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Abstract
We investigate the rational approximation of fractional powers of unbounded positive
operators attainable with a specific integral representation of the operator function.We
provide accurate error bounds by exploiting classical results in approximation theory
involving Padé approximants. The analysis improves some existing results and the
numerical experiments proves its accuracy.
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1 Introduction

Let H be a separable Hilbert space endowed with an inner product 〈·, ·〉 and cor-
responding norm ‖x‖H = 〈x, x〉1/2 . Let L be a self-adjoint positive operator with
spectrum σ(L) ⊆ [c,+∞), c > 0. Moreover, assume that L has compact inverse.
This paper deals with the numerical approximation of L−α, 0 < α < 1, that, in this
setting, can be defined through the spectral decomposition, i.e.,
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2 L. Aceto, P. Novati

L−αu =
∞∑

s=1

μ−α
s 〈u, ϕs〉 ϕs,

where {ϕs}∞s=1 is the orthonormal system of eigenfunctions of L and {μs}∞s=1 is the
corresponding sequence of positive real eigenvalues (arranged in order of increasing
magnitude and counted according to their multiplicities). ClearlyL−α is a self-adjoint
compact operator on H. Since the function λ−α is continuous in [μ1,+∞), we have
that (see e.g. [22, Theorem 1.7.7])

∥∥L−α
∥∥H→H = sup

λ∈σ(L)

∣∣λ−α
∣∣ = μ−α

1 ,

where ‖·‖H→H denotes the operator norm induced by ‖·‖H .

An important and widely studied example comes from certain fractional models
involving the symmetric space fractional derivative (−Δ)β/2 of order β (1 < β ≤ 2)
[17]; in this situation the fractional power is generally approximated through the
approximation of (−Δ)β/2−1 [16].

A standard approach to approximate L−α is by means of L−α
N where LN is a

finite dimensional self-adjoint positive operator representing a discretization of L.

Clearly, improving the sharpness of the discretization the typical situation is that
λmin(LN ) → μ1 and λmax(LN ) → +∞ (λmin(LN ) and λmax(LN ) denoting the
smallest and the largest eigenvalues of LN ).

In this framework, in order to compute L−α
N it is quite natural to employ rational

forms. For instance, in [14,15] some rational approximations are obtained by consid-
ering the best uniform rational approximation of λ1−α and λα on the interval [0, 1].
Beside, other well established techniques are the ones based on existing integral rep-
resentations of the Markov function λ−α and then on the use of suitable quadrature
rules that finally lead to rational approximations of the type

L−α
N ≈ Rk−1,k(LN ), Rk−1,k(λ) = pk−1(λ)

qk(λ)
, pk−1 ∈ Πk−1, qk ∈ Πk,

where Π j denotes the set of polynomials of degree j (see e.g. [5,11,20]).
In this setting, in [1–3] the rational forms arise from the use of the Gauss–Jacobi

rule for computing the integral representation (see [4, Eq. (V.4) p. 116])

L−α = sin(απ)

(1 − α)π

∫ ∞

0
(ρ1/(1−α) I + L)−1dρ, (1)

after the change of variable

ρ1/(1−α) = τ
1 − t

1 + t
, τ > 0. (2)
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Working in finite dimension, the asymptotically optimal choice of the parameter τ ,
yields an error of type

O
(
exp
(
−4k 4

√
λmin(LN )/λmax(LN )

))
, (3)

where k is the number of points of the quadrature rule, corresponding to aRk−1,k(λ)

rational form. Of course 4
√

λmin(LN )/λmax(LN ) → 0 improving the quality of the
discretization so that (3) becomes meaningless whenever LN represents an arbitrarily
sharp discretization of L.

The basic aim of the present work is to overcome this problem by working in
the infinite dimensional setting. Using the fact that the Gauss–Jacobi quadrature on
Markov functions is related to the Padé approximation, we derive an expression for
the truncation error λ−α − Rk−1,k(λ) := λ−α − τ−αRk−1,k(λ/τ) (here Rk−1,k(λ/τ)

denotes the (k − 1, k)-Padé approximant of (λ/τ)−α), that leads to an alternative
definition of the parameter τ independent of the discretization and, at the same time,
ensuring an asymptotically optimal rate of convergence. In particular, we are able
to show that the quadrature nodes for (1) can be defined so that the error for the
computation of L−α decays approximatively like

∥∥∥∥L−α − τ−αRk−1,k

(L
τ

)∥∥∥∥H→H
≈ sin(απ)c−α

(
2ke1/2

α

)−4α

,

and therefore sublinearly. Qualitatively, a similar behavior can also been observed by
workingwith rationalKrylovmethods to approximate the action of functions involving
L−α (see, e.g., [19]), in which the error decays like k−p, where p > 0 depends on
the function. The sublinearity appears when considering unbounded spectra. Using
the analysis for unbounded operators, we also show how to improve quantitatively
(3) whenever we assume to work with LN . The key point consists in taking τ in (2)
dependent on k.

We remark that all the theory here developed can be easily employed to compute
the action of the unbounded operatorL1−α on a vector f ∈ D(L) (D(L) is the domain
of L ), that is L1−α f . This may occur for instance when solving equations involving
the above mentioned fractional Laplacian. In this situation, after evaluating g = L f ,
L1−α f can be computed using our analysis on L−αg. Nevertheless, the poles of the
rational forms here derived can also be used to compute L−αg by means of a rational
Krylov method.

Finally, since the subject of this paper is closely related to matrix pth roots, we
mention here [6,8,9,21,23] in which other approaches such as the Newton method
were developed.

The paper is organized as follows. In Sect. 2 we recall the basic features of the
Gauss–Jacobi based rational forms for computing (1). Section 3 contains the error
analysis and represents the main contribution of this paper. In Sect. 4 we revisit the
error analysis for the case of bounded spectra. Finally, in Sect. 5 we present some
numerical experiments that validate the theoretical results.
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2 Background on the Gauss–Jacobi approach

Starting from the representation (1), in order to approximate the fractional Laplacian
in [2] the authors consider the change of variable (2), that leads to

L−α = 2 sin(απ)τ 1−α

π

∫ 1

−1
(1 − t)−α (1 + t)α−2

(
τ
1 − t

1 + t
I + L

)−1

dt . (4)

Using the k-point Gauss–Jacobi rule with respect to the weight function ω(t) =
(1 − t)−α (1 + t)α−1 the above integral is approximated by the rational form

L−α ≈
k∑

j=1

γ j (η j I + L)−1 := τ−αRk−1,k

(L
τ

)
, (5)

where the coefficients γ j and η j are given by

γ j = 2 sin(απ)τ 1−α

π

w j

1 + ϑ j
, η j = τ(1 − ϑ j )

1 + ϑ j
; (6)

herew j andϑ j are, respectively, theweights and nodes of theGauss–Jacobi quadrature
rule.

The choice of τ in (2) is crucial for the quality of the approximation attainable by
(5). As already mentioned in the Introduction, working with bounded operators, it has
been shown in [2] that asymptotically, that is for k → +∞, the optimal choice is
given by

τ̃ = √λmin(LN )λmax(LN ). (7)

With this choice and denoting by κ(LN ) the spectral condition number of LN and by
‖·‖2 the induced Euclidean norm, we obtain

∥∥∥∥LN
−α − τ̃−αRk−1,k

(LN

τ̃

)∥∥∥∥
2

≤ C

( 4
√

κ(LN ) − 1
4
√

κ(LN ) + 1

)2k
, (8)

with C independent of k, which is a sharper version of (3). We remark that τ̃ is
independent of k. In what follows we shall follow a different strategy allowing a
dependence on k (in any case the coefficients γ j and η j completely change with k) but
at the same time a ‘mesh-independence’, since we work with the unbounded operator
L.

3 Error analysis

Working with the ratio λ/τ, where λ ∈ [c,+∞) and τ > 0, as shown in [12, Lemma
4.4] the k-point Gauss–Jacobi quadrature given by (5)–(6) is such that Rk−1,k (λ/τ)
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corresponds to the (k−1, k)-Padé approximant of (λ/τ)−α centered at 1. In this sense,
defining

z = 1 − λ

τ
, (9)

in what follows we focus the attention on the (k − 1, k)-Padé approximation

(1 − z)−α ≈ Rk−1,k(1 − z).

Indicating the truncation error by

Ek−1,k(1 − z) := (1 − z)−α − Rk−1,k(1 − z), (10)

we have the following result.

Theorem 1 For each integer k ≥ 1 and |arg (1− z)| < π the exact representation of
the truncation error defined by (10) is given by

Ek−1,k(1−z) = Γ (k + 1 − α)Γ (k + 1)

Γ (1 − α)Γ (2k + 1)
2F1(k + 1, k + α; 2k + 1; z)

2F1(−k, k;α; z−1)
(−z)k , (11)

in which Γ denotes the gamma function and 2F1 the hypergeometric function.

Proof Since [18, Eq. (9.8.1)]

(1 − z)−α = 2F1(1, α; 1; z), |arg (1 − z)| < π,

the expression for the truncation error is obtained following the analysis given in [7,
Sect. 3]. �
Proposition 1 For z < 1, let v = 1 − 2z−1 and ξ be defined by

v ±
(
v2 − 1

)1/2 = e±ξ . (12)

Then, for large values of k we have

Ek−1,k(1 − z) = 4 sin(απ)
v − 1

e(2k+1)ξ

(
1 + e−ξ

)−2α

(
1 − e−ξ

)2(1−α)

(
1 + O

(
1

k

))
. (13)

Proof Since z = 2/(1 − v), using [10, Eqs. (16) and (17) p. 77] we have that

2F1(k + 1, k + α; 2k + 1; z) = 4
Γ (2k + 1)Γ (1/2)

Γ (k + α)Γ (k + 1 − α)

k−1/2

(−z)k+1

× e−(k+1)ξ (1 − e−ξ )−3/2+α(1 + e−ξ )−1/2−α (1 + O (1/k)) ,

123

5



6 L. Aceto, P. Novati

2F1(−k, k;α; z−1) = Γ (k + 1)Γ (α)

2Γ (1/2)Γ (k + α)
k−1/2

× (1 − e−ξ )1/2−α(1 + e−ξ )α−1/2
(
ekξ + e±iπ(α−1/2)e−kξ

)
(1 + O (1/k)) .

Plugging these relations in (11) and using the identities Γ (1/2) = √
π and

Γ (α)Γ (1 − α) = π/ sin(πα), we find the result. �
Remark 1 As pointed out in [7, p. 402], it can be observed that eq. (13) provides a
very good estimate of Ek−1,k(1 − z) even for small values of k.

Proposition 2 For large values of k, the following representation for the truncation
error holds

Ek−1,k

(
λ

τ

)
= 2 sin(απ)

(
λ

τ

)−α [
λ1/2 − τ 1/2

λ1/2 + τ 1/2

]2k (
1 + O

(
1

k

))
. (14)

Proof Using (12), after some algebra we obtain

2
v − 1

e(2k+1)ξ

(
1 + e−ξ

)−2α

(
1 − e−ξ

)2(1−α)
=
(

v + 1

v − 1

)−α 1
[
v + (v2 − 1

)1/2]2k
. (15)

Since z = 2/(1 − v) and z = 1 − λ/τ we find

v = λ + τ

λ − τ
.

Substituting this expression in (15) and then the result in (13), we easily obtain the
statement. �

By (5), (9) and (10) we have

∥∥∥∥L−α − τ−αRk−1,k

(L
τ

)∥∥∥∥H→H
≤ max

λ≥c
τ−α

∣∣∣∣Ek−1,k

(
λ

τ

)∣∣∣∣ . (16)

As consequence, a suitable value for τ can be found by working with (14). To this
purpose, let us consider the function

f (λ, τ ) :=
(

λ

τ

)−α [
λ1/2 − τ 1/2

λ1/2 + τ 1/2

]2k
, (17)

which is the τ -dependent factor of (14). We want to solve

min
τ>0

max
λ≥c

τ−α f (λ, τ ). (18)
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For any fixed τ > 0, f (λ, τ ) → +∞ for λ → 0+, f (λ, τ ) → 0 for λ → +∞,
f (λ, τ ) = 0 for λ = τ (the minimum) and, by solving ∂ f (λ,τ )

∂λ
= 0, we find a

maximum at

λ =
(
k + √

k2 + 1
)2

α2 τ = s2k
4k2

α2 τ, (19)

where

1 < s2k = 1 + 1

2k2
+ O(1/k4). (20)

Clearly λ > τ and hence

max
λ≥c

τ−α f (λ, τ ) = max
{
τ−α f (c, τ ), τ−α f (λ, τ )

}
.

Setting
ϕ1 (τ ) := τ−α f (c, τ ), ϕ2 (τ ) := τ−α f (λ, τ ), (21)

by (17) we find

ϕ1 (τ ) = c−α

[
c1/2 − τ 1/2

c1/2 + τ 1/2

]2k
,

ϕ2 (τ ) = τ−α f

(
s2k

4k2

α2 τ, τ

)

= τ−α

(
s2k

4k2

α2

)−α (
2ksk − α

2ksk + α

)2k

= τ−α

(
4k2e2

α2

)−α

(1 + O(1/k2)), (22)

where the last equality follows from (20) and by considering the Taylor expansion
around y = 0 after setting s2k = 1+ y. Since ϕ2 (τ ) is monotone decreasing, whereas
ϕ1 (τ ) is monotone increasing for τ > c, the solution of (18) is obtained by solving

ϕ1 (τ ) = ϕ2 (τ ) for τ > c. (23)

Proposition 3 Let τ ∗ be the solution of (23). Then, for k large enough,

τ ∗ ≈ τk := c
( α

2ke

)2
exp

(
2W

(
4k2e

α2

))
, (24)

where W denotes the Lambert-W function.

Proof Neglecting the factor (1 + O(1/k2)) in (22), Eq. (23) implies

( c
τ

)−α
[
τ 1/2 − c1/2

τ 1/2 + c1/2

]2k
=
(
4k2e2

α2

)−α

. (25)
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Setting x = (c/τ)1/2 < 1 and

ak = α

2ke
, (26)

by (25) we obtain

x− α
k

(
1 − x

1 + x

)
= a

α
k
k .

Since (1 + x)−1 = 1 − x + O(x2), using the approximation

1 − x

1 + x
≈ e−2x (27)

we solve

e−2x = (akx)
α
k .

Therefore

−2x = α

k
ln (akx)

which implies

2k

akα
= 1

akx
ln

(
1

akx

)
.

Using the Lambert-W function, the solution for such equation is given by

1

akx
= exp

(
W

(
2k

akα

))
.

Substituting x by (c/τ)1/2 and using (26) we obtain the expression of τk . �
In order to appreciate the approximation given by (24), working with α = 0.6 and

c = 1, in Fig. 1 we plot τ∗ and τk for small values of k, on the left, and their relative
distance for k = 1, 2, . . . , 200 on the right. Moving α or c we obtain similar pictures.

We remark that since for large z

W (z) = ln z − ln (ln z) + O(1),

we have (see (24))

τk = c
4k2

α2

[
ln

(
4k2

α2 e

)]−2

(1 + O(1/k2)). (28)
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τ *
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Fig. 1 On the left: for small values of k, comparison between τ∗, the exact solution of (23) (numerically
evaluated), and τk as defined by (24). On the right, the relative distance in logarithmic scale, that is,

log10
(∣∣∣ τ

∗−τk
τ∗

∣∣∣
)

, for k = 1, 2, . . . , 200. In both pictures, α = 0.6 and c = 1

By (22) we thus obtain

ϕ2 (τk) = τ−α
k f (λ, τk)

= c−α

(
2ke1/2

α

)−4α [
2 ln

(
2k

α

)
+ 1

]2α
(1 + O(1/k2)).

The above analysis yields the following result.

Theorem 2 Let τk be defined according to (24). Taking τ = τk in (2), for k large
enough we have

∥∥∥∥L−α − τ−α
k Rk−1,k

( L
τk

)∥∥∥∥H→H
≤ 2 sin(απ) c−α

(
2ke1/2

α

)−4α

×
[
2 ln

(
2k

α

)
+1

]2α (
1+O

(
1

k2

))
. (29)

Proof The statement immediately follows from (14), (16), and the analysis just made.
�

Remark 2 The factor c−α in the bound (29) reveals how the problem becomes increas-
ingly difficult if the spectrum is close to the branch point of λ−α.

4 The case of bounded operators

The theory just developed can be easily adapted to the case of bounded operators LN

with spectrum contained in [c, λN ], where λN = λmax(LN ). In this situation we want
to solve
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min
τ>0

max
c≤λ≤λN

τ−α f (λ, τ ). (30)

Looking at (19) we have λ = λ(k) → +∞ as k → +∞. As a consequence, for
λ ≤ λN (k small), the solution of (30) remains the one approximated by (24) and
the bound (29) is still valid. On the contrary, for λ > λN (k large), the bound can be
improved as follows.

Remembering the features of the function f (λ, τ ) introduced in (17), we have that
for λ > λN the solution of (30) is obtained by solving

ϕ1 (τ ) = ϕ3 (τ ) for τ > c, (31)

where ϕ1 (τ ) is defined in (21) and

ϕ3 (τ ) := τ−α f (λN , τ ) = λ−α
N

[
λ
1/2
N − τ 1/2

λ
1/2
N + τ 1/2

]2k
.

It can be easily verified that the equation ϕ1 (τ ) = ϕ3 (τ ) has in fact two solutions,
one in the interval (0, c) and the other in (c, λN ). Anyway since ϕ3 (τ ) is monotone
decreasing in [0, λN ) we have to look for the one in (c, λN ) as stated in (31).

Proposition 4 Let τ̂ ∗ be the solution of (31). Then, for k large enough,

τ̂ ∗ ≈ τ̂k :=
⎛

⎜⎝−αλ
1/2
N

8k
ln

(
λN

c

)
+
√√√√
(

αλ
1/2
N

8k
ln

(
λN

c

))2

+ (c λN )1/2

⎞

⎟⎠

2

. (32)

Proof From (31) we have

c−α

[
τ 1/2 − c1/2

τ 1/2 + c1/2

]2k
= λ−α

N

[
λ
1/2
N − τ 1/2

λ
1/2
N + τ 1/2

]2k
. (33)

Setting x = (c/τ)1/2 < 1 and y = (τ/λN )1/2 < 1 by (33) we obtain

(
1 − x

1 + x

)
=
(

λN

c

)− α
2k
(
1 − y

1 + y

)
.

Using (27) we solve

e−2x =
(

λN

c

)− α
2k

e−2y .

Therefore

−2x = − α

2k
ln

(
λN

c

)
− 2y
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which implies

x − y = α

4k
ln

(
λN

c

)
.

Substituting x by (c/τ)1/2 and y by (τ/λN )1/2 after some algebra we obtain

τ + α

4k
λ
1/2
N ln

(
λN

c

)
τ 1/2 − (c λN )1/2 = 0.

Then, solving this equation and taking the positive solution, we obtain the expression
of τ̂k . �

Observe that by (32), for k → +∞ we have

(
τ̂k

λN

)1/2

= − α

8k
ln

(
λN

c

)
+
√(

α

8k
ln

(
λN

c

))2
+
(

c

λN

)1/2

= − α

8k
ln

(
λN

c

)
+
(

c

λN

)1/4

+ O
(

1

k2

)
, (34)

and therefore τ̂k → τ̃ , the asymptotically optimal parameter defined by (7). Finally,
using (27) and the above expression we obtain

ϕ3
(
τ̂k
) = λ−α

N

[
λ
1/2
N − τ̂

1/2
k

λ
1/2
N + τ̂

1/2
k

]2k

≤ λ−α
N exp

(
−4k

(
τ̂k

λN

)1/2
)

= λ−α
N exp

(
−4k

[(
c

λN

)1/4

− α

8k
ln

(
λN

c

)])(
1 + O

(
1

k

))

= λ−α
N exp

(
−4k

(
c

λN

)1/4
)
exp

(
α

2
ln

(
λN

c

))(
1 + O

(
1

k

))

= (c λN )−α/2 exp

(
−4k

(
c

λN

)1/4
)(

1 + O
(
1

k

))
. (35)

The above analysis yields the following result.

Theorem 3 Let k be such that for each k ≥ k we have λ = λ(k) > λN . Then for each
k ≥ k, taking in (2) τ = τ̂k, where τ̂k is given in (32), the following bound holds
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12 L. Aceto, P. Novati

∥∥∥∥L−α
N − τ̂−α

k Rk−1,k

(LN

τ̂k

)∥∥∥∥
2

≤ 2 sin(απ) (c λN )−α/2

× exp

(
−4k

(
c

λN

)1/4
)(

1 + O
(
1

k

))
. (36)

It is important to remark that, qualitatively, we have obtained the same result of
[2] and reported in (3) following a completely different approach. Nevertheless the
analysis presented here is quantitatively more accurate as it also provides the constant
thatmultiplies the exponential factor.Observemoreover that the analysis of this section
may be particularly useful when, in practical situation, one is forced to keep the
discretization quite coarse (so that k may be rather small) and also to keep small
the number of quadrature nodes k. In this case, defining τ̂k as in (32) may provide
results much better than the one attainable with the asymptotically optimal choice
τ̃ = √

λmin(LN )λmax(LN ).

In order to compute a fairly accurate estimate of k we solve the equation λ̄ = λN ,

where λ̄ is defined in (19). Neglecting the factor s2k in (19) and taking τ = τk as in
(24), we obtain the equation

W

(
4k2e

α2

)
= 1

2
ln

(
λN

c
e2
)

.

Since W (z1) = z2 if and only if z1 = z2ez2 , we clearly have

4k2

α2 = 1

2
ln

(
λN

c
e2
)(

λN

c

)1/2

from which the approximation to k easily follows. In practice, assuming to have a
good estimate of the interval containing the spectrum of LN , one should use τk as in
(24) whenever k < k and then switch to τ̂k as in (32) for k ≥ k. In other words, for
bounded operators we consider the sequence

τk,N =
⎧
⎨

⎩

τk if k < k,

τ̂k if k ≥ k,
(37)

with

k̄ = α

2
√
2

(
ln

(
λN

c
e2
))1/2 (

λN

c

)1/4

. (38)

5 Numerical experiments

In this section we present the numerical results obtained by considering two simple
cases of self-adjoint positive operators. In particular, in the first example we try to
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Fig. 2 Error and error bound (29) for Example 1 with N = 100, p = 4

simulate the behavior of an unbounded operator by working with a diagonal matrix
with a wide spectrum. In the second one we consider the standard central difference
discretization of the one dimensional Laplace operator with Dirichlet boundary con-
ditions.

We remark that in all the experiments the weights and nodes of the Gauss–Jacobi
quadrature rule are computed by using the Matlab function jacpts implemented in
Chebfun by Hale and Townsend [13]. In addition, the errors are always plotted with
respect to the Euclidean norm.

Example 1 Wedefine A = diag(1, 2, . . . , N ) andLN = Ap so that σ(LN ) ⊆ [1, N p].
Taking N = 100 and p = 4, in Fig. 2, for α = 0.25, 0.5, 0.75 the error and the error
bound (29) are plotted versus k, the number of points of the Gauss–Jacobi rule. It is
worth noting that (29) provides excellent estimates even for small values of k, although
the analysis has been made assuming that k is large (cf. Remark 1).

In Fig. 3, for α = 0.5 we plot the error obtained using τk taken as in (24) and τ̃ as
in (7), changing the amplitude of the spectrum, that is, the value of p. In particular,
we fix again N = 100 and take p = 2, 3, 4. Since the value of τk does not depend on
the amplitude of the spectrum, there is only one curve for this value.

The figure clearly shows the improvement attainable with τk for k small, and more-
over the deterioration of the method for very large spectra when using τ̃ .

Example 2 We consider the linear operatorLu = −u′′, u : [0, b] → R,with Dirichlet
boundary conditions u(0) = u(b) = 0. It is known that L has a point spectrum
consisting entirely of eigenvalues

μs = π2s2

b2
, for s = 1, 2, 3, . . . .
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Fig. 3 Error comparison for Example 1 using τ̃ as in (7) and τk as in (24), p = 2, 3, 4 (lowest to highest
curve), N = 100 and α = 0.5
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Fig. 4 Error comparison for Example 2 using τ̃ as in (7) and τk,N as in (37), N = 500 and α = 0.5

Using the standard central difference scheme on a uniform grid and setting b = 1,
in this example we work with the operator

LN := (N + 1)2tridiag(−1, 2,−1) ∈ R
N×N .

The eigenvalues are

λ j = 4(N + 1)2 sin2
(

jπ

2(N + 1)

)
, j = 1, 2, . . . , N ,

so that σ(LN ) ⊆ [π2, 4(N + 1)2].
The aim of this example is to show the improvement that can be obtained by using

the k-dependent parameter τk,N as in (37) with respect to the asymptotically optimal
one τ̃ . By choosing N = 500, so that λN ≈ 106, and α = 0.5, we get k̄ = 12 (11.6
from the exact computation by (38)). In Fig. 4 the errors are reported. In Fig. 5 we also
plot the values of the sequence τk,N . We remark that for other choice of α the results
are qualitatively identical.
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Fig. 5 Selected values for τk,N defined by (37) for Example 2 with N = 500 and α = 0.5
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Fig. 6 Error and error estimate (36) for Example 2 with N = 200

Finally, still working with this example, we show the accuracy of the bound (36)
for α = 0.25, 0.5, 0.75. The results are reported in Fig. 6.

6 Conclusions

In this paper we have considered rational approximations of fractional powers of
unbounded positive operators obtained by exploiting the connection between Gauss–
Jacobi quadrature onMarkov functions and Padé approximants. Using classical results
in approximation theory, we have provided very sharp a priori estimates of the trunca-
tion errors that allow to properly define the parameter τ . The numerical experiments
confirm that such analysis improves some existing results.

On the other hand, in the paper we have not considered the computational issues
behind this kind of approximations, since they are strictly dependent on the opera-
tor L or its discretization. Clearly one inversion (or one linear system if one needs
to approximate L−α f ) is necessary at each step so that a suitable preconditioning
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approach should be employed. In this way the stagnation around 10−12 observed in
Fig. 6 could be overtaken.
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