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Abstract

Reinforcement learning (RL) offers the chance to make a system learn

control policies to successfully and autonomously perform specific tasks.

It is often applied to classical and fairly simple artificial domains. Re-

cently, the introduction of new deep learning tools, in combination with

the development of more powerful hardware, has made it possible to

apply it to real-world tasks as well. Despite the inherent potential of RL

as a control technique, however, it still has some limitations that affect

its effectiveness on real-world dynamic systems. These limitations be-

come more evident as the complexity of the problems increases. In the

present work, we focus on the applications of RL to real-world control

problems, both in simulation and in reality. We first present a formal-

ism that will be useful throughout the work. We show two possible

applications of RL to the control of real dynamic systems, such as a sig-

nalized traffic intersection developed in a simulated environment, and

the real Free Electron Laser (FEL) of the FERMI at Elettra Sincrotrone

Trieste. Subsequently, we analyze RL as a robotics control tool with a

primary focus on the reality gap (RG), i.e., the phenomenon, triggered

by the difference between simulator and real system, which leads to

the degradation of the controller performance, learned on a simulator,

when used on the real system. In particular, we are interested in finding

a way to characterize and quantify the gap. Therefore, we propose a

new index that can grasp and quantify the proneness of a controller

to exhibit RG. Finally, we characterize some modeling errors, affecting

an open-source simulated robotic platform, that lead to a reduction

in controller performance during real-world applications. We use the

proposed index to capture the resulting controller performance.
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Abstract (Italian Version)

Il Reinforcement Learning (RL) è una branca del Machine Learning

(ML) che permette di rendere i sistemi autonomi nell’apprendimento di

leggi di controllo per l’esecuzione di specifici task. Sebbene sia spesso

studiato su sistemi artificiali e caratterizzati da un comportamento di-

namico semplice, recentemente l’introduzione dei nuovi strumenti di

deep learning, insieme allo sviluppo di hardware sempre più prestante,

ha favorito l’uso dell’RL nel controllo di sistemi dinamici reali. Tuttavia,

nonostante il suo potenziale, l’RL presenta ancora alcune limitazioni

e non garantisce prestazioni efficaci quando coinvolto nel controllo

di tali sistemi. Tali limitazioni diventano più evidenti all’aumentare

della complessità dei problemi trattati. Nel presente lavoro, focal-

izziamo la nostra attenzione sulle applicazioni di RL a problemi di

controllo del mondo reale, anche simulati. Per prima cosa presentiamo

un formalismo utile per il seguito del lavoro. Mostriamo due possibili

applicazioni di RL al controllo di sistemi dinamici reali: un incrocio

semaforico, sviluppato in un ambiente simulato, e il Free Electron

Laser (FEL) del FERMI di Elettra Sincrotrone Trieste. Successivamente,

analizziamo l’RL come tecnica di controllo di robot, concentrandoci in

particolare sul problema del reality gap (RG): quel fenomeno, causato

dalla differenza tra simulatore e sistema reale, che porta al degrado

delle prestazioni di un controllore appreso sul simulatore e testato sul

sistema reale. In particolare, siamo interessati a trovare un modo per

caratterizzare questo gap. Pertanto, proponiamo un nuovo indice in

grado di cogliere e quantificare la propensione di un controllore ad

esibire un RG. Infine caratterizziamo alcuni errori di modellazione,

relativi ad una piattaforma robotica simulata open-source, che portano
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a una riduzione delle prestazioni del controllore nel trasferimento da

sistema simulato a sistema reale. Applichiamo in tale esempio l’indice

proposto per valutare le prestazioni del controllore ottenuto.
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approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Schematic representation of L ↔ Ẽ′ interaction in ARL
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1Introduction

Reinforcement learning (RL) is a learning model for sequential decision-

making tasks. Along with supervised learning and unsupervised learn-

ing, it is one of the pillar paradigms of machine learning (ML).

The main goal of RL is to find a sequence of control inputs that can

guide a dynamical system to maximize a reward assuming minimal, or

even null, knowledge about the system response to those inputs. This

result is achieved by performing trial and error interactions with the

system to be controlled. Specifically, similar to the control theory, RL

studies how to use past experience to improve the future behavior of a

dynamic system [142]. Although it has recently proven its effectiveness

as a control tool for many toy artificial examples [113, 156, 98], RL is

not yet able to fully express its potential in real-world, physics-based

control systems [50].

In the present work, we refer to real-world systems as dynamical systems

involved in real-world control problems (e.g., factory chains, vehicles,

robots, etc.) irrespective of being simulated or not.

Real-world tasks are mainly characterized by nonlinear dynamics, often

related to different, interconnected and mutually dependent processes,

influenced by random factors that are difficult to predict. Moreover,

they might be characterized by partially observable states, which limit

access to the system behavior. Not least, they could also be subject to

latencies, which pose the challenge of dealing with significant delays
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in the effect of control inputs on system dynamics. All the above

difficulties differ in severity depending on the problem faced, and are

not easy to determine a priori. However, they arise for any type of

control technique, and how to deal with them is still an open challenge

for applying control theory tools in real life.

In RL, where learning is data-driven and not based on mathematical

modeling of system dynamics, one further challenge is to find solutions

that are data-efficient, able to work with limited exploration (dangerous

and expensive to be performed on a real facility), and able to be aware

of safety constraints without the involvement of external watchdogs.

Therefore, leveraging effective RL approaches on real-world systems is

a quite tricky challenge.

There are several attempts in the literature to address these challenges

individually. For example, in [113, 74, 174] the sample efficiency prob-

lem, i.e., the ability to learn in a data-limited domain thus finding a

data-efficient solution, is tackled by using expert demonstration for

agent bootstrapping. Other solutions propose to learn dynamical model

ensembles on which different sampling strategies can be used in order to

properly drive the exploration [38, 30]. Recent works [43, 4, 149] face

the problem of safety operational constraints by defining the decision

making strategy as constrained Markov decision processes (CMDPs). In

[32], alternatively, authors propose a meta-gradient approach to prop-

erly balance the maximization of the reward and constraints violation

minimization.

Another promising approach is the use of simulators for the training

phase. The goal is to learn a controller on a digital twin of the plant, and

then reuse it on the real one, thus speeding up the training and avoiding

dangerous action selections. However, this approach is particularly

dependent on the simulator ability to simulate the behavior of the

real system, and it is often compromised by the phenomenon of the

reality gap, i.e., the deterioration of the controller performance in the

real world due to the plant-model mismatch [148]. In the worst case,
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the controller transfer from simulator to real system turns out to be

ineffective even if it works perfectly on the simulator.

Based on the above considerations, the following are the research

questions motivating the studies conducted in this work:

(Q1): Given the potential of RL as a control technique on simple

dynamical systems, can it be used to control dynamical systems

that address real-world practical problems?

(Q2): Is there a way to quantify the reality gap? Can we use this

measure to characterize a learning technique in a deeper way

than just considering effectiveness and efficiency?

With the aim of answering these research questions, we focus on the ap-

plication of RL to real-world control problems, both in simulation and in

reality. We first introduce a control systems-oriented formal framework

of the RL. We show two effective applications of RL to the control of

real dynamic systems, such as a signalized traffic intersection developed

in a MATLAB simulated environment, and the real FEL facility at the

FERMI of Elettra Sincrotrone Trieste. Subsequently, we analyze the

RL in robotics and the reality gap (RG). We survey relevant and recent

literature concerning RG in the context of RL and outline the three main

approaches for coping with RG. We propose an abstract formulation of

the RG problem that applies to the general scenario where a learning

algorithm is used for inferring a policy: the formulation applies to RL

as well to other kinds of techniques, such as Evolutionary Computation

or Model Predictive Control, and different domains. As a key compo-

nent of this formulation, we propose a novel index (called L,ϕ-gap and

detailed in later sections) that measures the proneness of a learning

algorithm to exhibit the RG. L,ϕ-gap can be used along with common

indexes measuring effectiveness and efficiency for assessing and com-

paring learning algorithms. Finally, we characterize some modeling

errors, affecting an open-source simulated robotic platform, that lead

to a reduction in controller performance during real-world applications.
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We use the L,ϕ-gap to quantify the reality gap in a sim-to-real transfer

of the resulting controller.
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2Reinforcement Learning for
control systems

Reinforcement Learning (RL) [158] allows to design controllers (often

referred to as agents) with the capability of learning an optimal behavior

by interacting with the environment. The behavior is defined in terms

of state-action pairs, also known as policy, which is learned through a

trial and error process.

In practice, it can be employed to perform optimal data-driven control

without the need to rely on a mathematical model of system dynam-

ics [158, 19, 31].

It is typically described as a Markov Decision Process (MDP); i.e., a

tuple (X,A, p, h) defined by the state set X, the control set A, the

transition probability from state x ∈ X to state x′ ∈ X in 1 steps

p := P{x(k+1) = x′, x(k) = x}, and the reward function h : X×A→ R.

In brief, it expresses a discrete-time stochastic control process in which

the reward function is employed to assess the quality of the controller

choice in terms of task achievement.

Here, we adopt a control systems-oriented formalism similar to the

one employed in [22]. However, what follows also applies to MDP

settings by defining some of the following elements in terms of expected

values.
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2.1 Adopted formalism

A dynamical discrete-time system Ω is a tuple (X,A,O, f, g) composed

of the state set X, the control set A, the observation set O, a transition

function f : X ×A→ X, and an observation function g : X → O. Let

x(k) ∈ X, a(k) ∈ A, and o(k) ∈ O be the state, the applied control input,

and the observation, respectively, at the k-th time-instant. A dynamical

discrete-time system, starting from an initial state x(0) and subjected

to a control sequence a(0), a(1), . . . , evolves according to the following

laws:

x(k+1) = f
(
x(k), a(k)

)
(2.1)

o(k+1) = g
(
x(k+1)

)
= g

(
f
(
x(k), a(k)

))
. (2.2)

An environment E is a dynamical discrete-time system described by

a tuple (X,A,O, f, g, h) composed of the same elements of Ω plus a

reward function h : X × A → R. Let r(k+1) ∈ R be the reward at the

(k+ 1)-th time-instant. An environment E, starting from an initial state

x(0) and subjected to a control sequence a(0), a(1), . . . , evolves according

to Equations (2.1) and (2.2) and:

r(k+1) = h
(
x(k), a(k)

)
. (2.3)

Overall, we assume that g(f(·)) = f(·), thus resulting in o(k+1) = x(k+1).

The following is also pertinent, with appropriate adjustments, in case

of g(f(·)) ̸= f(·) that simply means dealing with a partial observability

of the state. In the MDP setting, this amounts to employing a Partially

Observable Markov Decision Process (POMDP), which requires to intro-

duce the concept of belief [143]. However, it is not necessary for the

purpose of the present work.

A controller (or policy) for a dynamical discrete-time system, and there-

fore also for an environment, is a function π : O → A.

2.1 Adopted formalism 6



a(k) = π
(
o(k)

)

x(k+1) = f
(
x(k), a(k)

)
o(k+1) = g

(
x(k+1)

)
r(k+1) = h

(
x(k), a(k)

)

a(k)o(k+1)

r(k+1)

o(k)

Figure 2.1: The closed-loop system π ↔ E, where a policy (light blue block
above) applies a control input a(k) to an environment (gray block
below) that outputs an observation o(k+1) and a reward r(k+1).

Given a discount factor γ ∈ [0, 1], an optimal policy π∗ is a policy that

satisfies, for any initial state x(0):

π∗ = arg max
π∈Π

+∞∑
k=0

γkh
(
x(k), π

(
o(k)

))
= arg max

π∈Π
Jπ
(
x(0)

)
, (2.4)

where Π is the set of policies, while Jπ
(
x(0)

)
is the infinite horizon

discounted reward starting from x(0) under the policy π.

We denote by π ↔ E the closed-loop system where π determines

the control input to be applied on E, represented in Figure 2.1. In

particular, according to the above definitions and to the assumption

that g(f(·)) = f(·), the scheme represents a state feedback control.

Clearly, when g(f(·)) ̸= f(·), the same scheme could represent an

output feedback control.

A policy learning algorithm L is an algorithm that, given an environment

E = (X,A,O, f, g, h) and a learnable policies set ΠL ⊆ Π, outputs

(learns) a policy πL = L(E) ∈ ΠL. When the learning encompasses

an interaction with the environment, the policy learning algorithm can

be seen as an agent L that learns a controller π by interacting with an

environment E. We denote by L↔ E the resulting closed-loop system

2.1 Adopted formalism 7



(Figure 2.2). A policy learning algorithm is said to be model-based, if

it relies on the knowledge of f and g (either known in advance, or

identified based on collected data), or model-free, otherwise.

L

x(k+1) = f
(
x(k), a(k)

)
o(k+1) = g

(
x(k+1)

)
r(k+1) = h

(
x(k), a(k)

)

a(k)o(k+1)r(k+1)

Figure 2.2: The closed-loop system L↔ E where a RL-based agent L (green
block above) applies a control input a(k) to an environment (gray
block below) that outputs an observation o(k+1) and a reward
r(k+1).

A typical RL agent can be seen as a policy learning algorithm L. Indeed,

during training, it interacts with the environment E = (X,A,O, f, g, h)
and updates a controller π by observing the consequences (in terms of

reward r) of the selected control inputs. Its global goal is to learn a

controller π∗ in E which satisfies (2.4).

The learning procedure can either be episodic or continuous (non-
episodic): in the former case, the learning is performed through episodes

and the state is reset in case of a failure, a goal achievement, or the

achievement of the maximum episode length T . In the latter, the

learning proceeds without interruptions. The training typically ends

when the discounted reward settles in average on a constant value

(converges). In addition, the agent can update the controller either by

using data from the current policy (on-policy) or independently of it

(off-policy).

RL approaches can be categorized in three main categories [158]:

• Value-function approaches, based on the idea of the value of a

state (value function Vπ(x)) or of a state-control input pair (action-
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value function Qπ(x, a)). The value function and the action-value

function represent, respectively, the cumulative reward obtained

from x by applying π and the cumulative reward obtained from

x by first choosing an a and then applying π. The optimal policy

corresponds to the optimal V or Q functions:

V ∗(x(k)) = max
π

Jπ
(
x(k)

)
(2.5)

Q∗(x(k), a(k)) = max
π

h
(
x(k), a(k)

)
+ γJπ

(
x(k+1)

)
. (2.6)

In brief, by interacting with the environment and observing re-

wards, either V ∗ or Q∗ are estimated, thus leading respectively to

the optimal policies:

π∗(x(k)) = arg max
a∈A

[h(x(k), a) + V (f(x(k), a))] (2.7)

π∗(x(k)) = arg max
a∈A

Q
(
x(k), a

)
(2.8)

• Policy-search approaches, in which a parametrized policy πθ is

defined, whose parameters θ are updated based on the observed

reward in order to maximize Jπθ
, by employing either gradient-

based or gradient-free optimization techniques [171].

• Actor-Critic approaches, which integrate the idea of both previous

categories. Vπ(x), in this case, is employed as a baseline (Critic)

for policy gradient optimization (Actor).

Further technicalities are not necessary for the purpose of this work.

For additional details on RL we refer readers to [158, 46, 22, 142].
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3
RL applications for real world
dynamical system

Although RL is often validated on classical and rather simple examples,

significant progress has recently been made to apply it to real world

problems.

In the following, we provide two different case-studies of RL controlled

real world dynamical systems.

In Section 3.1 we present a simulated signalized urban intersection

where autonomous vehicles (AVs) and human-driven vehicles (HDVs)

coexist. Here, the RL agent plays the role of the traffic-lights con-

troller, and we use a non-episodic tabular action-delayed Q-Learning as

learning algorithm.

In Section 3.2 we present the second case study concerning the free-

electron laser facility (FEL) at the FERMI of Elettra Sincrotrone Trieste.

The RL experiments are performed directly on the real facility and do

not involve any simulator. We apply two different learning algorithms in

order to face two different control problems: (a) an episodic Q-learning

with linear function approximation, to make the agent able to find

an optimal working point, starting from random initial conditions;

and (b) a non-episodic Natural Policy Gradient REINFORCE algorithm,

to recover the optimal working point when some drifts, or working

conditions changes, occur.
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Both the proposed applications lead us to highlight the potential of the

RL paradigm in solving real control problems.

3.1 Control of a mixed autonomy signalized urban
intersection

We consider a mixed autonomy traffic intersection where the traffic

intersection controller decides whether the traffic-lights will be green or

red at each lane for multiple traffic-light blocks (TLBs). The objective

of the traffic intersection controller is to minimize the queue length at

each lane, thus maximizing the outflow of vehicles over each TLB.

We assume that the traffic intersection controller informs autonomous

vehicles (AVs) whether the traffic-light will be green or red for the

future traffic-light block. Thus, the AVs can adapt their dynamics by

solving individual optimal control problems. Human-driven vehicles

(HDVs), on the other hand, can only observe the current state of the

traffic-light, thus adapting their cruise dynamics. We model the deci-

sion process of the traffic intersection controller E1 as a discrete-time

deterministic delayed MDP (DDMDP). In particular, we propose two

different discretizations for the DDMDP: (1) a fixed timing approach,

in which each TLB has a predefined fixed duration, and (2) an event

driven approach, in which the decision making is triggered when some

predefined events occur, thus resulting in a variable TLB duration. We

use a tabular Q-Learning algorithm L1 in a non-episodic framework to

obtain the optimal policy π∗
1.

We numerically investigate the proposed approach as the AVs proportion

inside the intersection increases.

3.1.1 Motivations

AVs have the potential to disrupt traffic-intersection control technolo-

gies. In a hypothetical AVs-only scenario, the traffic-intersection con-
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troller may plan vehicles motions to avoid collisions at the intersection.

However, in a more realistic scenario, HDVs and AVs will co-exist, thus

giving rise to mixed-autonomy intersections. In this setting, the traffic

intersection controller cannot communicate with the HDVs to influence

their dynamics, and traffic-lights are necessary to avoid collisions.

Against this backdrop, the research challenge becomes the one of design-

ing the traffic-intersection controller for mixed autonomy by exploiting

the presence of AVs.

Finding an optimal solution to the problem at hand is computationally

challenging. The overall dynamics of the intersection, and consequently

the current traffic condition, (1) depends on the dynamics of each

vehicle, which in turn is influenced by the dynamics of all neighboring

vehicles, and (2) turns out to be unpredictable due to the presence of

HDVs. In addition, the traffic-intersection controller decision affects the

dynamics of the vehicles in a non-linear and non-smooth manner.

3.1.2 Related literature

Algorithms to control the traffic-light duration at the urban intersection

based on dynamic programming or on control theory have been pro-

posed, for instance, in [163, 60, 34, 124, 102]. For a detailed literature

overview, we refer the reader to [132, 58]. Solutions using RL to cope

with complex optimization problems and uncertainties have been pro-

posed in [181, 182, 2, 37]. See also [13] for a broad review. However,

all the above works did not consider the scenario where AVs can coexist

with HDVs. Recently, [178, 177] considered RL-based algorithms for

mixed autonomy. However, all the above papers did not consider the

possibility that the AVs can be informed about when they can enter

the intersection. Some authors considered traffic-light-free intersection

control designs when there are only AVs [189]. Several other authors

proposed decentralized algorithms based on the coordination among

the AVs [48, 80]. However, soon AVs and HDVs will coexist. Hence,
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Figure 3.1: Traffic-light controlled intersection in a mixed autonomy scenario

those approaches can not be applied when HDVs are present, since the

traffic-light will control AVs movements only.

3.1.3 The urban intersection system

We consider a signalized urban intersection consisting of 4 lanes (Fig-

ure 3.1). We partition the urban intersection in three parts: (1) a

Merging Zone (MZ) of size LM × LM , delimiting the area where ve-

hicles of different lanes converge; (2) a Control Zone (CZ) of length

LC for each lane, where vehicles travel before entering the MZ; (3) an

Exiting Zone (EZ) of length LE for each lane, where vehicles travel after

crossing the MZ.

A vehicle is considered to exit the intersection when it covers a distance

of LC + LM + LE . A traffic-light is placed at the junction between the

CZ and the MZ of each lane (4 traffic-lights in total). Each vehicle can

enter the MZ when the respective traffic-light is in a green status and

the vehicle approaches LC . Conversely, a vehicle stops within the CZ

when the respective traffic-light exhibits a red status and the vehicle is

close to LC . Once the vehicles enter the MZ they cross the intersection

and do not stop.
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We now introduce some notations which we use throughout this chapter.

We denote by c(i, j) the i-th vehicle at lane j, where i ∈ {1, . . . , N j
max},

with N j
max maximum number of vehicles admitted in the intersection at

the j-th lane, and j ∈ {1, 2, . . . , nl}, with nl = 4 (cf. Figure 3.1).

A new vehicle c(i′, j) entering the CZ of the j-th lane right after c(i, j)
will have i′ = i + 1, i.e., the more recent the vehicle access to the

intersection, the higher the index i associated with it will be.

vmax is the maximum allowable speed within the intersection system.

A vehicle c(i, j), entering the CZ of the j-th lane at time t = t0i,j and

traveling with a constant speed vmax is supposed to enter the MZ at

tmi,j = t0i,j + LC
vmax

. The above represents the time at which the vehicle

c(i, j) would enter the merging zone without any traffic. We denote by

C(tk) the set of N vehicles in all the lanes of the intersection system at

t = tk. We partition C(tk) in two subsets C(tk)
HD and C(tk)

A , respectively

denoting the HDVs and the AVs in all the lanes of the intersection

system at t = tk. We assume that C(tk)
A ∩ C

(tk)
HD = ∅.

We denote by pi,j(tk), vi,j(tk), and ui,j(tk) respectively the position, the

speed, and the acceleration of the vehicle c(i, j) in the intersection at

t = tk. Each i-th vehicle entering the control zone of the j-th lane

at t = ti will be initialized with an initial position pi,j(ti) = 0. We

assume as positive travel direction the one toward the EZ.

Definition 1. Given two vehicles of the same j-th lane, c(k, j) and

c(i, j), if k = i − 1, then c(k, j) is the front vehicle of c(i, j), i.e., the

immediately preceding vehicle of c(i, j).

Definition 2. A pair of lanes (j, k) are non-conflicting if there are no

intersection points that can lead to vehicles crashes. Let L be the set of

non-conflicting pairs.

With reference to Figure 3.1, lanes 1 and 3 are non-conflicting. However,

lanes 2 and 1 are conflicting (L = {(1, 3), (2, 4)}). A traffic-controller
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can only make traffic-lights green simultaneously for the non-conflicting

pair of lanes.

We assume the following:

Assumption 1. A vehicle c(i, j) ∈ C can only move forward or stay still;
i.e., no turning, backward gears, or lane changing are allowed.

Assumption 2. A vehicle c(i, j) ∈ CA is considered sensors equipped
and connected to the other autonomous vehicles. c(i, j) is able to estimate
pi−1,j(t) and vi−1,j(t) if c(i− 1, j) ∈ CHD, while can access the actual
values of pi−1,j(t) and vi−1,j(t) if c(i− 1, j) ∈ CA.

The second assumption entails that an AV can adapt its dynamics to

that of the preceding vehicle.

3.1.4 The fixed RL timing approach

In this section, we introduce the first proposed approach for traffic

intersection managing in the mixed autonomy urban intersection of

Section 3.1.3.

We assume each traffic-light block (TLB) of fixed time duration TRL.

The traffic intersection controller decides whether the traffic-light will

be green or red at a lane for each TLB. An amber light of fixed duration

Talert is included at each stage of traffic-light switching, i.e., a TLB

preceeded by a traffic-light switch has a red or green duration of TRL −
Talert. Note that consecutive TLBs of red or green lights are allowed.

Thus, if, for example, for m-consecutive TLBs the traffic-light controller

selects the red status, then the traffic-light is red for mTRL − Talert

duration.

At each k-th TLB, the traffic intersection controller decides traffic-light

for the k + da-th TLB, i.e., the decision of the traffic intersection con-

troller at tk is implemented at tk + Tdelay, where Tdelay = da TRL. The
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delay is due to two reasons: (i) the traffic intersection controller needs

time to compute the optimal decision; (ii) the AVs able to optimize

their own dynamics need to be informed by the traffic intersection

controller of the exact TLB at which they can enter the intersection.

The current traffic signal is therefore the result of a past control input

of the intersection controller.

Assumption 3. A vehicle c(i, j) ∈ CA optimizes its dynamics only if it
is the first vehicle of the lane or if its front vehicle is dfollow distant from
c(i, j), i.e., pi−1,j(t)− pi,j(t) ≥ dfollow.

Note that the HDVs follow the traffic-lights only.

The goal of the RL-based traffic-light controller is to: minimize the

queue length in each lane, thus maximizing the rate of vehicles out-

flow.

In the following we illustrate the HDVs and AVs dynamics on the

basis of the traffic intersection controller decision (Section 3.1.4.1 and

Section 3.1.4.2). In Section 3.1.4.3 we describe the decision making

strategy of the RL agent and, finally, the experimental results obtained

with the proposed approach (Section 3.1.4.5).

3.1.4.1 Human driven vehicle

The dynamics of a HDV is described using the Intelligent Driver Model

(IDM) [167]. It is an easy-to-tune adaptive cruise control system able

to avoid vehicles collision in car-following mode. The dynamics for a

general c(i, j) ∈ CHD having a front vehicle c(i− 1, j) ∈ C is defined

by:

v̇i,j(t) = umax

1 −
(
vi,j(t)
v̄i,j

)4

−

(
s∗

{i,i−1}(t)
)2

s2
{i,i−1}(t) + ξ2

 , (3.1)
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where v̄i,j is the desired speed of the (i, j)-th vehicle, umax is the maxi-

mum acceleration, s{i,i−1}(t) = pi−1,j(t) − pi,j(t) is the current inter-

vehicle distance, ξ ∈ R a small positive constant value, and s∗
{i,i−1}(t)

the desired inter-vehicle distance:

s∗(vi,j(t), ∆v{i,i−1}(t)) = s0
i,j + Ti,jvi,j(t) +

+
vi,j(t) ∆v{i,i−1}(t)

2√umax umin
,

(3.2)

where ∆v{i,i−1}(t) = vi−1,j(t) − vi,j(t) is the difference in speed of

two subsequent vehicles, umin is the maximum deceleration, s0
i,j is the

jam distance (the minimum desired distance in a traffic jam), and Ti,j
the safety time gap between two vehicles.

When the vehicle c(i, j) observes a red-light and the vehicle c(i− 1, j)
passes the CZ, then the vehicle c(i, j) needs to decelerate irrespective

of the dynamics of the vehicle c(i − 1, j). Here, we consider the red-

light as a static vehicle situated at the end of the CZ of the lane. Thus,

∆v{i,TL}(t) = −vi,j(t), while s{i,TL}(t) = pTL(t) − pi,j(t) is the current

distance of the vehicle c(i, j) from the traffic-light where pTL(t) = LC

and vTL(t) = 0 for all t. The last term in the right-hand side of

Equation (3.1) is replaced by the following term:

(
s∗

{i,TL}

)2

s2
{i,TL}(t) + ξ2 (3.3)

where s∗
{i,TL} is the desired distance from the traffic-light replacing

∆v{i,i−1}(t) with ∆v{i,TL}(t) = −vi,j(t).

When the vehicle c(i, j) is dfollow distance away from the preceding

vehicle, or there is no other vehicle in the lane, then the vehicle c(i, j)
is not sensitive to the dynamics of the preceding vehicle. An HDV c(i, j)
having an inter-vehicle distance s{i,i−1}(t) > dfollow and observing a

green light follows Equation (3.1) with s{i,i−1}(t) = ∞. On the other

hand, the vehicle c(i, j) facing the red-light will follow Equation (3.1)

with s{i,i−1}(t) = ∞ till the distance from the MZ becomes less than

dfollow. Since the red-light is considered to be a static vehicle at the
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position pTL(t) = Lc, the dynamics of the vehicle c(i, j) will be the

same as the Equation (3.1), where the last term is replaced by the

expression (3.3).

We are only left to describe the dynamics when the vehicle c(i, j) has

no front vehicles in the CZ and faces the amber light. If pi,j(t) −
pTL(t) ≤ dfollow, then the vehicle c(i, j) will follow Equation (3.1) with

the preceding vehicle either at∞ or at pi,j(t) if pi−1,j(t) − pi,j(t) ≤
dfollow. If pi,j(t) − pTL(t) > dfollow, then the vehicle c(i, j) will behave

as if the traffic-light was red. Intuitively, if the amber-light is switched

on and the vehicle c(i, j) is very close to the intersection, it will follow

its dynamics, otherwise, the vehicle would decelerate to stop.

3.1.4.2 Autonomous vehicle

The AV c(i, j), far away from its front vehicle c(i−1, j) (i.e., pi−1,j(t) −
pi,j(t) ≥ dfollow), or that has no front vehicles, seeks to optimize its

acceleration/deceleration profile ui,j(t).

In general, if at t = tk the c(i, j) AV with pi,j(tk) = ptk and vi,j(tk) =
vtk , is informed by the intersection controller that at t = tk + Tdelay the

traffic-light will be set to a green status, then ui,j(t) will be the solution

of the following optimization problem:

P1 : min
ui,j(·)

1
2

∫ tmi,j

tk

u2
i,j(t)dt,

subject to: v̇i,j(t) = ui,j(t), ṗi,j(t) = vi,j(t),

pi,j(tk) = ptk , vi,j(tk) = vtk ,

vi,j(t) ≤ vmax, vi,j(t) ≥ 0 ∀ t ∈
[
tk, t

m
i,j

]
,

pi,j(tmi,j) = LC ,

tmi,j ≥ tk + Tdelay + Talert

tmi,j ≤ tk + Tdelay + Talert + TRL.

(3.4)

The AV tries to minimize the total energy cost which is represented as

the integral of the square of ui,j(t). The first constraint represents the
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initial conditions and the vehicle dynamics. tmi,j is the time at which

the AV will enter the MZ, thus, the position at that time must be LC .

The velocity must be constrained between 0 and vmax. The optimization

binds the vehicle to not enter the MZ before the start of the k + da-th

TLB, hence tmi,j ≥ tk + Tdelay + Talert. Note that Talert is 0, if the decision

of the traffic intersection controller is the same for the k − 1-th and the

k-th TLBs. The decision variables are ui,j(·) and tmi,j .

We relax the constraints and add the following penalties in the objective

to the cost in the problem (3.4):

Kvmax{max(0, (vi,j(t) − vmax))},

Kvmin{max(0, −vi,j(t))},

K1
tmi,j
{max(0, (tk + Tdelay + Talert) − tmi,j)},

K2
tmi,j
{max(0, tmi,j − (tk + Tdelay + Talert) + TRL}.

For t ≥ tmi,j we set a constant maximum speed profile (vi,j(t) = vmax),

hence, the AV will move at the highest possible speed at the merging

zone which increases the throughput. The delay da must be chosen

such that there always exists a solution of the optimization problem.

In contrast, if at t = tk the AV (i, j) is informed by the intersection

controller that at t = tk + Tdelay the traffic-light will be set to a red

status, then the deceleration will be the solution of the following opti-

mization:

P2 : min
ui,j(·)

1
2

∫ tstop

tk

u2
i,j(t)dt,

subject to: v̇i,j(t) = ui,j(t), ṗi,j(t) = vi,j(t),

pi,j(tk) = ptk , vi,j(tk) = vtk ,

vi,j(t) ≤ vmax, vi,j(t) ≥ 0 ∀ t ∈ [tk, tstop] ,

pi,j(tstop) = LC − δ, vi,j(tstop) = 0.

(3.5)
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The decision variables are ui,j(·) and tstop. Also in this case we relax

the optimization problem by relying on a penalty function approach:

Kvmax{max(0, (vi,j(t) − vmax))},

Kvmin{max(0, −vi,j(t))}.

Compared to P1, in P2 the AV (i, j) stops at time tstop at a position

δ away from the MZ. The constraint pi,j(tstop) = LC − δ ensures that

when the traffic-light becomes green, the AV can accelerate and enter

the intersection at the maximum speed. The AV c(i, j) will update its

dynamics, either solving the relaxed version of P1 or of P2, each time

that a different future traffic-light is selected by the traffic-intersection

controller. Note that if the decision of the traffic intersection controller

at the k + 1-th TLB is equal to the one of the k-th TLB, the AV c(i, j)
will not updates its dynamics.

However, all the above definitions hold either (1) when an AV enters

the intersection at t = tk, initial instant of the k-th TLB, or (2) during

the AVs cruise. If the AV c(i, j) enters the intersection at t = tl =
tk + TRL − τ , with 0 < τ ≤ TRL, depending on the traffic-light chosen

at tk, the AV will solve one among P1 and P2, where the lower time

bound of the integration is set to tl.

Given the condition tmi,j ≤ tk + (da + 1)TRL + Talert, the feasibility

of P1 depends on τ . Indeed, in the worst case, the c(i, j) AV entering

the CZ at tl should be able to cover at least the LC distance at the

maximum allowed speed vmax within a time interval [tl, tk + (da +
1)TRL + Talert]:

LC
tk + (da + 1)TRL + Talert − tk − TRL + τ

≤ vmax.

Therefore, to ensure that there is always an optimal solution to P1:
τ ≥ LC − vmax(daTRL + Talert)

vmax

0 < τ ≤ TRL

. (3.6)
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Note that if LC
vmax

− (daTRL + Talert) < 0, then P1 is feasible ∀ 0 < τ ≤
TRL. On the other hand, if LC

vmax
− (daTRL + Talert) ≥ 0 , then P1 is

feasible if and only if 0 < LC
vmax

− (daTRL + Talert) ≤ TRL.

The optimal solution of P2 always exists until tstop > tl, i.e., tstop −
tl > 0. The c(i, j) AV entering the CZ at tl with vi,j(tl) = vmax, in

the worst case, has to decelerate with a constant ui,j(t) = − vmax
tstop − tl

in order to stop at pi,j(tstop) = Lc − δ. Therefore, if tstop − tl =
2(LC − δ)

vmax
> 0, then P2 is feasible ∀ t.

The AV c(i, j), which at time tk is at a distance less than dfollow from

the preceding c(i − 1, j) vehicle (pi−1,j(tk) − pi,j(tk) < dfollow),

assumes the same dynamic behavior of the HDV (Section 3.1.4.1) from

tk onward throughout the journey.

3.1.4.3 Action-delayed RL

Henceforth, we assume that the dynamics of the vehicles is discretized

with a sampling time TS , while the intersection controller works at

fixed TLBs, of TRL = nTS duration, with n ∈ N fixed. Therefore,

the amber traffic-light duration and the delay, already mentioned in

Section 3.1.3, are respectively Talert = mTS , with m < n ∈ N fixed,

and Tdelay = daTRL.

We characterize the decision process for urban intersection traffic-light

control as a DDMDP [91] with constant action and cost delays denoted

by the tuple E1 = (X,A,O, f, g, h, da, dc) where da is the constant

action delay, and dc = da the constant delay to observe the reward.

The controller at each k-th TLB observes the state of the system and has

to select a control input that will be applied at the k + da-th TLB. This

means that, at the k-th TLB the action selected at the k − da-th TLB is

applied. The reward is measured at k+da+1 TLB when the action is de-

cided at the k-th TLB. As shown in [21], a DDMDP with action and cost

delays is reducible to a classical MDP E1 = (IX , A,O, fI , gI , ha) without
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delay, where IX : X×Ada is the “modified” state set, fI : IX×A→ IX

and gI : IX → O are respectively the “modified” transition and observa-

tion functions, while ha : X×Ada×A→ R the “modified” reward func-

tion. Specifically, denoting by i(k) = (x(k), a(k−da), . . . , a(k−1)) ∈ IX

the modified state at the k-th time instant, the modified reward function

takes the form r(k+1) = ha(i(k), a(k)) = h(x(k), a(k−da)).

Note that the reward r(k+1) does not depend on the action at the k-

th TLB but rather on the action decided at the k − da-th TLB a(k−da).

Hereinafter we will refer to N ∪ {0} as N+; and to B = {0, 1} as the

Boolean domain.

State

The state x(k) ∈ X at the k-th time instant is equal to q(k), where

q(k) ∈ N+
nl is a vector in which the j-th element q(k)

j element represents

the number of vehicles in the CZ of the j-th lane.

Action

The action a(k) ∈ A := Bnl at the k-th time instant is a vector having

the number of elements equal to the number of lanes. At the k-th TLB,

the traffic controller decides which lanes to be open, i.e., for which

lanes the traffic-light will be green at the k + da-th TLB. If a(k)
j = 1,

the traffic-light will be green, if a(k)
j = 0, the traffic-light will be red

for lane j at the k + da-th TLB. Note that only those lanes which are

non-conflicting can be open simultaneously. Therefore, we reduce the

problem imposing that the actions of non-conflicting lanes are equal.

Hence, a(k)
j = a

(k)
l if the pair (j, l) are non-conflicting. Thus, the action

space can be reduced to only choosing elements for the set L, i.e., the

non-conflicting lanes.
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Reward function

The traffic-intersection controller aims at minimizing the queue length

at each lane while maximizing the outflow of vehicles at a given TLB.

Hence, we consider the reward-function h(x(k), a(k−da)) =∥ Wq(k) ∥1
− ∥Wq(k+1) ∥1, where W ∈ Rnl is a weight vector. The weight vector

W allows to assign to each lane a priority. If we want to impose a

higher priority for the j-th lane, we will assign to the j-th element of

W (wj) a higher value than the others (wi < wj , ∀i ̸= j). Imposing

W = [1, 1, . . . , 1] implies that there is the same priority for each lane in

the optimization.

3.1.4.4 Optimal policy and Q-learning

The traffic-intersection controller has to learn an optimal π∗
1. We also

assume that da decided actions are already awaiting execution at k = 0
which, along with x(0), constitute the initial modified state i(0). In the

following, we rely on a L1 tabular Q-Learning algorithm [180] in a

non-episodic framework, in which the optimal policy now corresponds

to:
π∗

1(i(k)) = arg max
a∈A

Q∗
(
i(k), a

)
. (3.7)

The reward inherently depends on the dynamics of the vehicles which

have been described in Section 3.1.4.1 and Section 3.1.4.2, which in

turn depend on the decision of the traffic intersection controller. The

dynamics is non-linear and discontinuous as well. Being a model-free

approach, the proposed method learns the optimal decision without

using the model explicitly.

3.1.4.5 Implementation and results

We employ MATLAB for training and evaluating the proposed approach.

We consider a MZ of size LM = 30 m, the lengths of the CZ and the EZ

are both equal to 400 m. The maximum speed is set to vmax = 13 m s−1.
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The vehicles arrivals follow a Poisson process with an arrival rate of

1125 veh h−1 at each lane. Each vehicle’s initial speed vi,j(t0) is uni-

formly randomly sampled from [9 m s−1, 11 m s−1], and an initial accel-

eration ui,j(t0) is uniformly randomly sampled from [0 m s−2, 0.5 m s−2].
We set the capacity of the intersection equal to Nmax = 100. We inves-

tigate three different scenarios where the fractions of the two kind of

vehicles are respectively: 25% of AVs and 75% of HDVs; 50% of AVs and

50% of HDVs; 75% of AVs and 25% of HDVs. The jam-distance s0
i,j and

the safety time-gap Ti,j are set at 2 m and 5 s respectively for the IDM

model. We take ξ = 1.6 m. Recall that when the traffic-intersection

controller informs the AV that the next traffic-state is red, the AV stops

at a δ-distance away from the intersection. We set δ = 20 m. We set

dfollow = 50 m.

The RL controller is trained according to a non-episodic Q-Learning

problem and starts with an intersection having zero vehicles. Each

simulation stops when the 2000-th vehicle enters the intersection. We

set W = [1, 1, . . . , 1], hence, the controller does not priorities among

the lanes.
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Figure 3.2: Average cumulative reward during simulations with a vehicles
arrival rate of 1125 veh h−1 at each lane.

We performed all the simulations considering TRL = 15 s, Talert = 3 s,
and Tdelay = 2TRL = 30 s, i.e., da = 2. We assume an ϵ-greedy policy

with an exploration decay of 1/k, with k number of performed decision

steps. Moreover, following [22], we set γk = c1/(k + c2), where c1 and

c2 are both equal to 1.
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Figure 3.3: Average vehicles waiting time (top), and average queue length
in the intersection lanes (bottom) starting at 2600 s, when the
cumulative average reward settles down (see Figure 3.2), in all
the simulations with a vehicles arrival rate of 1125 veh h−1 per
lane.

In Figure 3.2, we compare the average cumulative reward in the per-

formed experiments with a constant arrival rate of 1125 veh h−1 per

lane. We can observe that a scenario with an higher value of AVs leads

to a faster convergence and to an higher average cumulative reward.

In Figure 3.3 we can also observe that the average waiting time of

vehicles, when the reward settles down, is lower in a scenario with 75%
of AVs than in a scenario with 25% of AVs. Moreover, the average total

queue length at the intersection assumes a pseudo-periodic behavior

in the former scenario, while the queue still presents some undesirable

steep hikes.

As expected, the clear advantage of introducing AVs can be observed

also by comparing the energy consumption of the two different vehicles.
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Table 3.1: Statistics of the
∫
u2(t) for coexisting AVs and HDVs

mean median mode std dev
25% AVs 4.541 1.947 0 9.379
75% HDVs 3.001e+03 83.511 1.317 8.597e+03
50% AVs 4.611 1.761 0 10.494
50% HDVs 6.118e+03 83.369 1.579 1.606e+04
75% AVs 6.745 1.532 0 15.709
25% HDVs 5.856e+03 83.215 0 1.322e+04

Indeed, as highlighted in Table 3.1, where for both vehicle types some

statistical indices of the integral of the squared acceleration profiles

over time are shown, AVs outperform HDVs.
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Figure 3.4: Comparison of the average queue length in the intersection lanes
with 75% AVs performing the proposed approach (blue), and us-
ing a square wave traffic-light (orange) with a vehicles arrival rate
of 1125 veh h−1 per lane. The time interval begins at 2000 s, when
the cumulative average reward settles down (see Figure 3.2).

Results obtained so far have highlighted how the AVs introduction in a

urban intersection can lead to better controller performance and total

energy consumption reduction. However, they do not point out what

benefits are introduced by the proposed RL approach.

Clearly, the main advantage of RL in this context is its ability to learn a

traffic management policy without an explicit mathematical formulation

of the intersection dynamics which is not easy to model1. It consists of

1We remark that the model is used for simulation purpose only, while the learning
algorithm has no knowledge of it.
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inherent interaction between different dynamical units (i.e., vehicles),

some of which have unpredictable behavior.

However, as shown in Figure 3.4 the proposed approach is failing to

outperform a simple traffic light modeled by a delayed square wave

with period equal to 2TRL and the same da delay. In our belief, this

unpleasant result is a consequence of the RL fixed timing operation

setting. This choice, which we initially pursued for simplicity, does

not allow the RL intersection controller to adopt a better performing

behavior than a square wave traffic light with equal fixed timing. For

this reason, in the following section, we present an event-driven RL

approach, where RL timing is triggered by certain events occurring.

The mentioned trigger events have been

3.1.5 The event-driven RL approach

In the following, we present the second approach proposed to address

the traffic flow control problem of the urban intersection described

in Section 3.1.3. Here, we assume that also in this case the traffic-

intersection controller constantly observes and receives information

about the current traffic condition in the intersection, but, differently

from the former approach, triggers the decision-making process of a

RL-based traffic-light controller when certain trigger conditions (TCs)

are met2:

(TC1) at time tk the CZ of j-th lane is empty (C(tk)
j = ∅) and the

traffic-light status is green at the j-th lane;

(TC2) at time tk a vehicle c(i, j) ∈ CA enters the intersection and the

traffic-light status is green at lane j;

(TC3) a trigger did not occur for a Tsilence time interval.

2The trigger conditions, along with the switching condition that will be introduced
later, are design choices which have the twofold purpose of (1) allowing the RL to
avoid trivial situations (e.g., empty lanes with corresponding green traffic lights),
and (2) steering the RL to create queues led by autonomous vehicles.
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Roughly speaking, in this case the duration of each TLB is variable and

depends on the inter-time between two successive triggering events. In

details, with condition (TC1) we are enabling the traffic-light controller

to possibly close empty lanes. Condition (TC3), instead, is particularly

useful in traffic intersections with a low percentage of AVs, and highly

congested traffic. Specifically, if the traffic-light status has not been

changed for a long-time, the condition (TC3) will ensure that the

controller would try to see whether it is required to change the status.

The motivation behind condition (TC2) is less intuitive and needs

the introduction of other notations and assumptions, provided in the

following.

Definition 3. A vehicle c(i, j) ∈ CA in the CZ of the j-th lane is the

leader vehicle of the j-th lane if ∄ c(k, j) ∈ C front vehicle in the CZ of

c(i, j) (cf. Definition 1).

Definition 4. A vehicle c(i, j) ∈ CA in the CZ of the j-th lane is a

follower vehicle if there exists c(k, j) ∈ C front vehicle in the CZ of

c(i, j) (cf. Definition 1).

We denote by ϕj(t) the traffic-light status at time t for the j-th lane

imposed by a traffic-light controller. ϕj(t) = 1 indicates that the traffic-

light is green, while ϕj(t) = 0 means that the traffic-light is red. We

impose a ϕj(t) = −1 condition, corresponding to a yellow traffic-

light, of fixed duration Talert each time that a traffic-light switch occurs.

When the traffic-light controller is triggered, it selects the future traffic-

light status ϕjnew for each lane j, and enables a sleep mode of Tsleep

during which no triggers can occur. Tsilence is counted after a trigger

occurrence.

We assume that ϕjnew will be applied only da seconds after the tk at

which it is chosen, i.e., ϕj(tk + da) = ϕjnew. In general, we impose

da = Tsleep. A different da is considered if the following switch condition

(SC) occurs:
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(SC1) If at time tk a vehicle c(i, j) ∈ CA enters the intersection and

the traffic-light status is green at lane j (condition (TC2)), and

if the future traffic-light status is ϕjnew = 0, then the traffic-light

becomes red only when the vehicle c(i− 1, j) (front vehicle of

c(i, j)) enters the MZ.

This last condition ensures that the at tmi−1,j , time instant at which the

vehicle c(i− 1, j) crosses the MZ, ϕjnew is applied3, i.e., da = tmi−1,j − tk.

Moreover, starting from tmi−1,j , the c(i, j) vehicle is promoted leader

vehicle of the j-th lane. When the traffic-controller again informs the AV

c(i, j) of a future green traffic-light, the vehicle can schedule an optimal

acceleration profile, approaching the MZ as soon as the traffic-light

turns green, thus increasing the throughput.

As in Section 3.1.4, the ultimate goal of the RL-based traffic-light

controller is to minimize the total number of vehicles queuing at the

intersection, thus maximizing the rate of vehicles outflow. We assume

to model the HDV as in Section 3.1.4.1, while the AVs dynamics is

defined in the following section.

3.1.5.1 Autonomous vehicle

When c(i, j) ∈ CA enters the intersection it can assume the role of

leader or follower according to Definition 3 and 4.

If at time t = tk the traffic-intersection controller selects ϕjnew = 0, the

leader AV schedules a uniform deceleration profile ui,j(t) leading to

stop its cruise δ distance away from LC .

Conversely, if at time t = tk the traffic-intersection controller selects

ϕjnew = 1, the leader AV in pi,j(tk) = pk with vi,j(tk) = vk solves the

following optimization problem:

3Note that no triggers can occur before that ϕj
new is applied
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P3 : min
ui,j(·)

1
2

∫ tmi,j

tk

u2
i,j(t)dt,

subject to: v̇i,j(t) = ui,j(t) ṗi,j(t) = vi,j(t)

pi,j(tk) = pk, vi,j(tk) = vk,

vi,j(t) ≤ vmax, vi,j(t) ≥ 0 ∀ t ∈
[
t0i,j , t

m
i,j

]
,

tmi,j ≥ tk + da + Talert,

tmi,j ≤ tk + 2da + Talert

pi,j(tmi,j) = LC .

(3.8)

The optimization problem is similar to the one in (3.4), the only dif-

ference is related to the tmi,j constraints. Indeed, while in the previous

problem we assumed a fixed delay Tdelay + Talert, in this case our delay

strictly depends on da that, as described in Section 3.1.5, has a variable

value. Also in this case we relax the optimization problem by relying

on a penalty function approach:

Kvmax{max(0, (vi,j(t) − vmax))},

Kvmin{max(0, −vi,j(t))},

K1
tmi,j
{max(0, (tk + da + Talert) − tmi,j)},

K2
tmi,j
{max(0, tmi,j − (tk + 2da + Talert)}.

For t > tmi,j the vehicles are assumed to travel with the maximum speed

vi,j(t) = vmax.

In order to ensure the feasibility of P3, da must be properly chosen. All

the above definitions hold either (1) when an AV enters the intersection

at t = tk, initial time of a the k-th TLB, or (2) during the AVs cruise. If

the AV c(i, j) enters the intersection at t = tl with tk ≤ tl < tk + da, the

P3 feasibility depends on τ = tk + da − tl. The worst condition occurs

when at t ⪆ tk +da a new trigger selects a new traffic-light4 that will be

applied at t ⪆ tk + 2da + Talert. In this case the AV c(i, j) should be able

to cover a distance LC at most at vmax within [tl, tk + 2da + Talert]:

4We highlight that due to the Tsleep, t cannot be equal to tk + da.
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LC
tk + 2da + Talert − (tk + da − τ) ≤ vmax.

As τ tends to 0 the above expression leads to the feasibility constraint

da + Talert ≥ LC
vmax

.

For those cases in which at the h-th lane, conflicting with the j-th

lane, the condition (TC2) is met for the vehicle c(q, h) and ϕhnew = 0
(condition (SC1)), the crossing time tmi,j of the vehicle c(i, j), entering

the j-th lane after the (SC1) occurrence, depends on tmq−1,h, i.e., tmi,j ≥
tmq−1,h + Talert. tmq−1,h is not known a priori. Thus, no guarantees can

be given about the feasibility of P3 in this scenario. However, without

loss of generality, we can assume that a lane with a traffic light red has

a null probability to have an empty CZ, thus the AV c(i, j) has a null

probability to be the leader of the j-th lane.

Note that an already scheduled AV will not update its profile if it receives

a new traffic light controller action equal to the one of the previous

scheduling.

A vehicle c(i, j) ∈ CA triggering condition (TC2) and informed of a

ϕjnew = 0 ((SC1) occurrence) is treated as a leader and schedules a

decelerating profile that imposes its stop δ distance away from LC . If

at tk it is informed of a future green light status ϕj(tk + da) = 1, it will

solve the optimization problem P3.

In all the remaining scenarios, the dynamics of AVs follow the IDM

model behavior presented in Section 3.1.4.1. This assumption takes

place also when the sleep mode of Tsleep duration is active due to a

previous trigger occurrence.

3.1.5.2 Action-delayed RL

Again we model the decision process for the urban intersection traffic-

light controller as a discrete-time DDMDP [91] with action delays.

Henceforth, we assume that the dynamics of the vehicles are discretized
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with a sampling time TS , while the traffic-light controller is triggered by

the events described in (TC1), (TC2), and (TC3). Hence the RL agent

results in an event-driven discrete time controller.

We denote by tk−1 and tk two successive time at which two differ-

ent events occur. The DDMDP is also in this case a tuple E1 =
(X,A,O, f, g, h, da, dc), however in this case the action delay da fol-

lows the behavior described in Section 3.1.5, while the reward of an

action chosen at t = tk−1 is observed with a delay dc = 0, due to the

fact that no triggers are allowed within Tsleep. Here we consider a

constant da except in the case in which Assumption (SC1) occurs. In

this later case, da depends on the time at which the front vehicle of the

AV meeting condition (TC2) enters the MZ.

We use the following notations:

• x(tk) ∈ X the state of the RL system at tk;

• a(tk) ∈ A the RL control input (action) at tk;

• i(tk) =
(
x(tk), a(tk−1+da)

)
∈ I the information needed for optimal

action selection at tk;

• g
(
x(tk), a(tk−1+da)

)
the reward function.

Note that the reward function at tk does not depend on the action at

the same time instant, but rather on the action decided at the preceding

trigger instant tk−1 and applied at tk−1 + da.

We perform also in this case a tabular Q-Learning algorithm with the

same definition of state, action and reward provided in Section 3.1.4.3.
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Figure 3.5: Averaged cumulative reward during simulations with a vehicles
arrival rate of 1125 veh h−1 per lane.

3.1.5.3 Implementation and results

To evaluate the proposed approach we use the same MATLAB framework

of Section 3.1.4.5 with LC = 200 m. We investigate two different

scenarios where the fractions of the two kind of vehicles are: (1) 25%
of AVs and 75% of HDVs; (2) 75% of AVs and 25% of HDVs. We

perform the experiments with an arrival rate of 1125 veh h−1 at each

lane. We set Tsilence = 30 s, and Tsleep = 15 s. Also in this case the

RL controller is trained according to an infinite horizon Q-Learning

problem. The simulation starts with an intersection having zero vehicles,

and simulation stops when the 2000-th vehicle enters the intersection.

We consider Talert = 3 s. We assume the same RL agent training settings

of the Section 3.1.4.5.

In Figure 3.5 we compare the averaged cumulative reward in the

performed experiments with a constant arrival rate of 1125 veh h−1 per

lane. We can observe that a scenario with an higher value of AVs leads

to a faster convergence and to a higher averaged cumulative reward. In

Figure 3.6 we can also observe that the average waiting time of vehicles,

when the reward settles down, is lower in a scenario with 75% of AVs

than in a scenario with 25% of AVs. Moreover, the averaged total queue

length at the intersection assumes a pseudo-periodic behavior in the

former scenario, while the queue still presents some undesirable steep

hikes when the AV penetration rate is lower.
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Figure 3.6: Averaged vehicles waiting time (top), and averaged queue length
in the intersection lanes (bottom) during simulations with a vehi-
cles arrival rate of 1125 veh h−1 per lane, starting at 1400 s, when
the cumulative average reward settles down (see Figure 3.5).

In Figure 3.7, we compare the results obtained applying the pro-

posed approach with those obtained performing the approach of Sec-

tion 3.1.4.5. The proposed approach appears to be more effective in

the management of the queue length. The reason is that now, the

traffic-light cycle duration can be adapted based on the nature of the

vehicle. For example, when the event is triggered because of the con-

dition (TC2) and the traffic-controller decides to select the red-light,

the red-light will be switched only after all the vehicles preceding to

the newly entered AV enter the intersection. Thus, the traffic-light

cycle duration is adapted based on the nature of the vehicle and can

be of variable length unlike in Section 3.1.4. Further, in this new sce-

nario, the traffic-intersection controller coordinates with that AV as it

would become the leader, whereas such a provision was not there in

Section 3.1.4. Moreover, as shown in Figure 3.8 the proposed approach
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Figure 3.7: Comparison of the averaged queue length in the intersection lanes
using (a) the proposed approach, and (b) the approach described
in Section 3.1.4, with a vehicles arrival rate of 1125 veh h−1 per
lane.
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Figure 3.8: Comparison of the average queue length in the intersection lanes
with 75% AVs performing the approach of Section 3.1.4 (blue),
a square wave traffic-light (orange), and the proposed approach
(purple) with a vehicles arrival rates of 1125 veh h−1 per lane.
The time interval begins at 2000 s, when the cumulative average
reward settles down(see Figure 3.5).

outperforms the same simple traffic light of Figure 3.4, thus highlighting

the potential of this latter proposed approach.

3.2 Intensity control of the FERMI seeded
free-electron laser

We now move on to the second case study of the chapter. We consider

the FERMI facility at Elettra Sincrotrone Trieste. We are dealing with a
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seeded Free-Electron Laser (FEL) [187, 9, 8, 10], in which the temporal

and transverse overlap of the electron and laser beams are the most

critical conditions to be achieved. In particular, while the temporal

alignment between the two beams is controlled by a single actuator

(a mechanical delay line), the transverse alignment depends on the

transverse position of each beam at the input and output of the modu-

lator undulator, i.e., the first magnetic structure used for electron beam

energy modulation. Therefore, we first focus on designing a control

strategy π1∗
2 for performance optimization, thus bringing the FERMI

facility to an optimal operating point, i.e., the one that guarantees

the superposition of electrons and laser beams, starting from random

initial conditions. Next, we consider a scenario in which an already

optimized facility is subjected to changes in operating conditions, or

machine drifts, such that it loses its optimality. In this case, we design a

performance recovery control procedure π2∗
2 that restores the machine

operating condition to its optimum in the shortest possible time.

We provide a model of the FERMI environmentE2. However, we assume

that f and g (Equations (2.1) and (2.2)) are unknown to the controllers.

Therefore, both π1∗
2 and π2∗

2 must be learned in a model-free fashion.

We apply two different techniques directly on the FERMI: (1) the

episodic Q-learning with linear function approximation L1
2, for per-

formance optimization, and (2) the continuous Natural Policy Gradient

REINFORCE algorithm L2
2, for performance recovery. Despite the sim-

plicity of these approaches, we report satisfactory results.

3.2.1 Motivations

Optimal tuning of particle accelerators is a challenging task. These are

extremely complex facilities, characterized by the absence of a model

that accurately describes their dynamics, and by an often persistent

noise which, along with machine drifts, affects their behavior in un-

predictable ways. During standard operations, the optimal position

recovery of the seed laser is continuously carried out by an automatic
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process [63] able to properly change the seed laser pointing on the

basis of the output FEL intensity. This approach assumes that there is a

correlation between the laser position and the FEL output. The correla-

tion is low in correspondence of the optimal device performance. Thus,

minimizing the correlation leads to FEL performance maximization. In

case the natural jitter is not sufficient to determine the right direction

to move the pointing of the seed laser, the system mimics the Extremum

Seeking algorithm [14] by introducing an artificial noise which speeds

up the convergence but, at the same time, affects the quality of the

FEL radiation. This kind of model-free optimization techniques (e.g.,

Gradient Ascent and Extremum Seeking [14, 29]) are widely used in

FEL facilities, but have some intrinsic disadvantages: (1) the need to

evaluate the gradient of the objective function, which can be difficult

to estimate when the starting point is far from the optimum, (2) the

difficulty to determine the hyper-parameters, whose appropriate values

depend on the environment and the noise of the system, and (3) the

lack of “memory” to exploit the past experience.

3.2.2 Related literature

Several approaches have been proposed for FEL performance optimiza-

tion, some of them being just as a proof of principle, others being

actually employed [166]. A model-free approach using Gradient Ascent

and Extremum Seeking algorithms has been investigated on the FERMI

FEL at Elettra Sincrotrone Trieste [29]. Furthermore, a multi-physics

simulation tool kit called OCELOT [6] has been designed at the Eu-

ropean XFEL in Hamburg for the study of FELs and synchrotron light

sources. Some generic optimization algorithms such as Extremum Seek-

ing, Nelder Mead, and Bayesian optimization based on Gaussian pro-

cesses are already implemented in the framework. Gaussian process and

Bayesian optimization have been also employed to tune the quadrupole

currents at the Stanford Linear Accelerator Center (SLAC) [110, 109]

and to optimize the self-amplification power of the spontaneous emis-

sion of the Free electron LASer in Hamburg (FLASH) at the Deutsches

Elektronen-SYnchrotron (DESY) [7]. In recent years, Machine Learn-
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ing (ML) techniques have led to many improvements and successful

implementations in the field of particle accelerators, from automated

alignment of various devices with beam, to optimizing different param-

eters, see for example [140, 57, 54, 62, 17, 118]. An overview of the

opportunities provided by the application of ML for particle physics is

given in [53]. In particular, the authors of [86, 141] consider Reinforce-

ment Learning (RL) for control and performance improvement. In [52],

the authors advocate the use of artificial neural networks to model and

control particle accelerators in combination with RL. Moreover, recent

works [55, 56, 75, 28, 27, 126] have presented RL methods used in the

context of FELs.

3.2.3 FEL alignment system

Despite the complex structure of the FERMI, the alignment process

can be described by the simple setup shown in Figure 3.9. Assuming a

stable electron beam trajectory, the superimposition of the two beams

is achieved by imposing a specific laser trajectory. In particular, by

properly tuning the angle of two tip-tilt mirrors upstream of the facility

(TT1 and TT2), a coherent optical radiation downstream of the chain

is detectable by the intensity sensor (I0 monitor). For a detailed de-

scription of the alignment process, and of each of the devices shown in

Figure 3.9, we refer readers to [27, 28]. Here, we only point-out that

the intensity detected by the I0 monitor can be adjusted by properly

controlling the pitch and yaw movements of the tip-tilts, which depend

on the voltage regulation of some piezomotors (two for each tip-tilt

mirror).

We denote by v(k)
pitch,i and v

(k)
yaw,i the servo motors voltages at the k-th

time instant, governing respectively the pitch and yaw angles of the

i-th tip-tilt mirror. The angles are controlled incrementally, i.e., at each

k-th time instant, the i-th tip-tilt mirror receives the pitch and yaw
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Figure 3.9: Simple scheme of the FERMI FEL seed laser alignment set up. TT1
and TT2 are the tip-tilt mirrors, Screen 1 and Screen 2 are two
removable Yttrium Aluminum Garnet (YAG) screens with Charge
Coupled Devices (CCDs), and I0 is the employed intensity sensor
monitor.

displacements as input (respectively denoted by δv(k)
pitch,i and δv

(k)
yaw,i),

and reaches the new v
(k+1)
pitch,i and v(k+1)

yaw,i according to:

v
(k+1)
pitch,i = v

(k)
pitch,i + δv

(k)
pitch,i

v
(k+1)
yaw,i = v

(k)
yaw,i + δv

(k)
yaw,i

. (3.9)

Let Z, U and I be respectively the state set, the control set and the

output set of the system represented in Figure 3.9. We model it as a

discrete-time dynamical system S whose dynamics follows:z
(k+1) = Az(k) +Bu(k)

I(k) = f
(
z(k)

) , (3.10)

where z(k) :=
[
v

(k)
pitch,1 v

(k)
yaw,1 v

(k)
pitch2 v

(k)
yaw,2

]⊤
∈ Z ⊂ R4 is the state at

the k-th time instant, u(k) :=
[
δv

(k)
pitch,1, δv

(k)
yaw,1, δv

(k)
pitch,2, δv

(k)
yaw,2

]⊤
∈

U ⊂ R4 is the control input at the k-th time instant, I(k) ∈ I ⊂ R is

the detected intensity at the k-th time instant, A,B ∈ R4 × R4 are two

identity matrices, and f : Z → I is a non linear function. In other words,

it is a Wiener system [121], i.e., a model consisting of a nonlinear static

element preceded by a linear dynamical system. Clearly, the dynamical

system S (Equation (3.10)) is only a simplified approximation of the

FERMI dynamics, and is provided here to capture the relevant behavior
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of the dynamics to be controlled. Given the model-free strategies of the

employed RL algorithms, directly applied to the facility, however, S will

not be used.

3.2.4 Decision making strategy

We characterize with E2 = (X,A,O, f, g, h) the alignment process of

the FERMI, where we set f = g. At each k-th time instant the controller

observes the current voltage applied to each piezomotor, and selects

the respective displacement of each piezomotor leading to a detected

intensity by the I0 monitor as close as possible to a target one IT .

State

The state x(k) ∈ X at the k-th time instant is equal to z(k) in Equa-

tion (3.10), and is directly provided by the two tip-tilts mirrors of

Figure 3.9. It can assume values that satisfy the physical constraints of

the piezo-motors [39]:

xMIN ≤ x(k) ≤ xMAX, ∀k (3.11)

Action

The action a(k) ∈ A at the k-th time instant is equal to u(k) in Equa-

tion (3.10). We allow inputs for which the component-wise inequality

(Equation (3.11)) is not violated.

Reward function

Two different reward functions are formulated to address, respectively,

the optimal working point control problem, and the recovery of the
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optimal tuning of the facility. In the former, the reward is shaped

according to [123]:

h(x(k), a(k)) = r̄ + ζ · ξ I
(k+1) − I(k)

IT
, (3.12)

where r̄ is taken equal to 1 if the target is reached (0 otherwise), while

the values of ξ > 0 and ζ > 0 are set empirically. The specific design

of Equation (3.12) allows to reward the agent in correspondence of

state-action pairs that lead to a sufficiently increased detected intensity

ξI(k+1) > I(k), and to penalize it otherwise.

In the recovery of the optimal working point control problem, the

reward is instead computed according to:

h(x(k), a(k)) = I(k+1)

IT
− 1. (3.13)

When I(k+1) vanishes, I
(k+1)

IT
vanishes as well, and the agent receives

a penalty of −1. Conversely, when I(k+1) approaches IT , I(k+1)

IT
ap-

proaches 1, and the agent receives a reward of 0. In other words, we

want to reward the agent in correspondence of state-action pairs lead-

ing to a detected intensity downstream the facility as close as possible

to IT .

3.2.4.1 Optimal policies

In the present application, we have to learn two different optimal

policies π1∗
2 and π2∗

2 .

For the attainment of an optimal working point (π1∗
2 ) we rely on a L1

2
Q-learning algorithm in an episodic framework resulting in an optimal

policy:

π1∗
2 (x(k)) = arg max

a∈A
Q∗(x(k), a). (3.14)
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The choice of the Q-learning among other RL approaches is due to its

simplicity and the fact that the problem admits a non-sparse reward

which is beneficial for speeding up the learning [123]. In order to

work with a continuous state space, we rely on a function approxi-

mation version of the Q-Learning. We assume that the actions are

finite a ∈ A = a1, ..., aN , thus resulting in an action-value function

that can be represented as a collection of maps Q(x, a1), ..., Q(x, aN ).
We parametrize each Q(x, aj) as Q(x, aj) = θTj φ(x), where φ(x) is

a vector of features, and θj a weight vector associated to the j-th

input aj . Thus, the whole Q(x, a) is specified by the vector of pa-

rameters θ = [θ⊤
1 , . . . , θ

⊤
N ]⊤. In particular, we employ Gaussian Ra-

dial Basis Functions (RBFs) as features; i.e., given a set of centers

{ci ∈ X, i = 1 . . . , d}, we set φ(x) = [φ1(x), . . . , φd(x)]⊤, in which

φi(x) : Rn → R is:

φi(x) = exp
(
−∥x− ci∥

2

2σ2
i

)
, (3.15)

where σi determines the decay rate of RBF and n is the dimension of

the state vector.

For the performance recovery (π2∗
2 ), we apply a policy gradient (PG)

strategy, i.e., the L2
2 REINFORCE algorithm [183], which aims at finding

the optimal θ∗ ∈ Θ, solution of the optimization problem

max
π

E [Jπ(ξ)] , (3.16)

where ξ = (x(0), a(0), x(1), a(1), . . . , a(T−1), x(T )) is a state-input trajec-

tory obtained by following a particular π, and Jπ(ξ) =
T−1∑
k=0

h(x(k), a(k));

∀(x(k), a(k)) ∈ ξ is the corresponding cumulative reward. The trajectory

ξ can be thought of as a random variable that has a probability distribu-

tion P (ξ|θ). This result is achieved by updating θ along the gradient of

the objective function. The resulting optimal policy is:

π2∗
2 = arg max

θ∈Θ
E
[
Jπ2θ

(ξ)
]
. (3.17)
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Here we consider an agent consisting of four independent parametrized

policies, one for each element of the action vector (a(k)
i , i ∈ {1, 2, 3, 4}),

which are shaped according to the Von Mises distribution5:

πi(a(k)
i |x

(k); θi) = eψicos(a(k)
i −µi)

2πI0(ψi)
s.t., i ∈ {1, 2, 3, 4},

where ψi = eϕi is a concentration measure, µi is the mean, I0(ψi) is the

modified Bessel function of the first kind [3] and θi = [µi, ϕi] is the i-th

policy parameter vector, updated at each step of the procedure.

In order to reduce the variance of the gradient estimates, typical of

the PG approaches [190], we employ a natural PG (NPG) version [87]

of the REINFORCE algorithm, in which a linear transformation of the

gradient is adopted by using the inverse Fisher information matrix

F−1(θ).

For more details about the algorithms, and for the pseudo-codes, see

[27].

3.2.4.2 Implementation and results

In the following, we describe the experimental protocols, and we report

the results obtained for both the two considered tasks.

Optimal working point attainment problem

The problem of defining a policy, able to lead the plant to an optimal

working point starting from random initial conditions, requires to split

the experiments in two phases: (i) a training, which allows the con-

troller to learn a proper policy, and (ii) a test, to validate the ability

of the learned policy to properly behave, possibly in conditions not

experienced during training.

5such a distribution is a convenient choice when the state and action spaces are
bounded, since it is null outside a bounded region
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The training consists of 300 episodes. The number of episodes has been

chosen after preliminary experiments on a device simulator. At the

beginning of the training the target value IT is selected. It remains the

same for all the training episodes. At each time step k, the action pro-

vided by the agent is applied, and the new intensity I(k+1) is compared

with the IT . The episode ends in two cases: (1) when the detected

intensity in the new state I(k+1) is greater than or equal to a certain

fraction of pT of the target (pT IT ); (2) when the maximum number of

allowed time steps is reached. When the first condition occurs, the goal

is achieved.

We performed a RBF approximation version of Q-learning with an ϵ-

greedy policy. During the training procedure the exploration ϵ, and the

learning rate α, decay according to the following rules [176, 64]:

α← α · N0 + 1
N0 + #episode

, ϵ← 1
#episode

; (3.18)

where the N0 = 20, while α = 0.1 is the initial value of the learning rate.

We set γ = 0.99, ξ = 0.99, pT = 90%, and σ2 = 0.0075 for each RBF.

We consider that each episode can consist at most of 10000 steps.

At the end of each episode a new one begins from a new initial state,

randomly selected, until the maximum number of episodes is reached.

Then, a test (with random initial states) of 50 episodes is carried out

for the same target condition of the training, but with a fixed ϵ = 0.05
as in [113].

The number of time-steps per episode for the whole training phase is

reported in Figure 3.10. The steep decrease of the number of time steps

shows that a few episodes are sufficient to get a performance close to

the one obtained after a whole training phase. In other words, the

exploration carried out during the first episodes provides a valuable

information for the estimation of the Q-function and, as a consequence,

of an appropriate policy. We believe that the main reason is the effec-

tiveness of the reward shaping (Equation (3.12)), that allows to reward

the agent at each time step, as opposite of a sparse reward occurring
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only at the end of the episodes. Such a shaping seems reasonable for

the problem at hand, and is based on the assumption that the observed

intensity change of two subsequent steps is significant for guiding the

learning.

The number of time-steps per episode during the test phase is visible in

Figure 3.11 and is consistent with the training results.
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Figure 3.10: Number of time-steps for each episode during a single run of
training performed on the FERMI FEL system. The number of
time-steps required in the first 10 episodes is highlighted in the
enlarged portion.
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Figure 3.11: Number of time-steps for each episode during a single run of
test performed on the FERMI FEL system.

However, during the test phase, we observe some unsuccessful trials.

Although some further investigation is needed, it might be due to

either (i) the occurrence of unexpected drifts of the target during the

test, or (ii) the discrete set of actions employed, consisting of fixed

steps that can prevent reaching the goal, starting from random initial

conditions.
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Figure 3.12: Intensity during a single run of NPG REINFORCE on FEL.
The blue line represents the detected intensity. The dashed
red line represents the target intensity. The target intensity is
almost constant during the whole run. Two perturbations have
been manually introduced by moving the coarse motors. The
first perturbation and subsequent recovery are highlighted in
the enlarged portion.

Recovery of optimal working point

In the recovery of optimal working point, we look for a controller able

to quickly and properly adapt its policy to thermal drifts or wavelength

variations, which result in a displacement of the optimal working point.

Here, we want to employ the learning as an adaptive mechanism, to

face the machine drifts. Thus, in this case, a test phase would be

meaningless, since adaptation occurs during learning only. We perform

the NPG REINFORCE algorithm, which is able to work with a continuous

action space and, thus, to allow for precise fine tuning of the facility.

The experiment consists of a single training phase, at the beginning

of which, the system is set on an optimal working point (including

both the state and the IT ), manually found by experts. During the

experiment, some misalignment are forced by manually changing the

coarse motors position.

Each time that I(k+1) results greater than IT , the target intensity is

updated according to:

IT ← IT + 0.1(I(k+1) − IT ). (3.19)
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Figure 3.13: Reward (blue) and target intensity (red, dashed) during a single
run of NPG REINFORCE on FEL. The slight increases of target
intensity correspond to positive rewards.

Figure 3.12 and Figure 3.13 report the detected intensity and the

reward, together with the target, during the experiment. The target

intensity is not significantly updated since the system is initialized on

an optimal working point. Two drift events took place, the first around

time-step 120, and the second around time-step 210.

Both plots, (detected intensity and reward), clearly show the capability

to recover the optimal pointing of the laser. Moreover, it is possible

to observe how the algorithm quickly replies to disturbances of the

environment settings (marked by negative reward spikes).

3.3 Discussion

In this chapter, we dealt with the application of RL to two real-world

dynamical systems, namely a mixed autonomy traffic intersection, and

the FERMI facility of Elettra Sincrotrone. The goal was to provide

practical examples of how RL can be used in facing real-world control

problems, leading to effective control policies, thus positively answer

the first research question (Q1): of Chapter 1.

In the former example, we modeled the decision process of a traffic

intersection controller as a DDMDP, and proposed two different RL-

based algorithms to compute the optimal policy to decide whether the

traffic light will be green or red in each lane for a certain period of
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time: a fixed RL timing approach, and an event triggered RL. Numerical

results show that both approaches fit the problem well, thus leading to

a policy that reduces queues and vehicle waiting times. In particular,

the proposed event-driven solution seems to lead to a better traffic

management than those obtained by a fixed timing RL and a simple

(no-smart) square wave traffic light. Future investigations may include

the HDVs dynamics modeling in the learning procedure, and also ad-

ditional analysis of the effectiveness as the hyperparameters change

(e.g., the TRL, da, Tdelay, Talert). Given the complexity of the considered

environment, tests have been performed only in simulation, despite

dealing with a problem that comes from real-world.

In the latter application, RL has been used to face, respectively, the

attainment of the optimal working point, and its recovery after a ma-

chine drift on the FERMI facility. We approached the two tasks using

an episodic Q-learning with linear function approximation, and a non-

episodic NPG REINFORCE, respectively. In this case as well, the experi-

mental results highlight the effectiveness of the RL approaches. Based

on the promising results, future works may include deep Q-learning

solutions, thus allowing to work directly with the images detected by

the sensors.

In the following chapter, we move to the second problem faced in

this dissertation: the reality gap of RL robot controllers (c.f., (Q2): in

Chapter 1).
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4
RL for robot control

The growing demand for robots able to act autonomously in complex

scenarios has widely accelerated the introduction of Reinforcement

Learning (RL) in robots control applications.

In some well-known RL tasks, such as pole-balancing, grid-search, or

mountain car, state and action spaces of the system are small enough

to allow approximating policies through tables [158], i.e., actions and

states can be dealt with as finite discrete variables. However, the

higher the complexity of the system to control, the more ineffective

the tabular approaches become [158]. Indeed an increase in system

complexity is often related to an increase of the state and action spaces

dimensions, which makes a tabular approach intractable. In challenging

cases, such as robot control, treating state and action as continuous

variables in a compact set is a more appropriate way to deal with the

problem [93, 154]. For this purpose, approximators of the policy or

of some supporting element, such as value function, or of both, are

required [158]. When Deep Neural Networks (DNNs) are employed

as approximators, the approach is referred to as Deep Reinforcement

Learning (DRL); it allows to develop RL controllers with less manual

feature engineering than classic tools (radial basis functions, tile coding,

etc.) [15, 94, 122]. On the other hand, when DRL is directly employed

on the robot in real-time, it results in considerably long training times.

Moreover, due to the intrinsic trial and error nature of RL, a real-world

training, in particular during the exploration phase of the state and
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action space, can lead to unsafe actions of the robot. Therefore, a way

to train robots safely and quickly is needed.

Simulators allow to easily address these problems once they are pro-

vided with a model of the robot dynamics able to replicate the actual

behavior as closely as possible. In principle, simulators allow to train

the controller with faster and safer procedures: once the policy has

been learned, it is transferred to the real system (sim-to-real trans-

fer) [25]. However, sim-to-real transfer is only effective when the

simulator is given a sufficiently accurate model of the real robot and

the environment [147]; unfortunately, the more accurate the simula-

tion, the heavier the computational cost. A less accurate simulator

is therefore often preferred, although it may result in a less effective

sim-to-real transfer. The phenomenon in which a controller learned

on simulator degrades once applied on the real world is the so-called

reality gap (RG) [82]. In the worst case, the RG leads to a failure of the

policy when applied on the real world, which means a robot unable to

achieve its goal.

RL is not the only approach that can be affected by the RG. Any tech-

nique in which the controller design relies on a simulator of the real

system can potentially exhibit a reality gap [77]. Indeed, several works

faced the RG problem in other frameworks, such as Evolutionary Com-

putation [82, 138, 125, 61, 72, 116, 95, 96] or Model Predictive

Control [18, 90, 153, 127].

However, here we focus our attention only on those works facing the

RG problem on robot controllers learned with RL. Most of the many so-

lutions proposed in the literature, are task-dependent and/or have been

tested on a specific task only. The outcomes are that: (a) generalization

is not ensured, (b) and a comparison between different approaches is

not feasible.

Although a sketch of the current state of the art is already proposed

in [191], here we conduct a more in-depth analysis. We introduce the

main concept behind the RG in a general RL framework (Section 4.1)
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and we survey relevant and recent literature concerning RG in the

context of robot control with RL (Section 4.2). According to our analysis,

the approaches for coping with RG in this context fall into three broad

categories: domain randomization (DR), adversarial reinforcement

learning (ARL), and transfer learning (TL). We use the framework

presented in Chapter 2 to explain in detail the generic behavior of each

of the above approaches. We aim (1) to provide a systematic picture of

the literature concerning how to solve the RG problem in robot control

tasks with RL; (2) to clarify the differences between the three main

identified approaches by highlighting the relative pros and cons; and

(3) to identify new possible research areas.

For the purpose of evaluating and comparing RL approaches in robotics,

in Section 4.3 we propose a novel index that measure the proneness to

exhibit the RG, besides the usual indexes for measuring effectiveness

and efficiency.

Finally in Section 4.4 we provide a practical example of the reality

gap problem on a 6DoF robotic arm, also characterizing some possible

modeling errors affecting controller performances in a sim to real

transfer.

4.1 RL in robotics and the reality gap

The motivation for using RL in robotics is to make a robot autonomous

in finding an optimal policy, through trial and error interactions with its

environment, without an explicit knowledge of the model (model-free).

However, the most effective methods to date are model-based [16, 1,

51]. In addition, policy search approaches result in more efficient train-

ings in terms of time needed for convergence [68, 111, 162, 135, 136,

33]. Regardless of the specific RL method being used, the application

of RL enabled researchers and practitioners to face different significant

robotic tasks (e.g., manipulation, navigation, motion control, etc.). In
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Table 4.1: Overview of the robotic tasks involving RL controllers.

Tasks References

Navigation [146], [89], [79], [192]
Manipulation [145], [134], [108], [84],

[188], [154], [147], [103]
Motion control [36], [107], [137], [184],

[120], [160], [65], [170],
[129], [131], [12]

Locomotion [36], [107], [137], [70],
[155], [100]

L

x′(k+1) = f ′
(
x′(k), a(k)

)
o′(k+1) = g′

(
x′(k+1)

)
r′(k+1) = h′

(
x′(k), a(k)

)

a(k)o′(k+1)r′(k+1)

a(k) = π∗
(
o(k)

)

x(k+1) = f
(
x(k), a(k)

)
o(k+1) = g

(
x(k+1)

)
r(k+1) = h

(
x(k), a(k)

)

a(k)o(k+1)

r(k+1)

π∗ = L(E′)

E′ = ϕ(E)
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Figure 4.1: Schematic representation of the application of RL to the robot
control problem using simulation. First, given the real robot and
it environment E (block at bottom right), a simulator E′ (block
at bottom left) is obtained by modeling E using ϕ. Then an agent
L (block at top left) learns a policy π∗ in simulation. Finally, the
learned policy is transferred to the real robot where it can be
deployed (block at top right).

Table 4.1, we report the tasks that are more often considered1, along

with a few significant research papers, some of which (those dealing

with sim-to-real transferability) are surveyed in the present study.

1The main tasks addressed in the literature are: navigation, manipulation, locomotion,
and motion control. The former concerns the ability of robots to determine their
position in a given reference frame, and plan a path leading them to some target
locations. Manipulation refers to the set of tasks in which robots interact with
objects around them, e.g., grabbing an object, opening a door, packing an order in
a box. Locomotion encompasses all the various applications in which robots have
to transport themselves from one place to another. Finally, motion control is the
ability of the robot to determine a temporal sequence of control inputs to achieve a
desired movement. Here we include in this latter subcategory all motion tasks not
included in the previous categories.
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When tackling a robot control problem with RL, according to the for-

mulation and notation provided above, the designer should ensure that

(a) the environment E captures the robot-surrounding environment

dynamics; (b) the observations o ∈ O include proprioceptive measures

useful to capture the robot dynamic evolution (e.g., joints position and

velocity); (c) the control inputs a ∈ A correspond to values for the

appropriate robot actuators (e.g., torques to be applied to joints or

desired acceleration/speed/position, depending on the specific control

system).

A first issue concerns the representation of Vπ(x), and Qπ(x, a). While

in some simple RL scenarios O and A sets can be discretised over a finite

range, hence allowing a tabular representation of Vπ(x) or Qπ(x, a),
in robot control problems the physical nature of observations and

control inputs advocates for a finely discretised (ideally, continuous)

representation of O and A. In this case, table may require a huge

amount of memory and the problem gets practically intractable. An

alternative and often suitable solution to escape tabular representation

is function approximation, recently addressed by DRL. Here DNNs are

used as function approximators of Vπ(x), Qπ(x, a), or directly π, and a

loss function ηθ is designed in order to guide the training of the network

itself. For a more detailed description of DRL, including recent efforts

and some applications, we refer the reader to [15, 117].

A second issue, pivotal for the aim of the present work, derives from the

trial and error process employed by RL and its direct application to the

robot: learning time may become too long, thus unpractical, and the

risk of damaging the robot, or more in general the environment, may

be too high. Typically, simulators are used for addressing this issue;

i.e., an environment mapping operator ϕ is assumed to exist (albeit

unknown in practice) such that E′ = ϕ(E) = (X ′, A′, O′, f ′, g′, h′) is a

digital approximated copy of E. Intuitively, ϕ corresponds to modeling

a real system described by E as a simulated system described by E′

such that a policy learned on E′ can be applied to E. The resulting

controller design and test are, therefore, split in two distinct phases that

are performed on two different environments: (i) an agent L interacts
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with a simulated environment E′ = ϕ(E) and outputs a controller π∗;

(ii) the resulting π∗ is applied on the real E. In this scenario, outlined

in Figure 4.1, the latter step, that in general can be defined as E′-to-E

transfer, can be renamed as sim-to-real transfer, given the nature of the

considered E′ and E.

As will be clear from the reviewed examples in the following sections, a

controller learned in simulation often exhibits performance losses when

applied on the real robot and, in the worst scenario, totally fails the

task. From the point of view of the designer, this issue becomes relevant

when, although a safer and faster training and an effective test have

been carried out onE′, the policy learned in simulation does not achieve

the goal in real world. In such a situation, the learning algorithm is

affected by an intolerable RG and the corresponding learned policy π∗

is said to be non-transferable.

Note that, although it is not always clearly emphasized, a mandatory

step ahead of the sim-to-real transfer is to perform a test of the learned

policy on the simulator itself2. Otherwise, there is no guarantee of the

learned controller effectiveness in achieving the task even in simulation.

For instance, a typical learning stop criterion consists in terminating

the training when the moving average of the cumulative reward settles

down. However, this empirical rule does not ensure that the learned

controller is able to correctly perform the task. The learning algorithm

may have been trapped in a local maximum, and the resulting controller

may have a completely unexpected behavior in tests, even on the

simulator.

If the test on the simulator is effective, possible reasons for a perfor-

mance loss in a test on the real robot, and therefore for RG, are:

(a) ϕ operator is unrealistic: E and E′ differences in f ,f ′ and/or g, g′

are such that, applying the same input on both environments, the

2This only applies to those situations where the controller is transferred on the real
robot. As shown in Section 4.2.3, in some scenarios, the training continues on the
real robot. Hence a test procedure is not needed in these cases.
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resulting o and o′ are different; or, possibly, E and E′ differences

in h and h′ lead to two different optimization problems Jπ(x) ̸=
Jπ(x′);

(b) L is unable to output a π∗ sufficiently robust to possibly small and

unavoidable errors in ϕ.

However, the particular case in which h′ is very different from h is

unusual, in practice. Typically, h is properly designed and remains

“the same” for both E and E′ (for this reason hereinafter we consider

h′ = h). Therefore, the RG can be essentially attributed to a mismatch

between E and E′ and the possible solutions may be: (a) improve E′,

by properly adjusting ϕ (not always possible because it could result in

an excessive computational effort or because of lack of knowledge);

(b) make the controller more robust to model errors.

Note that, in general, it is not required that the controller behaves

identically when applied to E and E′, but, rather, that it is E′-to-E

transferable, i.e., sim-to-real transferable. In practice, this requirement

translates to a (subjectively) properly bounded RG. Clearly, if an appro-

priate behavior is only reached when E′ is an identical copy of the robot

E (E′ = ϕ(E) = E), using E′ rather than E has no benefit in reducing

the overall learning time. But still, E′ may be useful for addressing

risks concerning safety.

Figure 4.2 summarizes a generic routine for investigating the presence

of RG. We start by (1) performing a training on E′; (2) then we test the

resulting policy π on the same E′, to check its effectiveness in reaching

the task, and, only if the test ends successfully, (3) we test π also on E;

otherwise, we revert to (1). Once that the (3) has been executed, (4)

we compare the performance obtained in the π tests on E and E′.
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Training in
Simulation

Test in simulation

Goal reached?

Test on the real robot

Same performance?

No RG RG

NO

YES

YES NO

Figure 4.2: Flowchart of the routine to test the presence of the RG.

4.2 Methodologies for solving the RG

Here, we focus only on those articles that meet all the following re-

quirements: (i) address explicitly the RG problem, (ii) deal with robot

control applications, and (iii) employ RL techniques. We have identified

three major categories of approaches for addressing the RG in this

scenario: domain randomization (DR), adversarial RL (ARL), transfer

learning (TL). All the articles discussed below are summarized in Ta-

ble 4.2 according to this categorization. The table also shows, for each

article, if the authors conducted experiments only in simulation (sim-

to-sim) or (also) on real robot (sim-to-real), and specifies the employed

simulators.

Due to task diversity (Figure 4.3 shows a visual summary of the robotic

tasks) and the lack of a common theoretical framework for the RG, the

surveyed articles do not present their results in a way that permit a

systematic comparison. However, we provide a general formal defini-

tion for each of the previously mentioned categories, according to the

formalism of Chapter 2, which allows to understand each approach.

4.2 Methodologies for solving the RG 56



Table 4.2: List of the surveyed articles, specifying the category (Cat. column).
S2S and S2R columns show whether in the article the proposed
technique was evaluated by performing sim-to-sim or sim-to-real
experiments, respectively.

Ref. Cat. S2S S2R Simulator

[36] TL MuJoCo [165]
[146] DR Blender [24]
[145] TL MuJoCo
[107] DR MuJoCo
[137] ARL MuJoCo
[70] TL SimSpark [157], Gazebo [128]

[184] TL MuJoCo, DART [99]
[120] DR Vortex [40], Bullet[41]
[134] DR MuJoCo
[108] DR PyBullet [42]
[160] DR PyBullet
[65] TL MuJoCo, PyBullet

[170] DR MuJoCo
[89] TL Gibson [186]

[129] DR MuJoCo
[131] ARL TORCS [185]
[84] DR PyBullet

[188] TL Gazebo
[155] DR MuJoCo
[79] DR Gazebo
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4.3: Overview of some robotic tasks considered in the surveyed articles
to address the RG. (a) The Fetch robot used in [36]. (b) The
Minitaur of [160]. (c) The robot employed for manipulation
task in [144]. (d) The robotic arm engaged in deformable object
manipulation of [108]. (e) The Marble maze game of [170]. (f)
The ball on plate system used by [120]. (g) The Fetch robot used
for the pushing task of [134]. (h) The quadrotor employed for the
autonomous navigation task of [89]. (i) The five-finger humanoid
hand used in [129]. (j) The classical Open AI Gym environment
used to test in simulation several strategies [36, 107, 137, 184].

4.2.1 Domain randomization

Domain randomization (DR) has already achieved good results in sim-

to-real transfer of robotics controllers outside RL [164, 83, 115, 179,

173, 160]. The main idea behind this approach is what in control

theory is called robust control under either parametric or non parametric
uncertainty [23, 5], that is the design of controllers able to guarantee
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certain properties despite some tolerable parameters variations and/or

noise.

We call Ẽ′ = ϕ̃(E) = (X̃ ′, Ã′, Õ′, Z ′,Υ′, f̃ ′
ξ′ , g̃′

ψ′ , h) a corrupted sim-

ulator described in which Z ′ is the process disturbances set, Υ′ is

the measurement disturbances set, f ′
ξ′ : X̃ ′ × Ã′ × Z ′ → X̃ ′ the cor-

rupted and parametric transition function, with parameters ξ′ ∈ Ξ′, and

g′
ψ′ : X̃ ′ → Õ′ the corrupted and parametric observation function, with

parameters ψ′ ∈ Ψ′.

Given a parametrisation ξ′, ψ′, starting from an initial state x̃′(0) and sub-

ject to a control sequence ã′(0), ã′(1), . . . , a process disturbance sequence

ζ ′(0), ζ ′(1), . . . , and a measurement disturbance sequence υ′(0), υ′(1), . . . ,

a corrupted simulator Ẽ′ evolves according to:

x̃′(k+1) = f̃ ′
ξ′

(
x̃′(k), ã′(k), ζ ′(k)|ξ′

)
(4.1)

õ′(k+1) = g̃′
ψ′

(
x̃′(k+1), υ′(k)|ψ′

)
(4.2)

r̃′(k+1) = h
(
x̃′(k), ã′(k)

)
. (4.3)

The main idea behind DR is that, during training, L selects ξ′ and ψ′,

interacts with the resulting environment Ẽ′, and updates a controller π

by observing the consequences (in terms of reward) of selected control

inputs ã′(k), process disturbances ζ ′(k), and measurement disturbances

υ′(k). Its final goal is twofold: (a) maximize the finite horizon dis-

counted reward in a perturbed environment (see Equation (2.4)) and

(b) find a solution π∗ which ensures a loss in performance lower than a

threshold when applied on different domains of the same distribution.

In particular, the final controller π∗ sim-to-real transferability is here

seen as a form of controller robustness obtained by training π in a

collection of environment models, chosen by L, instead of a single one—

Figure 4.4 graphically summarizes this process. The resulting controller

π∗, learned by maximizing the finite horizon discounted reward Jπ,T
under these conditions, is expected to be robust to perturbations. There-

fore, if these perturbations are such that the L↔ E interaction returns
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ξ′, ψ′

L

x̃′(k+1) = f̃ ′
ξ′

(
x̃′(k), ã′(k), ζ ′(k)|ξ′

)
õ′(k+1) = g̃′

ψ′

(
x̃′(k+1), υ′(k)|ψ′

)
r̃′(k+1) = h

(
x̃′(k), ã′(k)

)

υ(k)

ζ(k)

ã′(k)

õ′(k+1)

r̃′(k+1)

Figure 4.4: Schematic representation of L ↔ Ẽ′ interaction in DR ap-
proaches.

a π∗ affected by a tolerable RG, the result is a sim-to-real transferable

controller.

Table 4.3 summarizes the articles that tackle the RG using the DR

approach. The table shows also the employed learning algorithms and

the considered tasks.

We remark that in some of these studies the actual sim-to-real transfer-

ability is not evaluated (see Table 4.2); instead the controller robustness

with respect to the perturbations is tested. We discuss each of the paper

below.

In Sadeghi et al. [146] authors train a vision-based navigation policy

entirely in simulation, trying to use it on a real quadrotor without

performing additional real training runs. During training, at each time

k, the state of the system is here represented by an indoor synthetic

image I(k) generated by a renderer. Images are generated in order to

reproduce different hallways and a variety of environment parametric

settings (ξ′,ψ′). First, a Deep Convolutional Neural Network is learned

in order to predict the collision probability for each I(k), a(k). Then, a

Deep RL agent is trained for fine-tuning the previous model to provide

the action-value function Q(I(k), a(k)). Hallway randomization enacts a

wide variety of environments, and shows very good performance during
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Table 4.3: List of the surveyed articles that apply the DR approach.

Ref. Algorithm Tasks

[146] DQNh Vision-based flight
[107] TRPOa Inverted pendulum,

Half cheetah [26],
Hopper [26], Walker
[26]

[120] TRPOa Ball on plate with
robotic arm

[134] HERb+RDPGc Pushing task with
robotic arm

[108] DDPGfDf Deformable object ma-
nipulation

[160] PPOe Trotting and galloping
of quadruped

[170] A3Cd Marble maze game with
robotic arm

[129] PPOe Rubik’s cube with
robotic hand

[84] QT-Optg Rvision-based control
task of a robotic arm for
grasping

[155] PPO Climb and descend
stairs with bipedal robot

[79] A3C Wheeled mobile plat-
form navigation

aTrust Region Policy Optimization [150], bHindsight Experience Replay [11],
cRecurrent Deterministic Policy Gradient [73], dAsynchronous Actor-Critic

Agents [112], eProximal Policy Optimization [151], f Deep Deterministic Policy
Gradient from Demonstration [175]. gQ-function Targets via Optimization [88] hDeep

Q Network [113]

test, both in simulation and on the real world, even with environments

never seen during training. However, performance falls when the drone

encounters reflective glass doors, thus resulting in a crash.

Mandlekar et al. [107] introduces an algorithm, called Adversarially

Robust Policy Learning (ARPL), to teach a controller to correctly behave

in presence of increasing adversarial perturbations. The agent uses a
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curriculum learning approach [20], in which ξ′, υ′(k), and ζ ′(k) alter-

nately assume the form of isometrically scaled versions of Fast Gradient

Sign Method (FGSM) [67]. Here, the controller is parametrized by θ

(πθ) and updated following the on-policy vanilla Trust Region Policy Op-

timization (TRPO) [150]. The key idea is to use a corrupted simulator

Ẽ′ in training, and then testing the resulting π∗ on a different corrupted

simulator Ẽ′′ = (X ′′, A′′, O′′, Z ′′,Υ′′, f ′
ξ′′ , g′

ψ′′ , h) environment, obtained

with different perturbations Z ′′ ̸= Z ′, Υ′′ ̸= Υ′, Ξ′′ ̸= Ξ′ and Ψ′′ ̸= Ψ′.

These perturbations are such that π∗ is misled to provide wrong control

inputs a′′(k+1). The choice of adversarial perturbations is motivated

by the fact that by employing them, the resulting models are likely

to generalize well [159]. The ARPL algorithm has been tested in sev-

eral benchmark examples (Inverted pendulum, Half cheetah, Hopper,

Walker) and seems to deliver promising results, exhibiting significant

robustness. However, examples of sim-to-real controller transferability

have not yet been provided.

The Simulation-based Policy Optimization with Transferability Assess-

ment (SPOTA) algorithm, designed in [120], uses randomized physics

parameters, drawn from a probability distribution parametrized by

κ, ξ′ ∼ ρκ(ξ′), to perform a robust optimization of the controller. In

SPOTA, the controller is trained on model ensembles, according to the

following 4 phases: (i) learn a candidate solution πCθ using a TRPO up-

dating rule; (ii) learn nR reference solutions πRj

θ , j = 1, . . . , nR on nR
different Ẽ′, each obtained for different ξ′ and ψ′ settings; (iii) compare

the performance of candidate C with that of each reference Rj in the

same condition of Rj; and, finally, (iv) decide whether or not stop the

learning. The last step is carried out by introducing a Simulation Opti-

mization Bias (SOB) concept: an error caused by an optimistic bias of

the optimization procedure, whose existence has been proven by [76].

The authors have assumed that it can be treated as the error between

the finite horizon discounted reward Jπ∗R
θ
,T obtained by considering

the reference solutions and the finite horizon discounted reward JπC
θ
,T

of candidate solution. Taking into account that an RL approach in a

stochastic setting allows to find only estimates of Jπ∗R
θ
,T and JπC

θ
,T ,

the authors have derived an upper bound for the tolerated SOB of
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the candidate solution, called Upper Confidence bound on Simulation

Optimization Bias (UCSOB). In order to ensure a desired performance

β, the final candidate solution UCSOB must be lower than β. In this

framework, the authors have tested the algorithm by developing a con-

troller for a ball on plane task, governed by a robotic arm, in the same

simulator (obtaining satisfactory results) and varying the physics engine

(with worse outcomes). However, although in this case a sim-to-sim

transferability test has been carried out, a sim-to-real controller test has

not been done.

Peng, Andrychowicz, et al. [134] shows the effectiveness of memory-

based policies (i.e., policies learned by using past memory for future

learning [114, 35, 133]) to deal with the RG, introducing DR to general-

ize environment dynamics. Hindsight Experience Replay [11] has been

used for the purpose: a technique able to generalize over different goals

using past experience as a baseline. In this case, the parameters ξ′, the

measurement noise υ′(k), and the time step ∆t are sampled according

to a distribution, which is a design parameter. In particular, ξ′ is kept

locked for an entire episode, while the remainder are varied at each

time step. The proposed solution, learned using a RDPG algorithm

(off-policy), has been tested on a robotic pushing task and, when trans-

ferred to reality, shows performances comparable to those obtained in

simulation, despite poor calibration.

An improved version of DDPG [175] is adopted in [108] to solve

deformable object manipulation tasks in simulation. The resulting

controller transferability on the real robot is therefore tested. In par-

ticular, a robotic arm is involved in three different towel folding tasks,

in which RGB images are included in the observation o. The DR is

here implemented by sampling some environment values from either

normal or uniform distributions around noisy ground truth estimates.

Experimental results suggest that randomization of extrinsic camera

parameters (i.e., position and orientation) is particularly useful for

sim-to-real transfer, since the controller has an evident sensitivity to

changes of its position. Besides, they show that heavy randomization

can lead to unsuccessful transfers.
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Controller sim-to-real transferability has also been tested on locomo-

tion tasks of a Minitaur quadruped of Ghost Robotics [160]. Here

authors have used Proximal Policy Optimization (PPO) to learn π∗ and

have observed the impact of two different solutions to reduce the RG:

(a) improving simulated model via system identification; (b) using ran-

domized ζ ′(k), υ′(k), and ξ′ to learn robust controllers as the observation

space changes. Obtained results suggest that simulators improvement is

an essential requirement since, as the model becomes less adequate, not

even a robust controller is able to avoid a large RG. The authors of the

cited paper also pointed out that considering a large observation space

does not always bring benefits. On the contrary, their evaluations have

showed that controllers learned in simulation with large observation

space lead to bad results when transferred to real robot.

Van Baar et al. [170] shows the benefits of using DR and Asynchronous

Actor Critic Agent (A3C) algorithm [112] (on-policy) for learning the

controller, with respect to not using DR. The parameters ξ′ are here

randomly sampled according to a uniform distribution. Both controllers

are then applied on real-world robot and the fine-tuning time required

to convergence is compared. The analyzed task is a Marble maze game

driven by a robotic arm and the results show that there is a trade-off

between controller robustness and fine-tuning steps. Controller learned

through DR requires fewer fine-tuning steps than the remaining one,

further proof of an existing trade-off between efficiency and RG.

In a quite recent work [129], Automatic Domain Randomization (ADR)

is proposed in order to transfer a policy learned in simulation on the real

system, framing it in a manipulation task of Rubik’s cube with a robotic

hand. Here, the RL agent does not solve Rubik’s cube but “only” learns,

using a PPO algorithm (on-policy), how to move correctly the robotic

hand in order to perform control inputs suggested by another non-AI

based algorithm. What changes from standard DR idea are ρκ(ξ′) and

ρκ(υ(k)) distributions (parametrized by κ) that allow to randomly select

υ(k) and ξ′. Indeed, while in other DR approaches these distributions are

parametrized with fixed κ, in ADR κ changes during learning procedure.

In particular, these additional environments, obtained with different
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κ, are added to the considered collection of environment models only

when a lower performance limit is reached (i.e., a fixed number of

successful episodes are performed). The developed controller has been

firstly tested in environments in which distributions were manually

tuned, achieving good results. In addition, a sim-to-real transfer is

performed, with worse results.

A Randomized-to-Canonical Adaptation Network (RCAN) is conversely

introduced in [84]. The main idea is to map the observations collected

on the simulated domain as well as those collected on the real domain

into a common further domain called the canonical domain. The ap-

proach has been applied to a vision-based robot grasping task, and

the canonical domain consists of extremely simplified images whose

purpose is capturing just the relevant information for the task. The

map is learned by using an image-conditioned Generative Adversarial

Network (cGAN) [81], able to map an image of a domain D into an

adapted image of the canonical domain Dc; i.e., G : D → Dc. The

resulting image of Dc is then sent to the controller which is learned

by using Q-function Targets via Optimization (QT-Opt) [88]. During

training, cGAN receives randomized simulated images, sampled from

the trajectories, and learns to convert them in canonical images. The

resulting observations are then used by the QT-Opt to produce the

policy. In the test procedure, the real-world images are mapped into

canonical images and sent to the controller. The proposed approach

returns excellent results, however, an effective transfer is not always

achieved. In particular, when the cGAN during training is fed with im-

ages sampled only from non-successful trajectories, the final controller

results in an unsatisfactory transfer.

Siekmann et al. [155] proposes a simple terrain randomization to learn

robust proprioceptive controllers for bipedal robots involved in the task

of climbing and descending stairs. They model the policy with a Long

short-term memory (LSTM) network, for its capability of processing

temporal sequences. Indeed, unlike feed-forward neural networks,

LSTMs are equipped with a feedback mechanism that allows them to

process sequences of input data, without treating each sample of the

4.2 Methodologies for solving the RG 65



sequence independently. They retain useful information about earlier

data points in the sequence, aiding in the processing of new data points.

The authors compare the performance of three different controllers

π: (i) A learned LSTM controller with different terrain parameters

ψ, (ii) a feed-forward NN controller learned with different ψ′ terrain

parameters, and (iii) a LSTM controller learned on a single simulated

environment. The experimental results show that the first π is the one

with the highest overall probability of success in the task. Thus, the

combination of LSTM and DR seems to be an effective solution to the

problem for the tested task.

Finally, Hu et al. [79] face the reality gap of a controller involved in

a wheeled robot navigation task. The proposed solution tries to ren-

der the controller robust to possible parametric errors in the model,

but also to possible disturbances that corrupt its dynamics. To this

end (i) a terrain randomization is performed by varying its viscosity

and inclination ψ′, (ii) disturbances on the travel distance and on the

yaw rotation υ(k)
1 are randomly imposed to the dynamics, (iii) latency

disturbances are imposed at each time-step, hypothesizing that a la-

tency between perception and movement performance occurs υ(k)
2 , and

(iv) the pose-estimation error υ(k)
3 is also taken into account. The result-

ing π, learned entirely in simulation, results in an effective application

on the real-world environment. Moreover, a comparison with some

state of the art solutions for robot navigation highlights the better per-

formance of the proposed approach in terms of success rate as well as

cumulative travel distance, and time required for task execution.

4.2.2 Adversarial RL

In the adversarial RL (ARL), the agent L is composed of two sub-agents:

the protagonist LP and the antagonist LA. The underlying idea resem-

bles the one behind domain randomization: enforce robustness (and,

hence, improve controller transferability) by training the controller

in a collection of environment models instead of a single one. In the

case of ARL, however, the diversity is obtained by training a secondary
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ξ′, ψ′

LA

LP

x̃′(k+1) = f̃ ′
ξ′

(
x̃′(k), ã′(k), ζ(k)|ξ′

)
õ′(k+1) = g̃′

ψ′

(
x̃′(k+1), υ(k)|ψ′

)
r̃

′(k+1)
P = h

(
x̃′(k), ã′(k)

)
r̃

′(k+1)
A = −h

(
x̃′(k), ã′(k)

)

ã′(k)

ζ(k)

υ(k)

õ′(k+1)

r̃
′(k+1)
A

r̃
′(k+1)
P

Figure 4.5: Schematic representation of L ↔ Ẽ′ interaction in ARL ap-
proaches.

controller (the adversarial) to generate more difficult models to handle

(those that minimize the cumulative reward). Figure 4.5 graphically

summarizes the process of ARL.

Given Ẽ′ = (X̃ ′, Ã′, Õ′, Z ′,Υ′, f̃ ′
ξ′ , g̃′

ψ′ , h) a corrupted simulator of E,

evolving according to Equations (4.1) to (4.3), LP and LA interact

with Ẽ′ seeking to maximize their respective discounted cumulative

reward [169].

We denote with r̃′(k+1)
P the reward of LP . A common choice [101] is to

provide LA with a reward r̃′(k+1)
A = −r̃′(k+1)

P . As a result two controllers

are learned:

• πP , whose target is to maximize the cumulative reward over time,

resulting in the final controller which will be tested in a Ẽ′-to-E

transfer;

• πA : Õ′ → Z ′ ×Υ′ × Ξ′ ×Ψ′ that searches for those environment

perturbations or parameters variations that minimize the same

cumulative reward over time.
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The outputs of LA and πA are perturbations and parameters variations

of Ẽ′. In a noise-corrupted simulated environment, the observed reward

and hence the discounted reward will depend on the disturbances as

well as on the policy. Since, in ARL, disturbances are generated by the

adversarial agent, the finite horizon discounted reward will depend

on both policies. To catch this dependency we can write JπP ,πA

(
x̃′(0)

)
.

The resulting L goal can be compactly stated as:

max
πP

min
πA

JπP ,πA

(
x̃′(0)

)
, (4.4)

falling in a worst-case approach that in control theory is known as min-
max optimal control (also referred to H∞-control) [105, 104, 47].

Consequently, in ARL, Ẽ′ interacts simultaneously with LA and LP , thus

L↔ Ẽ′ results in LA ↔ Ẽ′ ↔ LP and the global L task is to find:

π∗
L = arg max

πP

arg min
πA

JπP ,πA . (4.5)

Table 4.4 summarizes the articles that use ARL for learning robust

controllers, along with the respective learning algorithms and the con-

sidered tasks.

Table 4.4: List of the surveyed articles that apply the ARL approach.

Ref. Algorithm Tasks

[137] TRPOa Inverted pendulum,
Half cheetah, Swim-
mer [26], Hopper,
Walker 2D, Ant [26]

[131] Ensemble DQNb Autonomous driving

aTrust Region Policy Optimization [150], bEnsemble Deep-Q Network [130].

The ARL approach was firstly introduced by [137], with the Robust

Adversarial Reinforcement Learning (RARL) algorithm. There, πP (the

protagonist’s policy) is trained to work in presence of an adversary (πA),

able to inject destabilizing disturbances to environment (in particular
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only ξ′ disturbances). The proposed solution can be summarized in

two main steps that are repeated niter times: (i) learn the protagonist

policy πP while keeping the adversary one fixed; (ii) learn the adversary

policy πA while keeping πP fixed. The experiments have been done

on several OpenAI Gym environments [26]. In a first experiment, the

authors compare mean and variance of the cumulative reward over 50
RARL policies, obtained using different seeds and initialization, with

TRPO ones. For all tasks RARL behaves better than TRPO in terms of

mean and variance. In a second experiment, [137] shows that RARL

behaves better than TRPO under adversarial attacks while keeping hold

the protagonist. Finally, in a third experiment, the authors introduce

different ζ(k) in the test phase, and again obtain better results with

respect to TRPO.

Pan et al. [131] builds on the RARL idea by introducing the Risk-Averse

Robust Adversarial RL (RARARL) concept: a RARL algorithm in which

the protagonist is trained to be risk-averse and the adversarial, in con-

trast, risk-seeking. The authors of the cited study state that “a robust

policy should not only maximize long-term expected reward, but should

also select actions with low variance of that expected reward". For that

purpose, they train κ different Q-value networks that return κ action-

value outputs. The risk of an action is estimated by the empirical

variance of these κ Q-values (Varκ(Q)). At the beginning of each train-

ing episode one of the κ networks is randomly chosen and employed

for control input selection during the entire episode. The protagonist

and the antagonist take actions sequentially: the protagonist action-

value function QπP is augmented by a risk-averse term (Varκ(QπP )),
which encourages the choice of lower variance control inputs; the ad-

versary QπA , instead, is reduced by a risk-seeking term (Varκ(QπA)) in

order to guide it towards higher-variance outputs. The algorithm has

been tested in a simulated self-driving task and obtained experimental

results highlighting the better robustness of RARARL controller with

respect to one subjected to random perturbation in training. During the

test, control inputs are selected according to the mean value of the κ

networks.

4.2 Methodologies for solving the RG 69



4.2.3 Transfer learning

The previously discussed approaches are aimed at controllers that, once

learned in simulation, can be directly transferred on real robots without

any (or, at most, with very few) additional training steps. Basically, an

agent searches for a sim-to-real transferable controller.

A different perspective is the one adopted in transfer learning (TL)

approach. Indeed, its aim is not to find a solution to the RG, but rather

to avoid its occurrence by means of two subsequent or simultaneous

training phases (first in simulation and second in reality), penalizing

the resulting L efficiency.

Let us ignore for the moment the RG and suppose to be in a classic

RL training scenario, described by L ↔ E. The basic idea of TL is

that generalization is possible not only within task but also between
tasks [161].

Definition 5. GivenE = (X,A,O, f, g, h) andE′ = (X ′, A′, O′, f ′, g′, h′)
two environments, we say that E is compatible with E′ if and only if

any policy for E′ is also a policy for E, i.e., O ⊆ O′ and A′ ⊆ A.

Definition 6. The previous two environments are mutually compatible
if and only if E is compatible with E′ and E′ is compatible with E, i.e.,

O ≡ O′ and A′ ≡ A.

The above definitions ensure that a policy for a system E is also a policy

for every system E′ that is compatible with E. However, a policy which

is optimal for E is in general not optimal for E′.

Therefore, since a task can be entirely defined by an environment,

considering a second different but mutually compatible environment

the controller learned for the first is expected to be a helpful tool to

speed-up the second learning process, whether or not it involves the
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x′(k+1) = f ′
(
x′(k), a(k)

)
o(k+1) = g′

(
x′(k+1)

)
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(
x′(k), a(k)

)

a′(k)o′(k+1)r′(k+1)

L or π
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(
x(k), a(k)

)
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(
x(k+1)

)
r(k+1) = h

(
x(k), a(k)

)

a(k)o(k+1)r(k+1)

u
(k)
exch

Figure 4.6: Schematic representation of TL approaches.

same agent. Thereby, in RL, in which the controller is the result of a

trial and error process, TL could be employed to speed-up the learning,

thus avoiding training from scratch.

Back to the RG, the idea of “recycling" policies between tasks could

be useful in speeding the real robot learning procedure or, possibly,

while performing a fine tuning of simulated and real agents (L′ and L

respectively).

In the first scenario, what has been learned in simulation, by using L′,

is reused (in its entirety or in part) in subsequent phases of real-world

training, performed by using L. The expected result is a faster real-

world training that bridges the discrepancy between simulator and real

robot at its root, i.e., while real agent L is learning its π. Therefore,

the transfer occurs once, and only in one direction (from simulation to

reality).

In the second case, by providing some real information to simulator

and taking example from it, the simulator could more realistically adapt

itself to reality, thus reducing performance misalignment and, thereby,

the RG. In this situation, the transfer is repeated, and in both directions

(sim-to-real and real-to-sim).

Overall, we refer to the exchanged information as u(k)
exch =

[
u′(k) u(k)

]T
,

in which u′(k) is the sim-to-real transferred information, while u(k) the

real-to-sim one (Figure 4.6).
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We categorize the different TL approaches based on:

• the kind of information passed through u(k)
exch, (e.g., weights of an

image processing net, state-control input pairs, policy parameters

or even the policy itself);

• the transfer timing of u(k)
exch, either continuous (C-TL) or one shot

(1-TL), the latter generally occurring at the end of the training in

simulation;

• the direction of u(k)
exch transfer, either bidirectional (2D-TL), i.e.,

u
(k)
exch = [u′(k) u(k)]T , or unidirectional (1D-TL), i.e., u(k)

exch =
[0 u(k)]T or u(k)

exch = [u′(k) 0]T ;

• whether there is an agent L (e.g., RL, Inverse Dynamics Neural

Network (IDNN), etc.) or a controller π (e.g., Model Predictive

control (MPC), etc.) in the real setting E.

Table 4.5 summarizes the articles that use TL and characterizes them

in terms of these four factors. The table also shows the tasks and

algorithms.

Table 4.5: List of the surveyed articles that apply the TL approach.

Ref. Algorithm Transf. info. u(k)
exch Timing Dir. L, π in E Tasks

[36] TRPOa a′(k) C-TL 2D-TL IDNNe Reacher, Half cheetah, Hopper,
Humanoid, Fetch robot, Tra-
jectory control

[145] A3Cc NN activation functions 1-TL 1D-TL RL Jaco robot manipulation
[70] CMA-ESb a(k), a′(k) C-TL 2D-TL RL Humanoid bipedal locomotion

[184] TRPOa o′(k), a′(k), o(k), a(k) C-TL 2D-TL RL Reacher, Hopper 2D, Reacher
2D

[65] PPOg π′∗ 1-TL 1D-TL RL Pusher, Striker, Ergo Reacher,
ErgoShield

[89] DQLd NN weights 1-TL 1D-TL MPCf Quadrotor collision avoiding
[188] DQLd O′, Q(x′(k), a′(k)) 1-TL 1D-TL RL Robot object manipulation

aTrust Region Policy Optimization [150], bCovariance Matrix Adaptation-Evolutionary
Strategy [71], cAsynchronous Actor-Critic Agents [112], dDouble Q-Learning [172],

eInverse Dynamics Neural Network, f Model Predictive Control [85]

Christiano et al. [36] adopted TL to perform sim-to-real control input

adaptation. They assume that if simulator does not exactly replicate
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the real robot behavior, applying the same control input in both sce-

narios does not necessarily lead to same observation. However, they

assume that the observation o′(k) obtained in simulation, is the one

that should be achieved also on the real environment. Therefore, given

the simulated observation o′(k), they employ past history to discover

what real control input a(k) can lead to o(k) ≃ o′(k). For this purpose,

a neural network is trained in order to predict the control input a(k)

that leads to a specific o(k). In particular, it is assumed that a simulated-

based policy π′, a forward dynamic robot model F , and a sequence

τi =
(
o(0), a(0), . . . , o(i−1), a(i−1), o(i)

)
of i real observations and i − 1

real control inputs are known. Here, TRPO is used to learn π′, but

any L agent (not necessarily RL) could be used for the purpose. While

training the policy π, the policy π′ returns a control input a′(i) based

on the provided history τi. However, rather than being applied to the

real robot, it is sent to F and the resulting observation o′(i) is pro-

vided, together with τi, as inputs to L. Finally, the learned policy π

provides the control input a(i) that results in o(k) similar to o′(k). There-

fore, here the communication is continuous and in both directions

u
(i)
exch = [u′(i) u(i)]T = [o′(i) τi]T . It is worth remarking that what is

actually learned in this case is an inverse dynamic model (implemented

as a neural network) that must be employed in conjunction with the

controller learned in simulation. The authors of the cited study evaluate

their approach first in a sim-to-sim scenario with several OpenAI Gym

environments and then in a sim-to-real scenario based on a Fetch robot.

Results highlight the effectiveness of such method and the relatively

low number of samples required for convergence. However, the authors

assume that, when the consequences of a control input applied in sim-

ulation differ from those applied on the real robot, real observations

should match simulated ones, and that is not always true.

In [70], the Grounded Action Transformation (GAT) algorithm is pro-

posed to learn a humanoid bipedal locomotion policy. Inspired by the

Grounded Simulation Learning (GSL) idea, introduced in [59], they

try to reproduce it in a RL framework, additionally improving some

aspects. GLS is based on two main principles: grounding and guide.

The former refers to making the simulator E′ closer to the real robot
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E, by properly modifying some parameters of E′ on the basis of data

collected from E. The latter consists in having an expert able to guide

the optimization algorithm in finding the proper parameters of E′ to

be tuned. In practice, given an evaluation function Jeval, such as a

penalty function (for example the opposite of the reward), a policy π

is applied to the real robot in order to collect end-effector trajectories

D. By performing D both in simulation and in reality, and collecting

the resulting real end-effector trajectories, an optimization problem

is solved in order to find those E′ parameters able to minimize the

Kullback-Leibler divergence between the probability of observing the

same trajectories in the two cases. The resulting E′ is therefore used

in order to find a set of candidate policies ΠC trying to minimize Jeval.

The optimal policy is the π ∈ Πc such that Jeval is minimized once

performed on the real robot E. However, the above procedure is aimed

at finding the correct values of the E′ parameters. Conversely, GAT

introduces an action transformation function a′(k) = m(a(k)), learned

in a supervised fashion, able to map each action a(k) ∈ A into an action

a′(k) ∈ A′. In particular, a forward robot dynamics model is trained

to compute the x(k+1) resulting from a(k). The inverse robot dynam-

ics, instead, is trained to find the simulated action a′(k) able to lead

the simulator in x′(k+1) = x(k+1). The resulting procedure leads to

u
(k)
exch = [u′(k) u(k)]T = [a′(k), a(k)]T . Both sim-to-sim and sim-to-real

experiments provide good results; however, as authors point out, the

drawback of using a supervised method for m(·) learning is that policies

are no longer effective when there are changes between training and

testing distributions. Moreover, neglecting the contact dynamics can

lead to simulation bias.

Wulfmeier et al. [184] proposed Mutual Alignment Transfer Learning

(MATL), a method that relies on a Generative Adversarial Network

(GAN) [66]. The main idea is similar to [36]: enforcing a similarity

between observations o′(k) and o(k). Indeed, although a control se-

quence achieving the goal in simulation may not produce the same

effects in the real environment, the corresponding sequence of simu-

lated observations, if reproduced on the real system, can lead to task

accomplishment. For the purpose, here, simulator E′ and real robot E
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work in parallel as generators and interact with two different agents

(L′ and L respectively). A discriminator D, instead, is employed (and

trained along with L′ and L) to classify the environment from which a

sequence of observations τκ, provided as input, has been collected. L

and L′ are trained not only to maximize their respective environment

reward, but also to mislead the discriminator, based on the assump-

tion that the more the discriminator is mislead, the more “aligned" the

observations are. Therefore, each time a sequence of observations τκ
is collected, D will receive it as input and will output the probability

D(τκ) that it was generated by E′. A term log(D(τκ)) is respectively

added and subtracted to E and E′ rewards thus encouraging mislead-

ing actions (here TRPO is the employed algorithm). The proposed

solution results in an experience exchange between L and L′ and a

consequent alignment of the collected observations. To exploit the sim-

ulator, L′ is updated M times more frequently than L, thus accelerating

learning. Thereby, in this case u(k)
exch is the D output and it is equal to

[− log(D(τκ)) log(D(τκ))]T . Wulfmeier et al. [184] evaluate their ap-

proach on various RL tasks: rllab [49], OpenAI Gym, and DartEnv [26].

Results show that MATL is able to work with significantly different

environments of same simulator in which only parameters variation

is performed. Less encouraging results are reported when employing

different simulators.

A different solution was proposed in [145], where progressive nets [144]

are employed for sim-to-real information transfer. Here, by exploiting

the capability of those nets to learn a tasks sequence through lateral

connections, simulated knowledge can be used to avoid training from

scratch on real robot. A progressive net is composed of l “columns" in

which the i-th column represents an independent network of κ hidden

activations. Each j-th activation actj,i of the i-th column is a function

of the same column j − 1-th activation (actj−1,i) and of the j − 1-th

activation of all the previous m < i columns (actj,1, . . . , acti−1). Rusu,

Vecerík, et al. [145] propose to use this tool in order to learn a simulated

controller π′, via A3C algorithm, in the first column and subsequently

transfer its knowledge on real robot by means of lateral connections

headed towards the second column, which represents the real agent
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L. Then, the second net training (L) begins. Therefore, letting s be

a simulated column, u(k)
exch = [u′(i) 0]T = [(act1,s, . . . , actk,s) 0]T . The

authors evaluate their approach on a robot manipulation task on Jaco

arm [106] in which a visual target must be reached. The performances

are compared with those obtained using a fine-tuning approach showing

the superiority of progressive nets.

In [65], a Neural Augmented Simulation (NAS) approach is used to

reduce the RG. A Long Short Term Memory is trained on the differences

between simulated and real robot, and used to adapt the simulator on

the basis of real world data. The policy π resulting from a Proximal

Policy Optimization algorithm is learned on the simulated environment,

whose next state at each step is adjusted by using the correction term

∆ provided by the LSTM. The resulting policy, therefore, associates to

each estimated value of the real robot state x(i) = x′(i) + ∆ an action

a′(i) = a(i). The transfer is in this case only from the simulator to the

real robot and u
(k)
exch = [u′(i) 0]T = [π 0]T . The NAS has been tested

in a sim-to-sim and a sim-to-real transfer. For the former, authors

create an artificial RG by varying some parameters of two different

simulated robotics environments of Open AI Gym, one of which was

considered as the real environment. For the sim-to-real transfer, two

Poppy Ergo Jr robots [139] have been used in a ErgoShield task, in

which an attacker (one of the two involved robots) is controlled to touch

as often as possible the shield attached to the end-effector of a defender
(the other robot). The defender is able to move the shield in random

poses. Experimental results show good performance both in sim-to-sim

and sim-to-real transfer. Moreover, since a policy-specific fine-tuning

is not required, the method can be appropriate for multi-task robotic

applications.

In [89], conversely, they propose to learn a RL controller in simulation

(using a deep Q-Learning approach) in which the first stages represent

a visual perception module, parametrized by vector θVP. Therefore,

by keeping the weights fixed, they use this module to work with real-

data and predict rewards for h planned control inputs by learning a

DNN. The predictor is trained, by means of a real-world data-set, in
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order to minimize reward prediction error. In the second phase, the

real application, the predictor is used by an MPC controller. Hence, at

each step, the MPC controller computes a sequence of h control inputs

which maximizes the expected discounted predicted reward within an

horizon h. In this context, u(k)
exch = [u′(k) 0]T = [θVP 0]T . As prescribed

by the MPC approach, only the first control input is applied; hence,

the process is repeated. Kang et al. [89] consider a nano aerial vehicle

collision avoidance task to assess the proposed solution. Moreover, the

authors compare it with other approaches: simulation only, simulation

with fine-tuning, simulation with fine-tuning and perception fixed, real

world only, supervised and unsupervised. Their solution outperforms

all others tested, and shows the best result in terms of pre-collision

time.

Yuan et al. [188] performs an action-value function adaptation in a su-

pervised fashion. Here, a Baxter robot is asked to solve a nonprehensile

rearrangement task, i.e., the problem of pushing an object into a prede-

fined goal pose. The proposed procedure consists of three sequential

steps: (1) learning, in simulation, an optimal action-value function

Qsim able to select the best action a′ to perform when an image of the

scene is provided as observation o′, (2) collecting a data-set of real

and simulated observation pairs (o, o′), and (3) using it, along with the

pre-trained Qsim, in order to create a Qreal useful to adapt the agent for

a real world application. In the former, a deep-Q network is used to

approximate Qsim. In the second step, starting from real scenes o, the

obstacle and the portable object positions are used to recreate the same

scenes in simulation o′. In particular, randomly setting o0, the RL agent

(learned in step (1)) is applied to the real robot in order to collect a set

of Oreal = o0, o1, o2, . . . from which the respective simulated counterpart

set Osim = o′0, o′1,′ o2, . . . is created. The resulting data-set, composed

of (Oreal, Osim, Qsim) is used in order to learn a Qreal able to minimize

a loss function defined as r + γQsim −Qreal. Three different strategies

have been deployed: (a) train Qreal keeping the Qsim structure but re-

training the network in its entirety; (b) use Qsim as baseline and adapt

only the parameters of the convolutional layers; (c) add two new fully

connected layers to increase the flexibility of the network and learn
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their parameters and those of the convolutional layers. Therefore in

this case u(k)
exch = [u′(k) 0]T = [(Osim, Qsim), 0]T . Authors compare their

results with the one obtained by using the same domain randomization

idea of [164]. Experimental results show that their approaches surpass

the one of [164] in terms of performances and, in particular, Item (c)

turns out to be the best. However, collecting data both in simulation

and in reality in order to build the data-set used to learn the Qreal may

be costly and time-consuming.

4.2.4 Discussion and promising ideas

Despite several attempts found in the literature to make sim-to-real

transferable controllers, many of which associate the idea of robust-

ness with that of sim-to-real transferability (DR and ARL), the lack of

uniformity of the considered tasks does not allow to determine which

solution is the more appropriate in terms of the RG. Besides, a consid-

erable fraction of the proposed approaches were not experimentally

evaluated in an actual sim-to-real scenario. A controller robust to cer-

tain model disturbances or parametric variations, is not necessarily

sim-to-real transferable. In fact, if these variations and disturbances

do not correctly represent the simulator inaccuracies with respect to

reality, it might result not sim-to-real transferable. This suggests that an

interaction with the real system during training is still needed: to this

respect, TL approaches appear promising. On the other hand, the TL

approaches here surveyed often lacked an assessment of the robustness.

Moreover, since TL requires two successive (or simultaneous) training

phases, it may be exhibit low efficiency.

Some mixed approaches exist, that borrow ideas from DR, ARL, and

TL. A first attempt in merging DR and TL is proposed in [119]. Here

the authors propose to learn a policy in a randomized simulation and

to adapt the distribution of simulation parameters on the basis of a

real-world performance.
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A promising research direction to tackle the RG problem could be the

meta-learning strategy application in RL, in order to quickly adapt

experience gained in simulation on the real system [152, 69]. In

Meta-RL, given a distribution over tasks, the agent learns an adaptive

policy that maximizes the expected reward for a new task from the

distribution. A recent work [92] has shown the great ability of this

approach to generalize in environments totally different from those

used during the training.

Another promising solution to avoid a direct RL training on the real

robot seems to be the Probabilistic Inference for Learning Control

(PILCO) proposed by [44]. Here, a probabilistic model of the system

dynamics is learned incorporating uncertainty by using only some trial

on the real system and a policy is learned through it. This solution

allows to avoid the RG in the first place, by training a simulator with

few real interactions and using it for the trial and error procedure.

However, although the potential usefulness of PILCO and Meta-RL to

cope with the RG, the former underestimates state uncertainty at future

time steps [45], thus possibly leading to a decrease in performance; the

latter, on the other hand, is computational demanding and needs an

high number of real-world evaluations [78].

4.3 Metric for assessing RL algorithms
performance

We now introduce two criteria for comparing learning algorithms based

on the formal framework provided in Chapter 2: effectiveness and

efficiency.

The effectiveness of a policy learning algorithm L is a measure of how

close is the learned policy to the optimal policy π∗ for the closed-loop

system π ↔ E . Therefore, an intuitive definition of effectiveness might

be based on a set X0 ⊆ X of initial states and measuring closeness
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as the average difference, across those states, of the infinite horizon

discounted rewards:

Effectiveness(L|E,X0) = 1
|X0|

∑
x∈X0

Jπ(x)− Jπ∗(x). (4.6)

Jπ∗(x) is often unknown, since π∗ is often unknown. Nevertheless,

Equation (4.6) can be used to compare the effectiveness of two learning

algorithms L1 and L2, because, for a given X0, Jπ∗(x) is constant.

Moreover, in practice, a finite horizon discounted reward Jπ,T may be

used for estimating Jπ by evolving the system from x(0) = x for T steps

instead of for infinite steps.

The efficiency of a learning algorithm L is a measure of how much

effort is required to obtain the output, i.e., to learn the policy π. For

instance, efficiency might be based on estimates of computational

complexity, actual measures of wall time on some reference hardware,

or the number of iterations required to converge. When the learning

takes place interacting with the environment the efficiency might be

measured as the number of needed observations (sample-efficiency).

Often, there is a trade-off between effectiveness and efficiency: the

greater the latter, the lower the former.

4.3.0.1 The L,ϕ-gap

Assuming that E and E′ are two environments, X0 ⊆ X and X ′
0 ⊆ X ′,

a state mapping function m : X ′
0 → X0 is a function that maps any

initial state x′ of E′ to an initial state m(x′) of E.

Given an environment E compatible (cf. Definition 5) with an en-

vironment E′, a set of initial states X ′
0, a finite horizon T , and a
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state mapping function m, we say that a policy π for E,E′ exhibits

a π-gapm,X′
0,T

(π|E,E′) on E with respect to E′:

π-gapm,X′
0,T

(π|E,E′) = 1
|X ′

0|
∑
x′∈X′

0

J ′
π,T (x′)− Jπ,T (m(x′)), (4.7)

where Jπ,T (m(x′)) is the finite horizon discounted reward of π starting

from x = m(x′) ∈ X0 in E and evolving for T steps. Equation (4.7)

can be employed (a) to compare two policies π1, π2 in terms of the

π-gap they exhibit on the same E with respect to the same E′ or (b) to

compare two environments E′
1, E

′
2 in terms of the π-gap exhibited by

the same policy π on the same E with respect to each of them. However,

the latter should be done with caution. Indeed, for the comparison to

be meaningful, it is necessary that the two finite horizon discounted

reward functions J ′
1,π,T , J

′
2,π,T take values in the same range. In practice,

a possible way to meet this requirement could be to force the same

absolute scale for J ′
1,π,T , J

′
2,π,T based on empirical evaluations.

A case relevant to the present study is the one in which an environment
mapping operator ϕ exists such that E is compatible with E′ = ϕ(E).
Intuitively, ϕ corresponds to modeling a real system described by E as

a simulated system described by E′ such that a policy learned on E′

can be applied to E. In this scenario, given a set of initial states X ′
0,

a state mapping function m, a finite time horizon T , a policy learning

algorithm L, and an environment mapping operator ϕ; we say that L, ϕ

exhibit a L,ϕ-gapm,X′
0,T

(L, ϕ|E) on E:

L,ϕ-gapm,X′
0,T

(L, ϕ|E) = π-gapm,X′
0,T

(L(ϕ(E))|E, ϕ(E)). (4.8)

The L,ϕ-gap measures the difference, in terms of discounted reward, of

a policy learned on an environment and applied to another environment.

When the former is a simulated system and the latter the corresponding

real system, L,ϕ-gap measures the reality gap.

The semantics of the L,ϕ-gap is as follows: it is greater than 0 if the

finite horizon discounted reward of the learned policy is larger on the

4.3 Metric for assessing RL algorithms performance 81



simulated system than on the real system and lower than 0 otherwise.

In general, the lower the L,ϕ-gap, the better the L, ϕ pair. However,

since the reward functions h, h′ of the real and simulated systems may

be different, it is not possible to define, in general, an absolute threshold

of acceptability for the L,ϕ-gap. For fixed ϕ, E′, and hence for a fixed

pair of reward functions, the threshold ϵ can instead be subjectively set.

In that case we say that L,ϕ-gap is tolerable if:

L,ϕ-gapm,X′
0,T

(L, ϕ|E) ≤ ϵ (4.9)

and that the learned policy L(ϕ(E)) is ϕ(E)-to-E transferable.

Efficiency
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Figure 4.7: Comparison of three learning algorithms (colored dots) using
three criteria: effectiveness, efficiency, and L,ϕ-gap. Different
trade-offs, besides the one between effectiveness and efficiency,
can be appreciated.

We propose to use L,ϕ-gap as a further criterion for assessing a learning

algorithm, besides effectiveness and efficiency. Differently than the

indexes related to those two criteria, the L,ϕ-gap depends, in general,

also on the way the real system is modeled, i.e., on ϕ. Nevertheless,

the L,ϕ-gap can be used to compare two algorithms L1, L2 by using the

same ϕ or the same set Φ of mapping operators, in the same way a set

of different environments (representing problems or tasks) is usually

considered for comparing two learning algorithms. Interestingly, the

L,ϕ-gap can also be used to compare two mapping operators ϕ1, ϕ2

(representing modeling strategies) by using the same L or a set of

learning algorithms.
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We think that employing the three criteria (effectiveness, efficiency, and

proneness to exhibit the RG, i.e., the L,ϕ-gap) may result in more thor-

ough assessment and comparison of learning algorithms in the context

of robotics, possibly discovering new trade-offs, beside the one between

effectiveness and efficiency, that might foster new research and practi-

cal achievements. Figure 4.7 graphically represents the comparison of

three algorithms according to the proposed three criteria.

4.4 A practical example of reality gap

In the following, we deal with the sim-to-real transfer of a RL controller

π for a Poppy Ergo-Jr robotic arm involved in a positioning task: i.e.,

moving the servo joints in order to reach a desired target position with

the end-effector. In particular, we want to investigate the differences

between the real robot and its simulator, and how they affect the

controller performance after its transfer from the simulator to the

real platform. We are aimed by the idea that a proper recognition

of the differences between simulator and physical robot can assist in

identifying approaches that lead to a more effective, albeit platform-

dependent, solution. In the following, we focus on this latter aspect. At

best, it may highlight solvable limitations of the simulator that do not

lead to an increase in computation time when fixed.

For the purpose, we employ the Trust Region Policy Optimization

(TRPO) [150] algorithm, which is able to perform the gradient de-

scent optimization method, but properly manages the gradient descent

step size. It belongs to the family of Actor Critic methods. For more

details and the algorithm pseudocode see [150].

4.4.1 Methods

The six degrees of freedom Poppy Ergo-Jr (Figure 4.8b) is an open-

source low cost educational robotic arm, designed in order to be easy to
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(a) Kinematics chain
(b) The robot

Figure 4.8: Poppy Ergo-Jr and its kinematic chain.

build and modify [97]. It is composed of 6 servo motors and 3D printed

elements. The resulting kinematic chain is shown in Figure 4.8a.

We denote by q(k)
i ∈ Q ⊂ R the angular position of the i-th joint, and

q̇
(k)
i ∈ Q̇ ⊂ R the angular speed of the i-th joint at the k-th time instant,

where Q and Q̇ are respectively the set of admissible joint angular

positions and speeds. Conversely we denote by p(k)
e ∈ R3 the Cartesian

position of the end-effector at the k-th time instant. At each k-th time

instant, the input provided to π includes each joint angular position

and angular velocity, along with the desired Cartesian coordinates of

the end-effector peT ∈ PeT ⊂ R3. The latter input allows us to get a

multi-task π, i.e., a controller able to reach a predefined set of targets.

The π outputs are the new suggested angular joints positions. The

resulting π will therefore perform joints position control with a preset

steady speed.

In order to study the sim-to-real transfer effects, we train π on the

PyBullet simulator of the Poppy Ergo-Jr3, thus testing the resulting

π first on the simulator and, then, on the real platform. Finally, we

compare the resulting performances. Unlike those works focused on the

design of sim-to-real transferable controllers, our aim is to identify those

modeling differences between the simulator and the real robot affecting

the controller effectiveness. Therefore, we first of all carried out a

3https://github.com/fgolemo/gym-ergojr
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systematic test, useful in understanding those model parameters whose

effect is not well reproduced by the simulator. Then, we learn different

π on the simulator for different values of the detected parameters.

Finally we test π both on the simulator and on the real robot in order

to understand how those parameters affect the π performances.

The whole procedure is described in the following.
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Figure 4.9: q1 detected speed on the simulator (orange) and on the real robot
(blue).

4.4.1.1 Single motor preliminary test

The servo motors composing the Poppy Ergo-Jr chain use the PID

controller as a main control method4. This means that by imposing

the speed of a joint we are simply setting the reference for its internal

PID controller. The simulator should reflect this particular behavior. If

it does not, or if the gains of the internal PID are set differently, it is

reasonable to assume that this difference could contribute in increasing

the gap in performance between the controller applied on the simulator

and on the real system. Therefore, we carried out a systematic test to

detect the presence of such a difference in the behavior of the simulated

and real servo motors.

By keeping the Ts fixed at a predefined value, we perform a repeated

movement of the first joint from an initial angular position to a final

angular position, by varying, at each repetition, the motors speed

among a set of different values. As evidence of the observed differences,

we kept track of both simulated and real joint velocity values at each
4https://emanual.robotis.com/docs/en/dxl/x/xl320/#control-mode
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time-step. Moreover, since π is a discrete-time controller, it can change

the imposed motor joint speed only at each k-th time instant. Therefore,

we also examined the difference between the simulated joint angular

position and the real one after the first time-step of each test. The

results are reported in Section 4.4.2.

4.4.1.2 TRPO training and test

Let q(0)
i be the initial i-th joint angular position, randomly chosen from

the set of initial positions Qinit ⊆ Q.

We define the initial condition as the vector of joints initial angular

positions q0 = [q(0)
1 , . . . , q

(0)
6 ].

Let peT be the target position randomly chosen from PeT . We want to

learn a π able to lead the end-effector position p(k)
e in the interior of a

goal sphere having center in peT and radius rs, starting from q0.

The performed π training procedure is episodic. Each training episode

starts imposing q0 and peT (both randomly chosen), and terminates if

at least one of the following conditions occurs: (1) the achievement

of the maximum number of time-steps per episode (lE), (2) or the

task achievement. The training ends when the maximum number of

cumulated time-steps is reached (lT ).

Conversely, the test procedure consists of a set of episodes performed

starting from a set of n random initial conditions {q1
0, . . . , q

n
0 }. For each

initial condition, the robot must reach a target position belonging to

a set of m different random end-effector positions {p1
eT
, . . . , pmeT

}. A

successful episode is one that ends with goal achievement. We charac-

terize the decision process of the end-effector positioning controller as

E = (X,A,O, f, g, h) with f = g. As for the state, action and reward,

which completely specify the reinforcement learning setting, they are

described next.
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State

The state is a vector x(k) ∈ X composed of q(k)
i ∀i ∈ {1, 2, 3, 4, 5, 6}

and q̇(k)
i ∀i ∈ {1, 2, 3, 4, 5, 6} at the k-th time instant, and a randomly

chosen peT . An initial state x(0) ∈ X0 ⊆ X is a state vector in which

q̇
(k)
i = 0 ∀i ∈ {1, 2, 3, 4, 5, 6} since motors start from rest.

Action

The action at the k-th time instant a(k) ∈ R6 is a vector of joints posi-

tions. Note that each joint speed is fixed, hence, the position specified

by the action only provides a displacement direction. Moreover, there

is no guarantee that the joint positions will be reached in a single

time-step.

Reward

The immediate reward r(k+1) ∈ R of an action choice a(k) is evaluated

at the k + 1-th time instant. Let p(k+1)
e be the end-effector position at

the k + 1-th time instant, and peT the center of the goal sphere; the

reward is computed according to:

r(k+1) =


1 if

∥∥∥p(k+1)
e − peT

∥∥∥
2
≤ rs

−
∥∥∥p(k+1)
e − peT

∥∥∥
2

otherwise
. (4.10)

The former condition denotes the goal achievement, thus the end of

the episode.
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4.4.1.3 Sim-to-real comparison

In order to highlight the differences between simulator and real system

we perform several tests with different q0 and peT , and we use three

different indices for comparison:

• the Effectiveness(L|E,XR
0 ) (Equation (4.6));

• the L,ϕ-gapm,XS
0 ,T

(L, ϕ|E) (Equation (4.8));

• the error trajectory E(k) of the end-effector during tests.

The former implies a comparison of the average cumulated reward

achieved in simulation and on the real robot, for a set of initial states

XR
0 on the real robot. The second quantifies the gap of the average

cumulated reward obtained in simulation and on the real robot, under

the assumption that a state mapping function m : XS
0 → XR

0 exists,

where XS
0 is a set of initial states in simulation. The latter, on the

contrary, is independent of the reward, and is employed to compare the

simulated and real trajectories achieved under the same policy. More

precisely, given a simulated and a real tests, both performed starting

from the same initial condition q0 and having the same goal settings

peT , we denote by p(k)
eS and p(k)

eR the end-effector Cartesian coordinates

at the k-th time instant, respectively on the simulator and on the real

robot.

Let lS be the duration in time-steps of a test episode on the simulator,

and lR the corresponding duration on the real robot.

We can define the end-effector trajectories in the simulated and in

the real test respectively as: PeS = {p(0)
eS , p

(1)
eS , ....p

(LS)
eS } and PeR =

{p(0)
eR , p

(1)
eR , ....p

(LR)
eR }. The error trajectory of the end-effector during

tests can be defined as:

E(k) = p(k)
eS
− p(k)

eR
∀k ∈ [0; lmax] (4.11)

4.4 A practical example of reality gap 88



where lmax = max(lS , lR). In case of lS ̸= lR, the trajectory having

the lower number of samples is prolonged, in order to reach the same

length of the longer one by keeping the end-effector fixed in its final

position.

4.4.2 Experimental results

The following section shows in detail the results obtained performing

the above depicted test procedures. In particular, reported results are

oriented in highlighting the differences in performance of the controller

applied on the simulator and on the real robot. The main goal is to

find a relation between the discovered physical differences and those in

performance.

4.4.2.1 Systematic test

We perform the test described in Section 4.4.1.1 by varying the speed of

the first joint (q̇1) in a set of fixed values (q̇1 ∈ {20, 40, 60, 80, 100}° s−1),

while Ts = 0.1 s. As highlighted in Figure 4.9, the real robot has a

rise and settling time not appearing in the simulator, which exhibits an

ideal behavior. In particular, the simulated motor requires fewer time-

steps to execute the task. However, as highlighted in Figure 4.10 the

inconsistency seems to change as the set speed varies. In particular, at

the speed of 60 ° s−1, the behavior between simulator and real physical

system seems to be the closest.

The following tests have been conducted in order to verify whether the

above mentioned inconsistency is also reflected in the performance gap

of the controller learned on the simulator and tested on the real system.

For this purpose, we select 3 speed values among those previously

defined ({20, 60, 80}° s−1), and we used them for all the performed

tests. We denote this set as Q̇test.
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Figure 4.10: Comparison of the detected position at first time step q(1)
1 , given

a reference speed, in the simulator (orange) and on the real
robot (blue). Red dots highlight the speed used for performing
the sim-to-real transfer.

4.4.2.2 TRPO on simulator

We perform 10 different trainings for each q̇ ∈ Q̇test, while Ts is kept

unchanged (Ts = 0.1 s). At the beginning of each training episode an

initial condition q0 and a positions of the goal sphere peT are randomly

chosen in their respective set (Qinit and PeT ). The training outputs

10 different controllers for each considered angular joint speed. In

the training, we set the hyperparameters to lT = 2 000 000, lE = 100,

rs = 0.01 m, and δ = 0.01.

At the end of each training session we perform 100 tests for each

combination of 10 different initial conditions Qtest := {q1
0, . . . , q

10
0 }

and 10 different positions of the goal sphere PeT test := {p1
eT
, . . . , p10

eT
}.

Neither the initial conditions nor the targets belong to the set employed

during training. Figure 4.12 summarizes Qtest and PeT test . In particular,

each i-th subfigure shows a picture of the simulator robot in the qi0
joints configuration and the goal sphere centered in the pieT

position.

We collect a data-set in which we store, for each training, the elapsed

time (tlearning), and for each test the final cumulative reward (JSπ (x(0))).
Figure 4.11 reports the mean and the standard deviation of the inverse

of the training elapsed time (left) and the final cumulative reward

obtained in test for each joint speed (right).
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Figure 4.11: Evaluation of simulator training and test: mean and standard
deviation (left) of the inverse of the training time required to
TRPO for each speed; mean and standard deviation (right) of
the cumulated reward obtained testing the controller on the
simulator (orange) and on the real platform (blue) for each
speed.

4.4.2.3 TRPO on Poppy Ergo-Jr

The total number of tests performed in simulations is 3×10×10×10 =
3000. Figure 4.13 summarizes the results obtained in test. In particular,

each subplot is related to one of the speeds in Q̇test (ascending order).

The rows and the columns of each subplots represent respectively the

indices of Qtest and of PeT test . The color of each square in the plot

shows how many of the ten pre-trained policies achieve the goal in the

simulated test.

In order to reduce the number of tests to be performed on the real

platform, and therefore used for a comparison, we select only those

combinations of the elements of Qtest and PeT test resulting in a successful

simulated test (i.e., a test terminated with task achievement) for all

the policies and all the elements of Q̇test (Figure 4.14). The resulting

number of tests to be performed is 3× 10× 3× 10 = 900, reducing the

number of goal conditions of Figure 4.12 from 10 to 3. Precisely, the

considered goal conditions are PReT test
= {p1

eT
, p3
eT
, p9
eT
}.

The mean and the standard deviation of the final cumulative reward

obtained in tests for each joint speeds is reported in the blue plot of Fig-

ure 4.11. The number of successful real tests is shown in Figure 4.15.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.12: Overview of the initial joints angular position and final goal (red
ball) in tests: (a)1-st angular joints initial position and 1-st goal;
(b) 2-nd angular joints initial position and 2-nd goal; (c) 3-rd
angular joints initial position and 3-rd goal; (d) 4-th angular
joints initial position and 4-th goal; (e) 5-th angular joints initial
position and 5-th goal; (f) 6-th angular joints initial position and
6-th goal; (g) 7-th angular joints initial position and 7-th goal;
(h) 8-th angular joints initial position and 8-th goal; (i) 9-th
angular joints initial position and 9-th goal; (j) 10-th angular
joints initial position and 10-th goal.

Figure 4.13: Number of success on the simulated platform for each ini-
tial (row) and goal condition (column), given the ten policies
learned. Each subplot is referred to a different motor speed
(20, 60, 80). Yellow= 10/10 successful tests, blue=0/10 success-
ful tests.

4.4.2.4 Comparisons

A first evidence of the presence of a performances gap between sim-

ulated and real robot is shown in Figure 4.15. Indeed, although the

policies are tested considering only those initial conditions and tar-

get conditions that led to the task achievement in simulated tests,
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Figure 4.14: Initial-goal condition combination that results in only goal
achievement in simulation tests for all the speed (yellow).

Figure 4.15: Number of success on the real platform for each initial-goal
condition combination, given the ten policies. Each subplot is
referred to a different motor speed (20, 60, 80). Yellow= 10/10
successful tests, blue=0/10 successful tests.

Figure 4.15 shows that on the real robot the result is not the same.

Moreover, it suggests that the highest number of successes are achieved

at the speed of 60 ° s−1, thus providing a first validation of the above

highlighted thesis that this speed leads to closest behaviors between

the simulator and the real robot.

A further evidence is highlighted in Figure 4.16, where the performance

discrepancy between simulated and real tests are shown by using the

effectiveness index (Equation (4.6)). In particular, it shows the mean

and the standard deviation of the considered index for each speed set.

For all the considered speeds, this discrepancy is clearly evident and

differs in magnitude. This is also summarized in Figure 4.17 showing

the mean and the standard deviation of the L, ϕ−gap for each speed. In

particular, when the speed is set to 60 ° s−1, results seem to exhibit lower

performance discrepancy, and therefore a lower L, ϕ− gap, compared

to the other considered speeds. This is confirmed by observing the

behavior of (Equation (4.11)).
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Figure 4.16: Comparison of simulated and real tests performances on the
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Figure 4.17: L, ϕ − gap evaluation of controllers learned and tested at the
three different speeds value.

The box plot in Figure 4.18 shows the l2-norm of the error trajectory:√√√√lmax∑
k=0

∣∣E(k)
∣∣2. (4.12)

Here, the median value of the l2-norm of the error for a speed of 60 ° s−1

is smaller than the one of the remaining speeds.

20 ° s−1 60 ° s−1 80 ° s−1
0

0.5

1

Figure 4.18: Comparison of simulated and real tests performances on the
basis of a statistics of Equation (4.12) for each speed.
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Therefore, as evidenced by results, the obtained controllers exhibit a

reality gap and, as all the performed tests highlight, it is particularly

affected by the motor speed settings. No conclusion can be drawn

on the speed value leading to a mitigation of the reality gap, as the

systematic test has been performed on the first joint only. However,

since the simulator neglects the servomotor dynamics, this difference is

probably the main source of controller performance degradation.
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5
Conclusions

We sought to evaluate the effectiveness of RL as a control technique for

real-world dynamical systems with the aim of answering the following

research questions: (i) given the potential of RL as a control technique

on simple dynamical systems, can it be used to control dynamical

systems that address real-world practical problems? (ii) is there a way

to quantify the reality gap? Can we use this measure to characterize a

learning technique in a deeper way than just considering effectiveness

and efficiency?

In order to address the former research question, we investigated the

RL behavior (1) on a large-scale dynamical system such as a mixed-au-

tonomous traffic intersection, where large numbers of vehicles interact

with the controller choices in unpredictable ways, and (2) on a physi-

cal-world grounded control system such as the FEL facility of Elettra

Sincrotrone Trieste. We observed that both in the first control problem,

which was addressed in a simulated environment only, and in the sec-

ond case study, which, in contrast, was performed directly on the real

structure, the RL agent converges to an effective control law within a

reasonable time.

We then moved to the second research question, focusing our attention

on the applications of RL in robotics, specifically analyzing the reality

gap problem. We provided a formal framework for the RG and reviewed

the most significant existing methods aiming to achieve sim-to-real

transferable controllers in robotics RL applications. We categorized
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them in the main three approaches: domain randomization, adversarial

reinforcement learning, and transfer learning. Moreover, we described

them according to the proposed formal framework and in terms of the

employed algorithms, involved tasks, and test typology (sim-to-real

transfer or just sim-to-sim). Finally, we reported a practical example of

the RG in robotics, in which we characterized some simulator modeling-

errors of the Poppy Ergo-Jr platform focusing on those differences,

between simulator and real robot, affecting the performances of a

DRL controller trained only in simulation and tested on both simulator

and real robot. As evidenced by the obtained results, the unrealistic

modeling of servo motor dynamics is a major source of controller

performance deterioration. However, it seems to be mitigated by a

proper choice of motor reference speed.

We conclude by pointing out the significant findings and open chal-

lenges derived from this work.

As observed in Chapter 3 the proper design of RL agents can lead to ef-

fective control laws, also for real world control problems. Sometimes,(if

no safety issues are expected), directly on the plant, and without the

use of computationally prohibitive algorithms.

However, in those cases in which the safety can be at risk (Chapter 4),

real-world control problems need an appropriate simulator of the en-

vironment to train the RL controller. A general, task-independent,

approach able to guarantee an effective sim-to-real transferability of

the controller is still missing. With this in mind, we believe that our

L − ϕ − gap can significantly contribute towards the solution of this

open challenge. Indeed, being able to characterize and quantify the RG

would (i) enable a systematic comparison among different techniques,

hence favoring the advancement of research, and (ii) allow to use the

measure of RG directly as an optimization objective, hence putting the

transferability as a direct goal in the learning of RG-aware controllers.

Another significant and more general open problem is the sample

efficiency. As highlighted in [168], RL is very data-intensive. The com-
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putation effort required for training RL agents involved in a complex

task can be huge, thus limiting the practical applicability of such meth-

ods. This issue is unquestionably aggravated in those cases in which an

interaction with different environment domains is involved. To this end,

the meta-learning approaches seem to be headed in the right direction

[152]. Future work may include merging the concept of meta-learning

and our L−ϕ−gap index to develop approaches that are both effective

and efficient.
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[175] Matej Večerík, Todd Hester, Jonathan Scholz, Fumin Wang,

Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl,

Thomas Lampe, and Martin Riedmiller. “Leveraging demon-

strations for deep reinforcement learning on robotics problems

with sparse rewards”. In: arXiv preprint: 1707.08817 (2017).

[176] Joannès Vermorel and Mehryar Mohri. “Multi-armed Bandit

Algorithms and Empirical Evaluation”. In: Machine Learning:
ECML 2005. Ed. by João Gama, Rui Camacho, Pavel B. Brazdil,

Alípio Mário Jorge, and Luís Torgo. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2005, pp. 437–448.

119



[177] Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheter-

pal, Kathy Jang, Cathy Wu, Fangyu Wu, Richard Liaw, Eric

Liang, and Alexandre M Bayen. “Benchmarks for reinforcement

learning in mixed-autonomy traffic”. In: Conference on Robot
Learning. PMLR. 2018, pp. 399–409.

[178] Eugene Vinitsky, Nathan Lichtle, Kanaad Parvate, and Alexan-

dre Bayen. Optimizing Mixed Autonomy Traffic Flow With Decen-
tralized Autonomous Vehicles and Multi-Agent RL. 2020. arXiv:

2011.00120 [eess.SY].

[179] Jack M Wang, David J Fleet, and Aaron Hertzmann. “Optimizing

walking controllers for uncertain inputs and environments”. In:

ACM Transactions on Graphics (TOG) 29.4 (2010), p. 73.

[180] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In:

Machine learning 8.3-4 (1992), pp. 279–292.

[181] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. “In-

telliLight: A Reinforcement Learning Approach for Intelligent

Traffic Light Control”. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

KDD ’18. London, United Kingdom: Association for Computing

Machinery, 2018, pp. 2496–2505.

[182] Marco A Wiering. “Multi-agent reinforcement learning for traf-

fic light control”. In: Machine Learning: Proceedings of the Seven-
teenth International Conference (ICML’2000). 2000, pp. 1151–

1158.

[183] Ronald J Williams. “Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning”. In: Machine
learning 8.3-4 (1992), pp. 229–256.

[184] Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. “Mutual

Alignment Transfer Learning”. In: Proceedings of the 1st Annual
Conference on Robot Learning. Ed. by Sergey Levine, Vincent

Vanhoucke, and Ken Goldberg. Vol. 78. Proceedings of Machine

Learning Research. PMLR, Nov. 2017, pp. 281–290.

120

https://arxiv.org/abs/2011.00120


[185] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos

Dimitrakakis, Rémi Coulom, and Andrew Sumner. “Torcs, the

open racing car simulator”. In: Software available at http://torcs.
sourceforge. net 4.6 (2000).

[186] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese. “Gib-

son Env: Real-World Perception for Embodied Agents”. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 9068–9079.

[187] Li Hua Yu. “Generation of intense UV radiation by subharmoni-

cally seeded single-pass free-electron lasers”. In: Physical Review
A 44.8 (1991), p. 5178.

[188] Weihao Yuan, Kaiyu Hang, Danica Kragic, Michael Y Wang, and

Johannes A Stork. “End-to-end nonprehensile rearrangement

with deep reinforcement learning and simulation-to-reality

transfer”. In: Robotics and Autonomous Systems 119 (2019),

pp. 119–134.

[189] Yue Zhang, Christos G Cassandras, Wei Li, and Pieter J Moster-

man. “A discrete-event and hybrid traffic simulation model

based on SimEvents for intelligent transportation system analy-

sis in Mcity”. In: Discrete Event Dynamic Systems 29.3 (2019),

pp. 265–295.

[190] T. Zhao, H. Hachiya, G. Niu, and M. Sugiyama. “Analysis and

improvement of policy gradient estimation”. In: Advances in
Neural Information Processing Systems. 2011, pp. 262–270.

[191] W. Zhao, J. P. Queralta, and T. Westerlund. “Sim-to-Real Trans-

fer in Deep Reinforcement Learning for Robotics: a Survey”.

In: 2020 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE. 2020, pp. 737–744.

[192] Y. Zhu, Z. Wang, C. Chen, and D. Dong. “Rule-Based Reinforce-

ment Learning for Efficient Robot Navigation with Space Re-

duction”. In: IEEE/ASME Transactions on Mechatronics (2021),

pp. 1–1.

121



About the author

Erica Salvato was born un Messina (Italy) on March 12th 1991. She

received the B.Sc. degree in Electronic Engineering in 2015 from the

University of Messina, and the M.Sc. degree in Electrical and Control

Systems Engineering in 2018 from the University of Trieste (Italy).

She is currently a PhD student of the Department of Engineering and

Architecture at the University of Trieste. Her research focuses on the

Artificial Intelligence application as a systems control tool but includes

also Control Theory, Machine Learning, and Robotics.

122



List of Publications

Journal Publications

Francesca Cairoli, Gianfranco Fenu, Felice Andrea Pellegrino, and

Erica Salvato. “Model Predictive Control of Glucose Concentra-

tion Based on Signal Temporal Logic Specifications with Unknown-

Meals Occurrence”. In: Cybernetics and Systems 51.4 (2020),

pp. 426–441

Niky Bruchon, Gianfranco Fenu, Giulio Gaio, Marco Lonza, Finn

Henry O’Shea, Felice Andrea Pellegrino, and Erica Salvato. “Basic

reinforcement learning techniques to control the intensity of a

seeded free-electron laser”. In: Electronics 9.5 (2020), p. 781

Vittorio Casagrande, Gianfranco Fenu, Felice Andrea Pellegrino,

Gilberto Pin, Erica Salvato, and Davide Zorzenon. “Machine

learning for computationally efficient electrical loads estimation

in consumer washing machines”. In: Neural Computing and
Applications (2021), pp. 1–12

Niky Bruchon, Gianfranco Fenu, Giulio Gaio, Simon Hirlander,

Marco Lonza, Felice Andrea Pellegrino, and Erica Salvato. “An

Online Iterative Linear Quadratic Approach for a Satisfactory

Working Point Attainment at FERMI”. in: Information 12.7 (2021),

p. 262

123



Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea

Pellegrino. “Crossing the Reality Gap: a Survey on Sim-to-Real

Transferability of Robot Controllers in Reinforcement Learning”.

In: (2021)

Conference Publications

Francesca Cairoli, Gianfranco Fenu, Felice Andrea Pellegrino, and

Erica Salvato. “Model predictive control of glucose concentration

based on signal temporal logic specifications”. In: 2019 6th
International Conference on Control, Decision and Information
Technologies (CoDIT). IEEE. 2019, pp. 714–719

Niky Bruchon, Gianfranco Fenu, Giulio Gaio, Marco Lonza, Felice

Andrea Pellegrino, and Erica Salvato. “Toward the Application

of Reinforcement Learning to the Intensity Control of a Seeded

Free-Electron Laser”. In: 2019 23rd International Conference
on Mechatronics Technology (ICMT). ed. by Adolfo Senatore and

Truong Q. Dinh. Salerno: IEEE, Oct. 2019, pp. 1–6

Alexander Babichev, Vittorio Casagrande, Luca Della Schiava,

Gianfranco Fenu, Imola Fodor, Enrico Marson, Felice Andrea

Pellegrino, Gilberto Pin, Erica Salvato, Michele Toppano, et al.
“Loads Estimation using Deep Learning Techniques in Consumer

Washing Machines.” In: ICPRAM. 2020, pp. 425–432

Erica Salvato, Arnob Ghosh, Gianfranco Fenu, and Thomas

Parisini. Control of a Mixed Autonomy Signalised Urban Inter-
section: An Action-Delayed Reinforcement Learning Approach. 2021

Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea

Pellegrino. “Characterization of Modeling Errors Affecting Perfor-

mances of a Robotics Deep Reinforcement Learning Controller in a

Sim-to-Real Transfer”. In: 2021 44th International Convention on

124



Information, Communication and Electronic Technology (MIPRO).

IEEE. 2021, pp. 1154–1159

125



Acknowledgements

Achieving this goal would not have been possible without the contribu-

tion, the support and the backing of the people who been part of this

journey, and those I had the pleasure of meeting during it.

First of all, I would like to thank the professional team that steered

me through my PhD: my supervisor Felice Andrea Pellegrino, my co-

supervisor Eric Medvet, Gianfranco Fenu, and Thomas Parisini. Their

efforts, which transcend mere supervision, were essential to achieving

this ultimate goal. I am truly grateful to them for what they have taught

me and all the opportunities they have given me so far.

I wish to further spend some words to better acknowledge Felice who is

more than a supervisor for me. Indeed, he has supported me all along

the journey showing me his trust and respect. He has always advised

me without influencing my decisions, and he has never failed to support

me even when my choices were not in line with his own. From him

I learned abnegation for work, but also respect for our own time. I

learned that we can’t always know the exact answer to a problem, but

that if we work hard we can find it, and, moreover, that teamwork,

done with passion and in a healthy environment, leads to the success

of the individual, but also of the group. Thank you very much.

I can’t miss thanking the lunch-lab guys: those who have always been

there, and those who are just passing through. You have really made

my work environment peaceful, by creating a mini family always ready

126



to support and help each other. Nicolino, Giorgia, Eric, Andrea, Luca,

Claudia, Natalia, and Viola thank you in particular!

Some few words for Eric my co-supervisor, but also a friend. Thanks

for all the walks (sometimes tiring), and conversations. Thanks for all

the time that you listen to my paturnias by advising me, or teasing me

properly. The family environment that has been created is primarily

thanks to you.

Thank to my best friend, for me like a sister, Giulia. She followed me,

advised me, and borne me....as always! After all, “every brunette has

her blonde!"

My biggest thank you is for my family who have supported, sustained,

and encouraged me throughout this course. They have always believed

in my abilities, which is something that I often struggle to do on my

own. Covid has led us to live at greater distances than normal, but

family is always family. Thank you mom, dad, Simona and Chiara.

In particular, I wish my two sisters success in all their dreams, and

remember that a job done with love leads to excellent results.

Last but not least thank you Emanuele, my love, friend, and guide-

line. You shared everything with me, never failing to support me. We

have been through a lot together.... even a pandemic. You are, and

will always be, my most important person, even with this “marina-di-

cannuccing" ideas. I love you.

Erica

127


	Abstract
	Abstract
	1 Introduction
	2 Reinforcement Learning for control systems
	2.1 Adopted formalism

	3 RL applications for real world dynamical system
	3.1 Control of a mixed autonomy signalized urban intersection
	3.1.1 Motivations
	3.1.2 Related literature
	3.1.3 The urban intersection system
	3.1.4 The fixed RL timing approach
	3.1.5 The event-driven RL approach

	3.2 Intensity control of the FERMI seeded free-electron laser
	3.2.1 Motivations
	3.2.2 Related literature
	3.2.3 FEL alignment system
	3.2.4 Decision making strategy

	3.3 Discussion

	4 RL for robot control
	4.1 RL in robotics and the reality gap
	4.2 Methodologies for solving the RG
	4.2.1 Domain randomization
	4.2.2 Adversarial RL
	4.2.3 Transfer learning
	4.2.4 Discussion and promising ideas

	4.3 Metric for assessing RL algorithms performance
	4.4 A practical example of reality gap
	4.4.1 Methods
	4.4.2 Experimental results


	5 Conclusions
	References
	About the author
	List of Publications
	Acknowledgements

