

# Periodic perturbations with rotational symmetry of planar systems driven by a central force

Alessandro Fonda<sup>a,\*</sup>, Anna Chiara Gallo<sup>b</sup>

<sup>a</sup> Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, I-34127 Trieste, Italy
 <sup>b</sup> SISSA – International School for Advanced Studies, Via Bonomea 265, I-34136 Trieste, Italy

#### Abstract

We consider periodic perturbations of a central force field having a rotational symmetry, and prove the existence of nearly circular periodic orbits. We thus generalize, in the planar case, some previous bifurcation results obtained by Ambrosetti and Coti Zelati in [1]. Our results apply, in particular, to the classical Kepler problem.

### MSC: 34C25

Keywords: Kepler problem; Periodic solutions; Rotational symmetric systems

## 1. Introduction

We study the planar system

$$\ddot{x} + g(|x|)x = \varepsilon \nabla_x V(t, x), \qquad (S_\varepsilon)$$

where  $g: [0, +\infty[ \to \mathbb{R}]$  is a continuously differentiable function and  $V: \mathbb{R} \times (\mathbb{R}^2 \setminus \{0\}) \to \mathbb{R}$  is continuous, *T*-periodic in its first variable, and twice continuously differentiable in its second variable. The real number  $\varepsilon$  will be considered as a small parameter.

\* Corresponding author.

E-mail addresses: a.fonda@units.it (A. Fonda), annachiara.gallo@sissa.it (A.C. Gallo).

A particularly important special case of  $(S_{\varepsilon})$  is illustrated by the perturbed Kepler problem

$$\ddot{x} + \frac{c}{|x|^3} x = \varepsilon \nabla_x V(t, x), \qquad (K_{\varepsilon})$$

where c is a positive constant. This kind of systems has been studied by plenty of authors, mainly with the aim of finding periodic solutions: see, e.g., [1,2,4–6,8–14,17,19]. Let us describe two of these results in detail.

In 1989, Ambrosetti and Coti Zelati [1] considered system  $(K_{\varepsilon})$  in any dimension, and proved that periodic solutions of period 2T exist assuming the perturbing potential to be *even* in *x*, i.e., that

$$V(t, x) = V(t, -x)$$
, for every  $t, x$ .

Their method of proof is variational, and provides a bifurcation result from a circular solution  $x_*(t)$  of  $(K_0)$  having minimal period  $\tau_* = 2T/n$ , with *n* odd. (By *circular solution* we mean a solution whose orbit is a circle centered at the origin.) Indeed, they proved that at least three such solutions x(t) exist, satisfying the symmetry property

$$x(t+T) = -x(t)$$
, for every t.

Recently, the authors of the present paper considered in [10] the case when the perturbing force is *radially symmetric*, i.e., when  $\nabla_x V(t, x) = p(t, |x|) x$ , for some scalar function  $p : \mathbb{R} \times ]0, +\infty[ \to \mathbb{R}$ . It was proved that, if  $x_*(t)$  is a circular solution having minimal period  $\tau_*$ , and  $T/\tau_*$  is a rational number n/m which is not an integer, then near this circular solution there are mT-periodic solutions x(t) of system  $(K_{\varepsilon})$  making exactly n rotations around the origin in their period time, provided that  $|\varepsilon|$  is small enough. Moreover,  $t \mapsto |x(t)|$  is T-periodic, and  $t \mapsto \operatorname{Rot}(x, [t, t+T])$  is constant.

Let us recall here that, when  $\gamma : [\tau_1, \tau_2] \to \mathbb{R}^2$  is a curve such that  $\gamma(t) \neq 0$  for every *t*, writing  $\gamma(t) = \rho(t)(\cos\theta(t), \sin\theta(t))$ , all functions being continuous, the *rotation number* around the origin is defined as

$$\operatorname{Rot}\left(\gamma;\left[\tau_{1},\tau_{2}\right]\right)=\frac{\theta(\tau_{2})-\theta(\tau_{1})}{2\pi}\,.$$

In this paper we assume that the perturbing force has a *rotational symmetry*, i.e., there is a rotation around the origin  $\mathcal{R}$ , of angle

$$\vartheta = \frac{2\pi}{m}$$

with *m* being a positive integer, such that

$$\nabla_{x} V(t, \mathcal{R}x) = \mathcal{R} \nabla_{x} V(t, x), \quad \text{for every } t, x.$$
(1)

Notice that, if m = 1, the above assumption will be trivially satisfied.

Let  $\rho_* > 0$  be such that  $g(\rho_*) > 0$ . Then, the unperturbed equation (S<sub>0</sub>) has a circular solution  $x_*(t)$ , with  $|x_*(t)| = \rho_*$ , rotating counter-clockwise, having minimal period

$$\tau_* = \frac{2\pi}{\sqrt{g(\rho_*)}} \,. \tag{2}$$

We will ask the quotient  $T/\tau_*$  to be a rational number; more precisely, we assume that there exist some positive integers  $\ell$ , *n* for which

$$\frac{mT}{\tau_*} = \frac{n}{\ell}.$$
(3)

We then look for solutions  $x : \mathbb{R} \to \mathbb{R}^2 \setminus \{0\}$  such that

$$x(t + \ell T) = \mathcal{R}^n x(t)$$
, for every  $t$ ; (4)

these solutions are  $m\ell T$ -periodic, and rotate *n* times around the origin in their period time. Notice that, in this case,  $t \mapsto |x(t)|$  is  $\ell T$ -periodic and  $t \mapsto \operatorname{Rot}(x, [t, t + \ell T])$  is constant, precisely equal to n/m.

It will be useful to introduce the auxiliary function

$$h(\rho) = 4g(\rho) + g'(\rho)\rho.$$

Here is our main result.

**Theorem 1.** In the above setting, assume that  $g'(\rho_*) \neq 0$  and

$$h(\rho_*) \notin \left\{ \left( \frac{2\pi k}{\ell T} \right)^2 : k \in \mathbb{N} \setminus \{0\} \right\}.$$
 (5)

Then, for any  $\sigma > 0$  there exists  $\overline{\varepsilon} > 0$  such that, if  $|\varepsilon| \le \overline{\varepsilon}$ , system  $(S_{\varepsilon})$  has at least four geometrically distinct  $m\ell T$ -periodic solutions x(t) satisfying (4). Two of them rotate counter-clockwise, and are such that, for some  $\theta_1, \theta_2$  in  $[0, \tau[$ ,

$$|x(t) - x_*(t + \theta_i)| \le \sigma, \quad \text{for every } t \in \mathbb{R}.$$
(6)

The other two solutions rotate clockwise, and are such that, for some  $\theta_3, \theta_4$  in  $[0, \tau[$ ,

$$|x(t) - x_*(-t + \theta_i)| \le \sigma, \quad \text{for every } t \in \mathbb{R}.$$
(7)

When assuming (1), once a solution x(t) has been found, also  $\mathcal{R}^j x(t)$  is clearly a solution, with  $j = 1, \ldots, m-1$ . In the above statement, we say that the solutions are *geometrically distinct* if they are not related to each other in this way.

When dealing with the perturbed Kepler problem  $(K_{\varepsilon})$ , the functions  $h(\rho)$  and  $g(\rho) = c\rho^{-3}$  coincide, and we have following.

**Corollary 2.** If (3) is verified, and

$$\frac{\ell T}{\tau_*} = \frac{n}{m} \notin \mathbb{N}, \tag{8}$$

then the same conclusion of Theorem 1 holds for system  $(K_{\varepsilon})$ .

Indeed, in this case we have that  $h(\rho_*) = (2\pi/\tau_*)^2$ , so that (5) follows directly from (8). Notice that the case  $\ell = 1$ , m = 2, and n odd was treated in [1, Theorem 2.2], showing the existence of *at least three* 2*T*-periodic solutions near  $x_*(t)$ , a circular solution of the unperturbed problem having minimal period  $\tau_* = 2T/n$ , in an arbitrary dimensional space. In the planar case, there are at least four  $m\ell T$ -periodic solutions because it is possible to distinguish between two of them rotating clockwise and two counter-clockwise. On the other hand, when considering the radially symmetric situation as in [10], the integer number  $m \ge 2$  can be chosen arbitrarily. Theorem 1 thus extends [10, Corollary 4].

Now, since the minimal period of the circular orbits of the Kepler problem is strictly increasing with their radius, we may expect that, taking *any* circular orbit  $x_*(t)$  of the unperturbed system  $(K_0)$ , the assumptions of Corollary 2 will be satisfied by many circular orbits which are arbitrarily near to it. This is indeed the case, and will be established in Theorem 6 below.

The paper is organized as follows. In Section 2 we provide the proof of Theorem 1 by the use of a bifurcation result, in a variational setting. At the end of the section we will make some remarks on our choice of dealing only with the problem in dimension 2. In Section 3 we consider a generalized Kepler problem, taking  $g(\rho) = c\rho^{-\gamma}$ , for some  $\gamma > 0$ , and we provide the existence of a myriad of periodic solutions near *any* circular solution of the unperturbed system. As an example of application we propose a gravitational model of a pulsating star having some rotational symmetry.

Let us also mention that all our results still hold when V(t, x) is replaced by some  $V(t, x, \varepsilon)$ , with a smooth dependence on the parameter  $\varepsilon$ .

## 2. Proof of Theorem 1

Searching for  $m\ell T$ -periodic solutions, we will deal with the Hilbert space

$$H^{1}_{m\ell T} = \{ x \in H^{1}(0, m\ell T) : x(0) = x(m\ell T) \},\$$

equipped with the usual scalar product

$$\langle v, w \rangle = \int_{0}^{m\ell T} [\langle v(t), w(t) \rangle + \langle \dot{v}(t), \dot{w}(t) \rangle dt.$$

The elements of this space will be identified to the  $m\ell T$ -periodic continuous functions with locally square integrable weak derivative.

In order to take into account the symmetry requirement (4), we will work on the Hilbert subspace

$$\mathcal{E} = \left\{ x \in H^1_{m\ell T} : x(t + \ell T) = \mathcal{R}^n x(t), \text{ for every } t \in [0, m\ell T] \right\}.$$

Here, we recall,  $\mathcal{R}$  is a rotation around the origin of angle  $2\pi/m$ . Without loss of generality, we will assume it to be counter-clockwise, i.e., in complex notation, if  $z \in \mathbb{R}^2$ ,

$$\mathcal{R}z = e^{\frac{2\pi i}{m}}z$$

Moreover, since we are interested in solutions which never cross the origin, it will be worth introducing the open subset

$$\mathcal{E}_* = \left\{ x \in \mathcal{E} : x(t) \neq 0, \text{ for every } t \in [0, m\ell T] \right\}.$$

We look for the critical points of the functional  $\varphi_{\varepsilon} : \mathcal{E}_* \to \mathbb{R}$  defined as

$$\varphi_{\varepsilon}(x) = \int_{0}^{m\ell T} \left[\frac{1}{2}|\dot{x}(t)|^2 - F(|x(t)|) + \varepsilon V(t, x(t))\right] dt,$$

where

$$F(\rho) = \int_0^\rho sg(s)\,ds\,.$$

Indeed, we have the following information.

**Lemma 3.** Under the assumption (1), the critical points of the functional  $\varphi_{\varepsilon}$  correspond to  $m\ell T$ -periodic solutions of  $(S_{\varepsilon})$  satisfying (4).

**Proof.** Let  $x \in \mathcal{E}_*$  be a critical point of  $\varphi_{\varepsilon}$ , namely

$$\varphi_{\varepsilon}'(x)v = \int_{0}^{m\ell T} \left[ \langle \dot{x}(t), \dot{v}(t) \rangle - \langle g(|x(t)|)x(t) - \varepsilon \nabla_{x} V(t, x(t)), v(t) \rangle \right] dt = 0,$$

for every  $v \in \mathcal{E}$ . Notice that, since both x and v belong to  $\mathcal{E}$ , using (1) we have that

$$\begin{split} &\int_{0}^{m\ell T} \left[ \langle \dot{x}(t), \dot{v}(t) \rangle - \langle g(|x(t)|)x(t) - \varepsilon \nabla_{x} V(t, x(t)), v(t) \rangle \right] dt = \\ &= \sum_{j=0}^{m-1} \int_{j\ell T}^{(j+1)\ell T} \left[ \langle \dot{x}(t), \dot{v}(t) \rangle - \langle g(|x(t)|)x(t) - \varepsilon \nabla_{x} V(t, x(t)), v(t) \rangle \right] dt \\ &= \sum_{j=0}^{m-1} \int_{0}^{\ell T} \left[ \langle \dot{x}(t+j\ell T), \dot{v}(t+j\ell T) \rangle - g(|x(t+j\ell T)|) \langle x(t+j\ell T), v(t+j\ell T) \rangle \right] dt \\ &- \varepsilon \langle \nabla_{x} V(t+j\ell T, x(t+j\ell T)), v(t+j\ell T) \rangle \right] dt \end{split}$$

$$= m \int_{0}^{\ell T} \left[ \langle \dot{x}(t), \dot{v}(t) \rangle - \langle g(|x(t)|)x(t) - \varepsilon \nabla_{x} V(t, x(t)), v(t) \rangle \right] dt.$$

Hence,

$$\int_{0}^{\ell T} \left[ \langle \dot{x}(t), \dot{v}(t) \rangle - \langle g(|x(t)|)x(t) - \varepsilon \nabla_{x} V(t, x(t)), v(t) \rangle \right] dt = 0,$$

for every  $v \in H^1_{\ell T}$ , since such a function v(t) can be extended on  $[0, m\ell T]$  to a function belonging to the space  $\mathcal{E}$ . We then deduce that  $\dot{x}(t)$  has a weak derivative on  $[0, \ell T]$ , which almost everywhere coincides with  $\psi(t) = -g(|x(t)|)x(t) + \varepsilon \nabla_x V(t, x(t))$ , a continuous function. Therefore, x(t) is twice continuously differentiable on  $[0, \ell T]$ , and it is a classical solution of the differential equation  $(S_{\varepsilon})$  on  $[0, \ell T]$ . Since  $x(t + \ell T) = \mathcal{R}^n x(t)$  and (1) holds, the same conclusion is reached on every interval  $[j\ell T, (j+1)\ell T]$ , with  $j = 1, \ldots, m-1$ . Being  $\psi(t)$ continuous on the whole real line, we see that x(t) is indeed a classical  $m\ell T$ -periodic solution of  $(S_{\varepsilon})$ .  $\Box$ 

In order to state the abstract perturbation result, let us consider the symmetric bilinear form  $\varphi_0''(x)$  which associates to every pair of vectors  $v, w \in \mathcal{E}$  the real number

$$\begin{split} \varphi_0''(x)(v,w) &= \lim_{\lambda \to 0} \frac{\varphi_0'(x+\lambda w)v - \varphi_0'(x)v}{\lambda} \\ &= \int_0^{m\ell T} \left[ \langle \dot{v}, \dot{w} \rangle - \frac{g'(|x|)}{|x|} \langle x, v \rangle \langle x, w \rangle - g(|x|) \langle v, w \rangle \right] dt \end{split}$$

By the Riesz representation theorem, we associate to this bilinear form a bounded selfadjoint operator in  $\mathcal{E}$ , still denoted by  $\varphi_0''(x)$ , such that, for every  $v, w \in \mathcal{E}$ ,

$$\langle \varphi_0''(x)v, w \rangle = \varphi_0''(x)(v, w).$$

Let us now recall a well-established perturbation result which will be used in our proof (see, e.g., [3,7,15,16,18]).

**Theorem 4.** Let an open subset  $\mathcal{E}_*$  of a Hilbert space  $\mathcal{E}$  be the domain of a family of twice continuously differentiable functionals  $\varphi_{\varepsilon} : \mathcal{E}_* \to \mathbb{R}$ , depending smoothly on  $\varepsilon$ . Let  $\mathcal{Z} \subseteq \mathcal{E}_*$  be a compact manifold without boundary such that

- (i) φ'<sub>0</sub>(x) = 0, for every x ∈ Z;
  (ii) φ''<sub>0</sub>(x) is a Fredholm operator of index 0, for every x ∈ Z;
- (iii)  $T_x \mathcal{Z} = \ker \varphi_0''(x)$ , for every  $x \in \mathcal{Z}$ .

Then, there exists  $\overline{\varepsilon} > 0$  such that, if  $|\varepsilon| \le \overline{\varepsilon}$ , the functional  $\varphi_{\varepsilon}$  has at least cat( $\mathcal{Z}$ ) critical points near Z.

In the above statement, we have denoted by  $cat(\mathcal{Z})$  the Lusternik–Schnirelmann category of the topological space  $\mathcal{Z}$  with respect to itself, namely the least integer k such that  $\mathcal{Z}$  can be covered by k closed subsets of  $\mathcal{Z}$  which are contractible to a point in  $\mathcal{Z}$ .

We will apply Theorem 4 separately for the clockwise and for the counter-clockwise rotating solutions. Let us deal with those last ones, taking as Z the manifold of circular solutions with radius  $\rho_*$  of the unperturbed system ( $S_0$ ) rotating counter-clockwise. (The other case is completely analogous.) Clearly enough,  $Z \subseteq \mathcal{E}_*$ . Once we choose  $x_*(t)$ , one of such circular solutions, Z can be parametrized as a curve  $\gamma : [0, 2\pi] \rightarrow \mathcal{E}_*$ , e.g.,

$$\gamma(\theta)(t) = x_*(t+\theta) \,.$$

Hence,  $\mathcal{Z}$  is homeomorphic to  $S^1$ , and  $cat(\mathcal{Z}) = 2$ . Let us now verify the assumptions of Theorem 4.

Condition (*i*) holds since every  $x \in \mathbb{Z}$  is a solution of (S<sub>0</sub>), and hence  $\varphi'_0(x) = 0$ .

In order to prove condition (*ii*) notice that, taking  $v, \xi \in \mathcal{E}$ , one has  $\varphi_0''(x)v = \xi$  if and only if

$$\int_{0}^{m\in I} \left[ \langle \dot{v} - \dot{\xi}, \dot{w} \rangle - \left\langle \frac{g'(|x|)}{|x|} \langle x, v \rangle x + g(|x|)v + \xi, w \right\rangle \right] dt = 0,$$

for every  $w \in \mathcal{E}$ . Setting  $u = \xi - v$ , with the same argument used to prove Lemma 3 we can then deduce that u is twice continuously differentiable, and satisfies the differential equation

$$\ddot{u} - u = \frac{g'(|x|)}{|x|} \langle x, v \rangle x + (g(|x|) + 1) v.$$
(9)

By the Ascoli–Arzelà Theorem it can be proved that the linear operator  $P : \mathcal{E} \to \mathcal{E}$ , taking every  $v \in \mathcal{E}$  into the unique solution  $u \in \mathcal{E}$  of (9), is a compact operator. Being  $\varphi_0''(x) = \text{Id} + P$ , the Fredholm Alternative Theorem guarantees that  $\varphi_0''(x)$  has a finite dimensional kernel and a closed image. Since it is selfadjoint, ker  $\varphi_0''(x) = [\text{Im} \varphi_0''(x)]^{\perp}$ , and we conclude that  $\varphi_0''(x)$  is a Fredholm operator of index zero.

Finally, in order to verify (*iii*), we have to prove that  $T_x Z \supseteq \ker \varphi_0''(x)$  for every  $x \in Z$  (the other inclusion is always true because x is a critical point). So, we choose  $x \in Z$  and  $v \in \ker \varphi_0''(x)$ . Without loss of generality, we assume that  $x(0) = (\rho_*, 0)$  so that, by (3), using the complex notation,

$$x(t) = \rho_* e^{\frac{2\pi i}{\tau_*}t} = \rho_* e^{\frac{2\pi ni}{m\ell T}t}$$

We want to prove that  $v \in T_x \mathbb{Z}$ . Taking  $\theta \in \mathbb{R}$  such that  $x(t) = x_*(t + \theta)$ , i.e.,  $x = \gamma(\theta)$ , we notice that

$$T_x \mathcal{Z} = \left\{ \mu \gamma'(\theta) : \mu \in \mathbb{R} \right\} = \{ i \, \nu x : \nu \in \mathbb{R} \}.$$

Particularizing equation (9) with  $\xi = 0$ , we see that any  $v \in \ker \varphi_0''(x)$  satisfies the differential equation

$$-\ddot{v} = g(|x|)v + \frac{g'(|x|)}{|x|}\langle v, x \rangle x.$$
(10)

Here, as well, using the complex notation we write  $v : \mathbb{R} \to \mathbb{C}$ , and since we look for  $m\ell T$ -periodic solutions, we have the corresponding Fourier series

$$v(t) \sim \sum_{k \in \mathbb{Z}} c_k e^{\frac{2\pi k i}{m \ell T} t},$$

with  $c_k \in \mathbb{C}$ . Moreover, since  $v(t + \ell T) = \mathcal{R}^n v(t)$ , it has to be

$$\sum_{k\in\mathbb{Z}}c_k e^{\frac{2\pi ki}{m\ell T}(t+\ell T)} = e^{\frac{2\pi ni}{m}} \sum_{k\in\mathbb{Z}}c_k e^{\frac{2\pi ki}{m\ell T}t},$$

so that

$$c_k e^{\frac{2\pi ki}{m}} = c_k e^{\frac{2\pi ni}{m}}, \quad \text{for every } k \in \mathbb{Z},$$

hence

either 
$$c_k = 0$$
, or  $k \in n + m\mathbb{Z}$ . (11)

Now, we write equation (10) as

$$\sum_{k\in\mathbb{Z}} \left(\frac{2\pi k}{m\ell T}\right)^2 c_k e^{\frac{2\pi ki}{m\ell T}t} = g(\rho_*) \sum_{k\in\mathbb{Z}} c_k e^{\frac{2\pi ki}{m\ell T}t} + g'(\rho_*) \left\langle \sum_{k\in\mathbb{Z}} c_k e^{\frac{2\pi ki}{m\ell T}t}, \rho_* e^{\frac{2\pi ni}{m\ell T}t} \right\rangle e^{\frac{2\pi ni}{m\ell T}t}.$$

Recalling that, by (3),

$$g(\rho_*) = \left(\frac{2\pi}{\tau_*}\right)^2 = \left(\frac{2\pi n}{m\ell T}\right)^2.$$

and setting

$$\alpha = \frac{g'(\rho_*)\rho_*}{2} \left(\frac{m\ell T}{2\pi}\right)^2,$$

we get

$$\sum_{k\in\mathbb{Z}} (k^2 - n^2) c_k e^{\frac{2\pi ki}{m\ell T}t} = 2\alpha \left\langle \sum_{k\in\mathbb{Z}} c_k e^{\frac{2\pi ki}{m\ell T}t}, e^{\frac{2\pi ni}{m\ell T}t} \right\rangle e^{\frac{2\pi ni}{m\ell T}t}.$$

Remark that, having assumed  $g'(\rho_*) \neq 0$ , it follows that  $\alpha \neq 0$ , as well. Since  $\langle z_1, z_2 \rangle = \operatorname{Re}(z_1 z_2^*)$  and  $\operatorname{Re}(z) = \frac{1}{2}(z + z^*)$ , we have

$$\sum_{k \in \mathbb{Z}} (k^2 - n^2) c_k e^{\frac{2\pi ki}{m\ell T}t} = 2\alpha \operatorname{Re}\left(\sum_{k \in \mathbb{Z}} c_k e^{\frac{2\pi (k-n)i}{m\ell T}t}\right) e^{\frac{2\pi ni}{m\ell T}t}$$
$$= \alpha \sum_{k \in \mathbb{Z}} \left[ c_k e^{\frac{2\pi ki}{m\ell T}t} + c_k^* e^{\frac{2\pi (2n-k)i}{m\ell T}t} \right]$$

We then get

$$\sum_{k\in\mathbb{Z}} \left(k^2 - n^2 - \alpha\right) c_k e^{\frac{2\pi k i}{m\ell T}t} = \alpha \sum_{k\in\mathbb{Z}} c_k^* e^{\frac{2\pi (2n-k) i}{m\ell T}t},$$

which, after a shift in the indices, becomes

$$\sum_{k\in\mathbb{Z}} \left(k^2 - n^2 - \alpha\right) c_k e^{\frac{2\pi k i}{m \ell T}t} = \alpha \sum_{k\in\mathbb{Z}} c_{2n-k}^* e^{\frac{2\pi k i}{m \ell T}t}.$$

Hence, we must have that

$$(k^2 - n^2 - \alpha)c_k = \alpha c_{2n-k}^*$$
, for every  $k \in \mathbb{Z}$ .

Taking k = n, we immediately observe that  $c_n = -c_n^*$ , i.e.,  $\text{Re}(c_n) = 0$ . On the other hand, by a change of indices, we have that

$$\left((n+j)^2 - n^2 - \alpha\right)c_{n+j} = \alpha c_{n-j}^*, \quad \text{for every } j \in \mathbb{Z}.$$
(12)

So, also

$$((n-j)^2 - n^2 - \alpha)c_{n-j} = \alpha c_{n+j}^*$$
, for every  $j \in \mathbb{Z}$ ,

which is equivalent to

$$\alpha c_{n+j} = \left( (n-j)^2 - n^2 - \alpha \right) c_{n-j}^*, \quad \text{for every } j \in \mathbb{Z}.$$
(13)

We now solve the system (12)–(13). Since  $\alpha \neq 0$ , substitution yields

$$\left(j^2 - \alpha + 2nj\right)\left(j^2 - \alpha - 2nj\right)c_{n-j}^* = \alpha^2 c_{n-j}^*,$$

hence

$$\left[\left(j^2-\alpha\right)^2-4n^2j^2-\alpha^2\right]c_{n-j}^*=0\,,$$

and finally

$$j^{2}[j^{2} - 2\alpha - 4n^{2}]c_{n-j}^{*} = 0,$$
 for every  $j \in \mathbb{Z}$ . (14)

From (11) we know that  $c_{n-j} = 0$  when  $j \notin m\mathbb{Z}$ . Let now j = mp, for some  $p \in (\mathbb{Z} \setminus \{0\})$ ; since

$$2\alpha + 4n^2 = \left(\frac{m\ell T}{2\pi}\right)^2 \left(4g(\rho_*) + g'(\rho_*)\rho_*\right) = \left(\frac{m\ell T}{2\pi}\right)^2 h(\rho_*),$$

from (14) we deduce that

$$\left[p^2 - \left(\frac{\ell T}{2\pi}\right)^2 h(\rho_*)\right]c_{n-mp}^* = 0\,,$$

and assumption (5) leads to  $c_{n-mp} = 0$ . We then conclude that

$$c_k = 0$$
, for every  $k \neq n$ .

Therefore we have proved that, if  $v \in \ker \varphi_0''(x)$ , it has the form

$$v(t) = c_n e^{\frac{2\pi i n}{m\ell T}t},$$

where  $c_n$  is a pure imaginary complex number, hence it can be written as  $c_n = ib_n$  with  $b_n \in \mathbb{R}$ . Therefore,

$$v(t) = ib_n e^{\frac{2\pi in}{m\ell T}t} = i\frac{b_n}{\rho_*}x(t).$$

Hence,  $v \in T_x \mathcal{Z}$ , and this concludes the proof that (*iii*) holds true.

Theorem 1 is thus completely proved.  $\Box$ 

To end this section, let us make some considerations on our choice of restricting the problem to the dimension 2. If one considers system  $(S_{\varepsilon})$  in a higher dimension  $d \ge 3$ , a natural generalization of our symmetry condition (1) would be to assume the existence of a linear transformation  $S : \mathbb{R}^d \to \mathbb{R}^d$  for which

$$\nabla_{x} V(t, \mathcal{S}x) = \mathcal{S} \nabla_{x} V(t, x), \quad \text{for every } t, x.$$
(15)

When looking for bifurcations from the manifold of the circular solutions of  $(S_0)$  having a prescribed period  $\tau_*$ , we may consider the functional  $\varphi_{\varepsilon} : \mathcal{E}_* \to \mathbb{R}$ , as in the proof above, adapting the situation to the new space

$$\mathcal{E} = \left\{ x \in H^1_{m\ell T} : x(t + \ell T) = \mathcal{S}x(t), \text{ for every } t \in [0, m\ell T] \right\}.$$

Clearly, we need the whole manifold of circular solutions with minimal period  $\tau_*$  to be contained in  $\mathcal{E}$ . We claim that, in this case,  $\mathcal{S}$  has to be either the identity, or minus the identity.

Indeed, take a circular solution in a plane generated by two orthonormal vectors  $\vec{e}_1$  and  $\vec{e}_2$ , e.g.,

$$x(t) = \rho_*\left(\left(\cos\frac{2\pi}{\tau_*}t\right)\vec{e}_1 + \left(\sin\frac{2\pi}{\tau_*}t\right)\vec{e}_2\right).$$

It has to belong to  $\mathcal{E}$ , hence

$$\left(\cos\frac{2\pi}{\tau_*}(t+\ell T)\right)\vec{e}_1 + \left(\sin\frac{2\pi}{\tau_*}(t+\ell T)\right)\vec{e}_2 = \left(\cos\frac{2\pi}{\tau_*}t\right)\vec{S}\vec{e}_1 + \left(\sin\frac{2\pi}{\tau_*}t\right)\vec{S}\vec{e}_2$$

for every *t*. We thus see that the vectors  $S\vec{e}_1$  and  $S\vec{e}_2$  must lie on the subspace generated by  $\vec{e}_1$  and  $\vec{e}_2$ . Moreover,  $|S\vec{e}_1| = |S\vec{e}_2| = 1$ .

As a consequence of the above argument, the linear function S is an isometry, and it transforms every 2-dimensional subspace into itself. It then follows by linearity that also every 1-dimensional subspace, being the intersection of two 2-dimensional subspaces, is transformed into itself. (We have used here the fact that  $d \ge 3$ .) Then, for every  $x \in \mathbb{R}^d$ , it has to be  $Sx = \pm x$ .

Let now  $\{\vec{e}_1, \ldots, \vec{e}_d\}$  be the canonical basis of  $\mathbb{R}^d$ . By the above, the matrix associated to S is diagonal, with entries  $\pm 1$ . Assume by contradiction, e.g., that  $S\vec{e}_1 = \vec{e}_1$  and  $S\vec{e}_2 = -\vec{e}_2$ . Then  $S(\vec{e}_1 + \vec{e}_2) = \vec{e}_1 - \vec{e}_2$ , while it should be  $S(\vec{e}_1 + \vec{e}_2) = \pm(\vec{e}_1 + \vec{e}_2)$ . We thus conclude that either all diagonal entries are equal to 1, or they are all equal to -1. The claim is thus proved.

We remark once more that Ambrosetti and Coti Zelati in [1] have indeed considered perturbations of Keplerian type problems in the *d*-dimensional space assuming S = -Id, hence requiring the potential V(t, x) to be an even function of *x*.

## 3. A myriad of periodic solutions

As a variant of system  $(K_{\varepsilon})$ , we may consider the generalized Kepler problem

$$\ddot{x} + \frac{c}{|x|^{\gamma}} x = \varepsilon \nabla_x V(t, x), \qquad (\widetilde{K}_{\varepsilon})$$

where c is a positive constant, and  $\gamma \neq 0$ . We assume again that (1) holds, where  $\mathcal{R}$  is a rotation around the origin of angle  $2\pi/m$ . We fix a circular orbit  $x_*(t)$  of the unperturbed system ( $\widetilde{K}_0$ ), with radius  $\rho_*$  and minimal period  $\tau_*$ , and we assume (3), for some positive integers  $\ell$ , n. In this case, the function  $h(\rho)$  coincides with  $(4 - \gamma)g(\rho) = (4 - \gamma)c\rho^{-\gamma}$ , and we have the following immediate consequence of Theorem 1.

**Corollary 5.** If (3) is verified, and

$$(4-\gamma)\left(\frac{\ell T}{\tau_*}\right)^2 \notin \left\{k^2 : k \in \mathbb{N} \setminus \{0\}\right\},\tag{16}$$

then the same conclusion of Theorem 1 holds for system ( $\widetilde{K}_{\varepsilon}$ ).

Notice that Corollary 2 is a direct consequence of Corollary 5. However, condition (16) could be verified even if m = 1, in which case no symmetry is required on the perturbing term. This surely happens, e.g., if  $\gamma \ge 4$  or, assuming  $\gamma < 4$  and recalling (3), when  $\sqrt{4 - \gamma}$  is an irrational number.

One could ask whether a condition like (16) is really needed. Indeed, such a condition is not found in the paper by Ambrosetti and Coti Zelati [1]. However, there is an unclear point in their proof, when they deduce  $(1.14)_k$  from (1.13), claiming that  $n \pm n(4 - \gamma)^{1/2}$  cannot be an integer when  $\gamma \neq 3$ . It could be possible that a weaker nondegenerate condition would guarantee the existence of periodic solutions, but we will not investigate further this point.

Nevertheless, we will now prove the following rather surprising result.

**Theorem 6.** Assume  $\gamma > 0$  and, whenever  $\gamma = 3$ , then  $m \ge 2$ . For any circular solution  $x_*(t)$  of the unperturbed system  $(\widetilde{K}_0)$ , for any positive integer N and any  $\sigma > 0$ , there exists  $\overline{\varepsilon} > 0$  such that, if  $|\varepsilon| \le \overline{\varepsilon}$ , equation  $(\widetilde{K}_{\varepsilon})$  has at least 4N periodic solutions x(t), whose orbits are near the one of  $x_*(t)$ , in the sense of (6) or (7).

**Proof.** Making  $\rho$  vary near  $\rho_*$ , we find infinitely many of its values for which  $mT/\tau(\rho)$  is a rational number, i.e.,

$$\frac{mT}{\tau(\rho)} = \frac{n(\rho)}{\ell(\rho)},\tag{17}$$

for some positive integers  $\ell(\rho)$ ,  $n(\rho)$ . We would like to apply Corollary 5 when  $\rho_*$  and  $\tau_*$  are replaced by  $\rho$ ,  $\tau(\rho)$ , respectively. To this aim, we need to prove that condition (16) is satisfied, i.e., that

$$(4 - \gamma) \left(\frac{\ell(\rho)T}{\tau(\rho)}\right)^2 \notin \left\{k^2 : k \in \mathbb{N} \setminus \{0\}\right\},\tag{18}$$

for several values of  $\rho$  near  $\rho_*$ .

If  $\gamma \ge 4$ , then condition (18) is surely satisfied. Assume then  $\gamma < 4$ , and consider the number  $\kappa = \sqrt{4 - \gamma} / m$ . Then, by (17), condition (18) is equivalent to

$$\kappa \, \frac{\ell(\rho)mT}{\tau(\rho)} = \kappa \, n(\rho) \notin \mathbb{N} \,. \tag{19}$$

If  $\kappa$  is not rational, condition (19) is surely satisfied. Otherwise, let  $\kappa = p/q \in \mathbb{Q}$ , for some relatively prime positive integers p, q. We claim that q cannot be equal to 1. Indeed, if it were q = 1, i.e.,  $\gamma = 4 - (mp)^2$ , since m, p are positive integers, we would have two possibilities: if m = p = 1, then  $\gamma = 3$ , in which case we contradict the assumption that  $m \ge 2$ ; on the other hand, if  $m \ne 1$  or  $p \ne 1$ , then  $\gamma \le 0$ , contradicting the assumption that  $\gamma > 0$ .

Now, among all the fractions in (17) we can select only those for which  $n(\rho)$  is relatively prime with q. There are infinitely many of them, and

$$\kappa n(\rho) = p \frac{n(\rho)}{q} \notin \mathbb{N}.$$

We have then proved that condition (19) is verified by infinitely many values of  $\rho$  near  $\rho_*$ , so that the assumptions of Corollary 5 are satisfied.

Take N of these values of  $\rho$  satisfying the conditions (17) and (18) above, denote them by  $\rho_1, \ldots, \rho_N$ , and let  $x_*^1(t), \ldots, x_*^N(t)$  be some circular solutions of  $(\widetilde{K}_0)$  having those radii. By Corollary 5, there are N positive numbers  $\overline{\varepsilon}_1, \ldots, \overline{\varepsilon}_N$  such that, if  $|\varepsilon| \le \overline{\varepsilon}_j$ , equation  $(\widetilde{K}_{\varepsilon})$  has at least four periodic solutions  $x_j(t)$  whose orbit is near the one of  $x_*^j(t)$ . If  $|\varepsilon|$  is small enough, all these solutions must be different from one another, thus proving the result.  $\Box$ 

As an illustrative example of application of Corollary 5 and Theorem 6, we consider the motion of a body having zero mass under the gravitational attraction of m + 1 bodies, in the following configuration. The first of them is fixed at the origin, and has a mass equal to  $M_0$ . The



Fig. 1. The case m = 5, at three different times.

other *m* bodies move along the lines passing through the origin with angular directions  $2\pi j/m$ , with j = 1, ..., m, and have small masses equal to the same value  $\varepsilon$ . We assume that these *m* small masses move symmetrically and periodically in time (see Fig. 1).

Precisely, let  $p : \mathbb{R} \to [0, +\infty[$  be a *T*-periodic function, and denote by  $P : \mathbb{R} \to \mathbb{R}^2$  the vector-valued function P(t) = (p(t), 0). The equation of motion for our zero-mass body will then be of the type  $(K_{\varepsilon})$ , with  $c = GM_0$  (here, *G* is the universal gravitational constant), and

$$V(t,x) = \sum_{j=1}^{m} \frac{G}{|x - \mathcal{R}^j P(t)|}.$$

As usual,  $\mathcal{R}$  denotes the rotation of angle  $2\pi/m$  about the origin. It is easily seen that (1) is satisfied, so that Corollary 5 (or Corollary 2) and Theorem 6 can be applied, providing the existence of plenty of periodic orbits.

#### Acknowledgment

This work has been partially supported by the Istituto Nazionale di Alta Matematica (INdAM).

#### References

- A. Ambrosetti, V. Coti Zelati, Perturbation of Hamiltonian systems with Keplerian potentials, Math. Z. 201 (1989) 227–242.
- [2] A. Ambrosetti, V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Birkhäuser, Basel, 1993.
- [3] A. Ambrosetti, V. Coti Zelati, I. Ekeland, Symmetry breaking in Hamiltonian systems, J. Differential Equations 67 (1987) 165–184.
- [4] A. Boscaggin, R. Ortega, Periodic solutions of a perturbed Kepler problem in the plane: from existence to stability, J. Differential Equations 261 (2016) 2528–2551.
- [5] H. Cabral, C. Vidal, Periodic solutions of symmetric perturbations of the Kepler problem, J. Differential Equations 163 (2000) 76–88.
- [6] A. Capozzi, S. Solimini, S. Terracini, On a class of dynamical systems with singular potential, Nonlinear Anal. 16 (1991) 805–815.
- [7] D. Chillingworth, Bifurcation from an orbit of symmetry, in: S.N. Pnevmaticos (Ed.), Singularities and Dynamical Systems, North-Holland, Amsterdam, 1985.
- [8] B. Cordani, The Kepler Problem: Group Theoretical Aspects, Regularization and Quantization, with Application to the Study of Perturbations, Birkhäuser, Basel, 2003.

- [9] M. Degiovanni, F. Giannoni, Nonautonomous perturbations of Newtonian potentials, in: Nonlinear Variational Problems, Vol. II, Isola d'Elba, 1986, in: Pitman Res. Notes Math. Ser., vol. 193, Longman, Harlow, 1989, pp. 187–195.
- [10] A. Fonda, A.C. Gallo, Radial periodic perturbations of the Kepler problem, Celestial Mech. Dynam. Astronom. 128 (2017) 257–268.
- [11] A. Fonda, R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: a topological degree approach, J. Differential Equations 244 (2008) 3235–3264.
- [12] A. Fonda, R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc. 140 (2012) 1331–1341.
- [13] A. Fonda, R. Toader, P.J. Torres, Periodic motions in a gravitational central field with a rotating external force, Celestial Mech. Dynam. Astronom. 113 (2012) 335–342.
- [14] A. Fonda, A.J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force, Discrete Contin. Dyn. Syst. 29 (2011) 169–192.
- [15] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.
- [16] M. Reeken, Stability of critical points under small perturbations. II Analytic theory, Manuscripta Math. 8 (1973) 69–92.
- [17] E. Serra, S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal. 22 (1994) 45–62.
- [18] A. Vanderbauwhede, Local Bifurcation and Symmetry, Research Notes in Math., Pitman, New York, 1982.
- [19] C. Vidal, Periodic solutions for any planar symmetric perturbation of the Kepler problem, Celestial Mech. Dynam. Astronom. 80 (2001) 119–132.