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Abstract

We consider periodic perturbations of a central force field having a rotational symmetry, and prove the 
existence of nearly circular periodic orbits. We thus generalize, in the planar case, some previous bifurcation 
results obtained by Ambrosetti and Coti Zelati in [1]. Our results apply, in particular, to the classical Kepler 
problem.
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1. Introduction

We study the planar system

ẍ + g(|x|) x = ε∇xV (t, x) , (Sε)

where g : ]0, +∞[ → R is a continuously differentiable function and V : R × (R2 \ {0}) → R

is continuous, T -periodic in its first variable, and twice continuously differentiable in its second 
variable. The real number ε will be considered as a small parameter.
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A particularly important special case of (Sε) is illustrated by the perturbed Kepler problem

ẍ + c

|x|3 x = ε∇xV (t, x) , (Kε)
where c is a positive constant. This kind of systems has been studied by plenty of authors, mainly 
with the aim of finding periodic solutions: see, e.g., [1,2,4–6,8–14,17,19]. Let us describe two of 
these results in detail.

In 1989, Ambrosetti and Coti Zelati [1] considered system (Kε) in any dimension, and proved 
that periodic solutions of period 2T exist assuming the perturbing potential to be even in x, i.e., 
that

V (t, x) = V (t,−x) , for every t, x .

Their method of proof is variational, and provides a bifurcation result from a circular solution 
x∗(t) of (K0) having minimal period τ∗ = 2T/n, with n odd. (By circular solution we mean a 
solution whose orbit is a circle centered at the origin.) Indeed, they proved that at least three such 
solutions x(t) exist, satisfying the symmetry property

x(t + T ) = −x(t) , for every t .

Recently, the authors of the present paper considered in [10] the case when the perturb-
ing force is radially symmetric, i.e., when ∇xV (t, x) = p(t, |x|) x, for some scalar function 
p : R× ]0, +∞[ →R. It was proved that, if x∗(t) is a circular solution having minimal period τ∗, 
and T/τ∗ is a rational number n/m which is not an integer, then near this circular solution there 
are mT -periodic solutions x(t) of system (Kε) making exactly n rotations around the origin in 
their period time, provided that |ε| is small enough. Moreover, t �→ |x(t)| is T -periodic, and 
t �→ Rot(x, [t, t + T ]) is constant.

Let us recall here that, when γ : [τ1, τ2] → R2 is a curve such that γ (t) �= 0 for every t , writing 
γ (t) = ρ(t)(cos θ(t), sin θ(t)), all functions being continuous, the rotation number around the 
origin is defined as

Rot (γ ; [τ1, τ2]) = θ(τ2) − θ(τ1)

2π
.

In this paper we assume that the perturbing force has a rotational symmetry, i.e., there is a 
rotation around the origin R, of angle

ϑ = 2π

m
,

with m being a positive integer, such that

∇xV (t,Rx) =R∇xV (t, x) , for every t, x . (1)

Notice that, if m = 1, the above assumption will be trivially satisfied.
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Let ρ∗ > 0 be such that g(ρ∗) > 0. Then, the unperturbed equation (S0) has a circular solution 
x∗(t), with |x∗(t)| = ρ∗, rotating counter-clockwise, having minimal period
τ∗ = 2π√
g(ρ∗)

. (2)

We will ask the quotient T/τ∗ to be a rational number; more precisely, we assume that there exist 
some positive integers 	, n for which

mT

τ∗
= n

	
. (3)

We then look for solutions x : R → R2 \ {0} such that

x(t + 	T ) =Rnx(t) , for every t ; (4)

these solutions are m	T -periodic, and rotate n times around the origin in their period time. Notice 
that, in this case, t �→ |x(t)| is 	T -periodic and t �→ Rot(x, [t, t + 	T ]) is constant, precisely 
equal to n/m.

It will be useful to introduce the auxiliary function

h(ρ) = 4g(ρ) + g′(ρ)ρ .

Here is our main result.

Theorem 1. In the above setting, assume that g′(ρ∗) �= 0 and

h(ρ∗) /∈
{(

2πk

	T

)2

: k ∈ N \ {0}
}

. (5)

Then, for any σ > 0 there exists ε̄ > 0 such that, if |ε| ≤ ε̄, system (Sε) has at least four geomet-
rically distinct m	T -periodic solutions x(t) satisfying (4). Two of them rotate counter-clockwise, 
and are such that, for some θ1, θ2 in [0, τ [ ,

|x(t) − x∗(t + θi)| ≤ σ , for every t ∈ R . (6)

The other two solutions rotate clockwise, and are such that, for some θ3, θ4 in [0, τ [ ,

|x(t) − x∗(−t + θi)| ≤ σ , for every t ∈ R . (7)

When assuming (1), once a solution x(t) has been found, also Rj x(t) is clearly a solution, 
with j = 1, . . . , m −1. In the above statement, we say that the solutions are geometrically distinct
if they are not related to each other in this way.

When dealing with the perturbed Kepler problem (Kε), the functions h(ρ) and g(ρ) = cρ−3

coincide, and we have following.
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Corollary 2. If (3) is verified, and

	T = n
/∈N , (8)
τ∗ m

then the same conclusion of Theorem 1 holds for system (Kε).

Indeed, in this case we have that h(ρ∗) = (2π/τ∗)2, so that (5) follows directly from (8). 
Notice that the case 	 = 1, m = 2, and n odd was treated in [1, Theorem 2.2], showing the 
existence of at least three 2T -periodic solutions near x∗(t), a circular solution of the unperturbed 
problem having minimal period τ∗ = 2T/n, in an arbitrary dimensional space. In the planar case, 
there are at least four m	T -periodic solutions because it is possible to distinguish between two 
of them rotating clockwise and two counter-clockwise. On the other hand, when considering 
the radially symmetric situation as in [10], the integer number m ≥ 2 can be chosen arbitrarily. 
Theorem 1 thus extends [10, Corollary 4].

Now, since the minimal period of the circular orbits of the Kepler problem is strictly increas-
ing with their radius, we may expect that, taking any circular orbit x∗(t) of the unperturbed 
system (K0), the assumptions of Corollary 2 will be satisfied by many circular orbits which are 
arbitrarily near to it. This is indeed the case, and will be established in Theorem 6 below.

The paper is organized as follows. In Section 2 we provide the proof of Theorem 1 by the 
use of a bifurcation result, in a variational setting. At the end of the section we will make some 
remarks on our choice of dealing only with the problem in dimension 2. In Section 3 we con-
sider a generalized Kepler problem, taking g(ρ) = cρ−γ , for some γ > 0, and we provide the 
existence of a myriad of periodic solutions near any circular solution of the unperturbed system. 
As an example of application we propose a gravitational model of a pulsating star having some 
rotational symmetry.

Let us also mention that all our results still hold when V (t, x) is replaced by some V (t, x, ε), 
with a smooth dependence on the parameter ε.

2. Proof of Theorem 1

Searching for m	T -periodic solutions, we will deal with the Hilbert space

H 1
m	T = {x ∈ H 1(0,m	T ) : x(0) = x(m	T )} ,

equipped with the usual scalar product

〈v, w〉 =
m	T∫
0

[〈v(t), w(t)〉 + 〈v̇(t), ẇ(t)〉 dt .

The elements of this space will be identified to the m	T -periodic continuous functions with 
locally square integrable weak derivative.

In order to take into account the symmetry requirement (4), we will work on the Hilbert 
subspace

E =
{
x ∈ H 1

m	T : x(t + 	T ) =Rnx(t), for every t ∈ [0,m	T ]
}

.
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Here, we recall, R is a rotation around the origin of angle 2π/m. Without loss of generality, we 
will assume it to be counter-clockwise, i.e., in complex notation, if z ∈ R2,

2πi
m
Rz = e z .

Moreover, since we are interested in solutions which never cross the origin, it will be worth 
introducing the open subset

E∗ = {
x ∈ E : x(t) �= 0, for every t ∈ [0,m	T ]} .

We look for the critical points of the functional ϕε : E∗ → R defined as

ϕε(x) =
m	T∫
0

[
1
2 |ẋ(t)|2 − F(|x(t)|) + εV (t, x(t))

]
dt ,

where

F(ρ) =
ρ∫

0

sg(s) ds .

Indeed, we have the following information.

Lemma 3. Under the assumption (1), the critical points of the functional ϕε correspond to 
m	T -periodic solutions of (Sε) satisfying (4).

Proof. Let x ∈ E∗ be a critical point of ϕε, namely

ϕ′
ε(x)v =

m	T∫
0

[〈ẋ(t), v̇(t)〉 − 〈g(|x(t)|)x(t) − ε∇xV (t, x(t)), v(t)〉]dt = 0 ,

for every v ∈ E . Notice that, since both x and v belong to E , using (1) we have that

m	T∫
0

[〈ẋ(t), v̇(t)〉 − 〈g(|x(t)|)x(t) − ε∇xV (t, x(t)), v(t)〉]dt =

=
m−1∑
j=0

(j+1)	T∫
j	T

[〈ẋ(t), v̇(t)〉 − 〈g(|x(t)|)x(t) − ε∇xV (t, x(t)), v(t)〉]dt

=
m−1∑
j=0

	T∫
0

[〈ẋ(t + j	T ), v̇(t + j	T )〉 − g(|x(t + j	T )|)〈x(t + j	T ), v(t + j	T )〉

−ε〈∇xV (t + j	T , x(t + j	T )), v(t + j	T )〉]dt

5
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= m

	T∫
0

[〈ẋ(t), v̇(t)〉 − 〈g(|x(t)|)x(t) − ε∇xV (t, x(t)), v(t)〉]dt .
Hence,

	T∫
0

[〈ẋ(t), v̇(t)〉 − 〈g(|x(t)|)x(t) − ε∇xV (t, x(t)), v(t)〉]dt = 0 ,

for every v ∈ H 1
	T , since such a function v(t) can be extended on [0, m	T ] to a function be-

longing to the space E . We then deduce that ẋ(t) has a weak derivative on [0, 	T ], which 
almost everywhere coincides with ψ(t) = −g(|x(t)|)x(t) + ε∇xV (t, x(t)), a continuous func-
tion. Therefore, x(t) is twice continuously differentiable on [0, 	T ], and it is a classical solution 
of the differential equation (Sε) on [0, 	T ]. Since x(t + 	T ) = Rnx(t) and (1) holds, the same 
conclusion is reached on every interval [j	T , (j + 1)	T ], with j = 1, . . . , m − 1. Being ψ(t)

continuous on the whole real line, we see that x(t) is indeed a classical m	T -periodic solution 
of (Sε). �

In order to state the abstract perturbation result, let us consider the symmetric bilinear form 
ϕ′′

0 (x) which associates to every pair of vectors v, w ∈ E the real number

ϕ′′
0 (x)(v,w) = lim

λ→0

ϕ′
0(x + λw)v − ϕ′

0(x)v

λ

=
m	T∫
0

[
〈v̇, ẇ〉 − g′(|x|)

|x| 〈x, v〉〈x,w〉 − g(|x|)〈v,w〉
]
dt

By the Riesz representation theorem, we associate to this bilinear form a bounded selfadjoint 
operator in E , still denoted by ϕ′′

0 (x), such that, for every v, w ∈ E ,

〈ϕ′′
0 (x)v,w〉 = ϕ′′

0 (x)(v,w).

Let us now recall a well-established perturbation result which will be used in our proof (see, 
e.g., [3,7,15,16,18]).

Theorem 4. Let an open subset E∗ of a Hilbert space E be the domain of a family of twice 
continuously differentiable functionals ϕε : E∗ → R, depending smoothly on ε. Let Z ⊆ E∗ be a 
compact manifold without boundary such that

(i) ϕ′
0(x) = 0, for every x ∈ Z;

(ii) ϕ′′
0 (x) is a Fredholm operator of index 0, for every x ∈ Z;

(iii) TxZ = kerϕ′′
0 (x), for every x ∈ Z .

Then, there exists ε̄ > 0 such that, if |ε| ≤ ε̄, the functional ϕε has at least cat(Z) critical points 
near Z .

6



A. Fonda, A.C. Gallo / J. Differential Equations 264 (2018) 7055–7068 7061

In the above statement, we have denoted by cat(Z) the Lusternik–Schnirelmann category of 
the topological space Z with respect to itself, namely the least integer k such that Z can be 
covered by k closed subsets of Z which are contractible to a point in Z .
We will apply Theorem 4 separately for the clockwise and for the counter-clockwise rotating 
solutions. Let us deal with those last ones, taking as Z the manifold of circular solutions with ra-
dius ρ∗ of the unperturbed system (S0) rotating counter-clockwise. (The other case is completely 
analogous.) Clearly enough, Z ⊆ E∗. Once we choose x∗(t), one of such circular solutions, Z
can be parametrized as a curve γ : [0, 2π ] → E∗, e.g.,

γ (θ)(t) = x∗(t + θ) .

Hence, Z is homeomorphic to S1, and cat(Z) = 2. Let us now verify the assumptions of Theo-
rem 4.

Condition (i) holds since every x ∈Z is a solution of (S0), and hence ϕ′
0(x) = 0.

In order to prove condition (ii) notice that, taking v, ξ ∈ E , one has ϕ′′
0 (x)v = ξ if and only if

m	T∫
0

[
〈v̇ − ξ̇ , ẇ〉 −

〈
g′(|x|)

|x| 〈x, v〉x + g(|x|)v + ξ,w

〉]
dt = 0 ,

for every w ∈ E . Setting u = ξ − v, with the same argument used to prove Lemma 3 we can then 
deduce that u is twice continuously differentiable, and satisfies the differential equation

ü − u = g′(|x|)
|x| 〈x, v〉x + (g(|x|) + 1) v . (9)

By the Ascoli–Arzelà Theorem it can be proved that the linear operator P : E → E , taking every 
v ∈ E into the unique solution u ∈ E of (9), is a compact operator. Being ϕ′′

0 (x) = Id + P , the
Fredholm Alternative Theorem guarantees that ϕ′′

0 (x) has a finite dimensional kernel and a closed
image. Since it is selfadjoint, kerϕ′′

0 (x) = [Imϕ′′
0 (x)]⊥, and we conclude that ϕ′′

0 (x) is a Fredholm
operator of index zero.

Finally, in order to verify (iii), we have to prove that TxZ ⊇ kerϕ′′
0 (x) for every x ∈ Z

(the other inclusion is always true because x is a critical point). So, we choose x ∈ Z and v ∈
kerϕ′′

0 (x). Without loss of generality, we assume that x(0) = (ρ∗, 0) so that, by (3), using the
complex notation,

x(t) = ρ∗e
2πi
τ∗ t = ρ∗e

2πni
m	T

t .

We want to prove that v ∈ TxZ . Taking θ ∈ R such that x(t) = x∗(t + θ), i.e., x = γ (θ), we 
notice that

TxZ = {
μγ ′(θ) : μ ∈R

} = {iνx : ν ∈R}.

Particularizing equation (9) with ξ = 0, we see that any v ∈ kerϕ′′
0 (x) satisfies the differential

equation

7
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−v̈ = g(|x|) v + g′(|x|)
|x| 〈v, x〉x . (10)

Here, as well, using the complex notation we write v : R → C, and since we look for 

m	T -periodic solutions, we have the corresponding Fourier series

v(t) ∼
∑
k∈Z

cke
2πki
m	T

t ,

with ck ∈ C. Moreover, since v(t + 	T ) = Rnv(t), it has to be∑
k∈Z

cke
2πki
m	T

(t+	T ) = e
2πni
m

∑
k∈Z

cke
2πki
m	T

t ,

so that

cke
2πki
m = cke

2πni
m , for every k ∈ Z,

hence

either ck = 0 , or k ∈ n + mZ . (11)

Now, we write equation (10) as

∑
k∈Z

(
2πk

m	T

)2

cke
2πki
m	T

t = g(ρ∗)
∑
k∈Z

cke
2πki
m	T

t + g′(ρ∗)
〈∑

k∈Z
cke

2πki
m	T

t , ρ∗ e
2πni
m	T

t

〉
e

2πni
m	T

t .

Recalling that, by (3),

g(ρ∗) =
(

2π

τ∗

)2

=
(

2πn

m	T

)2

,

and setting

α = g′(ρ∗)ρ∗
2

(
m	T

2π

)2

,

we get

∑
k∈Z

(k2 − n2)cke
2πki
m	T

t = 2α

〈∑
k∈Z

cke
2πki
m	T

t , e
2πni
m	T

t

〉
e

2πni
m	T

t .

Remark that, having assumed g′(ρ∗) �= 0, it follows that α �= 0, as well. Since 〈z1, z2〉 = Re(z1z
∗
2)

and Re(z) = 1
2 (z + z∗), we have

8
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∑
k∈Z

(k2 − n2)cke
2πki
m	T

t = 2α Re

(∑
k∈Z

cke
2π(k−n)i

m	T
t

)
e

2πni
m	T

t

∑[
2πki
m	T

t ∗ 2π(2n−k)i
m	T

t
]

= α

k∈Z
cke + cke .

We then get ∑
k∈Z

(
k2 − n2 − α

)
cke

2πki
m	T

t = α
∑
k∈Z

c∗
ke

2π(2n−k)i
m	T

t ,

which, after a shift in the indices, becomes∑
k∈Z

(
k2 − n2 − α

)
cke

2πki
m	T

t = α
∑
k∈Z

c∗
2n−ke

2πki
m	T

t .

Hence, we must have that(
k2 − n2 − α

)
ck = αc∗

2n−k , for every k ∈ Z .

Taking k = n, we immediately observe that cn = −c∗
n, i.e., Re(cn) = 0. On the other hand, by a 

change of indices, we have that(
(n + j)2 − n2 − α

)
cn+j = αc∗

n−j , for every j ∈ Z . (12)

So, also (
(n − j)2 − n2 − α

)
cn−j = αc∗

n+j , for every j ∈ Z ,

which is equivalent to

αcn+j =
(
(n − j)2 − n2 − α

)
c∗
n−j , for every j ∈ Z. (13)

We now solve the system (12)–(13). Since α �= 0, substitution yields(
j2 − α + 2nj

)(
j2 − α − 2nj

)
c∗
n−j = α2c∗

n−j ,

hence [(
j2 − α

)2 − 4n2j2 − α2
]

c∗
n−j = 0 ,

and finally

j2[j2 − 2α − 4n2]c∗
n−j = 0, for every j ∈ Z . (14)

From (11) we know that cn−j = 0 when j /∈ mZ. Let now j = mp, for some p ∈ (Z \ {0}); since

9
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2α + 4n2 =
(

m	T

2π

)2 (
4g(ρ∗) + g′(ρ∗)ρ∗

) =
(

m	T

2π

)2

h(ρ∗) ,

from (14) we deduce that
[
p2 −

(
	T

2π

)2

h(ρ∗)
]
c∗
n−mp = 0 ,

and assumption (5) leads to cn−mp = 0. We then conclude that

ck = 0, for every k �= n.

Therefore we have proved that, if v ∈ kerϕ′′
0 (x), it has the form

v(t) = cne
2πin
m	T

t ,

where cn is a pure imaginary complex number, hence it can be written as cn = ibn with bn ∈ R. 
Therefore,

v(t) = ibne
2πin
m	T

t = i
bn

ρ∗
x(t) .

Hence, v ∈ TxZ , and this concludes the proof that (iii) holds true.
Theorem 1 is thus completely proved. �
To end this section, let us make some considerations on our choice of restricting the problem 

to the dimension 2. If one considers system (Sε) in a higher dimension d ≥ 3, a natural general-
ization of our symmetry condition (1) would be to assume the existence of a linear transformation 
S : Rd → Rd for which

∇xV (t,Sx) = S∇xV (t, x) , for every t, x . (15)

When looking for bifurcations from the manifold of the circular solutions of (S0) having a pre-
scribed period τ∗, we may consider the functional ϕε : E∗ → R, as in the proof above, adapting 
the situation to the new space

E =
{
x ∈ H 1

m	T : x(t + 	T ) = Sx(t), for every t ∈ [0,m	T ]
}

.

Clearly, we need the whole manifold of circular solutions with minimal period τ∗ to be contained 
in E . We claim that, in this case, S has to be either the identity, or minus the identity.

Indeed, take a circular solution in a plane generated by two orthonormal vectors �e1 and �e2, 
e.g.,

x(t) = ρ∗
((

cos
2π

τ∗
t
)
�e1 +

(
sin

2π

τ∗
t
)
�e2

)
.

It has to belong to E , hence

10
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(
cos

2π

τ∗
(t + 	T )

)
�e1 +

(
sin

2π

τ∗
(t + 	T )

)
�e2 =

(
cos

2π

τ∗
t
)
S�e1 +

(
sin

2π

τ∗
t
)
S�e2 ,

for every t . We thus see that the vectors S�e1 and S�e2 must lie on the subspace generated by �e1

and �e2. Moreover, |S�e1| = |S�e2| = 1.

As a consequence of the above argument, the linear function S is an isometry, and it trans-
forms every 2-dimensional subspace into itself. It then follows by linearity that also every 
1-dimensional subspace, being the intersection of two 2-dimensional subspaces, is transformed 
into itself. (We have used here the fact that d ≥ 3.) Then, for every x ∈ Rd , it has to be Sx = ±x.

Let now {�e1, . . . , �ed} be the canonical basis of Rd . By the above, the matrix associated to S
is diagonal, with entries ±1. Assume by contradiction, e.g., that S�e1 = �e1 and S�e2 = −�e2. Then 
S(�e1 + �e2) = �e1 − �e2, while it should be S(�e1 + �e2) = ±(�e1 + �e2). We thus conclude that either 
all diagonal entries are equal to 1, or they are all equal to −1. The claim is thus proved.

We remark once more that Ambrosetti and Coti Zelati in [1] have indeed considered perturba-
tions of Keplerian type problems in the d-dimensional space assuming S = −Id, hence requiring 
the potential V (t, x) to be an even function of x.

3. A myriad of periodic solutions

As a variant of system (Kε), we may consider the generalized Kepler problem

ẍ + c

|x|γ x = ε∇xV (t, x) , (K̃ε)

where c is a positive constant, and γ �= 0. We assume again that (1) holds, where R is a rotation 
around the origin of angle 2π/m. We fix a circular orbit x∗(t) of the unperturbed system (K̃0),
with radius ρ∗ and minimal period τ∗, and we assume (3), for some positive integers 	, n. In this 
case, the function h(ρ) coincides with (4 − γ )g(ρ) = (4 − γ )cρ−γ , and we have the following 
immediate consequence of Theorem 1.

Corollary 5. If (3) is verified, and

(4 − γ )

(
	T

τ∗

)2

/∈
{
k2 : k ∈N \ {0}

}
, (16)

then the same conclusion of Theorem 1 holds for system (K̃ε).

Notice that Corollary 2 is a direct consequence of Corollary 5. However, condition (16) could 
be verified even if m = 1, in which case no symmetry is required on the perturbing term. This
surely happens, e.g., if γ ≥ 4 or, assuming γ < 4 and recalling (3), when 

√
4 − γ is an irrational 

number.
One could ask whether a condition like (16) is really needed. Indeed, such a condition is not 

found in the paper by Ambrosetti and Coti Zelati [1]. However, there is an unclear point in their 
proof, when they deduce (1.14)k from (1.13), claiming that n ±n(4 − γ )1/2 cannot be an integer 
when γ �= 3. It could be possible that a weaker nondegenerate condition would guarantee the 
existence of periodic solutions, but we will not investigate further this point.

Nevertheless, we will now prove the following rather surprising result.

11
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Theorem 6. Assume γ > 0 and, whenever γ = 3, then m ≥ 2. For any circular solution x∗(t) of 
the unperturbed system (K̃0), for any positive integer N and any σ > 0, there exists ε̄ > 0 such
that, if |ε| ≤ ε̄, equation (K̃ε) has at least 4N periodic solutions x(t), whose orbits are near the

one of x∗(t), in the sense of (6) or (7).

Proof. Making ρ vary near ρ∗, we find infinitely many of its values for which mT/τ(ρ) is a 
rational number, i.e.,

mT

τ(ρ)
= n(ρ)

	(ρ)
, (17)

for some positive integers 	(ρ), n(ρ). We would like to apply Corollary 5 when ρ∗ and τ∗ are 
replaced by ρ, τ(ρ), respectively. To this aim, we need to prove that condition (16) is satisfied, 
i.e., that

(4 − γ )

(
	(ρ)T

τ(ρ)

)2

/∈
{
k2 : k ∈N \ {0}

}
, (18)

for several values of ρ near ρ∗.
If γ ≥ 4, then condition (18) is surely satisfied. Assume then γ < 4, and consider the number 

κ = √
4 − γ /m. Then, by (17), condition (18) is equivalent to

κ
	(ρ)mT

τ(ρ)
= κ n(ρ) /∈N . (19)

If κ is not rational, condition (19) is surely satisfied. Otherwise, let κ = p/q ∈ Q, for some 
relatively prime positive integers p, q . We claim that q cannot be equal to 1. Indeed, if it were 
q = 1, i.e., γ = 4 − (mp)2, since m, p are positive integers, we would have two possibilities: 
if m = p = 1, then γ = 3, in which case we contradict the assumption that m ≥ 2; on the other 
hand, if m �= 1 or p �= 1, then γ ≤ 0, contradicting the assumption that γ > 0.

Now, among all the fractions in (17) we can select only those for which n(ρ) is relatively 
prime with q . There are infinitely many of them, and

κ n(ρ) = p
n(ρ)

q
/∈N .

We have then proved that condition (19) is verified by infinitely many values of ρ near ρ∗, so 
that the assumptions of Corollary 5 are satisfied.

Take N of these values of ρ satisfying the conditions (17) and (18) above, denote them by 
ρ1, . . . , ρN , and let x1∗(t), . . . , xN∗ (t) be some circular solutions of (K̃0) having those radii. By
Corollary 5, there are N positive numbers ε̄1, . . . , ̄εN such that, if |ε| ≤ ε̄j , equation (K̃ε) has at

least four periodic solutions xj (t) whose orbit is near the one of xj∗ (t). If |ε| is small enough, all 
these solutions must be different from one another, thus proving the result. �

As an illustrative example of application of Corollary 5 and Theorem 6, we consider the 
motion of a body having zero mass under the gravitational attraction of m + 1 bodies, in the 
following configuration. The first of them is fixed at the origin, and has a mass equal to M0. The 

12
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Fig. 1. The case m = 5, at three different times.

other m bodies move along the lines passing through the origin with angular directions 2πj/m, 
with j = 1, . . . , m, and have small masses equal to the same value ε. We assume that these m
small masses move symmetrically and periodically in time (see Fig. 1).

Precisely, let p : R → [0, +∞[ be a T -periodic function, and denote by P : R → R2 the 
vector-valued function P(t) = (p(t), 0). The equation of motion for our zero-mass body will 
then be of the type (Kε), with c = GM0 (here, G is the universal gravitational constant), and

V (t, x) =
m∑

j=1

G

|x −RjP (t)| .

As usual, R denotes the rotation of angle 2π/m about the origin. It is easily seen that (1) is satis-
fied, so that Corollary 5 (or Corollary 2) and Theorem 6 can be applied, providing the existence 
of plenty of periodic orbits.
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