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Abstract
Motivated by the theory of complex multiplication of abelian varieties, in this paper we study
the conformality classes of flat tori in R

n and investigate criteria to determine whether a n-
dimensional flat torus has non trivial (i.e. bigger than Z∗ = Z\{0}) semigroup of conformal
endomorphisms (the analogs of isogenies for abelian varieties). We then exhibit several geo-
metric constructions of tori with this property and study the class of conformally equivalent
lattices in order to describe the moduli space of the corresponding tori.

Keywords Flat tori · Conformal multiplication

1 Introduction

In this paper we consider n-dimensional flat tori Tn
Γ as quotients of Rn under the action of a

subgroup Γ ∼= Z
n induced by a (maximal rank) lattice Λ ⊂ R

n . For this reason we also use
the notation Tn

Λ for the same torus.
In order to introduce a torus as a quotient ofRn , one can give a latticeΛ and an equivalence

relation in terms of this lattice i.e. , the space of orbits. But one can also define flat tori starting
from a (parallel) polytope or from a tessellation cell of Rn . Indeed, in correspondence to a
tessellation of the n-dimensional Euclidean space R

n , we can consider the lattice of the
barycenters of the cells of the tessellation, call it ΛB and then the torus obtained from this
lattice, namely TB .

One can then study the corresponding conformal classes for tori and determine the moduli
space of conformal tori. In general, inRn two real toriTn

Λ andTn
Λ′ are conformal if and only if
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their lattices can be obtained one from the other via a conformal linear map i.e.Λ′ = μA(Λ)

with A ∈ SO(n), μ > 0.

Definition 1 If Tn
Λ is a flat n-dimensional torus a conformal endomorphism is a group epi-

morphism ι : Tn
Λ → T

n
Λ such that ι lifts to a conformal linear map ι̃ : Rn → R

n . We denote
by Endc(Tn

Λ) the set of conformal endomorphisms of Tn
Λ.

Then Endc(Tn
Λ) with product given by composition of functions is a unitary semigroup.

Definition 2 The subset of Endc(Tn
Λ) consisting of invertible endomorphims is the group

Autc(Tn
Λ) of conformal automorphisms of Tn

Λ.

Sometimes it is convenient to include the trivial map x
ι�→ 0 in the definition of conformal

endomorphism; for instance, in the case of elliptic curves with complex multiplication, one
can then consider the ring of endomorphisms where addition is the pointwise addition of
morphisms of an elliptic curve to itself, and product is given by composition of morphisms.

A conformal endomorphism is the analog for a flat torus of an isogeny for an elliptic curve
or an abelian variety (see [10,16,22]). Given an integerm ∈ Z,m 	= 0, we have the conformal

transformation [m] : Tn
Λ → T

n
Λ, t 
 (eit1 , eit2 , . . . , eitn )

[m]�→ mt 
 (eimt1 , eimt2 , . . . , eimtn ).
Therefore for any lattice Λ, Endc(Tn

Λ) contains the multiplicative semigroup Z∗ of non zero
integers under the multiplication operation. The kernel of [m] consists of them-torsion points
of Tn

Λ.
Our aim is to describe those tori that have conformal multiplication, i.e. those tori whose

semigroup of endomorphisms Endc(Tn
Λ) is larger than Z

∗.
This problem arises from the natural generalization of the complex case, in which the

conformal multiplication is usually called complex multiplication (see [2,3,15,21,22]). Let
us recall briefly this fact. Since a flat metric on a real 2-torus induces a complex structure,
the torus is a complex one dimensional curve of genus one i.e. a complex one-dimensional
torus. All conformally equivalent metrics induce the same complex structure. Therefore if
one considers C 
 R

2, the complex curve is of the form Eτ := C/Λτ , where Λτ is the
lattice generated by (1, τ ) with Imτ > 0. These curves are called elliptic curves if one fixes
a base point in the curve. Complex tori obtained by considering the quotient of C under the
action induced by the (square) lattice ΛC or by the (hexagonal) lattice ΛF , whose sets of
generators respectively are C = (1, i) and F = (1, τ ) with 1 = (1, 0) and τ = eiπ/3, have
complexmultiplication. Indeed,ΛC andΛF are the ring of integers of the imaginary quadratic
fieldsQ(

√−1) andQ(
√−3), i.e. the Gaussian integers and Eisenstein integers, respectively,

so multiplication by elements of this rings provides isogenies of the corresponding elliptic
curves (see also [3]).

It is well known that, starting from a lattice, it is possible to define a canonical fundamental
region of the lattice, namely theDirichlet–Voronoi region. The two latticesΛC andΛF have,
for example, as corresponding Voronoi regions, respectively, a square and a regular hexagon.

We will give examples of tori with conformal multiplications in higher dimensions,
inspired by the fact that, in general, the corresponding conformal group of automorphisms
is closely related to the symmetry group of the Voronoi region associated with the lattice
that defines the torus. This is due to the fact that if a finite group of SO(n) leaves invariant
a lattice then the group also preserves the Voronoi region. This happens very clearly in the
case of complex dimension 1. Indeed, all the examples of tori with conformal automorphisms
are defined by lattices whose Voronoi regions (triangles, hexagons and squares) have many
symmetries. The lattices from these examples have particular importance either in Crystal-
lography or in application for Coincidence Site Lattice Theory (see [7]). Lattices with a large
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A note on moduli spaces of conformal classes for flat tori… 545

group of symmetries play also an important role in the theory of sphere packings and the
theory of simple groups (for instance themonster group, see [9]; see also [21]). Furthermore,
we study the class of conformally equivalent lattices and describe the moduli space of the
corresponding tori and use a similar approach (as in [4]) for biregular quaternionic tori to
study their moduli space in higher dimension.

2 Flat tori: lattices and tessellations inR
n

In order to define a n-dimensional torus it is sufficient to give a lattice Λ of maximal rank in
R
n . Indeed, starting from such a latticeΛ inRn , we can find n+1 points of the latticeΛ, call

them O, P1, . . . , Pn such that the vectors v1 = P1−O, v2 = P2−O, . . . , vn = Pn−O form
abasis F ofRn which turns out to be a frame forΛ, in the sense thatΛ = {(m1v1, . . . ,mnvn) :
(m1, . . . ,mn) ∈ Z

n}.
Now, one can consider the group ΓΛ which acts on R

n as integer translations in the
directions of the vectors of the frame F . In symbols, if g ∈ ΓΛ andwF = (a1, a2, . . . , an) ∈
R
n (whose coordinates are taken with respect to the frame F), the action of ΓΛ on R

n is
given by

g · wF := (a1 + m1, a2 + m2, . . . , an + mn)

where (m1,m2, . . . ,mn) ∈ Z
n .

Definition 3 Two frames F1 and F2 of Rn are said to be equivalent if they define the same
lattice Λ.

Notice that different frames can give rise to the same lattice as shown in the next.

Remark 1 Let {e1, e2, . . . , en} be the standard orthonormal basis inRn . Then the two frames
F1 = {e1, e2, . . . , en} and F2 = {A(e1), A(e2), . . . , A(en)} where A ∈ SL(n,Z), are equiv-
alent since they generate the same standard cubic lattice ΛC in R

n .

Let F = (u1, . . . ,un), ui ∈ R
n be a positively oriented frame (i.e. a positively oriented

basis) of Rn and let M(F) be the n × n matrix whose j-th column is u j , ∀ j = 1, . . . , n.
We will consider now a relation for n-dimensional lattices induced by the following.

Definition 4 The latticeΛ1 andΛ2 (of the same rank) are said to be conformally equivalent if
there exist a frame F1 ofΛ1, a frame F2 ofΛ2, a real numberμ > 0 andmatrices O ∈ SO(n)

and A ∈ GL(n,Z) such that
AM(F1) = M(F2) (μO). (1)

As soon as the group ΓΛ of integer translations is canonically defined from the lattice Λ,
one can also consider the associated n-dimensional flat torus Rn/ΓΛ := T

n
ΓΛ

equipped with
the naturally induced real differentiable structure and Riemannian metric; therefore any such
torus is a compact oriented real n-manifold. Furthermore, the quotient map πΓΛ : Rn → T

n
ΓΛ

can be also considered as the projection map of the universal covering (Rn, πΓΛ) of the torus
T
n
ΓΛ

. For the sake of shortening the notation, in the sequel we will also use the notation T
n
Λ

or Tn
Γ to indicate Tn

ΓΛ
.

Using charts and local coordinates, one can define diffeomorphisms between tori in the
standard way. In particular if the diffeomorphism is conformal the tori are said to be confor-
mally equivalent. Equivalently, a way to look at diffeomorphism ϕ between tori Tn

Γ1
and Tn

Γ2
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is to consider those (differentiable) functions f : Rn → R
n that are equivariantwith respect

to the action induced by Γ1 and Γ2, i.e.

f (g · wF1) = g · ( f (w)F2) for any integer translation g and w ∈ R
n .

Actually, by lifting to the universal coverings, these functions can be regarded as functions
which make the following diagram commute

R
n f−−−−→ R

n

πΓ1

⏐
⏐
� πΓ2

⏐
⏐
�

T
n
Γ1

ϕ−−−−→ T
n
Γ2

Remark 2 Since any torus Tn
Γ is an abelian compact Lie group with a natural flat invariant

metric, it follows that any equivariant translation in R
n induces an isometry and thus a con-

formal self-map ofTn
Γ . Furthermore, for each flat torusTn

Γ , the universal covering projection
map πΓ : Rn → T

n
Γ is a local isometry.

Proposition 1 Conformally equivalent tori have conformally equivalent lattices.

Proof If Tn
Λ1

is conformally equivalent to T
n
Λ2

and ϕ : T
n
Λ1

→ T
n
Λ2

is an orientation-
preserving conformal diffeomorphism, then precomposing ϕ with a translation, we can
assume that ϕ fixes the origin of the lattices. Let ϕ̃ : Rn → R

n be the lifting of ϕ which fixes
0. Then ϕ̃ is a conformal map of Rn . If n = 2 it follows that ϕ̃ is an orientation preserving
homothetic transformation of R2 into itself. If n > 2, it follows from Liouville’s theorem
that ϕ̃ is a Möbius transformation that fixes the origin and therefore must be of the form
v �→ μO(v) with O ∈ SO(n) and μ a positive real number. If we choose two positively
oriented frames F1 and F2 respectively, then there exists A ∈ GL+(n,Z) such that

AM(F2) = μOM(F1),

for a positive real number μ, i.e., Λ1 is conformally equivalent to Λ2. In particular, one can
actually choose A′ ∈ SL(n,Z) and μ′ > 0 such that

A′M(F2) = μ′OM(F1),

and so the claim follows.

Another way to study flat tori is to approach these tori as special manifolds in the class of
parallel orbifolds as introduced in [26]. If one considers a not necessarily convex polytope P
of maximal dimension n in Rn with an even number of (n − 1)-subpolytopes (called “faces
of P”) contained in the boundary of P , such that, given any face S of P , there exists another
face S′ of P which is the image of S under a translation of Rn ; in short if S′ = S + v, with
v ∈ R

n , v 	= 0, then the identification of such parallel (and isometrical) faces of P defines the
quotient space which inherits a structure of topological orbifold, known as parallel orbifold.

As a non trivial example of parallel orbifold one can consider the quotient space obtained
starting from the polytope P which is the union of two isometric regular dodecahedra in R3

glued along a face. The orbifold obtained via identification of opposite parallel isometric
faces by translations is a natural generalization of the surfaces called translational surfaces
as introduced in [26].
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In some cases, parallel orbifolds may become parallel manifolds i.e. they don’t have singu-
larities. Flat tori Rn/Γ are examples of parallel manifolds (with Γ a group acting on Rn via
integer translations, where any fundamental region for the action of Γ plays the role of P).

More generally, one can give an interpretation of flat tori looking at uniform tessellations
of Rn , with special polytopes as tiling cells, in the following sense

Definition 5 A tessellation or tiling of Rn is a cover by a finite number of countable families
of closed sets, called tiles, such that the tiles intersect only on their boundaries and two tiles
in the same family are congruent.

We define a uniform tessellation Θ of Rn to be any tessellation of Rn made by regions of
R
n or cells such that any cell can be reached from an other by means of a finite number of

translations along prescribed n directions of Rn .

For example any regular tessellation (i.e. whose cells are regular polytopes with an even
number of faces) turn out to be a uniform evenly-sided polytopic tessellation of Rn ; since in
R
n (for any n) there is always the cubic tessellation which is a regular tessellation, one can

say that there is an evenly-sided polytopic tessellation Θ in any Rn .
Observe that, starting from any tessellation Θ of Rn , one can consider the barycenters of

the tiling cells which form a lattice ΛBΘ of Rn and then define the torus Tn
ΛBΘ

. It is easily
seen that the torus obtained as a parallel manifold, starting from the cubic tessellation is the
same as the torus obtained from its barycentric lattice.

Notice that different cells can give rise to the same barycentric lattice. For example,
following the classification of hexagons that tile the space, due to Reinhardt [18], we can
consider the two hexagons in Fig. 1 with opposite sides parallel and isometric. These define
the same barycentric lattice and thus the same torus.

Example 1 If we consider the plane and the tessellation given by equilateral triangles, this
tiling doesn’t define a parallel manifold, indeed we have that the polytope has not an even
number of edges.Consider now the “duplication” of these triangles, gluing every two triangles
along an edge, we get a rhombic tiling of the plane, where the rhombi are special (indeed their
angles measure π/3 and 2π/3) and this tiling defines a parallel manifold, which is moreover
a torus (this is a torus with complex multiplication).

We point out that the tori corresponding to the three different tiling cells, namely regular
hexagons, equilateral triangles and rhombi as above are conformally equivalent. Indeed their
barycentric lattices are conformally equivalent. In particular the torus corresponding to the
lattice with tiling cells equilateral triangles is a cover of the torus with tiling cells regular
hexagons.

Remark 3 If we consider the cubic tessellation ofR3 and the barycenters of the cubes, taking
the edges from the vertices of the cube to the barycenter we get six pyramids. Each pyramid
obtained in this way is a tiling cell of R3 which does not define a parallel manifold and the
corresponding tessellation of R3 is not uniform. With the same argument used in the plane,
we now consider the octahedron obtained gluing the square basis of two pyramids as a tiling
cell. In this case, it defines a parallel manifold, but the corresponding tessellation of R3 is
not uniform. Finally, gluing together six of these octahedra sharing a common vertex, one
gets the rhombic dodecahedron as tiling cell which gives rise to a parallel manifold and the
corresponding tessellation of R3 is uniform (see Fig. 2). We point out that the manifolds
corresponding to the three different tiling cells are conformally equivalent tori. Indeed the
barycentric lattices are conformally equivalent.

As seen in the previous considerations, one can associate a lattice starting with a tessella-
tion. But also the converse is true. The idea of Dirichlet–Voronoi cell (also Dirichlet cell or
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Fig. 1 Different hexagonal tiles (both with parallel pair of sides) associated with the same lattice

Voronoi region, briefly D–V cell1) was introduced in two classical papers by Dirichlet and
Voronoi, respectively.

Definition 6 Let us give a discrete point set L in the n-dimensional Euclidean spaceRn . The
Dirichlet–Voronoi tiling of L is a tiling with convex tiles D(z) centered at z ∈ L , where

D(z) = {y ∈ R
n : |y − z| ≤ |y − x |}

∀x ∈ L , where the function | · | is the usual Euclidean norm of Rn .

This means that D(z) consists of those points y of Rn whose distance from the point z
(the origin of D) is not greater than its distance from any other point of the set L . The tile
D(z) is called the cell of z; when L is a lattice these cells are translated copies of the cell
D(0) of the origin.

Therefore if one considers a Dirichlet–Voronoi tiling (i.e. a tessellation obtained from a
lattice and considering the corresponding Voronoi regions as tiles), then

Proposition 2 There is a one to one correspondence between Voronoi tessellations and tori
associated with barycentric lattices.

Remark 4 The tessellations of R2 as in Example 1 are not Dirichlet–Voronoi tessellations.

Example 2 A standard cubic lattice Λc gives rise to the cubic honeycomb and a hexagonal
close-packed lattice gives rise to a tessellationof the spacewith trapezo-rhombic dodecahedra.
The body-centred cubic (BCC) lattice ofR3 (i.e. the cubic lattice togetherwith the barycenters
of any cube) has as Dirichlet–Voronoi regions truncated octahedra which define a uniform
evenly–sided polytopic tessellation of R3. Similarly, a face-centred cubic (FCC) lattice of
R
3 (i.e. the cubic lattice together with the barycenters of the faces of each cube) has as

Dirichlet–Voronoi regions the rhombic dodecahedra which again define a uniform evenly–
sided polytopic tessellation of R3. Certain body centred tetragonal lattices give rise to a
tessellation of R3 with rhombo-hexagonal dodecahedra.2

1 In Crystallography the notion of Dirichlet–Voronoi regions is in relations with Brillouin zones delimited by
Bragg planes, the planes perpendicular to a connection line from the origin to each lattice point and passing
through the midpoint of two vertices.
2 Some of these notions have several applications in Crystallography, and in particular some of these lattices
are known as Bravais lattices.
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Fig. 2 Construction of the rhombic dodecahedron

Another way to construct uniform polytopic tessellation of Rn is obtained by starting
from a uniform tessellationΘ inRn−1 and a vectorw inRn\Rn−1; then one can consider the
infinite polytopes obtained by taking as sides the straight lines in the directions of w passing
through the vertices of the regular tessellation Θ in R

n−1. These are examples of uniform
polytopic tessellations of Rn and will be called pencils).

Beside the case of Rn (which represents the flat model), one can consider the problem
of uniformly tessellating different spaces and then the quotient spaces of the spheres Sn and
the hyperbolic spaces Hn , which are, respectively, the elliptic and hyperbolic models. For
example, there is a dodecahedral tessellation of 3-dimensional sphere S3 and similarly H

3

admits a regular tessellations of hyperbolic dodecahedra.
The tessellations of Sn andHn are very complicated and so are the related theory of quotient

spaces which certainly deserve further investigations which the authors aim to complete in a
future paper.3,4

3 Complexmultiplication for complex tori and further extensions

Given a uniformpolytopic tessellationΘ ofRn one then considers the quotient spaceRn/ΛBΘ

which will be also denoted by R
n/Θ for the sake of shortness. In principle, if a uniform

polytopic tessellation Θ ofRn has many symmetries, then there should be (crystallographic)
groups acting on Rn which preserve Θ and therefore induce endomorphisms of the quotient

3 In general the major difficulty in the description of uniform polytopic tiling is the lack of results on the solid
angles of the polytopes involved. On the other hand, in R

n there are many interesting tools for this purpose.
Among the others, we recall that the Dehn invariant.
4 It is named after Max Dehn, who used it to solve Hilbert’s third problem on whether all polyhedra with equal
volume could be dissected into each other. of a polyhedron is a value used to determine whether polyhedra can
be dissected into each other or whether they can tile space. Two polyhedra have a dissection into polyhedral
pieces that can be reassembled into another one, if and only if their volumes and Dehn invariants are equal.
A polyhedron can be cut up and reassembled to tile space if and only if its Dehn invariant is zero, so having
Dehn invariant zero is a necessary condition for being a space-filling polyhedron. It is also an open problem
whether the Dehn invariant of a self-intersection free flexible polyhedron is invariant as it flexes.
The Dehn invariant is zero for the cube but nonzero for the other Platonic solids, implying that the other
Platonic solids cannot tile space and that they cannot be dissected into a cube. All of the Archimedean solids
have Dehn invariants that are rational combinations of the invariants for the Platonic solids.
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space. In particular, for every R
n/Θ, one can consider the endomorphism induced by the

function z �→ −z, beside the identity. The set of all endomorphisms ofRn/Θ (not necessarily
conformal) is a ring (where addition is pointwise addition of functions and the standard
composition as product) which will be denoted by End(Rn/Θ) and which contains the
group of automorphisms of Rn/Θ , i.e. Aut(Rn/Θ).

The ring of holomorphic endomorphisms of an elliptic curve Eτ := C/Λτ defined over
the field C can be of one of two forms: (i) the integers Z, (ii) an order in an imaginary
quadratic number field. If the elliptic curve is defined over a field of positive characteristic
there is a third possibility, namely (iii) an order in a definite quaternion algebra over Q (see
[19] Corollary 9.4 for precise statement and definitions).

One says that an elliptic curve (or a complex torus) has conformal multiplication if its
ring of endomorphisms is not Z.
Complex tori are also particular examples of abelian varieties and, in general, manifolds with
complexmultiplication turn out to be very interesting, in fact we have the following quotation
by David Hilbert:

“The theory of complexmultiplication is not only themost beautiful part of mathematics
but also of all science.”

It is known that complex tori with non trivial group of automorphisms are (up to biholomor-

phisms) the ones corresponding to τ = i and to τ = e
iπ
3 (see e.g. [6,24]). Notice that the

corresponding lattices give rise to the regular tessellations (square and hexagonal, respec-
tively) of the plane. Complex tori with complex multiplication are those with the following
(equivalent) property

(m + lτ)Λτ ⊆ Λτ

with m, l ∈ Z. This condition says that τ is a solution of a quadratic equation with rational
coefficients, i.e. τ satisfies

τ 2 + Aτ + B = 0, (2)

with A, B ∈ Q. Notice that the root of the previous equation, for τ such that Imτ > 0 is

τ = a+ ib with a = − A

2
and b =

√
4B − A2

2
. With some additional computations one can

prove that the only solutions in the fundamental domain for the modular group (see [8,19])

are τ = i (A = 0, B = 1) and τ ′ = e
π i
3 (i.e A = −1, B = 1).

In C two lattices Λ1 and Λ2 of rank 2 are said to be homothetic if there is a complex
number α such that αΛ1 = Λ2.

Remark 5 If there exists an α ∈ C\Z such that αΛ ⊆ Λ then the mapping ϕα : Λ → Λ

such that ϕα(λ) = αλ is a conformal mapping in C which preserves the lattice Λ and if
ϑα ∈ [0, 2π) is the principal argument of α the mapping ϕα can be written as λ �→ |α|eiϑαλ.
In this way one can easily recognise that ϕα is a dilation of modulus |α| and a rotation of
angle ϑα .

For an example of (complex) multiplication on a manifold of dimension greater than 2, we

can consider the product of the two elliptic curves M = Eτ × Eτ ′ , with τ = i and τ ′ = e
π i
3 ;

in this case, M turns out to be an abelian variety. The complex multiplication in M is realised
by the action induced by the product (m + τ l, r + τ ′s) of non trivial endomorphisms on Eτ

and Eτ ′ ; thus, when applied on the unitary generators (1, 1), in order to be homothetic we
get

(m + τ l)(m + τ l) = (r + sτ ′)(r + sτ ′)
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where m, l, r , s ∈ Z. Hence, for τ and τ ′ as above, one has

r2 + s2 − rs = m2 + l2

that is satisfied by any pythagorean triple (m, l, r = s), i.e. any three integers such thatm2 +
l2 = r2. Similar examples can be generalized in any dimension when considering suitable
splitting of Rn = R

m1 ⊕ R
m2 (with m1 + m2 = n) in order to use complex multiplication

on the factors; all these examples will be said to be in the class of “decomposable” spaces.

Definition 7 A torus Rn/Θ has

– only trivial conformal endomorphisms if End(Rn/Θ) 
 Z;
– nontrivial conformal endomorphisms if Z ⊂

	=
End(Rn/Θ).

Those tori Rn/Θ with semigroup of endomorphisms bigger than Z
∗ are the n-dimensional

analogs of elliptic curves with complex multiplication.

Remark 6 Since any torus Tn
Γ is an abelian compact Lie group with a natural flat metric (see

[15]), it follows that any translation is an isometry and thus a conformal self-map of Tn
Γ

without fixed points. Furthermore, for each flat torus Tn
Γ , the universal covering projection

map πΓ : Rn → T
n
Γ is a local isometry.

Assume now that n > 2 and ϕ : Tn
Γ → T

n
Γ is a conformal transformation with a fixed

point x0 ∈ T
n
Γ ; then the corresponding lifting � : Rn → R

n is a conformal transformation
in R

n . From Liouville Theorem on conformal mappings in high dimensions [5] it follows
that �—with respect to a basis in R

n—can be written as λ · O , where λ is a positive real
number and O is an orthogonal matrix of Rn such that λ · O(Λ) ⊆ Λ like in the case of the
mapping ϕα showed in Remark 5. In other words ϕ is an endomorphisms of Tm

Λ. Therefore

Proposition 3 If n > 2, a torus Tn
Λ has conformal multiplication if there exists a conformal

map f : Tn
Λ → T

n
Λ with a fixed point p such that the derivative at p is not a homothetic

transformation, (i.e. d f (p) : TpT
n
Λ → TpT

n
Λ is not of the form μI , μ > 0). Then by

Liouville Theorem f lifts to an affine map f̃ on R
n which preserves the lattice Λ. After

composing with a translation, we can assume that f̃ = μO with μ > 0, O ∈ SO(n) and
O 	= I .

Remark 7 As already observed, the result of Proposition 3 is a generalization of what was
mentioned in Remark 5 for complex tori; furthermore it justifies the use of the term conformal
multiplication to extend the notion of complex multiplication as in the complex case.

From the geometric ideas of the previous considerations, we give the following

Definition 8 Given a lattice Λ in R
n , we say that � : Rn → R

n is

– a Λ-orthogonal transformation if � is an orthogonal transformation of Rn (with respect
to the standard Euclidean inner product) which preserves the lattice Λ, i.e. such that
�(Λ) ⊆ Λ.

– a Λ-conformal transformation if there is a positive real number 
 and an orthogonal
transformation Ψ such that � = 
Ψ and �(Λ) ⊆ Λ.

In general, for orthogonal transformations preserving hypercubic lattices there is a very
exhaustive result (see [1]) which makes use of Clifford algebra approach as a computational
tool to apply the well-known Cartan–Dieudonné Theorem.
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Proposition 4 Given a hypercubic latticeΛ inRn, an orthogonal transformationΨ preserves
Λ if and only if there exist lattice vectors c1, . . . , ck ∈ Λ such that

Ψ (x) = (−1)k(c1c2 · · · ck)x(c1c2 · · · ck)−1

where the product of the vectors c j ’s is to be interpreted in terms of the product in the Clifford
algebra Rn,0 which contains Rn as the space R1

n,0.

We recall that an orthogonal transformation T in Rn is a conformal isometry with respect
to the Euclidean norm of Rn . Now we can state the most general result for Λ-conformal
transformations in R

n , with Λ a lattice in R
n which contains a frame for Rn consisting of

vectors of the same length which are pairwise orthogonal.

Theorem 1 LetΛ be a lattice inRn which contains a frameF forRn consisting of vectors of
the same length which are pairwise orthogonal. Let M be the n × n matrix which represents
the change of bases in R

n from the basis F to the canonical basis E of Rn. Then any
transformation of the form

�(x) = 
M−1[(−1)k(c1c2 · · · ck)M(x)(c1c2 · · · ck)−1]
(where 
 is a positive real number and the product of the vectors c j in the hypercubic lattice
is defined as in Proposition 4) is a Λ-conformal transformation.

4 Examples of tori with conformal multiplication

The next task is to give examples of flat tori Tn
Λ with conformal multiplication in dimension

n > 2. We begin by considering the examples already exhibited of the FCC (face-centered
cubic) and BCC (body-centered cubic) lattices5 in R

3: for these two lattices we know that
the corresponding Voronoi regions (namely the rhombic dodecahedron and the truncated
octahedron) have many symmetries so that the associated tori are expected to have conformal
multiplications. This intuition is now confirmed by Theorem 1, since both FCC and BCC
lattices contain the hypercubic lattice of R3 .

Then we will focus our attention to some lattices in R4, R8 and R24, namely the Hurwitz
lattice inR4 
 H, theΓ8 lattice inR8 
 O and the Leech lattice inR24 
 O×O×O. One of
the reasons for this choice is that these lattices have interesting symmetries and, furthermore,
R
4 
 H (quaternions) and R

8 
 O (octonions) are (the only other than complex) division
algebras.

4.1 Hurwitz quaternionic tori

Let

H = {x0 + x1i + x2j + x3k : xn ∈ R, n = 0, 1, 2, 3, i2 = j2 = k2 = −1, ij = −ji = k}.
be the non commutative division algebra of quaternions.

Definition 9 A Lipschitz quaternion (or Lipschitz integer) is a quaternion whose components
are all integers. The ring of all Lipschitz quaternions is the subset of quaternions with integer
coefficients:

Lip := {a + bi + cj + dk ∈ H : a, b, c, d ∈ Z} .

5 These lattices are also known as Bravais lattices in Crystallography.
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This is a subring of the ring of Hurwitz quaternions:

Hur :=
{

a + bi + cj + dk ∈ H : a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1

2

}

.

Indeed it can be proven (see e.g. [26]) that Hur is closed under quaternion multiplication
and addition, which makes it a subring of the ring of all quaternions H.

As a group, Hur is free abelian with generators
1

2
(1 + i + j + k), i, j,k. Therefore Hur

defines a lattice in R4. This lattice is known as the F4 lattice since it is the root lattice of the
semisimple Lie algebra f4. The Lipschitz quaternions Lip form an index 2 sublattice of Hur
and it is a subring of the ring of quaternions. These two lattices will be also denoted byΛHur

and ΛLip respectively.
The lattice ΛLip is precisely the hypercubic lattice in R4. We now give the proofs of two

lemmas.

Lemma 1 Given an orthonormal frame F of R4 in ΛHur , then either all vectors of F are in
ΛLip or are in ΛHur\ΛLip.

Proof Indeed, any unitary Hurwitz number orthogonal to the unitary Lipschitz number, say
(0, 1, 0, 0) is of the form (a, 0, c, d) with a2 + c2 + d2 = 1 and necessarily a, c, d ∈ Z,
i.e. is a unitary Lipschitz number. Now let us consider the case of unitary Hurwitz numbers

orthogonal to a unitary Hurwitz non Lipschitz number, say

(
1

2
,
1

2
,
1

2
,
1

2

)

. These are of the

form (a, b, c, d) such that a + b+ c+ d = 0, a2 + b2 + c2 + d2 = 1 and therefore a, b, c, d
cannot be all integers.

The next lemma can be considered as a generalization of the previous one.

Lemma 2 Given a frame F of R4 in ΛHur whose vectors have the same norm and are
pairwise orthogonal, then either all vectors of F are in ΛLip or are in ΛHur\ΛLip.

Proof If w1 = (a, b, c, d) ∈ ΛLip and w1 ∈ F then any (x, y, z, t) ∈ ΛHur belongs to F if
and only if xa + yb + cz + dt = 0 and x2 + y2 + z2 + t2 = a2 + b2 + c2 + d2. In other
words,

(x − a)2 + (y − b)2 + (z − c)2 + (t − d)2 = 2(a2 + b2 + c2 + d2).

If (x, y, z, t) /∈ ΛLip then x = m1/2, y = m2/2, z = m3/2, t = m4/2 with m j =
2k j + 1 and k j ∈ Z for j = 1, 2, 3, 4. Therefore it follows that

(2(k1 − a) + 1)2

4
+ (2(k2 − b) + 1)2

4
+ (2(k3 − c) + 1)2

4
+ (2(k4 − d) + 1)2

4
= (k1 − a)2 + (k1 − a) + (k2 − b)2 + (k2 − b)

+(k3 − c)2 + (k3 − c) + (k4 − d)2 + (k4 − d) + 1 = 2(a2 + b2 + c2 + d2)

and this is a contradiction since the last number is even but the previous ones are odd, due to
the fact that for any integer n it turns out that n2 + n = n(n + 1) is even.

From the proof of Lemma 2, one can also easily obtain a one-to-one correspondence
between ΛHur\ΛLip and ΛLip; indeed if (m1/2,m2/2,m3/2,m4/2) with m j = 2k j + 1
and k j ∈ Z for j = 1, 2, 3, 4, then the correspondence is given by

(m1

2
,
m2

2
,
m3

2
,
m4

2

)

=
(
2k1 + 1

2
,
2k2 + 1

2
,
2k3 + 1

2
,
2k4 + 1

2

)

�→ (k1, k2, k3, k4).
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Consider now a Hurwitz–conformal transformation �, that is a conformal transformation
which preserves the Hurwitz lattice ΛHur . Therefore, from Theorem 1, we have

Proposition 5 If � is a conformal transformation which preserves the Hurwitz lattice, then
there exist a positive real number 
 = √

m (m ∈ N) and c1, . . . , ck ∈ Lip such that

�(x) = 
Mδ′ [(−1)k(c1c2 · · · ck)Mδ(x)(c1c2 · · · ck)−1]. (3)

where δ = −1, 0, 1 δ′ = −1, 0, 1 and up to a permutation of rows/columns,

M =

⎛

⎜
⎜
⎝

1/2 −1/2 −1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2
1/2 1/2 1/2 1/2

⎞

⎟
⎟
⎠

with M0 = I and M1 = M and M−1 = MT .

Proof Due to Lemma 2, we distinguish 4 possible cases, namely

(a) � is a ΛLip-conformal transformation, i.e. �(ΛLip) ⊆ ΛLip;
(b) � is a conformal transformation such that �(ΛLip) ⊆ ΛHur\ΛLip;
(c) � is a conformal transformation such that �(ΛHur\ΛLip) ⊆ ΛLip;
(d) � is a conformal transformation such that �(ΛHur\ΛLip) ⊆ ΛHur\ΛLip .

If � is a conformal transformation which preserves the Lipschitz lattice, then, since the
Lipschitz lattice is the hypercube lattice in R4, we actually conclude from Proposition 4 that
there exist c1, . . . , ck ∈ Lip and a positive real number 
 such that

�(v) = 
(−1)k(c1c2 · · · ck)v(c1c2 · · · ck)−1.

Furthermore, from the definition of conformality and from Lemma 2, we know that a
ΛLip-conformal transformation � maps an orthogonal frame of ΛLip onto an orthogonal
frame of ΛLip which is represented by vectors in ΛLip all of the same norm. Since the
squared norm of a Lipschitz number is a natural number, we conclude that 
 = √

m with
m ∈ N so that � is as in (3) with δ = δ′ = 0.

If � is a conformal transformation such that �(ΛLip) ⊆ ΛHur\ΛLip , then S−1 ◦ � is a
ΛLip-conformal transformation and then case a) applies so that � is as in (3) with δ = 0,
δ′ = 1.

If � is a conformal transformation such that �(ΛHur\ΛLip) ⊆ ΛLip , then � ◦ S is a
ΛLip-conformal transformation and then case a) applies so that � is as in (3) with δ = 1,
δ′ = 0.

If � is a conformal transformation such that �(ΛHur\ΛLip) ⊆ ΛHur\ΛLip , then S−1 ◦
� ◦ S is a ΛLip-conformal transformation and then case a) applies so that � is as in (3) with
δ = δ′ = 1.

This result is in line with the following result proved in [12].6

Proposition 6 The orientation preserving self-similarities of Hur onto itself are precisely

the maps M(u,v)[q] = uqv̄ for u, v ∈ Hur with |u| = |v| = 1 and the maps
1

2
M(u,v) for

u, v ∈ Hur with |u|2 = |v|2 = 2.

6 Actually in [12] all finite groups of automorphism of complex tori of (complex) dimension 2 are completely
classified and listed.
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4.2 Γ 8 torus

The Γ8 lattice is a discrete full rank subgroup of R8 . It can be given explicitly by the set of
points in R8 such that all the coordinates are integers or all the coordinates are half-integers
(a mixture of integers and half-integers is not allowed) and the sum of the eight coordinates
is an even integer.

In symbols,

Γ8 =
{

(xl) ∈ Z
8 ∪ (Z + 1

2 )
8 :

∑

i

xl ≡ 0 (mod 2)

}

.

The latticeΓ8 is also known as the E8 lattice since it is the root lattice of the Lie algebra e8.
The lattice Γ8 can be characterized as the unique lattice in R8 with the following properties:
it is integral, meaning that all scalar products of lattice elements are integer numbers. It is
unimodular, meaning that it is integral, and can be generated by the columns of an 8 × 8
matrix with determinant ±1 (i.e. the volume of the fundamental parallelotope of the lattice
is 1). Equivalently, Γ8 is self-dual, meaning it is equal to its dual lattice. It is even, meaning
that the norm of any lattice vector is even.

The minimal norm of a non trivial vector in Γ8 is
√
2, actually there are 240 elements

in Γ8 with this minimal distance from the origin. Among them we consider the following 8
vectors

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
0
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
1
0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/2
1/2
1/2
1/2
−1/2
−1/2
−1/2
−1/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/2
−1/2
−1/2
1/2
−1/2
1/2
1/2
−1/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/2
−1/2
1/2
−1/2
−1/2
1/2
−1/2
1/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1/2
−1/2
1/2
1/2
1/2
1/2
−1/2
−1/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

which represent a frame for R8 in Γ8 formed by orthogonal vectors of the same (minimal)
length. Therefore a result similar to Lemma 1 or to Lemma 2 does not hold in Γ8.

There are other frames of R8 formed by vectors of minimal length in Γ8 which are
orthogonal and whose coordinates are all integers or half integers. Thus it is not possible to
choose (up to permutation of rows/columns) a preferred matrix M of change of bases as in
Proposition 5 for the Hurwitz lattice case.

For instance one can choose
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

or

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
1/2 −1/2 −1/2 1/2 1/2 −1/2 −1/2 1/2
1/2 −1/2 1/2 −1/2 1/2 −1/2 1/2 −1/2

−1/2 −1/2 1/2 1/2 −1/2 −1/2 1/2 1/2
1/2 1/2 1/2 1/2 −1/2 −1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2 −1/2 1/2 1/2 −1/2
1/2 −1/2 1/2 −1/2 −1/2 1/2 −1/2 1/2

−1/2 −1/2 1/2 1/2 1/2 1/2 −1/2 −1/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thesematrices induce conformal transformationswhichmap the canonical orthonormal basis
of R8 onto the frame given by the columns of these matrices. Furthermore, these column
vectors are in Γ8, pairwise orthogonal and of minimal length. In any case, if U is a frame of
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R
8 inΓ8 formed by orthogonal vectors u1, . . . , u8 ofminimal length, there exists a conformal

transformation MU such that MU (u j ) = e j ( j = 1, . . . , 8), where e j is the j-th element of
the canonical basis of R8. Thus, from Proposition 4, we have

Proposition 7 Let � be a conformal transformation which maps an orthogonal frame U =
{mu1, . . . ,mu8} inR8 with m ∈ Z (where U = {u1, . . . , u8} is formed by orthogonal vectors
of minimal length in Γ8) onto an orthogonal frame V = {lv1, . . . , lv8} in R

8 with l ∈ Z

(where V = {v1, . . . , v8} is formed by orthogonal vectors of minimal length in Γ8) then there
exist c1, . . . , ck in the hypercubic lattice of R8 such that

�(x) = l

m
MV−1[(−1)k(c1c2 · · · ck)MU (x)(c1c2 · · · ck)−1)] (4)

where the product of the vectors c j ’s is to be interpreted in terms of the product in the Clifford
algebraR8,0 which containsR8 as the spaceR1

8,0 and the matrices MU and MV are such that
MU (u j ) = e j MV (v j ) = e j ( j = 1, . . . , 8), where e j is the j-th element of the canonical
basis of R8.

The automorphism group (or symmetry group) of a lattice inRn is defined as the subgroup
of the orthogonal group O(n) that preserves the lattice. The symmetry group of the Γ8 lattice
is the Weyl/Coxeter group of type E8. This is the group generated by reflections in the
hyperplanes orthogonal to the 240 roots of the lattice. Its order is given by

|W (E8)| = 696729600 = 4! · 6! · 8!.
Even unimodular lattices can occur only in dimensions divisible by 8. In dimension 16 there
are two such lattices: one reducible, namely the direct sum of two copies of Γ8 and another
one Γ16 constructed in an analogous fashion to Γ8. In dimension 24 there are 24 such lattices,
called Niemeier lattices. The most important of these is the Leech lattice.

4.3 Leech torus

First of all we want to find a frame for R24 of vectors in the Leech lattice. A nice description
of the Leech lattice, via three copies of the lattice Γ8, with appropriate relations is suggested
in the following (see [24]).

Proposition 8 Let r1, . . . , r8 be a basis of simple roots of Γ8. There exists a rotation

R : R8 → R
8

such that

– the transformation T1 = √
2R−1 maps each ri to a vector wi,1 ∈ Γ8 whose dot product

with ri is 1;
– the transformation T2 = √

2R maps each ri to a vector wi,2 ∈ Γ8 whose dot product
with ri is 1.

For any rotation R with these properties, define the lattices L1 = T1(Γ8) and L2 = T2(Γ8).
Then the lattice consisting of all triples (a, b, c) ∈ R

24 such that:
1. a, b, c ∈ Γ8

2. a + b, a + c, b + c ∈ L1

3. a + b + c ∈ L2
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is isometric to a copy of the Leech lattice that has been rescaled by a factor of
√
2.

In [24] the author also shows that given any u ∈ Γ8, then the vectors of R24 of the form

(2u, 0, 0), (0, 2u, 0), (0, 0, 2u)

belong to the corresponding Leech lattice. In particular this proves that the Leech lattice does
not contain the hypercubic lattice of R24. Therefore given three frames U = {u1, . . . , u8},
U ′ = {u′

1, . . . , u
′
8} and U ′′ = {u′′

1, . . . , u
′′
8} of Γ8 whose vectors are orthogonal and of

minimal length, it turns out that the set

U = {2u1, . . . , 2u8, 2u′
1, . . . , 2u

′
8, 2u

′′
1, . . . , 2u

′′
8}

is a frame in the corresponding Leech lattice formed by vectors pairwise orthogonal and of
minimal length. Following the same strategy of the previous sections, we have this general-
ization of Propositions 4 and 7.

Proposition 9 Let � be a conformal transformation which maps an orthogonal frame
U = {mu1, . . . ,mu8,mu′

1, . . . ,mu′
8,mu′′

1, . . . ,mu′′
8} in R

24, with m ∈ Z (where each set
U = {u1, . . . , u8}, U ′ = {u′

1, . . . , u
′
8}, U ′′ = {u′′

1, . . . , u
′′
8} consists of pairwise orthog-

onal vectors of minimal length in Γ8) onto an orthogonal frame V of R24 formed by
vectors lv1, . . . , lv8, lv′

1, . . . , lv
′
8, v

′′
1 , . . . , lv

′′
8 with l ∈ Z (where each set V = {v1, . . . , v8},

V ′ = {v′
1, . . . , v

′
8}, V ′′ = {v′′

1 , . . . , v
′′
8 } consists of pairwise orthogonal vectors of minimal

length in Γ8) then there exist c1, . . . , ck in the hypercubic lattice of R24 such that

�(x) = l

m
MV,V ′,V ′′−1[(−1)k(c1c2 · · · ck)MU,U ′,U ′′(x)(c1c2 · · · ck)−1)] (5)

where the product of the vectors c j ’s is to be interpreted in terms of the product in the
Clifford algebraR24,0 which containsR24 as the spaceR1

24,0 and the matrices MU,U ′,U ′′ and
MV,V ′,V ′′ ′ are

MU,U ′,U ′′ =
⎛

⎝

MU 0 0
0 MU ′ 0
0 0 MU ′′

⎞

⎠ MV,V ′,V ′′ =
⎛

⎝

MV 0 0
0 MV ′ 0
0 0 MV ′′

⎞

⎠

with MU (u j ) = e j , MU ′(u′
j ) = e j , MU ′′(u′′

j ) = e j , MV (v j ) = e j , MV ′(v′
j ) = e j ,

MV ′′(v′′
j ) = e j , ( j = 1, . . . , 8), where e j is the j-th element of the canonical basis of

R
8.

The examples provided for the Γ8 lattice and the Leech lattice seem to suggest an algorithm
to detect whether a lattice which does not contain a copy of the hypercubic lattice might have
a rich group of endomorphisms. To be more precise, one starts from looking for generators of
the lattice whose length is minimal and which are pairwise orthogonal. Then if possible one
has to complete this set and form an orthogonal set of generators whose length is proportional
to the minimal one in the lattice. This condition guarantees in fact the existence of a non
trivial endomorphism of the corresponding torus.
The examples of manifolds with conformal multiplication given above are all obtained as
quotients of Rn over lattices induced by uniform and regular tessellations of Rn , in partic-
ular most of these lattices resemble the cubic or barycentric cubic tessellations in higher
dimension.

From our previous general considerations on manifolds obtained as quotients of Rn over
lattices, we can observe that these manifolds have a conformal multiplication if they are
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associated with lattices whose Voronoi regions have some non trivial symmetries as domains
ofRn . In particular this forces the lattices to have (at least) a frame of generatorswith the same
norm. Thus a manifold R

n/Λ has conformal multiplication if there exists an orthonormal
transformation of Rn (different from ±I d) which leaves invariant the Voronoi region of Λ.

We conclude by remarking that for a manifold R
n/Λ the property of having conformal

multiplication is invariant for conformal equivalence ofRn/Λ. For example the torus obtained
from the lattice FCC (whose Voronoi region is the rhombic dodecahedron) has conformal
multiplication and, thanks to Remark 3, also the tori corresponding to tessellations obtained
by octahedra or pyramids which decompose each rhombic dodecahedron have conformal
multiplications.

5 Ellipsoids andmoduli space of conformal tori

Starting from a frame F in Rn , as seen before, we can consider the n × n matrix M(F) with
the vectors of the frame as columns. It is then easy to associate to M(F) a symmetric matrix
as

SF := M(F)T · M(F)

where AT denotes the transpose of the matrix A. This symmetric matrix SF provides a
Riemannian metric on the torus Rn/ΛF since it is positive definite. The matrix SF admits a
diagonal formwith all the positive eigenvalues λ1, . . . , λn along the diagonal. In other words,
given a frame F in R

n and considered the symmetric matrix SF := M(F)T · M(F), there
exists an orthogonal matrix O ∈ O(n) such that

OM(F)OT =

⎛

⎜
⎜
⎜
⎜
⎝

λ1 0 · · · 0

0 λ1 0
...

0 0
. . . 0

0 · · · 0 λn

⎞

⎟
⎟
⎟
⎟
⎠

.

Thus any such a matrix represents an ellipsoid in Rn and its eigenvalues are regarded as the
axes or the momenta of the ellipsoid. We will denote by E(n) the set of all ellipsoids in R

n

or equivalently of all symmetric, positive-definite and real n × n matrices.
In particular for the frame F = (1, τ ) the eigenvalues of SF can be seen as the axes of the

ellipse represented by SF itself. They can be also written in terms of the coefficients of the
quadratic polynomial that has τ as a root, namely if τ is the root of τ 2 + Aτ + B = 0 with

positive imaginary part as in (2), then the eigenvalues of SF are λ1,2 = 1+B±
√

(1−B)2+A2

2 .
Observe furthermore that if one considers the frame Fk = (k, kτ) with k ∈ C not zero,

then the corresponding symmetric matrices SF and SFk are related in the following way

SFk = |k|2SF
so that the Riemannian metrics associated with these frames are conformal. A similar result
holds in any dimension.

Proposition 10 Conformally equivalent lattices inRn induce conformal Riemannian metrics
on the corresponding tori.
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Proof With the usual notation, if F1 and F2 are frames in R
n such that there exist A ∈

GL(n,R), O ∈ SO(n) and a positive real number μ so that

A M(F1) = M(F2) (μO)

then M(F1) = A−1 M(F2) (μO) which implies

SF1 = M(F1)
T M(F1) = μ2O−1M(F2)

T M(F2) O = μ2O−1SF2 O.

We conclude this section by showing the correspondence between the class of conformal
flat tori and the double coset space

C(n)
de f= SL(n,Z)\[SL(n,R)/SO(n)].

Proposition 11 The set C(n) is in 1 to 1 correspondencewith themoduli space of conformally
equivalent n-dimensional tori.

Proof The proof easily follows from Proposition 1 since two conformally equivalent toriTn
Λ1

and T
n
Λ2

correspond to the same point in C(n).

Remark 8 The (symmetric) space C(n) = SL(n,Z)\[SL(n,R)/SO(n)] can be regarded as
the Teichmüller space of n-dimensional flat tori.

From [15], we recall that SL(n,R)/SO(n) is a symmetric space of non-compact type of
rank n−1. Furthermore it can be equipped with a Riemannian metric which makes the space
of nonpositive curvature. In particular, when n = 2 the symmetric space SL(2,R)/SO(2)
can be identified with the hyperbolic (right) half-plane H2

R
which is biholomorphic to the

Poincaré disk.
The geometric interpretation of the symmetric space SL(n,R)/SO(n) is given in the

following

Proposition 12 The symmetric space of non-compact type SL(n,R)/SO(n) is in a natural
way diffeomorphic (isometric with the appropriate metrics) to the space P1(n) of positive
definite n × n symmetric matrices with determinant one.

Proof Let M(n) be the real vector space of n × n matrices. Let

P1(n) = {A ∈ M(n) : A = At , det(A) = 1, 〈Av, v〉 > 0,∀v 	= 0}
be the set of symmetric and positive-definite n × n real matrices with determinant equal to
one. Then SL(n,R) acts on P1(n) in the following way

gG(A) := GAGt , with G ∈ SL(n,R), A ∈ P1(n).

By an argument of elementary linear algebra we see that gG(A) ∈ P1(n) and that the action
is transitive. Furthermore the n×n identity matrix In belongs to P1(n) and its isotropy group
is precisely SO(n). This completes the proof.

The proof presented here appears also in [20]; notice that the result will be in accordance
with the calculus of real dimension of C(n) as in the following

Remark 9 From direct computation and from the definition of C(n) one can calculate the
real dimension of (the orbifold) C(n) as

dimR(C(n)) = n2 − 1 − n(n − 1)

2
= n(n + 1)

2
− 1.
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Remark 10 The space P1(n) is the space of non degenerate n − 1-dimensional ellipsoids of
volume 1 in R

n and also the set of positive definite quadratic forms up to a positive scaling
factor. This symmetric space has a compactification obtained by adding symmetric matrices
of determinant 0 and has a very complicated boundary.

Siegel has shown the remarkable fact that the volume (with respect to the canonical
symmetric metric) of C(n) is a function of ζ(2), . . . , ζ(n), where ζ is the Riemann’s zeta
function. This is a number-theoretical result which depends on Eisenstein series (see [14]).

In particular, using an idea of Minkowski, Siegel obtained the formula

Vol(C(n)) = n2n−1
n

∏

l=2

ζ(l)

Vol(Sl−1)
, (6)

where

Vol(Sl−1) = 2(
√

π)l

Γ (l/2)
(7)

is the volume of the (l − 1)-sphere and Γ is the Euler Gamma function.

6 Quaternionic moduli space

Let H be the non-commutative field of quaternions. We identify H with R
4 as usual and

H
n with the real vector space R

4n . Let Λ be a lattice of Hn of maximal rank. Then we
consider the quaternionic n-dimensional torus as the quotientHn/Λ. This is also a real torus
of real dimension 4n. All the examples of quaternionic tori turn out to be quaternionic affine
manifolds (see [13,23]). Here we extend the definition of biregularity for quaternionic tori
as introduced in [4] for the case n = 1.

Definition 10 Wesay that the lattices of rank4n,Λ1 andΛ2, arebiregularly equivalent if there
exist two frames F1 and F2 (in Λ1 and Λ2 respectively), Q ∈ GL+(n,H) = GL+(4n,R)

and A ∈ SL(4n,Z), such that

A M(F1) = M(F2)Q

where M(F1) and M(F2) are the matrices associated with F1 and F2 respectively.

Proposition 13 Two biregularly equivalent lattices Λ1 and Λ2 determine two quaternionic
tori which are biregularly equivalent. Moreover, the moduli space of biregularly equivalent
quaternionic tori is the orbifold

B(n)
de f= SL(4n,Z)\[GL+(4n,R)/GL(n,H)].

The argument of the proof is exactly the same as in the proof of Proposition 11.
Here we are using the canonical inclusions SL(4n,Z) ⊂ GL+(4n,R). Indeed it can be

shown that GL(n,H) can be embedded in GL(4n,R). The real dimension of B(n) is 12n2.

Remark 11 Since GL(1,H) = H\{0} = H
∗, our definition coincides with the one given in

[4] for the case of the moduli space B(1) of quaternionic one dimensional biregular tori.

The moduli space B(1) and C(4) are related by the following.

Lemma 3 B(1) is of real dimension 12 and fibers over C(4) (which is of real dimension 9)
with fiber SO(3)

p : B(1)
SO(3)−→ C(4).
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Proof The result follows immediately from the fact that SO(4) fibers over SU (2) with fiber
SO(3).

As an application we calculate the volume of B(1). From the lemma above we have
Vol(B(1)) = Vol(C(4))Vol(SO(3)) and therefore, from formula (6) we obtain the fol-
lowing

Vol(B(1)) = 16Vol(S3)
4

∏

l=2

ζ(l)

Vol(Sl−1)
= 32π2

4
∏

l=2

ζ(l)

Vol(Sl−1)

since the volume of SO(3) is 1
2Vol(S3) (in fact SU (2) double covers S3).

Now, from ζ(2) = π2

6 and ζ(4) = π4

90 and Vol(S1)Vol(S2)Vol(S3) = 16π4 we finally have

Vol(B(1)) = 1

270
π4ζ(3).

Acknowledgements The first and last authors are partially supported by ProgettoMIUR di Rilevante Interesse
Nazionale Proprietà geometriche delle varietà reali e complesse and by G.N.S.A.G.A (gruppo I.N.d.A.M).
The second author is partially supported by a PAPIIT (DGAPA, Universidad Nacional Autónoma de México)
Grant IN106817.

Funding Open Access funding provided by Universià degli Studi di Milano.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aragon-Gonzalez, G., Aragon, J.L., Rodriguez-Andrade, M.A.: The decomposition of an orthogonal
transformation as a product of reflections. J. Math. Phys. 47, 013509 (2006)

2. Birkenhake, Ch., González, V., Lange, H.: Automorphism groups of 3-dimensional complex tori. J. Reine
Angew. Math. 508, 99–125 (1999)

3. Birkenhake, Ch., Lange, H.: Complex Tori. Progress in Mathematics, vol. 177. Birkhäuser Boston Inc,
Boston (1999)

4. Bisi, C., Gentili, G.: On quaternionic tori and their moduli space. J. Noncommut. Geom. 12(2018),
473–510 (2018)

5. Blair, D.E.: Inversion Theory and Conformal Mapping. Student Mathematical Library, vol. 9. American
Mathematical Society, Providence (2000)

6. Conway, J.H., Smith, D.A.: On quaternions and octonions: their geometry, arithmetic, and symmetry.
Bull. Am. Math. Soc. 42, 229–243 (2005)

7. Conway, J.H., Smith, D.A.: On quaternions and octonions: their geometry, arithmetic, and symmetry. A
K Peters Ltd, Natick (2003)

8. Cox, D.A.: Primes of the Form x2+ny2 Fermat, Class Field Theory, and ComplexMultiplication. Wiley,
New York (1989)

9. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. With contributions by E. Bannai,
J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Grundlehren der
Mathematischen Wissenschaften, vol. 290. Springer, New York (1988)

10. Debarre, O.: Complex Tori and Abelian Varieties, Translated from the 1999 French edition by Philippe
Mazaud. SMF/AMS Texts and Monographs, vol. 11. American Mathematical Society/Société Mathéma-
tique de France, Providence/Paris (2005)

123

http://creativecommons.org/licenses/by/4.0/


562 A. Gori et al.

11. Díaz, J.P., Verjovsky, A., Vlacci, F.: Quaternionic Kleinian modular groups and arithmetic hyperbolic
orbifolds over the quaternions. Geometriae Dedicata 192(1), 127–155 (2018) https://doi.org/10.1007/
s10711-017-0288-z

12. Fujiki, A.: Finite AutomorphismsGroups of Complex Tori of Dimension 2, vol. 24, pp. 1–97. Publications
of RIMS, Kyoto University, Kyoto (1988)

13. Gentili, G., Gori, A., Sarfatti, G.: On compact affine quaternionic curves and surfaces. J. Geom. Anal.
https://doi.org/10.1007/s12220-019-00311-2 (2019)

14. Goldfeld, D.: Automorphic Forms and L-Functions for the Group GL(n,R). Cambridge Studies in
Advanced Mathematics, vol. 99. Cambridge University Press, Cambridge (2015)

15. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York
(1978)

16. Husemôller, D.: Elliptic Curves. Graduate Texts in Mathematics, vol. 111. Springer, Berlin (1987)
17. Milne, J.S.: Complex Multiplication, Notes from. https://www.jmilne.org/math/CourseNotes/CM.pdf.

Accessed 13 Jan 2021
18. Reinhardt, K.: Doctoral Thesis, Uber die Zerlegung der Ebene in Polygone (1918)
19. Silvermann, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106, 2nd edn.

Springer, Berlin (2009)
20. Schwartz, R.: The Symmetric Space for SL(n,R) Notes, vol. 27. Brown University, Providence (2013)
21. Shimizu, A.: On complex tori with many endomorphisms. Tsukuba J. Math. 8(2), 297–318 (2018)
22. Shimura, G., Taniyama, Y.: ComplexMultiplication of Abelian Varieties. Mathematical Society of Japan,

Tokyo (1961)
23. Sommese, A.J.: Quaternionic manifolds. Math. Ann. 212, 191–214 (1975)
24. Wilson, R.A.: Octonions and the Leech lattice. J. Algebra 322, 2186–2190 (2009)
25. Zagier, D.: Aspects of Complex Multiplication Notes. Berkeley University, Berkeley (2000)
26. Zorich, A.: Flat Surfaces Frontiers in Number Theory, Physics, and Geometry, vol. I, pp. 439–586.

Springer, Berlin (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10711-017-0288-z
https://doi.org/10.1007/s10711-017-0288-z
https://doi.org/10.1007/s12220-019-00311-2
https://www.jmilne.org/math/CourseNotes/CM.pdf

	A note on moduli spaces of conformal classes for flat tori of higher dimension and on their conformal multiplication
	Abstract
	1 Introduction
	2 Flat tori: lattices and tessellations in mathbbRn
	3 Complex multiplication for complex tori and further extensions
	4 Examples of tori with conformal multiplication
	4.1 Hurwitz quaternionic tori
	4.2 8 torus
	4.3 Leech torus

	5 Ellipsoids and moduli space of conformal tori
	6 Quaternionic moduli space
	Acknowledgements
	References




