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first flight in the austral summer 2022. It is designed to measure low energy (< 0.25 GeV/=)
cosmic antinuclei. A particular focus is on antideuterons, which are predicted to have an ultra-low
astrophysical background as compared to signals from dark matter annihilation or decay in the
Galactic halo. GAPS uses a novel technique for particle identification based on the formation
and decay of exotic atoms. To achieve sufficient rejection power for particle identification, an
accurate determination of several fundamental quantities is needed. The precise reconstruction
of the energy deposition pattern on the primary track is a particularly intricate problem and we
developed a strategy devised to solve this using modern machine learning techniques. In the
future, this approach can also be used for particle identification. Here, we present preliminary
results of these efforts obtained from simulations.
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1. Introduction

Dark matter (DM) constitutes ∼ 26% of energy budget of the Universe, about five times more
abundant than baryonic matter, but its fundamental nature is still unknown. DM evidences came
only by gravitational observations, indicating that if it exists, it must barely interact with ordinary
baryonic matter and radiation. Particularly appealing candidates for DM particles are electrically
neutral and weakly interacting massive particles (WIMPs) with a mass in the range between 10 GeV
and a few TeV [1]. Indirect searches for DM aim at detecting the signatures of possible annihilations
or decays of DM particles in the fluxes of cosmic rays (CRs). A key point of these searches is to
look for channels and ranges of energy where it is possible to extrapolate a DM signal from ordinary
astrophysical background. This is the basic reason why searches for charged particles focus on
fluxes of antiparticles (positrons, antiprotons, antideuterons), much less abundant in the Universe
than their corresponding particles [2].

In particular, antideuterons could lead to a breakthrough discovery of DM [3, 4]. Due to the
kinematics of the antinuclei formation, the possible flux of DM-produced cosmic antideuterons
below few GeV/= is predicted to be several orders of magnitude above the expected flux of an-
tideuterons from astrophysical origin (i.e., from secondary interactions of cosmic rays). The
General Antiparticle Spectrometer (GAPS) is specifically designed for low energy (< 0.25 GeV/=)
cosmic antinuclei detection [5–8].

2. The GAPS detector

The GAPS experiment is a balloon-borne detector, scheduled for the first of three flights in
Antarctica during the austral summer 2022-2023. The in-situ low geomagnetic cutoff is ideal for
the detection of low energy cosmic particles. Fig. 1 shows a schematic view of the GAPS apparatus
consisting of a Time-of-Flight (ToF) and tracking systems [9].

The ToF system consists of ∼ 160 plastic scintillator paddles [10] and is arranged in an outer
Tof system and an inner Tof system (see Fig. 1 right). The outer ToF consists of an umbrella
of scintillator oriented horizontally and a cortina of four walls of scintillator oriented vertically.
The inner ToF is a cube of scintillator, consisting of four sides, a top and a bottom. Each plastic
scintillator paddle is 6.35 mm thick and 16 cm wide. The umbrella consists of 1.8 m and 1.51 m
length paddles, whereas the cortina and the cube use 1.72 m and 1.51 m, 1.8 m and 1.56 m lengths
respectively. The ToF system measures the time information necessary to reconstruct velocity of
particles and the ionization energy losses dE/dx of particles. The ToF also provides the overall
trigger for GAPS.

The core of the apparatus is a tracking system made of ten planes of 12 × 12 cylindrical Si(Li)
detectors each [11–13]. On each supporting aluminum plane, the Si(Li) cylinders are arranged in
a 6 × 6 array of modules, each with four Si(Li) detectors read-out by a dedicated ASIC [14]. The
Si(Li) detectors have a diameter of ∼ 10 cm, are ∼ 2.5 cm thick and are segmented into eight strips
of equal area. Finally, the tracking system is kept at his operational temperature of ∼ −40◦ C.

GAPS uses a novel technique for antinuclei detection, based on formation and decay of exotic
atoms. The incoming primary antinucleus slows down due to ionization energy losses through the
materials of the apparatus and can form an exotic atom by replacing a shell electron in a silicon
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Figure 1: A schematic view of the GAPS detector.

or aluminum atom. During the de-excitation process, the exotic atom emits characteristic X-rays
with energies determined by atomic transitions. At the end, the primary particle annihilates with
the target nucleus producing secondary particles, mainly pions and protons from a common vertex.
The measurements of time of flight, ionization losses dE/dx, X-ray energies together with the
reconstructed topology of the “annihilation star”, allow to clearly identify antinuclei.

3. Energy deposition reconstruction

In order to reconstruct the antinucleus annihilation topology, a custom algorithm was devel-
oped. First, the primary track is identified, followed by the secondary tracks associated with the
primary track. Finally, the annihilation vertex is defined as the point which minimize the distance
between primary and secondary reconstructed tracks. More details can be found in [15, 16]. The
reconstruction algorithm was developed using the GAPS simulation software, which reproduces the
instrument geometry and materials using the Geant4 toolkit [17]. Moreover, a digitization process
was applied on the simulated data to mimic a realistic instrument response for time, energy, and
position measurements.

The reconstruction algorithm provides several quantities related to the primary, one of the most
relevant for particle identification is the ionization energy deposition. Since the digitization affects
the energy reconstruction, it is important to compare the primary reconstructed energy with its
Monte-Carlo-truth (MC) value. When comparing the MC total energy deposited in the detectors
via ionization by the primary particle with the total digitized energy in the same detector, in some
cases an excess is observed with respect to the digitized information.

This excess results from a combination of two effects:

• The primary antinucleus annihilates in a detector and the produced secondary particles release
energy in the same volume

• Secondary particles can cross a volume already crossed by the primary in a time scale smaller
than the integration time of the detector
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Figure 2: Left panel: residuals between total MC primary energy deposition and the sum of all digitized
deposits associatedwith the primary according toMC (green histogram) andwith the reconstruction algorithm
(blue histogram). Right panel: residuals between totalMCprimary energy deposition and the sumof digitized
deposits associated with the primary according to reconstruction algorithm before and after applying the ML
correction (blue and red histograms respectively). Both panels refer to the interval of reconstructed primary
V between 0.25 and 0.30.

The effect was investigated using the Monte Carlo information. The MC total energy deposited
via ionization by the slowing-down primary was compared in V (V = E/2, E velocity of the primary,
2 speed of light) intervals with the total digitized energy in all detectors crossed by the primary
according to the MC and the reconstruction algorithm. The green and blue histograms in Fig. 2
(left) show the residuals for one of the V intervals. Both histograms peak at zero, however, a clear
asymmetry can be observed with a long tail for negative values and, for the blue histogram, an
additional distribution peaking around 0.5 for positive values. The negative tail, represents the
energy excess, while the feature around 0.5 is due to missing hits on the reconstructed primary
track.

In order to reduce the effect of energy excess in the digitized total primary energy a Neural
Network (NN) was developed. A NN is usually made of a sequence of simple data transformations
(layers) and these data transformations are learned by exposure to examples [18]. Each layer applies
a few simple tensor operations to the input data, serving its output to the next layer. The specification
of what a layer does to its input data is stored in the layer’s weights, which are a set of numbers.
During the NN training phase, the weights are updated at each iteration (epoch) to reduce the
distance between predictions and true values. The function which defines a distance score is named
loss function.

The used NN architecture is a type of Recurrent Neural Network (RNN) known as Long-Short
Term Memory (LSTM) [19], it can process a sequence of data extracting information not only by
the single elements, but also by their order. The input to the NN is a time series corresponding to
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Figure 3: Left panel: total energy distribution obtained as the sum of all digitized (dashed histogram) andML
corrected (solid histogram) primary energy deposits. Right panel: comparison between the total primary
energy distributions obtained summing all MC (dashed histogram) and ML corrected (solid histogram)
primary deposits. Both panels refer to the interval of reconstructed primary V between 0.25 and 0.30. Blue
histograms are for antiprotons (?̄) and red histograms are for antideuterons (�̄).

the sequence of digitized energy deposits associated with the primary (according to reconstruction
algorithm) and returns as output target the same deposits according to real MC primary energy
deposits.

The choice of a LSTM was driven mainly by two reasons

• It can easily manage variable length input (and output) sequences: the number of detectors
crossed by the primary varies with velocity and arrival direction of the primary particle.

• It can extract information by the order of the input sequence following the slow down profile
due to ionization energy loss of the primary

The best architecture configuration for this work was found to be two LSTM layers with 128 and
64 channels, with the last one-dimensional linear output LSTM layer. The loss function minimized
during training is a mean square error, defined as the mean squared difference between MC and
ML corrected energy depositions. A train and test dataset was selected requiring a reconstructed
annihilation vertex contained inside the cube volume. The NN was trained for 70 epochs on a
sample of 300000 antiprotons and antideuterons for a total of 600000 events. The mean absolute
error (MAE), defined as the mean absolute difference between the MC and ML corrected energy
depositions, was computed separately for antiproton and antideuteron test samples. The obtained
results with this configuration are ?̄"�� = 0.63 MeV and �̄"�� = 0.69 MeV.

Fig. 2 (right panel) shows the residuals between total MC primary energy deposition and the
sum of digitized deposits associated with the primary according to reconstruction algorithm before
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and after applying the Machine Learning (ML) correction (blue and red histograms respectively).
A clear reduction of the energy excess can be observed with the ML output.

Fig. 3 shows the distributions of the total primary energy obtained summing all the energy
depositions associated with the primary according to reconstruction, ML corrections, and MC.
Differences between the two species increase after applying the ML correction (solid histograms).
This is one of the quantities that will be used for antinuclei identification [20]. In the right panel of
Fig. 3 the dashed histograms represent the sum of MC primary energy depositions, which can be
interpreted as the best possible information achievable. From that figure it can be seen that the NN
output slightly underestimates the antideuteron total MC primary energy. The remaining difference
is due to occasional wrong association of detector hits to the primary track by the reconstruction
algorithm. Antideuteron events have on average a greater number of registered hits with respect to
antiprotons, which increase the chance of missing hits on the reconstructed primary track.

4. Conclusions

To achieve sufficient rejection power for particle identification, an accurate determination of
several physical quantities is needed. A precise reconstruction of the energy deposition profile on
the primary track is very important. In this work, we present an approach to treat the accurate
energy deposition reconstruction using modern machine learning techniques. The results show that
the RNN can reproduce the MC simulated data from the digitized signal relative to the primary
track with a low MAE (∼ 0.66 MeV). The total energy deposition of the primary, corrected with
the ML tool, has the potential to significantly benefit the antiproton and antideuteron identification
analysis.
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