing to do so, a methodology that
could be exploited when drafting climate mitigation and adaptation policies was developed. Moreover,
some applicative samples were carried on for Trieste location, included in the Interreg ITA-SLO Secap
Project program area.

Being the creation of policies to tackle climate change the principal aim of the Secap project, it is
evident that the starting point for the municipalities when joining such process is to properly analyze
actual climate and its evolution. To do so, a well defined and reliable methodology should be used in
the process and was developed in this research, starting with a quality check of the Italian historical
climatic data, leading to an evaluation of which ones can be used for energy simulations.

The quality check highlighted different behaviors across the analyzed Italian meteorological stations,
however assessing a fairly good overall climatic data quality, proving the data to be exploitable for
energy simulations in most of the cases. Some issues were assessed regarding the amount of detected
material, not reaching the 10 years recommended amount in almost half of cases. The major part
of the stations having few data were placed in South Italy, therefore highlighting the delay affecting
this part of the nation in developing a climatic database. Regarding the instruments capacity, some
issues were assessed in the detection of relative humidity and wind speed. However, the locations
where these issues emerged were mostly placed in hilly or mountain environments, thus suggesting a
connection between the orography of the territory and the functioning issues of the instruments.

Given the growing importance of buildings cooling performance, the research then focused on the
review of the European EN ISO standard method to select Cooling Design Days (CDD) from climatic
data. The review highlighted that input parameters choice had great effects on the CDDs selection
results, therefore pointing out that designers should be careful when using this selection method.
Moreover, a case study was developed to assess how the standard method performs when applied to a
building, highlighting that in many cases the selected CDDs would give design powers not respecting
the target risk levels, often giving counterintuitive results. Additionally, the EN ISO method proved
to be difficult to understand and to implement, therefore a formal upgrade was carried on, leaving un-
touched the theoretical principles, leading to a new formal approach, easier to automate and to modify.

After having assessed the current climatic situation and its effects on human activities, the next step
for municipalities when drafting adaptation and mitigation measures is to study the climate change
and how it will affect the aforementioned activities. To do so, climate models are fundamental, however
they often present issues regarding their capacity of properly represent the future evolution of climate.
In this research the performance of five different climate models in representing climate evolution for
Trieste has been evaluated, highlighting some discrepancies when comparing their projections with
measured data for a common timeframe. This led to the necessity of correcting the models by using
the quantile correction method through which models performances were greatly improved.
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The corrected models were then exploited to carry on analysis on future climate, in particular focus-
ing on the evolution of thermal extreme events like heat waves and cold spells. A methodology to
define both events was developed and applied to the Trieste location to study the actual and future
behaviors of such phenomena. The results showed a steadily future increase in heat waves frequency
and intensity if compared to the actual situation, therefore highlighting the necessity for the munic-
ipality to take into account this phenomenon for its social and health policies. Regarding the cold
spells, both actual and future behaviors showed no significant events. By exploiting this analysis, a
methodology to compile the Risk & Vulnerability Assessment of the Secap Projects was developed to
give municipalities a quick procedure to follow.

Performing energy simulations on building-plant systems in order to assess the current state of the
building stock and how to improve it, is a fundamental task to develop mitigation policies. To be able
to perform such analysis, a climatic input is obviously required; commonly this input has the form of a
Test Reference Year (TRY), being it a valuable way to represent climate during a selected timeframe.
In this research a TRY for the location of Trieste was generated through the Finkelstein-Schafer statis-
tic applied to data detected between 1995 and 2019. However, in order to perform energy analysis
also for future climate, another climatic input must be used. To provide the municipalities with a
process to perform energy simulations for future climate, a projection method of the actual TRY was
developed. The calibrated climate models, applied to the RCP8.5 scenario, were used to project the
current TRY of Trieste in the future through the mathematical Morphing Process. The projection
carried on through the five models gave notable different outputs, despite all aiming towards warmer
climates, thus highlighting how choosing different climate models to carry on future climate forecasts
have a notable influence on the expected outputs.

Being Italy characterized by a huge amount of historical buildings, often the best solution to improve
their energy performance is the application of internal insulation systems. It is then important to
correctly evaluate the behavior of such technique when applying it in refurbishment processes. With
this aim CFD analysis were carried out to study the behavior of internal insulation systems for walls.
The study considered the effect of the steel studs commonly used to sustain the package and their
interaction with low-e sheets usually included in the insulating system to improve its performance.
The results showed that neglecting the effect of the supporting studs, as it is commonly done in design
practice, leads to significant errors, up to 28%, in the evaluation of system performance.

To this point the research underlined an important aspect: many factors included in refurbishment
practices, like climate data or insulating packages performances, are not deterministic. In the com-
mon pratice this aspect is often neglected, however this could lead to design errors with consequent
performance flaws. The final topic pursued in this research was then the optimization of a refurbish-
ment process subject to uncertainties applied to a social housing building. This typology of building
was chosen because of its diffusion in Italy and of it being the most probable target of municipalities
refurbishment policies. The optimization aimed to maximize the performances of the studied building
in terms of energy consumption, economic aspect and thermal comfort. The undertainty was intro-
duced in the process by assigning stochastic distributions to economic parameters and by considering
different climatic conditions, both actual and future. The results highlighted that, depending on the
objectives pursued and on the boundary conditions applied, the possible refurbishment solutions and
their performances greatly varied, sometimes even leading to unespected results, like more expensive
refurbishment solutions having worse energy and comfort performances than cheaper ones.

This research then constitutes a complete workflow that municipalities could exploit to tackle some of
the most important topics when developing their climate mitigation and adaptation policies, starting
from the raw actual climate data, following with the analysis of climate change and of insulating
systems performances, finally exploited to optimize the refurbishment practice of the social housing
building sector.

Further developments will be carried on for this researchfor improving and extending it to obtain
more complete and valuable results by overcoming the limitations affecting the presented analysis.
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For what concerns climatic data treatment, the approach proposed by Nik et al. to represent climate
by using three distinct TRYs rather than only one will be implemented for both actual and future
climates. Regarding the latter, more projections techniques will be explored and their results com-
pared to assess their reliability, and climate projections will be extended to year 2100 to cover all
the timeframe considered by the predicting models. Moreover the TRY generation for both present
and future climate will be extended to several location included in the program area of the Interreg
ITA-SLO Secap Project to aid more municipalities in their SECAPs drafting process. With this in
mind, also the focus on the cooling plants sizing, and therefore on the Cooling Design Day selection
procedure, will be further developed. In order to consider more systems tipologies in the analysis,
studies on the reliability of the output sizing powers for several combination of building-plant systems
presenting different characteristics.

Having proved the importance of a correct evaluation of internal insulating packages performances,
this analysis will be extended by conducting a parametric study to properly consider the influence of
every package configuration on the discrepancy between declared and real performance. This will be
done in order to define a corrective formula to compute the exact conductance of the package starting
from the official one reported in the data sheets.

Finally, for what concerns the optimization of the refurbishment process of buildings, cross correlation
between parameters and variables will be introduced in the models to better assess the reciprocal
influence of the various actors included in the process and uncertainty regarding insulating packages
will be introduced as well. Moreover, the models will be implemented to speed up the computation
and allowing to run optimizations through the use of more TRYs to represent future climates, to
better discretize climatic evolution in the future.
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